

University of Piraeus

School of Information and Communication Technologies

Department of Digital Systems

Postgraduate Program of

Studies MSc Digital Systems

Security

Title: Android malware network traffic detection using

visual representation (AF)

Supervisor Professor: Christos Xenakis

Name-Surname E-mail Student ID.

MATTHAIOS

STAVROU

mstauroy@gmail.com mte2030

Piraeus

01/11/2022

mailto:mstauroy@gmail.com

2

This essay is dedicated to my mother who passed away recently

3

Abstract

There is a growing concern among mobile device users worldwide about Android

malware. An effective method of detecting and analyzing Android malware is through

the analysis of the network traffic that is generated because of the malware's operation.

A malware analysis can provide valuable insights into the inner workings of the

malware, as well as its intended targets and potential impacts to the user. Our goal in

this paper is to present a novel approach for detecting Android malware network traffic

using visual representation techniques to detect Android malware network traffic. As

part of our approach, we utilize advanced data visualization techniques to display

network traffic data in a clear, effective, and efficient manner, allowing for the efficient

and accurate analysis of Android malware network activity.

In our presentation, we will present the developer tool, which is a script that allows

users to automate Frida commands and easily retrieve information regarding an app's

classes, properties, and methods. It will also provide users with a script tool which

utilizes the Android Debug Bridge (adb) command-line tool to perform a variety of

actions related to Android applications.

It is our belief that our approach will be a valuable tool for those researchers and

analysts who are working to prevent Android malware from spreading throughout the

world.

4

Table of Contents
1. Android Security Process ... 5

a. Introduction ... 5

b. Application Sandbox ... 6

I. Protections ...7

II. Guidelines for sharing files ..8

c. SELinux.. 9
I. Introduction ...9
II. Security-Enhanced Linux in Android ...10

III. Background ...11

d. Android Permissions .. 11

I. Potentially Harmful Applications (PHAs) ..12
II. Malware categories ...14
III. Mobile Unwanted Software (MUwS) ...22
I.V The categories of Mobile Unwanted Software (MuwS)25

2. Mobile Malware Techniques ... 26

a. An explanation of the structure of Android packages (APKs) 27

b. Repackaging ... 28

c. Penetration testing tools for Android ... 29

d. Configuring the Android pentesting environment ... 30

3. Pentesting Android Apps Using Frida ... 36

a. Introduction to Frida .. 36

b. Setting up Frida .. 37

I. Login Bypass Using Frida ...37

II. Bypass Root Detection ...39

4. Android Security Tools: Burp-Suite, Run Frida Server, Install-Uninstall apk 40

a. Introduction of security develop tools ... 41

5. Frida Commands .. 45

a. Introduction to frida commands and how to use it ... 45

b. Instructions to install automated tool Frida commands ... 47

c. The application is currently being used ... 51

6. Conclusion ... 54

7. References .. 55

5

1. Android Security Process

 a. Introduction

Android is a widely used mobile operating system that has a comprehensive security

model in place to protect users and their devices from malicious software and security

threats. The Android security model incorporates various layers of protection that work

together to secure the device and keep it safe. The core of the Android security model is

the Android operating system itself, which is designed with security in mind and includes

features such as process isolation, secure IPC, and application sandboxing to protect

against vulnerabilities and malware.

To ensure the security of devices and apps, Google has implemented a set of security

policies and practices for Android device manufacturers and developers. These policies

and practices ensure that devices and apps are secure and meet the highest standards for

security and privacy. One of the key ways that Android maintains security is through

regular security updates, which address vulnerabilities and fix bugs that could be

exploited by malicious actors. Google works with device manufacturers and carriers to

ensure that these updates are rolled out to users in a timely manner.

In addition to the security measures implemented by Google and device manufacturers,

users also have a number of tools at their disposal to help secure their devices. These

include the ability to set up screen locks and use biometric authentication, as well as the

ability to download and use security apps from the Google Play Store. Overall, the

Android security model is designed to keep users and their devices safe from threats and

vulnerabilities. By following best practices and keeping devices up to date with the latest

security updates, users can help ensure that their devices remain secure.

As with other app-stores, Google Play requires that applications be digitally signed by

their developers. Signing an application is intended to identify the author of the

application and establish trust between the developer and Google. The secret key used

for signing is known only to the developer, which means that no one else can sign the

application with that key, ensuring that the developer knows that the presence of his

signature indicates that the application has not been compromised. It also ensures that

the developer can be held accountable for the application's behavior.

The Android Application Sandbox is defined by the app signature for each application.

The certificate identifies which user ID is associated with which application. As a result,

different applications run with different user IDs. Any application installed on the device

6

is verified for proper signatures by the package manager. It is possible for the application

that is being installed to share data if the public key in the certificate matches any key

used to sign other applications on the device a user ID that is shared with other apps

signed with the same public key. It must be specified in the manifest file of the

application being installed. The certificates in Android applications are not verified by

CAs. Therefore, applications may be signed by a third party or even by themselves.

Furthermore, applications are able to declare security permissions based on the signature

they bear. When two applications are signed with the same key, they are developed by

the same author, and thus a shared Application Sandbox can be enabled using the shared

user ID feature.

In conclusion, the Android security model is designed to keep users and their devices safe

from threats and vulnerabilities. Through the use of various security features and regular

security updates, as well as tools and policies implemented by Google and device

manufacturers, users can help ensure the security of their devices. Additionally, the use of

digital signatures and the Android Application Sandbox helps to establish trust and

accountability between developers and users, and provides an added layer of security for

the device [1].

 b. Application Sandbox

The Android operating system incorporates a security feature known as an Application

Sandbox. This feature allows for the isolation and protection of individual apps from

each other and from the system. As a virtualization environment, it gives each app the

ability to run as if it were the only app on the device with its own private resources and

virtual file system. This means that apps will be prevented from accessing or modifying

sensitive data belonging to other apps or the system itself, if this feature is enabled.

The Android application sandbox is an essential aspect of the Android security model,

designed to protect users and their devices from malicious software and other threats.

The Android platform makes use of Linux user-based protection as a means of

identifying and isolating app resources. This results in the separation of apps and also

serves to protect the system from malicious applications by isolating the apps from one

another.

7

To achieve this, each Android application is assigned a unique user ID (UID). The

Android application is then run in its own process, which is accomplished by using

standard Linux facilities such as user and group IDs. The kernel enforces security

between apps and the system at the level of the processes, by enforcing security between

apps and the system. As a default, apps cannot interact with each other or access the

operating system by themselves, and are not able to interact with each other by default.

This security model extends to both native code and OS applications, due to the

Application Sandbox's location in the kernel. Application Sandboxes contain all software

above the kernel, such as OS libraries, application frameworks, application runtimes, and

all applications. Depending on the platform, developers may be restricted to a specific

development framework, API set, or programming language. However, a native

application is as sandboxed as an interpreted application on Android, as there are no

restrictions on how it can be written to ensure security.

In conclusion, the Android Application Sandbox is an essential security feature that

allows for the isolation and protection of individual apps from each other and from the

system. It makes use of Linux user-based protection to identify and isolate app resources

and assigns each app a unique user ID for this purpose. It also enforces security between

apps and the system at the level of the processes, making it a highly secure and efficient

feature for Android devices [2].

I. Protections

The security of the Linux kernel in Android devices is protected by the use of an

Application Sandbox. While individual protections may not be foolproof, implementing

defense-in-depth strategies is essential to prevent vulnerabilities from compromising the

operating system or other applications. The Android Application Sandbox enforces

several protections to strengthen the security of the system.

In Android 5.0, SELinux was introduced to provide mandatory access control (MAC)

separation between the system and apps. The UID-based discretionary access control

(DAC) sandbox was also used to enforce inter-app isolation. In Android 6.0, the SELinux

sandbox was extended to isolate apps across the boundaries of each physical user.

Additionally, safer defaults for application data were set, with permissions on an app's

home directory changed from 751 to 700 for apps with targetSdkVersion >= 24.

8

In Android 8.0, a seccomp-bpf filter was introduced to limit the syscalls apps were

allowed to use, further strengthening the app/kernel boundary. In Android 9, all non-

privileged apps with a targetSdkVersion greater than 28 were required to run in SELinux

sandboxes, with MACs provided per application. This not only improves app separation,

but also prevents apps from overriding safe defaults and making their data accessible to

others.

Finally, in Android 10, direct access to /sdcard/DCIM was removed, providing a limited

raw view of the filesystem. This allows apps to access their package-specific paths directly

via any method, such as Context.getExternalFilesDir(). Overall, the Android Application

Sandbox enforces a variety of protections to enhance the security of the Linux kernel and

protect user data [2].

II. Guidelines for sharing files

The When creating mobile apps, it's essential to consider the security risks that come

with sharing files. One of the most prevalent poor practices is making app data publicly

accessible, as it grants access to anyone and doesn't allow limiting access to specific

recipients. This can lead to information leaks, vulnerabilities and makes the app a target

for malware.

Instead of this approach, it's recommended to follow these guidelines:

• Use a content provider when your app needs to share files with another app.

Content providers allow sharing data with the right level of detail and don't have

the same limitations as UNIX permissions that are accessible to everyone.

• For files that need to be publicly accessible such as images, videos, and audio

files, store them using the MediaStore class. This class uses runtime permissions

to control access to strongly-typed collections and allows using intents like

ACTION_OPEN_DOCUMENT to access weakly typed files like PDFs.

• For apps targeting Android 9 and below, the requestLegacyExternalStorage

manifest attribute is set to true by default. For apps targeting Android 10, the

default value is false, to temporarily disable the filtered storage view, set the

attribute to true.

• To enhance security, use restricted permissions and installer whitelisting. This

allows only specific apps to be stored outside the sandbox, providing an extra

layer of protection for apps that aren't whitelisted.

9

In conclusion, when sharing files in mobile apps, it's crucial to avoid making app data

publicly accessible, as it can lead to security vulnerabilities. Instead, developers should

use content providers, MediaStore class, and restricted permissions to share files with

the right level of detail and control access. Additionally, apps targeting Android 10

should use the requestLegacyExternalStorage manifest attribute and follow best

practices for app permissions.

 c. SELinux

I. Introduction

In SELinux, what is explicitly allowed is listed, while everything else is forbidden. There

are various modes, Enforcing, where permissions are enforced and logged, Permissive,

where permissions are only logged, and Disabled, where it is disabled. SELinux is enabled

on all Android devices (since Android 5.0 [3]) and set to enforce. Consequently, any

finding of SELinux in any other state indicates that the environment has been modified.

As part of our implementation, we employ three different methods for determining the

state of SELinux. We once again rely on Android properties to provide us with

information through ro.build.selinux and the RO.boot.selinux file. The first one reports

the status from the boot.img about SELinux on the current build, while the second one is

to see if the Kernel uses the permissive parameter. The third method involves identifying

the contents of the "enforce" file in order to detect SELinux. SELinux's current state is

contained in this file. Although this method is known for Linux systems, we were unable

to find any relevant detection mechanism implemented in Android. The first step is to read

/proc/filesystems, which contains the kernel-compiled filesystems. Those whose kernel

modules are currently loaded. As a result, when reading the list of compiled filesystems.

The kernel can be examined to determine if the selinuxfs is present, which would indicate

that SELinux has been loaded. This method has a twofold importance, first, it matters

whether we can read at all the /proc/filesystems and secondly if we find the selinuxfs.

According to our reseach and testing after SELinux blocks reading several /proc/ locations

after Android 8, including the filesystems 1 location. In the case we are able to read

/proc/filesystems we know that SELinux is probably disabled or permissive.

Alternatively, for older versions of Android, after we read the contents of

/proc/filesystems, we try to detect the value selinuxfs, and if we find it we know SELinux

is running on the device. Though, we do not know in which state SELinux is at this point.

10

In order to determine that we read the /proc/mounts and track selinuxfs, so we can extract

the absolute path, which we use to find a file of interest called enforce. As a last step we

read this file and in the case the content is "1" the SELinux is in enforcing state and if it

is "0" the state is permissive. This method proves to be stable and more reliable than the

first two according to the results.

II. Security-Enhanced Linux in Android

With regard to Security-Enhanced Linux (SELinux), Android uses mandatory access

control (MAC) for all processes, including those running with root or superuser

privileges (Linux capabilities). A number of companies and organizations have

contributed to Android's implementation of SELinux. The SELinux operating system

allows Android to secure and restrict system services, control access to application data

and secure and restrict system services, and control access to application data and secure

and restrict system services. Control access to application data and secure and restrict

system services, control access to application data and secure and restrict system

services, reduce malicious software effects, protect users from potential vulnerabilities,

control application data and logs, and reduce malicious software effects. In SELinux,

anything that is not explicitly allowed is denied by default. The SELinux system can

operate in two modes at the global level:

• A permissive mode is one in which permission denials are logged but not enforced.

• Permission denials are logged and enforced in the enforcing mode.

In addition to SELinux in enforcing mode, Android includes a corresponding security

policy that is enabled by default across the entire AOSP project. Enforcing mode prevents

disallowed actions and logs all attempted violations to dmesg and logcat. Before enforcing

SELinux policies, refine your software and SELinux policies with these errors [3].

SELinux also supports a per-domain permissive mode, allowing specific domains

(processes) to be made permissive while leaving the rest of the system in global enforcing

mode. The domain is simply a label that identifies a process or set of processes within a

policy, where a process that is labeled with the same domain is treated the same. The per-

domain permissive mode facilitates the incremental implementation of SELinux in an

ever-increasing portion of the system, as well as the development of new policies for new

services (while keeping the rest of the system enforced) [3].

11

III. Background

The Android security model is partly based on the concept of application sandboxes.

There are a number of different sandboxes within Android. Each application runs in its

own sandbox. It was necessary to assign each application a unique Linux UID when it

was installed before Android 4.3 to define these sandboxes. As of Android 4.3 and later

versions, SELinux has been used to further define the sandbox boundaries.

• With Android 5.x and later, everything is in enforcing mode.

• There should be no other processes running in the init domain other than init.

• A generic denial (for a block_device, socket_device, or default_service) indicates

that the device requires a special domain.

In Android 6.0, the permissiveness of our policy was reduced to include better isolation

between users, IOCTL filtering, reduced threat of exposed services, and further

tightening of SELinux domains.

SELinux configuration has been updated in Android 7.0 to further secure the application

sandbox and reduce the attack surface. As part of this release, the monolithic mediaserver

stack has been split up into smaller processes in order to reduce the scope of their

permissions. Check out Protecting Android with more Linux kernel defenses and

Hardening the media stack for more information.

It has been updated to include SELinux as part of the Android system framework in

Android 8.0, which separates lower-level vendor code from the Android system

framework with the Treble feature, which separates the lower-level vendor code from

the Android system framework. SELinux policy has been updated in this release to allow

manufacturers and SOC vendors to update their parts of the policy, to make their images

(vendor.img, boot.img, etc.), and to update those images independently of the platform

they are running on.

While it is possible to run higher/newer platform (framework) versions on the device, the

opposite case is not supported. Vendor images (vendor.img/odm.img) cannot be updated

to a newer version than the platform (system.img). A newer platform version may

introduce SELinux compatibility issues since the platform SELinux policy is at a newer

version than the vendor SELinux procedure. To prevent unnecessary simultaneous

updates, Android 8.0 provides a method of retaining compatibility.

 d. Android Permissions

12

Prior to Marshmallow (API 23), permissions were much simpler to manage. During the

installation process, all permissions were handled automatically during the process of

installing the app. The user was presented with a list of permissions which were required

by the app when installing it from the Google Play Store (some have referred to this as

the "wall of permissions"). In order to install the app, the user needed to accept all of the

permissions, or he or she could decide not to install it. In the past, there was no way to

grant an app only certain permissions and no way for the user to revoke any permissions

after it had been installed. There was no way to grant the app only certain permissions

or revoke certain permissions [10]. Android permissions are used to protect user privacy

and control the capabilities of apps installed on an Android device. Upon installing an

app from Google Play, you may be prompted to grant the app access to certain features

or data on your device. For example, a camera app might request access to the device's

camera, or a weather app might request access to your location data. You can choose

which permissions to grant or deny when you install the app, and you can also change

your app permissions from the device's settings menu at any time. It's important to be

cautious about granting app permissions, as some apps may request access to features or

data that are not directly related to their intended functionality.

I. Potentially Harmful Applications (PHAs)

Potentially Harmful Applications (PHAs) are applications that may harm users, their data,

or their devices. Malware is often used to refer to these applications. In addition to trojans,

phishing, and spyware apps, Android has developed a wide range of categories for

different types of PHAs. Categories are continuously updated and added [2].

Is it potentially harmful?

As a result of the ambiguity of the word potentially when used to describe malicious

applications, there is some confusion. Whenever an app has been flagged as Potentially

Harmful, Google Play Protect removes it because it contains malicious behavior, and not

because we are unsure whether it is harmful or not. As malicious apps may operate

differently depending on a variety of variables, an app that is harmful for one Android

device may not pose a risk for another. Therefore, the term potentially is used here because

13

malicious apps operate differently depending on a variety of factors. It is not possible to

install malicious apps to a device running the latest version of Android, however a device

running an early version of Android may be vulnerable to malicious apps that use

deprecated APIs to perform malicious actions. Devices that are connected to mobile

service providers are at risk of mobile billing fraud, but devices that are connected only

to WiFi are not affected by this type of fraud.

An application is flagged as a PHA if it clearly poses a risk to some or all Android devices

and users.

PHAs requested by users

Some apps that can weaken or disable Android security features are not considered PHAs.

Users are able to access functionality that they desire through these apps, such as rooting

their devices and other development features. Although these apps may be harmful, users

install them intentionally, so Google Play Protect manages them differently than other

PHAs.

As soon as a user begins installing an app that is classified as user-wanted, Google Play

Protect warns them of the potential hazards associated with that app. Due to this, the

decision to install or not depends on the individual. The user-wanted classifications

prevent Google Play Protect from sending additional warnings after installation, so there

is no interruption in the user's experience.

The classifications

A number of categories are available for classifying PHAs so that Play Protect is able to

detect them and determine the appropriate course of action. Malicious apps such as

trojans, spyware, and phishing apps are included in this category, as well as user-wanted

apps. Play Protect displays a warning if it detects a PHA. When Play Protect detects

malicious apps, it automatically disables or removes them. When Play Protect detects that

a PHA contains features from multiple categories, it classifies the app according to its

most harmful characteristics. Verify Apps, for instance, identifies an app as ransomware

if it applies to both spyware and ransomware categories.

14

II. Malware categories

A malicious piece of software is installed by a threat actor in order to cause mayhem on

an organization or individual. When you (or your employees) visit a variety of different

sites on the internet, malware can sometimes be found attached to emails, embedded in

fraudulent links, hidden in ads, or lying-in wait on various websites that you (or your

employees) might visit. Malware's primary objective is to harm or exploit computers and

networks to steal data or money [11].

Keep in mind that Android's malware policy is straightforward: the Android ecosystem,

including the Google Play Store, and the user devices should be free of malicious

behavior (for example, malware). Our company adheres to this fundamental principle to

ensure that our users and their Android devices are protected from any harmful attacks.

The term "malware" refers to any code that poses a risk to a user, their data, or their

device. Continually update and add new categories of malware, such as potentially

harmful applications (PHAs), binaries, and framework modifications, such as trojans,

phishing, and spyware.

Malware may vary in type and capabilities, but it typically serves one of the following

purposes:

• The integrity of the user's device is compromised.

• Control the device of a user.

• Provide an attacker with the ability to access, use, or otherwise exploit an infected

device via remote control.

• Without adequate disclosure and consent, transmit personal data or credentials

off the device.

• Infect other devices or networks through the transmission of spam or commands

from the infected device.

• Fraudulently defraud the user.

An app, binary, or framework modification can generate malicious behavior even if it

was not intended to do so. The reason for this is that apps, binaries, or framework

modifications can perform differently based on a variety of factors. As a result, what is

harmful to one Android device may not pose any risk to another Android device. The

latest version of Android, for example, is not affected by malicious apps that use

deprecated APIs to perform malicious behavior, however, a very early version of

Android may be vulnerable. If applications, binaries, or framework modifications clearly

pose a risk to Android devices and users, they are flagged as malware or PHA.

15

Here are the categories of malware we believe represent our core belief that users,

companies, and governments should understand how their devices are being exploited and

promote a secure ecosystem that supports robust innovation and provides trusted user

experiences. experiences.

Backdoor

Backdoor in android refers to a method that allows unauthorized access to an android

device by bypassing the normal authentication method, this could be done through

various methods like installing a malicious app that acts as a backdoor, exploiting

vulnerabilities in the operating system, or using advanced hacking techniques such as

phishing or social engineering to trick the user into giving away their login credentials.

Backdoors on Android devices can be particularly dangerous because of the sheer

number of devices that run the Android operating system. According to a recent report

from Google, there are over 2.5 billion active Android devices in use worldwide, making

it a prime target for attackers looking to gain unauthorized access to sensitive

information.

One example of a recent Android backdoor was "Joker" discovered in early 2020, Joker

malware was distributed through third-party app stores and disguising itself as legitimate

apps. Once the malware is installed, it creates a backdoor on the device that allows the

attackers to remotely access and control the device, as well as steal sensitive information.

Keeping an eye out for backdoors on Android devices and to take steps to protect

yourself. This can include keeping your device and apps up to date, being cautious of

unfamiliar apps and links, and using a mobile security app to scan for and remove any

malicious software [12].

A backdoor describes a way in which a device can be accessed for potentially harmful

purposes and is therefore not entirely aligned with categories like billing fraud or

commercial spyware. Due to this, Google Play Protect treats backdoors as vulnerabilities

when certain conditions apply.

Billing fraud

Billing fraud in the context of Android refers to the unauthorized charges made to a user's

account using Android apps or the Google Play Store. This type of fraud can occur in a

16

variety of ways, but often involves the use of malware or malicious apps that are designed

to trick users into granting access to their payment information.

One common method of billing fraud on Android involves the use of fake apps that are

designed to look like legitimate ones. These apps may be designed to mimic popular

apps, such as games or social media platforms, and may be offered for download through

third-party app stores or websites. Once downloaded, these apps may request access to a

user's payment information and may then use this information to make unauthorized

charges.

Another method of billing fraud on Android involves the use of malware that is designed

to infect a user's device and gain access to their payment information. This type of

malware may be delivered through a variety of means, such as phishing emails or text

messages, and may be disguised as a legitimate app or update. Once installed, the

malware may be able to access a user's payment information and make unauthorized

charges.

To protect yourself from billing fraud on Android, it is important to only download apps

from the Google Play Store or other reputable sources, and to be cautious of any apps that

ask for access to your payment information. It is also important to keep your device and

apps up to date, as this can help to protect against known vulnerabilities that may be

exploited by fraudsters. Additionally, you can use mobile security software to detect and

remove malware from your device [13]. The three types of mobile billing fraud are SMS

fraud, Call fraud, and Toll fraud.

Fraudulent SMS messages

Android users are often targeted by fraudulent SMS messages, also known as smishing.

The messages are meant to trick users into giving them sensitive information, such as

login credentials or financial information, or to download malware.

Phishing is among the most common tactics used in fraudulent SMS messages. The

message may appear to come from a legitimate source, such as a bank or financial

institution, asking for personal information or clicking a link. The link may lead to a fake

website designed to steal the user's personal information.

Another tactic used in fraudulent SMS messages is the use of malware. These messages

may contain a link that, when clicked, downloads malware onto the user's device. The

malware may be used to gain access to sensitive information, such as login credentials

or financial information, or to control the device remotely.

17

It is important to be cautious of any SMS message that asks for personal information or

contains links to avoid fraudulent messages. The links in a message should not be clicked

on unless you are sure they are legitimate. You should also be aware of the phone

numbers or short codes from which you are receiving messages. Be cautious of

unfamiliar phone numbers or short codes, and don't respond to them.

Additionally, you can install mobile security software on your device, which can help to

detect and block fraudulent SMS messages, as well as other types of mobile threats. Also,

it's important to keep your device and apps up to date, as this can help to protect against

known vulnerabilities that may be exploited by fraudsters [14].

Fraudulent telephone calls

As a form of mobile fraud, fraudulent telephone calls, also known as vishing, target

Android users. They attempt to trick them into providing sensitive information, such as

login credentials or financial details. In order to scam the person, the callers may pose as

representatives of legitimate organizations, such as banks or government agencies.

The caller falsifies the caller ID of the caller to make it appear as if it was coming from

a legitimate organization, one of the tactics used in fraudulent telephone calls. The caller

may also use high-pressure tactics to make the user feel that the call is legitimate or not.

This can make it difficult for the user to determine whether the call is legitimate.

Another tactic used is the use of pre-recorded messages, also known as robocalls, these

messages are automated and often use a recorded voice to deliver the message, in some

cases, these calls may come with a live operator that is waiting to answer questions or

collect personal information.

To protect yourself from fraudulent telephone calls, it's important to be cautious of any

unsolicited calls, especially if they ask for personal or financial information. Do not

provide any personal information over the phone unless you are certain that the call is

from a legitimate organization, and you initiated the call. If you receive a suspicious call,

you should hang up and contact the organization directly using a trusted phone number,

such as one listed on the organization's official website.

Additionally, you can register your phone number on a national do not call registry to

reduce the number of telemarketing calls you receive. Also, you can install call-blocking

apps on your device, which can help to detect and block fraudulent calls, as well as

unwanted telemarketing calls [15].

18

Fraudulent toll fraud

An attempt is made to trick users into subscribing to or purchasing content through their

mobile phone bills.

The term "toll fraud" refers to any type of billing, with the exception of premium SMS

and premium calls. These include direct carrier billing, wireless access points (WAPs),

and mobile airtime transfers. WAP fraud is one of the most common types of toll fraud.

It is possible to commit WAP fraud by tricking the user into clicking a button on a silently

loaded, transparent WebView. As soon as the action is performed, an automatic recurring

subscription is initiated, and the confirmation SMS or email is hijacked to conceal the

financial transaction from the user.

Commercial spyware (stalkerware)

An application that collects and/or transmits sensitive or personal user data without

adequate notice or consent and does not display a persistent notification.

By monitoring personal or sensitive user data, stalkerware apps target users and transmit

or make this data available to third parties.

Providing that they comply fully with the requirements described below, only

surveillance apps designed and marketed specifically for parents to track their children

or manage their business are acceptable. Even with the knowledge and consent of another

individual (such as a spouse), these apps cannot be used to track them, regardless of

whether persistent notifications are displayed consent.

Denial of service (DoS)

Contains code that executes a denial-of-service (DoS) attack or is part of a distributed

DoS attack against other systems and resources without the knowledge of the user.

By sending a large number of HTTP requests, for example, remote servers may be subject

to excessive load.

Hostile downloaders

An application that is not in itself potentially harmful, but that downloads other

potentially harmful applications.

It is possible that the code is a hostile downloader if:

19

• In addition, there is reason to believe that it was created to spread PHAs, has

downloaded PHAs, or contains code that can download and installing apps.

• At least 5% of PHAs are downloaded with a minimum threshold of 500

downloads (25 downloads of PHAs).

Browsers and file-sharing apps are not considered hostile downloaders if:

• Downloads are not driven by them without the involvement of the user.

• Consenting users initiate all PHA downloads.

Non-Android threat

The code contains threats that are not specific to Android.

Android users and devices cannot be harmed by these apps, but they contain components

that could be harmful to other platforms.

Phishing

Phishing attacks on Android devices can take the form of fake apps, text messages, or

emails that look like they are coming from trusted sources. In these attacks, users are

often asked to enter personal information or click on links to a fake website that steals

their data. To protect yourself from phishing attacks on your Android device, it is

important to be vigilant and skeptical of unsolicited messages and emails. To help you

stay safe, here are a few tips:

Be wary of unexpected messages or emails that ask for personal information, such as

login credentials or credit card numbers. The information will never be requested by an

unsolicited email or message from a legit organization [4].

• Be cautious of links in messages or emails, even if they appear to be from a

legitimate source.

• Keep your device and apps updated to ensure that you have the latest security

patches and features.

• Use a reputable mobile security app to protect your device from malware and

other threats.

20

• Be aware that phishing scams can also be spread through social media and instant

messaging platforms, so be cautious of any unexpected or suspicious messages

you receive on these platforms as well.

Elevated privilege abuse

Code that breaks the app sandbox, gains elevated privileges, or disables access to core

security-related functions compromises the integrity of the system. The following are

examples:

• Apps that violate the Android permissions model or steal credentials (such as

OAuth tokens) from other apps.

• The use of features that prevent an application from being uninstalled or stopped.

• SELinux is disabled by this application.

An app that escalates privileges without the consent of the user is classified as a rooting

application.

Ransomware

Ransomware is a rapidly growing threat in the cyber world, and Android devices are not

immune to these attacks. A ransomware threat is a type of malware that encrypts a

victim's files and then demands a ransom payment from the victim in exchange for the

decryption key. This type of attack can have severe consequences, as it can lock users

out of their own devices and cause them to lose access to important files and data.

Ransomware can spread on Android devices in a variety of ways, including through

malicious apps, email attachments, or links in text messages. These attacks often trick

users into installing malware on their devices by disguising it as a legitimate app or by

using social engineering techniques. Once the malware is installed, it will lock the

victim's device and display a ransom message, often demanding payment in the form of

cryptocurrency.

To protect yourself from ransomware attacks on your Android device, it is essential to

be cautious when downloading apps, opening email attachments, or clicking on links in

text messages. Users should only download apps from the official Google Play Store,

and should be wary of apps that request unnecessary permissions, such as access to

contacts or camera. Additionally, it is important to keep your device and apps updated

21

to ensure that you have the latest security patches and features, as well as to use a

reputable mobile security app to protect your device from malware and other threats.

Another important step that users can take is to regularly back up their important files

and data, as this will allow them to restore their information even if their device is

infected with ransomware. This could be done in a cloud service like Google drive,

DropBox, iCloud etc. It is important to note that paying the ransom is not a guaranteed

solution and is not recommended. Instead, it is crucial to take preventive measures to

avoid falling victim to these types of attacks in the first place [16].

Rooting

Rooting code for the device.

Non-malicious rooting code differs from malicious rooting code. As an example, rooting

apps inform the user in advance that they intend to root the device, and they do not execute

other potentially harmful actions that are applicable to other categories of PHAs. A

malicious rooting app doesn't inform the user that it is going to root the device, or it

informs the user in advance, but also performs actions that are relevant to other PHA

categories.

Spam

Unsolicited messages are sent to the user's contacts or the device is used as an email spam

relay.

Spyware

Personal data is transmitted off the device without adequate notice or consent.

The transmission of any of the following information without disclosure or in an

unexpected manner is sufficient to constitute spyware:

• Contact list

• The app cannot access photos or other files that are on the SD card or that are not

owned by it

• Email content from the user

• Log of calls

• Log of SMS messages

• History of web pages or bookmarks in the default browser

• Other applications' /data/ directories.

22

Spyware can also be flagged for behavior that can be considered spying on the user. The

theft of app data, for example, is a form of recording audio or recording calls made to the

phone.

Trojan

A piece of code that appears to be benign, such as a game that claims to be merely a game,

but which performs undesirable actions against the user.

In most cases, this classification is used in conjunction with other PHA categories. The

trojan consists of an innocuous component and a hidden harmful component. An example

of this would be a game that sends premium SMS messages in the background without

the user's knowledge.

Uncommon

It is possible for new and rare apps to be classified as uncommon if Google Play Protect

does not have enough information to determine whether they are safe or not. This is

important to note, however, that this does not imply that the app is necessarily harmful,

but it cannot be cleared as safe without further examination.

• Mobile Unwanted Software (MUwS)

• Google defines unwanted software (UwS) as software that is not strictly malicious,

but is harmful to the software ecosystem as a whole. The term mobile unwanted

software (MUWS) refers to software that impersonates other apps or collects at

least one of the following without the consent of the user [5]:

• Device phone number

• Email address for primary correspondence

• Installed applications information

• Third-party account information

III. Mobile Unwanted Software (MUwS)

Unwanted Software Policy and Software Principles offer recommendations for software

that provides a great user experience. The Android Unwanted Software Policy expands

upon Google's Unwanted Software Policy by establishing Play Store and Android

ecosystem principles. As well as providing this information, Android.com also offers

this information.

23

According to the Unwanted Software Policy, most unwanted software exhibits one or

more of the following characteristics:

As a result, it is deceptive, as it promises a value proposition that is not met.

• Users are tricked into installing it or it piggybacks on the installation of another

program.

• A thorough explanation of all its principal and significant functions is not

provided to the user.

• In an unexpected manner, it affects the user's system.

• Private information is collected or transmitted without the knowledge of the user.

• Private information is collected or transmitted without a secure handling (e.g.,

via HTTPS).

This software is bundled with other software and its presence is not disclosed.

In mobile devices, software takes the form of applications, binary files, framework

modifications, etc. Code that violates these principles will be taken down in order to

prevent harmful software from entering the software ecosystem or disrupting the user

experience.

In the following section, we extend the Unwanted Software Policy to mobile applications.

In line with that policy, the Mobile Unwanted Software policy will be revised as needed

to address new abuses.

Transparent behavior and clear disclosures

It is imperative that all code fulfills the promises made to the user. Apps should provide

all the functionality that has been communicated. Users should not be confused by

applications.

• There should be a clear understanding of the functionality and objectives of the app.

• Provide the user with an explicit and clear explanation of what changes will be made

to the system by the application. Provide users with the opportunity to review and

approve all significant installation options and changes.

• It's vital that software doesn't misrepresent the state of a user's device to them, like

when it tells them their system is infected with viruses or in a critical state.

• Do not engage in invalid activities aimed at increasing ad traffic and/or conversions.

24

• Our policy prohibits the creation of applications that mislead users by impersonating

someone else (for example, another developer, company, or entity). Be careful not to

imply that your app is associated with or authorized by someone it is not.

Violation examples include:

• Ad fraud

• Impersonation

Protect user data

Whenever possible, users should be able to access, use, collect, and share their sensitive

and personal data in a clear and transparent manner.

• You should provide users with the opportunity to approve the collection of their

personal data before you begin collecting and sending it from the device. This

includes data about third-party accounts, email addresses, phone numbers,

installed apps, files, locations, and any other personal and sensitive information

that the user would not expect to be collected.

• Users' personal and sensitive information should be handled securely, including

by using modern cryptography (for example, HTTPS).

• Generally, software, including mobile apps, should only transmit personal and

sensitive information to servers when it is necessary in order to carry out the

app's functionality.

Example violations:

• Data Collection (cf Spyware)

• Abuse of restricted permissions

The following are examples of user data policies:

• Google Play User Data Policy

• GMS Requirements User Data Policy

• Google API Service User Data Policy

Do not harm the mobile experience

It is essential that the user experience be straightforward, easy to understand, and based

on clear choices made by the user. Providing a clear value proposition to the user should

not disrupt the advertised or desired user experience.

25

• Display ads that do not interfere with the use of a device's functions or display

outside the triggering app's environment without adequate consent and attribution

to the user.

• It is important for apps not to interfere with other apps or the device's functionality.

• It should be clear how to uninstall, where applicable.

• Mobile software should not mimic the prompts of the device's operating system or

other applications. The user should not be suppressed from receiving alerts from

other apps or from the operating system, especially those that inform them of

changes to their operating system.

Violation examples include:

• Disruptive ads

• Unauthorized Use or Imitation of System Functionality

I.V The categories of Mobile Unwanted Software (MuwS)

Abuse of restricted permissions and data collection

Apps that collect and transmit personal and sensitive information about users without

their consent or adequate notice. The list of installed apps, the device phone number,

email addresses, location, and other third-party account IDs may be collected.

The use of social engineering

This is an application that pretends to be another app with the intention of deceiving

users into performing actions that they intended for the original trusted app.

Disruptive ads

In some cases, advertising is displayed in unexpected ways to users, for example,

interfering with the functionality of the device or appearing outside the app's

environment without the user's consent or giving them any credit or acknowledgement.

Imitation or unauthorised use of system functionality

Advertisements or applications that mimic or interfere with system functionality, such

as notifications or warnings. Notifications at the system level should only be used for the

features that are integral to the app.

Imitation or unauthorised use of system functionality

26

Advertisements or applications that mimic or interfere with system functionality, such

as notifications or warnings. Notifications at the system level should only be used for the

features that are integral to the app.

Ad fraud

Invalid traffic generated with the intention of tricking an ad network into thinking it

comes from an authentic user is classified as ad fraud. The development of ad fraud may

result from developers implementing ads in disallowed ways, including hiding ads,

automatically clicking ads, altering, or modifying information and otherwise utilizing

non-human actions (such as spiders and bots) or human activity designed to generate

invalid advertising traffic. Advertisers, developers, and users are adversely affected by

invalid traffic and ad fraud, which leads to the erosion of trust in the mobile advertising

ecosystem over time.

The following are some examples of common violations:

• An application that renders ads that are not visible to the user.

• Apps that generate clicks on ads without the user's awareness or that generate

equivalent network traffic to fraudulently provide click credits.

• Apps that send fake installation attribution clicks to get paid for installations that

did not originate from their network.

• An application that displays advertisements when the user is not within the app's

interface.

• A false representation of the ad inventory by an app, for example, an app that

communicates to ad networks that it is running on an iOS device when, in fact,

it is running on an Android device; an app that misrepresents the package name

that is being monetized [6].

2. Mobile Malware Techniques

Mobile malware is software that is specifically designed to compromise or damage

mobile devices, such as smartphones or tablets. Multiple techniques are commonly

employed by mobile malware to infiltrate and compromise devices. These techniques

include:

27

1. Social engineering: This technique involves tricking the user by ensuring that

they download and install malware on their device, usually by disguising it as a

legitimate app or sending a phishing message.

2. Exploitation of vulnerabilities: Mobile malware can take advantage of

vulnerabilities in the device's operating system or in third-party apps to gain

access and control of the device.

3. Side loading: This technique involves downloading and installing an app from

a source other than an official app store, such as a third-party website. These

apps may contain malware that is not detected by the official app store's security

checks.

4. Drive-by downloads: This technique involves automatically downloading and

installing malware on a device when the user visits a malicious website or clicks

on a malicious link.

5. Repackaging: This technique involves taking a legitimate app and adding

malware to it before distributing it through official app stores or third-party

websites.

To protect against mobile malware, it is important to only download apps from official

app stores and to be cautious of any suspicious links or messages. Also, it is important

to keep the operating system and apps on the device updated to prevent vulnerabilities.

 a. An explanation of the structure of Android packages (APKs)

APKs (Android Packages) are archive files with a .apk suffix that contain all the

necessary files (code and assets) to run Android applications.

The command unzip app_name.apk can be used to unpack APK files in Linux [8].

• METTA-INF: This file contains the verification information that is generated

when an application is signed.

• MANIFEST.MF: This file contains a list of names and hashes (usually SHA256

in Base64) for all the files contained within the APK.

• CERT.SF: Provides a list of names and hashes of the corresponding lines in

MANIFEST.MF.

• CERT.RSA: Contains the public key and signature of CERT.SF.

• Assets can include images, videos, documents, databases, etc.

28

• lib: Provides native libraries with compiled code, for a variety of device

architectures.

• res: A collection of predefined application resources, such as XML files that

define color schemes, user interface layouts, fonts, and values.

• AndroidManifest.xml: A manifest file that contains information about the

application's package name, activities, resources, and version.

• The classes.dex contains all the Java classes in the dex file format, which the

Android Runtime is able to execute as it is a Dalvik executable that contains all

the Java classes.

• The code will be linked to resources using this information.

 b. Repackaging

Repackaging is often used to disassemble an application in order to append malicious

code to it it should then be reassembled. The reverse engineering process is performed

using reverse engineering tools, as shown in the following example.

The malware authors repackage popular Android apps, such as those available on Google

Play [6], and distribute them on less monitored and policed third-party app stores. In the

process of repackaging, malicious authors alter the signature of the repackaged

application, making it appear to be a new application to virus detectors. App repackaging

involves the following steps:

• You can download the popular free/paid app from the popular app store(s).

• Using a disassembler such as apktool, disassemble the app.

• The first step is to generate a malicious payload in Java and convert it to bytecode

using the dx (part one)

• This tool is part of the Android SDK build tools.

• Add the malware payload to the benign application. The AndroidManifest.xml

should be modified

• If necessary, additional resources may be required.

• Using apktool, assemble the modified source again.

• The repackaged app should be distributed by self-signing with another certificate

to the lessor monitoring of the third-party app market.

29

Additionally, repackaging and repackaging techniques can be used to generate a large

number of products. There are a number of malware variants. Additionally, it is capable

of producing a number of unseen variants. A malware that is already known. In view of

the fact that each malware variant has a unique signature. The mutated malware cannot

be detected by conventional anti-malware software. Due to the fact that it can damage

the reputation of the app distribution market places and pollute them developed by a third

party. Additionally, malware writers are able to divert by replacing the original

developers' advertisements with new ones, we are able to increase advertisement

revenues. In the AndroRAT APK Binder tool [7] repackages and generates a trojanized

version of an Android application.

An app that is popular and legitimate that is equipped with Remote Access Trojan

functionality (RAT). In other words, the adversary can remotely command the infected

device to send SMS messages, obtain the location of the device, record video and/or

audio, and access the device's settings. Using the hidden remote access service, you can

access device files.

 c. Penetration testing tools for Android

That can be used to conduct penetration testing on Android applications. There are

some that are used for automated testing, and others that are used for manual testing.

It is beneficial to use automated Android penetration testing tools in order to scan for

common vulnerabilities. By combining human intelligence and automated tools, they

offer a faster and more cost-effective solution than manual tools and processes.

• The Android Debug Bridge (ADB) is a versatile command-line tool for interacting

with Android devices.

• Dex2jar: Converts .dex files to .class files, which are then zipped into a jar file, ready

for use.

• JavaD-GUI: This is a standalone graphical utility that allows you to view Java source

code directly from the CLASS files.

• Java Dex and APK source code generation using JADX commands and GUIs.

• APKTOOL: Reverse engineering tool for 3rd party, closed, binary Android app

compatibility.

• Burp Suite: It can be used to test the security of web applications as part of

penetration testing.

30

• Frida: a tool for reverse engineering, security researchers, and developers.

• The Object: This is a runtime mobile exploration toolkit that will help you assess the

security posture of your mobile applications without the need for a jailbreak. The toolkit

is powered by Frida and can be used as part of a mobile exploration process.

• Ghidra: A software reverse engineering (SRE) suite of tools developed by NSA's

Research Directorate in support of the Cybersecurity mission.

• Drozer: drozer (formerly Mercury) is the leading security testing framework for

Android.

• MobSF: Mobile Security Framework (MobSF) is an automated, all-in-one mobile

application (Android/iOS/Windows) pen-testing, malware analysis and security

assessment framework capable of performing static and dynamic analysis.

 d. Configuring the Android pentesting environment

To set up an Android pentesting environment, you will need to install a few tools on your

computer. To produce the best results, the following tools will be need:

1. Android SDK: The Android SDK (Software Development Kit) provides tools

for developers to develop Android apps. It includes the Android platform

libraries, debugger, emulator, and more. You can download the Android SDK

from the Android developer website (https://developer.android.com/sdk).

2. Java Development Kit (JDK): Java Development Kit (JDK) is a set of tools and

libraries that are used to develop Java programs. Android app development

requires the JDK, so you will need to install it on your system. You can

download the JDK from the Oracle website

(https://www.oracle.com/java/technologies/javase-downloads.html).

3. Android Studio: It is the official Integrated Development Environment (IDE)

for creating and developing Android applications on the Android operating

system. It includes all the necessary tools to develop, test, and debug Android

apps. You can download Android Studio from the Android developer website

(https://developer.android.com/studio).

4. Genymotion: This program lets you run Android apps on your computer via an

Android emulator. It is very useful for testing and debugging Android apps. You

can download Genymotion from the Genymotion website

(https://www.genymotion.com/).

https://developer.android.com/sdk
https://www.oracle.com/java/technologies/javase-downloads.html
https://developer.android.com/studio
https://www.genymotion.com/

31

5. Burp Suite: Burp Suite is a toolkit for web application security testing. It

includes a proxy server, a web application scanner, and more. You can

download Burp Suite from the PortSwigger website

(https://portswigger.net/burp).

6. adb: adb (Android Debug Bridge) is a command-line tool that allows you to

communicate with an Android device. It is included in the Android SDK and is

very useful for debugging and testing Android apps.

To conduct assessments of Android devices and applications, we require either a real

Android device or an emulated Android device. The Android Studio IDE (Integrated

Development Environment) provides an Android Virtual Device (AVD), which is a good

starting point.

Additionally, Genymotion and Corellium offer cloud-based environments and ARM-

based virtualization (the CPU architecture used in mobile devices). With the help of the

cloud-based environment, we can spawn and customize mobile devices using the web

browser, while Corellium provides the option to root or jailbreak the Android or iPhone

device as required.

ARM is the CPU architecture used in Android and iPhone devices today. The CPU

architecture plays a significant role in kernel exploitation. Due to the fact that most

emulators are based on non-ARM CPU architectures, a pentester is not able to work on

a potential new kernel exploitation technique while using a mobile emulator. Thanks to

ARM-based virtualization, Corellium and Genymotion solve this problem for us.

It is very easy to install Android Studio on Linux. All we need to do is unzip it and run

the script studio.sh within the bin/ directory. It is necessary to follow the setup wizard in

order to install Android Studio on Windows or macOS. Both operating systems follow a

similar process.

In Windows, for example, we click on the executable and then follow the steps in the

setup wizard. Upon completion of the installation, we only need to wait for a few

components to download [8].

https://portswigger.net/burp

32

33

34

35

36

3. Pentesting Android Apps Using Frida

 a. Introduction to Frida

No Android application review is complete without reverse engineering the app to find

out what's running in the background. A tool called Frida is used in this essay to

dynamically modify the behavior of the app during runtime.

In situations where certain sensitive functionalities in an Android application, such as

fingerprint authentication, are disabled or not permitted to run on rooted phones, or if

you wish to bypass a login screen or disable SSL certificate pining so that traffic can be

intercepted, it is necessary to modify the behavior of an Android application.

It has traditionally been the case that if anyone wished to modify a particular

functionality, they would need to use one of the following methods:

1. Edit and repackage the decompiled Smali files, which can be challenging since

it can be difficult for beginners to understand the code that has been decompiled,

especially in the beginning.

2. Today, pentesters are more likely to use the Xposed Framework, which requires

them to rewrite the functionality in a separate app and relaunch it

Frida allows you to modify an application's code without relaunching or repackaging it,

unlike the previous two approaches.

As described by its creators, Frida is a toolkit for dynamic code instrumentation.

Injecting JavaScript or your own library into native apps can be done on Windows,

macOS, Linux, iOS, Android, and QNX.

For a better understanding of this, let us consider a LoginActivity that runs on your

Android application and waits for the user name and password to be entered. In this

activity, there is a function defined called "checkLogin" that returns a true or false value

depending on the validity of the credentials. By overriding this "checkLogin" function

in memory with the code that we have written, Frida allows us to modify the functionality

dynamically.

In this post, we will demonstrate the power of Frida by utilizing two purposefully built

vulnerable Android applications. Bypassing the login screen and the root detection logic.

37

1. MWR Labs has developed a vulnerable password storage application called

Sieve

2. Black Hat 2015-2016 Arsenal: InsecureBankv2 - A vulnerable banking

application

We recommend that you have a working Android device, a Python environment, as well

as a rooted Android phone with an ARM architecture before proceeding with the setup.

As of this writing, we were unable to get Frida running satisfactorily on an unrooted

Android device. Frida is currently supporting only ARM architectures [9].

 b. Setting up Frida

Frida consists of two components, namely. Client and server communicate over two

ports (TCP) 27042 and 27043. The client can be installed by executing our favourite pip

command.

Please note that this installation requires administrator/root privileges on your

Windows/Unix computer. Make sure you run the following command using sudo or a

command shell with administrator privileges.

pip install frida

In order to identify what version of Frida client you have installed on your machine, start

your command prompt and enter the following command.

frida –version

In order to install the server, you must browse the releases directory and download the

file corresponding to your mobile device's platform and the version shown above. If the

version is incorrect, it will not work.

You will need to unzip the file on your mobile device and place it in a folder of your

choice, preferably the /data/local/tmp folder of your mobile device.

Using the command below, modify the permissions for the frida-server binary and run it

as shown.

On your desktop, run the following command to test the connection with the frida-server.

frida-ps -aU

Basically, the output shows all currently running injectable processes [9].

We are now ready to begin using Frida for our assessment.

 I. Login Bypass Using Frida

38

Here we will take a look at a practical demonstration of how a login bypass can be

implemented in the Sieve app. You will need to open the Sieve app on your Android

device.

As soon as we enter a valid set of credentials, the application opens the main screen that

shows us all of the passwords that we have saved with the program.

You can identify the sieve process running on your computer by running the following

command at a command prompt.

frida-ps -aU | grep -i "sieve"

It would be helpful to decompile the sieve app before we read about the login bypass, so

that we can understand how the login functionality is working. As a first step, you will

need to decompile the apk using the dex2jar tool and then view the final jar file in the

JD-GUI after you have decompiled the apk.

We were able to find a function named "checkKeyResult" within the decompiled APK,

which can be found in the decompiled APK. The application redirects the flow to the

loginSuccessful() function if the boolean value is true, otherwise it redirects it to the

loginFailed() function if the boolean value is false [9].

With Frida, you can create bindings with a variety of languages such as Python, C, .NET,

and Swift. It should be noted, however, that we will be using Python to demonstrate the

bypass. If we take a closer look at this little piece of code, we can get a better

understanding of what Frida is doing by taking a look at it in detail. We are merely

overriding our target function "checkKeyResult" by inserting the boolean value as "true”.

Here, we are not changing the function itself, but we do have control over what is being

passed to the function and what is being returned from the function.

The lines 25-26 are used to attach to our target process which we found by using the

search function in the system.

frida-ps -aU command

From line 10-23, you will find the code written in Javascript that needs to be executed in

a process through Frida. The application needs to be started on the device and then the

39

Python script needs to be executed. Upon executing the script, it will wait for the

"checkKeyResult" function to be called once it has completed executing the script.

After clicking the Sign In button, the "checkKeyResult" function will be called in the

runtime, and Frida will inject our JS into the runtime, passing a true value to the function,

and after that we will be able to bypass the login process completely.

If you push the Sieve app into the background then try to bring it back when you're ready,

it will ask for a pin if you've pushed the app into the background and then tried to bring

it back. The below script can be used in order to bruteforce this pin in order to gain access

to the application by bruteforcing it.

II. Bypass Root Detection

In Android app tests, bypassing root detection is one of the most important use cases that

can be tested. Some applications check for rooted devices during installation or restrict

the use of sensitive functionalities such as fingerprint authentication. It is possible to

detect root privileges by checking for installation of most common APKs such as

SuperSu, which governs the root privileges. It is also possible to detect root privileges

by trying to write into the protected directories of the Android file system like root.

The APK must be decompiled, the smali files must be edited, and then you must

repackage the APK by patching the methods that are implemented for root detection so

that they are bypassed. While it's a fairly cumbersome process, it can be made relatively

simple by using Frida as we'll see in the following example of InsecureBank2 Android

application, which we'll use as an example.

The InsecureBank2 application displays a warning message to the user upon successful

login to the application informing them that their device has been rooted.

To determine whether the device is rooted, two functions are used by the InsecureBank

app, as shown below in the decompiled APK.

• doesSUexist

• doesSuperuserApkExist

40

Using the javascript code below, we bypass the root detection logic and this is why we

receive the message “Device not Rooted”.

The first step is to run this script and then press the Sign In button in the app, as shown

in the screenshot below.

The root detection logic is invoked once the Sign In button has been pressed and the

PostLogin Activity has been initiated. Frida bypasses the detection successfully since it

uses our JS code, as shown below.

4. Android Security Tools: Burp-Suite, Run Frida Server, Install-

Uninstall apk

Burp Suite is a toolkit for web application security testing. It provides a set of tools that

are used to do a wide range of tasks, including intercepting traffic, manipulating requests

and responses, and scanning for vulnerabilities.

To use Burp Suite, you will need to install it on your computer and then configure your

Android device to use it as a proxy. This can be done by going to Settings > Network &

internet > Wi-Fi > [Wi-Fi network] > Advanced > Private DNS and setting it to

"localhost".

Frida is a dynamic instrumentation tool that can be used to hook into and modify the

behavior of applications. To use Frida with an Android device, you will need to install

the Frida server on the device and then connect to it from your computer.

To install the Frida server on an Android device, you will need to have a rooted device

and then follow these steps:

1. Download the Frida server APK file from the Frida website.

2. Transfer the APK file to the Android device.

3. On the Android device, navigate to the APK file and install it.

To uninstall an APK from an Android device, follow these steps:

1. Go to Settings > Apps & notifications > [app name] > Uninstall.

41

2. Tap "OK" to confirm.

Keep in mind that uninstalling an app will delete all of its data, including any files or

settings that it has created.

a. Introduction of security develop tools

42

43

This script is a Bash script that utilizes the Android Debug Bridge (adb) command-line

tool to perform various actions related to Android applications. The script starts by

displaying a menu with several options for the user to choose from, including options to

uninstall a specific package, mass-uninstall all added packages, display all installed

packages, install a single package, install multiple packages, uninstall and install a

package, and exit the script.

The script uses adb commands to perform these actions. For example, when the user

selects the option to uninstall a specific package, the script prompts the user to enter the

package name and then uses the adb command "adb uninstall" followed by the package

name to uninstall the package. Similarly, when the user selects the option to display all

installed packages, the script uses the adb command "adb shell pm list packages" to

display all installed packages.

One interesting aspect of the script is its use of the "adb devices" command, which is

used to list all connected devices. The script then uses the "xargs" command to run adb

commands on all connected devices, rather than just a single device. This allows the

script to perform the same action on multiple devices at once.

44

Additionally, the script also includes a function that calculates and displays the elapsed

time since the script was started. This can be useful to understand how long certain

operations take and to monitor the script performance.

Overall, this script provides a useful tool for managing Android applications and it

utilizes various adb commands in a user-friendly manner. As a result, repetitive tasks can

be automated and also perform actions on multiple connected devices which can be

helpful for developers or testers.

There are some instructions that need to be followed first in order to be able to run the

script tool successfully.

1. Rename the frida server to 'fridaServer' in android emulator ex.

/data/local/tmp/fridaServer

2. The second step is to run the command: chmod +x menu.sh

3. Finally, run the following command: ./menu

45

When the installation process is complete, you can choose the option you like. You can

automatically install or uninstall apk from the android emulator, you can start burp suite,

or you can start Frida server depending on your preferences. You can download the

develop security tools from my repository in github

https://github.com/mathias82/installAndroidApk-startFridaServer-runBurpSuite.

5. Frida Commands

 a. Introduction to frida commands and how to use it

The Frida toolkit is a dynamic instrumentation toolkit that lets you inject code into

running programs across Windows, macOS, Linux, iOS, Android, and QNX platforms.

The program is often used for reverse engineering and dynamic analysis of software as

well as for reverse engineering.

In order to get started with Frida, here are some basic commands you can use:

1. You can use the ps command to list all of the processes that are currently running

on your device or emulator:

 frida-ps

2. To attach Frida to a process, use the attach command. For example, to attach

to the process with the ID 12345, use the following command:

frida -U -f com.example.app -p 12345

https://github.com/mathias82/installAndroidApk-startFridaServer-runBurpSuite

46

3. To run a script with Frida, use the -l flag followed by the path to the script. For

example: frida -U -l script.js -f com.example.app -p 12345

4. To execute Frida scripts in the Python interpreter, use the

frida.get_device_manager() function to get a handle to the device manager, and

then use the enumerate_devices() function to get a list of connected devices.

Then, use the attach() function to attach Frida to a specific process:

import frida

device_manager = frida.get_device_manager()

devices = device_manager.enumerate_devices()

for device in devices:

 print(device)

device = devices[0]

pid = device.spawn(["com.example.app"])

device.resume(pid)

session = device.attach(pid)

In addition, there is a script that I have created that has a menu of develop tools. The

script contains frida commands, for example such as finding and saving the files of the

classes of a package to a document, or finding the methods of a class and saving them to

the output-fridaTxt folder. Basically, this program creates a javascript document and

stores it in the output directory. As a prerequisite for using the Android emulator, you

should have installed and run the Frida server first, in order to use it.

47

b. Instructions to install automated tool Frida commands

48

49

50

This script is a bash script that automates Frida commands. Frida is a dynamic

instrumentation toolkit for developers, reverse engineers, and security researchers. This

script is designed to help users quickly and easily run Frida commands on their device,

without having to manually enter the commands.

The script starts by clearing the terminal and recording the current time. It then defines

a function called "ShowElapsedTime", which calculates and displays the elapsed time

since the script started running.

51

The script then displays a menu of options for the user to choose from. These options

include retrieving the Java classes of an APK, searching for a specific Java class,

retrieving the properties of a Java class, searching for a property of a class, and faking a

location. The user can select an option by entering the corresponding number, or they

can cancel the operation by pressing the ESC key.

If the user selects option 1, the script prompts the user to enter the package name of the

app they want to retrieve classes for. The script then generates a JavaScript file that uses

Frida to enumerate the loaded classes of the app and prints them to the console. The

script then runs the Frida command to connect to the device and run the JavaScript file,

and it also saves the output to a text file in a folder called "output-fridaTxt".

If the user selects option 2, the script prompts the user to enter the package name of the

app and a class name to search for. It then searches the output text file from option 1 for

the specified class name and displays the results.

Option 3 is similar to option 2, but it retrieves the methods of a class. Option 4 and 5 are

also similar, but they search for a property and fake a location respectively.

Overall, this script provides a convenient way for users to automate Frida commands and

easily retrieve information about an app's classes, properties and methods and also fake

location. It also helps to reduce the time required to run Frida commands and make it

easy for users to access the information they need.

You should follow the following steps to use it :

1. Start frida server

2. Run the command: chmod +x main.sh

3. Finally run: ./main

 c. The application is currently being used

The result will be

52

It will show you a list of all the installed packages from the emulator, and you should

choose a package from the list in order to see all the classes that are available.

As you are in the frida terminal, you need to enter the command %resume in order to

see all the classes, and after you enter the command exit, all the classes will be saved

inside the output-fridaTxt folder.

The name of the package, as well as the name of the class that you are looking for,

should be typed into the search field when you click number 2 in the menu to search

for the class. Once you have completed this step, click enter in order to view the results

53

of your search. You can download the tool from github following this link

https://github.com/mathias82/frida-commands

54

6. Conclusion

In conclusion, using Frida and visual representation techniques can be an effective

method for detecting Android malware network traffic. Frida allows analysts to

dynamically instrument and monitor the behavior of Android apps, providing valuable

insights into their inner workings. By combining this with visual representation tools

such as flow charts, heat maps, and graphs, analysts can more easily identify patterns

and anomalies in network traffic that may indicate the presence of malware. This

approach can provide a more intuitive and easy-to-understand way for non-technical

stakeholders to comprehend the results of the analysis. Overall, using Frida and visual

representation can be a powerful combination in the fight against Android malware.

55

7. References

1. Application signing : Android Open Source Project. Android Open Source Project.

(n.d.). Retrieved December 4, 2022, from

https://source.android.com/security/apksigning

2. Application sandbox : Android Open Source Project. Android Open Source Project. (n.d.).

Retrieved December 4, 2022, from https://source.android.com/docs/security/app-

sandbox

3. Security-enhanced linux in Android : Android Open Source Project. Android Open

Source Project. (n.d.). Retrieved December 4, 2022, from

https://source.android.com/docs/security/features/selinux

4. What is phishing: Attack Techniques & Scam examples: Imperva (2020) Learning

Center. Available at: https://www.imperva.com/learn/application-security/phishing-

attack-scam/#:~:text=Phishing%20is%20a%20type%20of,instant%20mes-

sage%2C%20or%20text%20message. (Accessed: January 17, 2023).

5. Google. (n.d.). Malware categories | play protect | google developers. Google. Retrieved

December 4, 2022, from https://developers.google.com/android/play-

protect/phacategories

6. Google. (n.d.). Mobile unwanted software (muws) | play protect | google developers.

Google. Retrieved December 4, 2022, from

https://developers.google.com/android/play-protect/mobile-unwanted-software

7. j.R. Vacca. Computer and information security handbook. Morgan Kaufmann,

2017.

8. Bertolis. (2022, March 21). A step-by-step Android Penetration Testing Guide for

Beginners. Hack The Box. Retrieved December 5, 2022, from

https://www.hackthebox.com/blog/intro-to-mobile-pentesting

9. Fri, P. (2021, June 24). Pentesting Android apps using Frida. NotSoSecure. Retrieved

December 21, 2022, from https://notsosecure.com/pentesting-android-apps-using-

frida

10. Understanding app permissionsedit pagepage history (no date) Understanding App

Permissions CodePath Android Cliffnotes. Available at:

https://guides.codepath.com/android/Understanding-App-Permissions (Accessed:

January 17, 2023).

https://notsosecure.com/pentesting-android-apps-using-frida
https://notsosecure.com/pentesting-android-apps-using-frida

56

11. Arctic Wolf (2022) Most common malware, Arctic Wolf. Available at: https://arctic-

wolf.com/resources/blog/8-types-of-malware/ (Accessed: January 17, 2023).

12. Google - Android Security & Privacy Year in Review 2020: https://android-devel-

opers.googleblog.com/2021/01/android-security-privacy-year-in-review-2020.html.

13. Resource center (no date) Kaspersky. Available at: https://www.kaspersky.com/re-

source-center/threats/billing-fraud-on-android (Accessed: January 17, 2023).

14. Kaspersky (2022) What is smishing and how to defend against it,

www.kaspersky.com. Available at: https://www.kaspersky.com/resource-cen-

ter/threats/what-is-smishing-and-how-to-defend-against-it (Accessed: January 17,

2023).

15. Crane, C. (2021) What is vishing? how to recognize voice phishing phone calls in

2021, Hashed Out by The SSL Store™. Available at: https://www.thess-

lstore.com/blog/what-is-vishing-how-to-recognize-voice-phishing-phone-calls/ (Ac-

cessed: January 17, 2023).

16. Resource center (no date) Kaspersky. Available at: https://www.kaspersky.com/re-

source-center/threats/ransomware-on-android (Accessed: January 17, 2023).

https://android-developers.googleblog.com/2021/01/android-security-privacy-year-in-review-2020.html
https://android-developers.googleblog.com/2021/01/android-security-privacy-year-in-review-2020.html

