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Abstract

Since the first sequencing of the human genome in 2003, human genetics has undergone a
real revolution due to the wide availability of datasets with genetic information and the
introduction of bioinformatics in this field. New genetic discoveries are enabling an
understanding of how genes interact with various lifestyle or environmental factors, in a move
towards more effective clinical control. Genome-wide association studies (GWAS) aim to
identify genotype-phenotype associations by testing for differences in the frequency of allelic
genetic variants between individuals. The typical goal of GWAS is to identify loci harboring
causal variants and use genetic risk factors to make predictions about who is at risk and to
develop new preventionand treatmentstrategies. A simple and intuitive approach to converting
genetic data into a predictive measure of disease susceptibility is to aggregate the effects of
these loci into a single measure, the polygenic risk score (PRS). Some research that has been

carried out to find biomarkers is also presented.
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CHAPTER 1

HUMAN GENOMICS

1.1 Introduction

Since the human genome was first sequenced in 2003, human genetics has undergone a
veritable revolution. The growth in computing power, the explosion in the availability of
datasets with genetic information, and the infusion of bioinformatics into this field have
changed our views about how we think about disease and behavior. The relevance of genetics
has also penetrated disciplines far beyond its original homes in biology, epidemiology, and
the medical sciences to gain relevance in new areas across the biomedical, social, and
psychological sciences. As of 2019, around 4,000 genetic discoveries have been published,
linking the genetic basis of thousands of traits ranging from height, type 2 diabetes, and body
mass index (BMI) to coffee consumption, depression, neuroticism, and even the age when
you have yourfirstchild. Researchers in the biomedical sciences can now estimate the genetic
component of many major diseases such as type 2 diabetes, breast cancer, or cardiovascular
lar disease. More importantly, new genetic discoveries allow them to understand how genes
interact with different lifestyle or environmental factors in a move toward more effective
clinical screening and interventions. The goal of statistical genetics is to explain population
variation or, in other words, to ask why humans differ in their health out-comes, behavior, or

appearance. [58]
1.2 Definitions

DNA (deoxyribonucleic acid) is the molecule that makes up the genetic material con-tained
within our bodies' cells. As Figure 1.1 illustrates, two long DNA chains, composed of simpler
molecular units (called nucleotides), coil around each other to form a double helix. DNA
contains the genetic instructions that tell each cell which proteins to make. A genome is the
complete set of genetic material of an organism or, in other words, the entire set of DNA
contained within the nuclei of somatic cells in the human body. The size of each organisms'
genome is the total number of bases in one representative copy of its nuclear DNA. As the
figure shows, a gene is a section of DNA found on a chromosome that consists of a particular

sequence of nucleotides at a given position on a given chromosomethat in turn codes fora



specific protein (or an RNA molecule). A gene is a segment of DNA that tells the cell how to

make a certain protein. Humans are estimated to have 20,000 to 25,000 genes. [58]
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Figure 1.1 Organization of DNAinthe cell nucleus [58]

DNA strands are polymers, which are made up of many repeating units called nucleotides.
Nucleotides form the structure of DNA and consist of one of four nitrogenous bases-
cytosine (C), thymine (T), adenine (A), and guanine (G)-plus a molecule of sugar
(deoxyribose) and aphosphate molecule. The sugar and phosphate molecules on the nucleotides
alternate butalso formthe backbone of the DNA strands. One of the four dif ferentnitrogenous
bases-A, T, C, or G-joins to each sugar. Recall from Figure 1.1 that DNA is in the form of
a double helix. Each base links to a base on the opposite end of the strand in the double helix.
Humans are thus composed of diploid cells or in other words, pairs of chromosomes with one
set of chromosomes inherited from each parent. Since we are diploids, DNA's two strands are
complementary to each other or in other words they follow complementary base pairing rules.
Complementary base pairing means that A always pairs with T and C always pairs with G,
forming base pairs. The twostrandsare complementary to each other and therefore contain the
same information. As figure 1.1 also illustrates, it is the order of these bases along a single

strand that comprises the genetic code.[58]

A chromosome is a single molecule of DNA that comprises part of the genome. It consists
of nucleic acids and protein and is found in the nucleus of somatic cells and carries genetic
information in the form of genes. As Figure 1.1 demonstrates, chromosomesare central to our
understanding of genetics. Humans have 23 chromosome pairs (i.e., 46 chromosomes) in total
consistingof 22 autosomal chromosomes and one pair of sex chromosomes, two Xs for females

(XX) and an X and a Y for males (XY). Autosomal chromosomes are the numbered



chromosomes that are not related to sex determination or, in other words, chromosome 1
through 22. [58]

The term genotype is defined as the observed genetic sequence information and can be
thought of as a categorical variable. Humans carry two homologous chromosomes, which are
defined as segments of deoxyribonucleic acid (DNA), one inherited from each parent, that code
for the same trait but may carry different genetic information. Thus, in its rawest form in
humans, the genotype is the pair of DNA bases adenine (A), thymine (T), guanine (G) and/or
cytosine (C) observed at a location on the organism’s genome. This pair includes one base
inherited from each of the two parental genomes and should not be confused with the pairing
that occurs to form the DNA double helix. Genotype data can take different forms across the
array of genetic association studies and depend both on the specific organism under
investigation and the scientific questions being considered. Forexample,in humans, most SNPs
are biallelic, indicatingthere are two possible bases atthe correspondingsite within agene (e.qg.,
A and a). Furthermore, since humans are diploid, each individual will carry two bases,
corresponding to each of two homologous chromosomes. As a result, the possible genotype
valuesinthe populationare AA, Aaand aa. Inthe contextof genotype data, it mightbe possible
to test the null hypothesis that cholesterol levels are the same for individuals with genotype AA
and genotype aa. In the expression setting, the null hypothesis may instead be framed as the
gene expression level being the same for individuals with cardiovascular disease and those
without cardiovascular disease. [50] A measure of disease status or disease progress, referred
to as the trait or phenotype, is also collected for analysis. Notably, in population association
studies, it generally treats the genotype as the predictor variable and the trait as the dependent
variable.[50]

Genes are defined simply as regions of DNA that are eventually made into proteins or are
involved in the regulation of transcription; that is, regions that regulate the production of

proteins from other segments of DNA.[50]

A mutation isa permanentchange in the sequencethat makes up agene. Mutations can affect
a single base pair or multiple genes across a large segment of a chromosome. There are two
types of gene mutations. The firstis the hereditary mutation, which is inherited from a parent,
is present for an individual's entire life, and is in almost all cells in the body. It is also often

referred to as germ line mutation, which is a mutation that will be inherited by the offspring of



the organism. The second type is somatic oracquired mutations thatoccur duringan individual's
lifetime and exist only in certain cells. These mutations are generally related to environmental
factors. This could include, for example, smoking or exposure to ultraviolet radiation from the
sun. They can also occur if there is an error during DNA replication before or during cell
division. These acquired mutations in somatic cells are not passed on to the next generation.
[58]

A genetic polymorphism refers to the variation in the DNA sequence between individuals.
The possible variants of a polymorphism are referredto as alleles. A variation must be present
in at least 1% of a population to be classified as a polymorphism. Such a variable site is
commonly referred to as a single-nucleotide polymorphism (SNP).[50] In population-based
association studies, the fundamental unit of analysis is the single-nucleotide polymorphism
(SNP). A SNP simply describes a single base pair change that is variable across the general
population ata frequency of at least 1%.[50] To date, they have not found polymorphisms at
every site in the genome. This is due to the fact that only a selection of people have been

genotyped but also that variation at some sites cannot be tolerated. [58]

The most common form of human genome variation is SNPs, and they can be used to
associate genotypic variation with phenotype. SNPs are the markers that are the focus of the
genome wide association study (GWAS), a search across the genome, examining each genetic
variant (or region) one by one to see if there is a statistical relationship (association) between
SNPs and a phenotype. The genetic variants that are isolated from these GWASs are then often
used to engage in either further statistical or downstream biological analysis. For this thesis,
SNPs are the genetic markers of choice because they are heritable and abundantly distributed

across the genome.[58]

The minor allele frequency (MAF), also referred to as the variant allele frequency, refers to
the frequency of the lesscommon allele at a variable site. In the literature, polymorphisms are
distinguished by their MAF and categorized as common (MAF >0.05), low-frequency (0.01 <
MAF <0.05), or rare (MAF <0.01) variants.[58]

The phenomenon of polygenicity implies that no single genetic variant determines or is
associated with a trait, but rather that it is often hundreds and thousands of genetic variants that
each have a small influence on a trait. Such phenotypes are called "complex" since they have a
multifactorial genetic basis. This is often related to the common disease-common variant (CD-



CV) hypothesis, which holds that common disease-associated alleles will be found in all
populations that manifest a given common disease. In the most extreme omnigenic model, each
varianton each gene is assumed to influence a complex trait and will have a small additive or
multiplicative effect on the phenotype. [58] The most important recent developments in
statistical genetics surround the discovery of ubiquitous polygenicity in most traits that we
study. An intuitive implication of polygenicity is that the effect sizes of individual SNPs are
smaller than if only a few SNPs would be associated with an outcome. Small effects are harder
to discover given a fixed statistical measure of the certainty of the discovery. Polygenicity
therefore explains the disappointingly small effects of discovered variants as well as the small

number of robustly identified variants.[58]

Recall that polymorphic refers to the presence of more than one allele at a specific locus. A
locus (plural loci) is a location on the genome, which could be the location of a gene or marker.
A locus or position may refer to the part of the genome that codes for a gene or to the position
of a nucleotide in the genome. When an individual has two of the same alleles, regardless of
whetheritis dominantorrecessive, they are called homozygous. Heterozygous refers to having
one of each of the differentalleles. A person is heterozygous ata gene locus when their cells
contain two different alleles. Heterozygosity thus refers to a specific genotype. Homozygous
wildtype, on the other hand, refers to the state of having two copies of the more common allele.
This distinction also explains the difference between dominant traits, which is when only one
allele of a gene is necessary to express the trait versus recessive traits, where both alleles of a
gene must be identical to express the trait. For dominant traits we use two capital letters (e.g.,
AA) and for a recessive trait we use two lowercase letters (e.g., aa). Dominance in melanin
deposits results in freckles, for instance. A homozygous freckled person would have the FF
genotype while someone without freckles with the homozygous gene would be represented by
ff. [58]

A quantitative traitlocus (QTL) is a region of DNA which is associated with a particular
phenotypic trait, which varies in degree, and which can be attributed to polygenic effects, i.e.,
the product of two or more genes, and their environment. These QTLs are often found on
different chromosomes. The number of QTLs which explain variation in the phenotypic trait
indicates the genetic architecture of a trait. Typically, QTLs underlie continuous traits (those
traits which vary continuously, e.g., height) as opposed to discrete traits (traits that have two or

several character values, e.g., red hair in humans, a recessive trait). Moreover, a single



phenotypic traitisusually determined by many genes. Consequently, many QTLs are associated
with a single trait. Another use of QTLs is to identify candidate genes underlying a trait. The
DNA sequence of any genes in this region can then be compared to a database of DNA for
genes whose functionis already known, this task being fundamental for marker-assisted crop

improvement. [62]

1.3 Genomic Medicine

Genomic medicine is an interdisciplinary medical specialty involving the use of genomic
information that has rapidly grown since the completion of the Human Genome Project (HGP)
more than a decade ago. The genome is the complete set of information in an organism’s
DNA.[48] The HGP allowed the investigation of basic genome physiology, and the
identification of approximately 10 million common DNA variants. These projects were the first
to postulate the possibility of a better understanding of disease pathobiology and
pathophysiology via catering the identification and characterization of small variations in the
genome, termed single nucleotide polymorphism (SNPs). The venerable field of genetics

studiessingle genes, whereasthe emergingfield of genomicsstudiesall of aperson's genes. [47]

Some key precision medicine applications lie within the realm of cancer diagnosis and
potential treatment, forexample, the identification of a prostate-specific antigen (a single-strand
glycoprotein) which isnow routinely used for clinical diagnosis of prostate cancer (PCa). Other
pioneering examples relate to the diagnosis of rare diseases. For example, the CFTR gene has
been identified as a causal gene for cystic fibrosis, an autosomal, recessive disease. Such
advances have led to routine clinical use of both biomarker panels as well as whole exome and
genome sequencing both for the case of cancer as well as rare diseases. It has been long been
recognized that there is a significant variability in drug response with respectto the efficacy,
optimal dose, and adverse drug reactions, with the prevalence of medication -related adverse
events among inpatients in the Western world estimated to affect 19% of patients. Genome
technology allows for the screening and identification of the right drugs for the right patients,
forming the so-called pharmacogenomics field, a key component of the personalized medicine
vision.[55]

The prior probability of any variant discovered through genome sequencing being the cause
of a patient's rare condition is exceedingly low. Attempts to catalog human genetic diversity

have revealed that a typical human genome differs from the reference human genome at4.1-5



million locations. Most of these variations will be completely benign, while some may have a
minor impact on the risk of several common diseases, and only a tiny number may have the
ability to cause significant disease in an individual or their children (potentially in combination
with variants inherited from their partner). The bulk of these variants are identified through
genome sequencing and require thorough filtering to obtain a relevant output. The human
genome sequence will someday change many elements of healthcare practice. It will improve
our understanding of disease mechanisms and lead to the development of new medications and
treatments. In the shortterm, molecular phenotypingbased on genetic and genomic information
will enable earlier and more accurate disease prediction and diagnosis, as well as disease
progression. The focus of medicine will shift away from late-stage illness cures and toward

disease prevention.[49]

A classical biomarker, also known as a biological marker, is any trait that can be used to
evaluate a certain disease condition or physiological function. Biomarkers might be
correlational (just related to disease) or functional (that is, they have an identified mechanism
of action related to disease). Biomarkers can be measuredindividually orin groupsto inferrisk,
diagnosis, prognosis, and therapy response. Biomarkers include DNA, RNA, proteins,
metabolites, host cells, and microbes. Biomarkers can be detected in a wide range of biological

materials, including blood, organ tissue, stool, saliva, and urine.[47]

A genomic biomarker is "a DNA or RNA characteristic that is an indicator of normal
biologic processes, pathogenic processes, and/or response to therapeutic or other
intervention".[47] Itis a DNA sequence that causes disease or is associated with susceptibility
to disease. It generally represents the expression, function, or regulation of a gene and can be
used clinically to diagnose and monitor disease. A genomic biomarker represents the
expression, function, or regulation of a gene. The definition of a genomic biomarker does not
include the measurement and characterization of proteins or low molecular weight metabolites.
Robust, reproducible, and accessible genomic biomarkers are of diagnostic value and may lead
to the identification of causal factors. They can therefore be used clinically to screen for
diagnoses, to monitor the activity of diseases, and may also be useful to guide molecularly

targeted therapy and personalized regimens or to assess therapeutic response.[47]



1.3.1 Advances in Genomic Medicine

Healthcare is becoming more personalized as a result of genomic applications. One of the
important approaches for precision medicine is stratifying individual genetic susceptibility
based on inherited DNA variation. Disease susceptibility and risk can now be quantified and
predicted during birth using "stable genomics,” or DNA-based assessments that do not change
over a person’'s lifetime.[3] The ultimate goal of precision medicine is that medicine will be
informed by a genetic understanding of the disease rather than a "one size fits all" approach.
Precision medicine involves not only researching DNA but also taking into account aspects
such as where a person lives, what they do, and their family's health history. Instead of
depending on tactics that are the same for everyone, the idea is to develop personalized
prevention or treatment approaches to help specific individuals stay healthy or get better.[47]
The application of knowledge gained from sequencing human genomes is critical for precision
medicine, allowing patients to be matched to the best therapy, so that a patient s treated with
the appropriate drug at the right dose at the right time, or changing treatment due to resistance
or adaptability through disease evolution.[4] Patients with the same signs and symptoms of
cancer often have different outcomes. The precision medicine approach provides a research
strategy to develop biomarkers that can be used to classify patients with the same cancer into
finer taxa (subclass 1 versus subclass 2) by biomarkers that predict prognoses derived from the
synthesis of large amounts of data to identify discriminating biomarkers. For example, patients
in subclass 1 who have a worse prognosis (that is, have biomarkers that are associated with
poor survival) may be givena more aggressive treatment (treatment X) versus those in subclass
1 who have a better prognosis (that is, have biomarkers that are associated with good outcome)
and require a less aggressive therapy (treatment Y). Additionally, the converse may be true
where individuals with a worse prognosis are provided less aggressive therapy if no benefit

from aggressive treatment has been observed for this subclass.[47]
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Classifying patients into new, specific taxa[47]

Genetic testing is a type of medical test that detects chromosomal, gene, or protein changes.
The majority of the time, testing is used to detect changes associated with inherited disorders.
A genetic test’s results can confirm or rule out a suspected genetic condition, or they can help
determine a person’s risk of developing or passingon a genetic disorder. There are now two
types of genetic testing available: clinical and direct-to-consumer (DTC). A clinical genetic test
is typically performed in a clinical setting with access to trained medical professionals, such as
genetic counselors, to assist patients in interpreting the results, which can be extremely difficult
to misinterpret. For example, sometimes the results of a genetic test can give a false sense of
assurance or sound a false alarm, but a conversation with a genetic counselor can help put the
test results into context or explain their implications. By contrast, DTC genetic testing is done
at home after ordering a simple test kit online. However, since, the validity of some DTC
genetic tests is questionable, and their results are not usually interpreted by a qualified medical
professional, their purpose may be more recreational than medical. Privacy and security of
genetic data are not completely guaranteed with any DTC genetic test, but consumerscan take
control of their privacy by knowing and reading the privacy policy and opting out of consent
so that their information is not shared with a third party.[47]

Gene therapy is a type of treatment that involves inserting healthy foreign genetic material
into a person’s cells in order to cure a rare condition or disease. Gene therapy, rather than just
treating symptoms, aims to correct the underlying genetic cause of the disease and thus serve
as a one-time cure. While gene therapies are becoming more widely available, they are still out
of reach for the general public. Luxturna, which is used to treat a rare type of vision loss, hasa
$850,000 list price.



Understanding why the same genetic condition can manifest so differently in different
people is often at an early stage, which makes genetic counselling difficult, particularly in the
prenatal setting. It is becoming possible to provide more personalized risk estimates for some
genetic conditions by combining knowledge of a person’s genetic diagnosis with analysis of
other factors that may influence their risk. In general, risk personalization has relied on
clinically obvious characteristics: for example, men with pathogenic BRCA variants have a
lower risk of developing breast cancer than women with pathogenic BRCA variants. Recently,
genetic testing has been developed to supplement ‘key’ genetic test results in order to provide
a more refined personal risk assessment. For example, usinga polygenic risk score based on
breast and ovarian cancer susceptibility SNPs identified through population GWAS revealed
significantdifferencesin absolute cancer risks between womenwith pathogenic BRCA variants
and higher versus lower polygenic risk score values. This has yet to be implemented in routine
clinical practice, butit has the potential to help women with pathogenic BRCA variants make

better decisions about how and when to manage their cancer risk. [49]

1.4LD-HWE

This section presents two controls that are very important for processing genetic data.

1.4.1 Linkage disequilibrium (LD)

Linkage disequilibrium (LD), which refers to the fact that alleles are not randomly associated
at different loci. Polymorphisms are inherited together through what is called linkage
disequilibrium (LD), which is the nonrandom occurrence in members of a population of the
combinations of 2 or more linked genomic loci. In other words, linkage disequilibrium is
defined as an association of the alleles present at each of two positions in a genome. For
instance, if a T at one SNP locus is generally observed with a G at another SNP locus, these
two SNPs are said to be in linkage disequilibrium. Their co-occurrence is more correlated than
we would expect by random (equilibrium) conditions. Two alleles (i.e., that are variants of
polymorphisms) which are located at different positions at the same chromosome are in LD if
they are not inherited independently from one another. In general, alleles which are located
close together at the same chromosome will have stronger LD. Conversely, when two SNPs are
inherited randomly (i.e., unlinked), they are said to be in equilibrium. The hypothesis of interest
is whetherthe geneis involved inthe disease's causal pathway. In this case, the SNP loci chosen

within the gene may not be functional; thatis, they may not directly cause the disease. These
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sites, however, are likely to be associated with disease because they are in linkage
disequilibrium (LD) with the functional variant.[50] High LD thus means that two SNPs are

linked, which is measured r2.

This measure is based on Pearson’s y2-statistic for the test of no association between

the rows and columns of an r x ¢ contingency table. Specifically, r2is defined as

2= x2/N (1.1)
Pearson’s y 2-test statistic is given by
(0ij—Eij)?
)(12 = Z”% (1.2)
i
wherel=1,2,...,r,j=1,2,..., cand O;and E;j; are respectively the observed and expected

cell counts forthe I, j cell of an r x ¢ table.[50] The r2 measure is a statistical measure of shared
information between two markers and is commonly used to determine how well one SNP can

actas a proxy for another. [58]

1.4.2 Hardy-Weinberg equilibrium (HWE)

The Hardy-Weinberg equilibrium (HWE) is a theoretical mathematical model describing the
probability and distribution of genotype frequencies in a population. The main purpose of the
HWE is to express the principle that the amount of genetic variation (allele and genotype
frequencies) inapopulation will remain constantfrom one generation to the nextin the absence
of evolutionary influences. HWE denotes independence of alleles at a single site between two
homologous chromosomes. Consider for example the simple case of one biallelic SNP with
genotypes AA, Aa and aa. HWE implies that the probability of an allele occurring on one
homolog does not depend on which allele is present on the second homolog. The HWE is used
to model and predict genotype frequenciesin large, stable populations. Itis an important tool
for understanding population structure. If certain assumptions are met, genotype and allele
frequencies can be estimated from one generation to the next. In genetic association studies,
HWE principles have been applied to detect genotyping error and disease susceptibility loci.
When a population is in HWE for a gene, it is not evolving, and allele frequencies will remain
the same across generations. The HWE dictates that the frequencies and relative proportions of

genotypes remain stable-or in other words in equilibrium-over time if all assumptions of the

11



HWE are met. The proportionswill remain constantatthis equilibrium if these five assumptions
hold:

1. There is no natural selection (i.e., all genotypes have equal fitness). Natural selection is the
increase or decrease of particular genetic traits as a function of the differential fitness and the
reproductive success of individuals. In other words, natural selection operates when particular
genetic variants render the individuals who bear them more likely to survive. Consequently,
those genetic variants increase in frequency in the next generation. Natural selection is said to
drive adaptive evolution to select for traits that are beneficial to a particular population within
an environment. One way to think about selection is that it is a filter that removes suboptimal
alleles from a population so that it is better adapted to its environment. Fitness-also sometimes

referred to as longer reproducing, they are considered as no longer evolutionary fit.

2. There is no genetic drift. Genetic drift is a change in allele frequencies oner time in a
population of finite size due to random transmission of parental alleles from parents to offspring
and due to the fact that some individuals randomly produce more offspring than others,

irrespective of their genotype.
3. A closed population (there is no significant migration in or out of the population)
4. Mutation does not occur

5. There is no assortative mating. In genetic research refers to a mating structure in which pairs
of individuals that are genetically similar to each other mate with a higher probability than

expected under random mating.

If all of these assumptions are met, then four important conclusions can be drawn from the
HWE theorem: (1) allele frequencies do not change from one generation to the next, (2)
genotype frequencies can be inferred from allele frequencies, (3) only one generationis required
to go from non-equilibriumto equilibrium, and (4) once the systemisin HWE, it stays in HWE.
These assumptions thus entail that the population structure is not from two or more
subpopulations, there is no inbreeding (i.e., mating without one or more common ancestors),
males and females have similar allele frequencies, all members of the population have equal
reproductive successand the populationis infinitely large. If the basic assumptions are not met
foraparticular gene, the population may evolve. Orin other words, genotype frequencies might

change. In practice, violation of the HWE may also point to measurement error in genetic data.
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Testing the HWE is therefore a crucial part of the quality control process in handling genetic
data.[58]

Tests of HWE include Pearson’s y2-test and Fisher’s exact test. The y?2-test is
computationally advantageous but relies on asymptotic theory. Thus, when more than 20% of
the expected counts are less than five, Fisher’s exact test is preferable. Consider the 2 x 2 table
of genotypesatasingle locusgiven in Figure 1.3. Here ny; and ny, are the number of individuals
with genotypes AA and aa, respectively, and these counts are observed. Notably, the genotypes
Aa and aA are indistinguishable in population-based investigations, and thus we only observe
the sum nj,= ny; + Ny and not the individual cell counts, ny; and ni,. The expected counts
correspondingto these three observed counts, nys, n,, N2, are given respectively by E;; = Np7,
E1» = 2Np,(1—p,) and Ex» = N(1 — py) 2, where py is the probability of A and is estimated
based on the observed allele count. That is, we let p, =(2n11 +nJ,) /(2N). The y?-test statistic
is

(0ij=Eij)* 5

X% =Xijec m X (1.3)

where now the summation is over the set C of three observed cells. This statistic is compared

with the appropriate quantile of a yZ-distribution to determine whether to reject the null
hypothesis of HWE.

Homolog 2
A a
A n11 nio ni.
Homolog 1
a n21 Nna2 na.
1 n.o2 n
Figurel.3

Genotype counts for two homologous chromosomes

A statistically significant test of HWE suggests that the SNP under investigation is in Hardy -
Weinberg disequilibrium (HWD).[50]
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The p-value from Fisher’s exact test is based on summing the exact probabilities of seeing
the observed count data or something more extreme in the direction of the alternative

hypothesis. Fisher showed that the exact probability from a contingency table such as Figure

1.3 isgiven by
— (7?111)(1711222) _ __malmplnglny! v
Pa (r{vl) Nnqq1nqzngqIng,! .

In practice, a test of HWE is used to assess whether either population admixture or
stratification is present. While admixture and stratification represent two different
phenomena—the former describes in-breeding while the latter implies the presence of multiple
subpopulations in which there is no inbreeding—the manifestation of both is a violation of the
HWE assumption.[50]
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CHAPTER 2

HERITABILITY

2.1 Introduction

Heritability on the liability scale, h?, quantifies the proportion of variance of liability to disease
attributable to inherited genetic factors. Is a measure of how well differences in people’s genes
account for differences in their traits. [18] All individuals in the population carry some genetic
risk variants and likely experience some nongenetic risk factors, but most individuals in the
population are not affected— disease status results when the cumulative load exceeds a burden
of risk threshold.[18] Heritability is formally defined as a ratio of variances.[17] Two types of
heritability can be estimated. The broad-sense heritability (H2) evaluates the proportion of
phenotypic variance explained by all genetic factors, including additive effects, dominant
effects, and epistasis effects and the narrow-sense heritability (h2), on the other hand, evaluates
the proportion of phenotypic variance explained by additive genetic effects.[39] It measures
with a single number the fraction of variation between individuals in a population that is due to
their genotypes. Because individuals transmit only one copy of each gene to their offspring,
most relatives share only single or no copies that are identical by descent (IBD) (the most
important exceptions are identical twins and full siblings (sibs)), and dominance and other non-
additive genetic effects that are based on sharing two copies do not contribute to their
phenotypic resemblance. This is why the selection response and correlation of most relatives
depend on h2and not H2, and why h2 is the usual parameter.[17] Identical by descent (IBD) is
a term used in genetic genealogy to describe a matching segment of DNA shared by two or
more people that has been inherited from a common ancestor without any
intervening recombination. The segments are considered to match if all the alleles on a paternal
or maternal chromosome are identical (barring rare mutations and genotyping errors) and if
the minimum threshold conditions setby the testingcompany have been met. Everyonehas two
copiesof each chromosome —one chromosomeinherited from their father and onechromosome
inherited from their mother. Matching segments can be on half-identical regions (HIRS)
(matches on the paternal or maternal chromosome) or fully identical regions (FIRs) (matches

on both the paternal and maternal chromosome). FIRs are generally only seen in full siblings
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and double cousins but are sometimes found in more distant relatives if the individual comes

from an endogamous (intermarrying) population. [63]

2.2 Definition of heritability

Because heritability is a ratio of variances, both the numerator and denominator need close
scrutiny. The denominator contains the total observed variation, usually excluding variation
that is due to known fixed factors and covariates such as sex, age and cohort. The numerator of
h2contains variation thatis due to additive genetic valuesin the population. These values, called
‘breeding values’ in the literature, are defined as the sum of the average effects of parents’
genes that give rise to the mean genotypic value of their progeny. Breeding values can be
measured even when the average effects of individual genes cannot. A consequence of the
definition of heritability is that it depends on the population, because both the variation in
additive and non-additive genetic factors, and the environmental variance, are population
specific. Genetic variance depends on segregation in a population of the alleles that influence
the trait, the allele frequencies, the effect sizes of the variants and the mode of gene actions. All
these variables can differacross populations. Similarly, environmental variance can vary across
populations. Therefore, the heritability in one population does not, in theory, predict the
heritability of the same trait in another population. In practice, heritabilities of similar traits are
often remarkably similar in other populations of the same species, or even across species.
Heritability can also differ between sexes, and heritability of the same trait can differ early and
late in life.[17]

Observed phenotypes (P) of a trait of interest can be partitioned, according to biologically
plausible nature—nurture models, into a statistical model representing the contribution of the

unobserved genotype (G) and unobserved environmental factors (E):
Phenotype (P) = Genotype (G) + Environment (E) (2.1)

The variance of the observable phenotypes (a7) can be expressed as a sum of unobserved

underlying variances (¢ and o7 ):

0f = o} + o} (2.2)

Heritability is defined as a ratio of variances, by expressing the proportion of the phenotypic

variance that can be attributed to variance of genotypic values:
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2
Heritability (broad sense) = H2= Z—g (2.3)

The genetic variance can be partitioned into the variance of additive genetic effects (breeding
values; a2), of dominance (interactions between alleles at the same locus) genetic effects (a2),

and of epistatic (interactions between alleles at different loci) genetic effects (o):
oi=0; + of + of (2.4)

and

2
heritability (narrow or strict sense) = h2= Z—g (2.5)

2.3 Heritability Estimation

Estimates of heritability on the liability scale depend on knowledge of baseline risk of disease
in the population from which the twin and family cohorts are drawn and estimates of baseline
risk are often surprisingly difficult to pin down. They may also vary between populations,
across ages and may depend on whether nongenetic factors have been recorded and included in
the analysis. Hence, in reality heritability estimates should be viewed as pragmatic benchmarks

representing evidence for low, moderate or high contributions of genetic effects.[18]

Accurate estimation of heritability can show the degree to which genetic factors influence
phenotypes and improve our understanding of the genetic basis of disease and disease -related
complex traits. Indeed, heritability plays an important role across a range of genetic
applications: itis a key for understanding the evolutionary forces underlying natural selection;
it determines how a population will respond to selection; it predicts, at least in part, gene
mapping power in genome-wide association studies; it can estimate, quite accurately in some
cases, the phenotypic value of an individual and thus facilitate genomic selection via predicted

breeding values; and it provides an upper limit for the genetic prediction of phenotypes.[39]

2.3.1 Heritability with unknown pedigrees

Genetic markers can help to estimate heritability in novel ways. When phenotypes are collected
on a sample of individuals whose relatedness is partially or wholly unknown, genetic markers
can be used to infer relatedness between pairs of individuals, because related individuals tend
to share more marker alleles than unrelated individuals. The inferred relatedness can then be

correlated with phenotypic similarity, and quantitative genetic parameters, including
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heritability, can be estimated. This method has been applied in evolutionary studies to estimate
heritability for quantitative traits when phenotypes and DNA samples are available, but
pedigree information is not, for example in fish and plants. A disadvantage of this method is
that many polymorphic markers, typically hundreds, are needed to estimate relatedness
accurately, for distant relatives in particular. Generally, the closer the relatives the fewer
markers are needed. Offspring—parent pairs can be easily identified with only a few
polymorphic markers because they always share at least one allele at all marker loci. Funding,
rather than the availability of large numbers of polymorphic markers, could be the only limiting
factor in the near future, given the rapid discovery of new markers in many species and the

development and application of high-density array technology.

2.3.2 Exploiting variation in relatedness

Genetic markers can also be used to estimate heritability when the pedigree is known, by
estimating the actual or realized relationship between relatives. Apart from offspring—parent
pairs (who always share 50% of their genes IBD) and monozygotic twins (who share 100%
IBD), the proportion of the genome that is shared IBD varies around its expectation for pairs of
relatives because of the stochastic nature of segregation and recombination. A parent has one
chromosome from each of its parents, and which parts of thesetwo grandparental chromosomes
are passed on to an offspring is a chance event (random segregation). This segregation causes
variation in the actual number of alleles shared IBD between relatives. For example, for full sib
pairs at a single locus, 25% of all the sib pairs share no alleles IBD (they are ‘unrelated’ at that
locus), 25% share two alleles IBD (they are ‘clones’ at that locus) and the remaining 50% share
one allele IBD. Recombination events during the formation of gametes reduce the variation in
the proportion of a chromosome (or genome) that is shared IBD between relatives, by creating
more segregating segments: the larger the number of segregating units, the smaller the variation
in the proportion of segments shared. The measuring of multiple genetic markers in relatives
allows the estimation of the total proportion of the genome that is shared. The amount of
variation around the expectation is modest, but measurable. For example, for sib pairs the
average proportion shared is 50%, with astandard deviation of approximately 4%. For half sibs
the mean and standard deviation are 25% and 3%, respectively. The significance of this new
approach is that heritability can be estimated without strong assumptions about the causes of
family resemblance, because it is estimated from data within families. In the future, with

sufficient data, this will allow unbiased estimation of heritability of contentious phenotypes
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such as 1Q in humans, unbiased estimation of the genetic contribution to concordance for
disease in relatives, and unbiased estimation of additive and non-additive variance that is not

affected by confounding factors.[17]

A high heritability means thatmost of the variation that is observed in the present population
is caused by variation in genotypes. It means that, in the current population, the phenotype of
an individual is a good predictor of the genotype. However, it does not mean that the phenotype
is determined once we know the genotype, because the environment can change or can be
manipulated to alter the phenotype. A low heritability means that of all observed variation, a
small proportion is caused by variation in genotypes. It does not mean that the additive genetic
variance is small. This difference matters because the response to natural or artificial selection
depends on the amount of genetic variation in the population. Many phenotypes relating to
fitness in natural populations have a large amount of additive genetic variation relative to the

mean [17]

2.4 Heritability in Genomic Area

GWAS identify SNPs that are statistically correlated with phenotypes of interest. After nearly
a century of twin and family studies consistently demonstrating relatively high heritability of
traits, there was some expectation that early GWAS would find a few genes of large effect.
GWAS results in this respect have been disappointing. While twin studies indicate that roughly
50% of the total variance in cognitive ability is explained by genetic differences, individual
SNPs associated with cognitive ability typically explain less than .04% total variance. [64]

One simple method of increasing the amount of phenotypic variance accounted for by
GWAS (sometimes referred to as ¢ hZ, ,¢’) is to sum the total effects of genome-wide
significant SNP hits. The first efforts to do this were met with disappointing results as well.
Weedon etal. (2008) conducted a GWAS of height which identified 20 SNPs with a combined
effect of 3%. These meager results inspired an impetus in the GWAS community to conduct
bigger and better studies that would be required to power the small effect sizes of individual
SNPs. Bigger datameantmore SNPs, which meantmore variance explainedand, consequently,
increased h2,, .. Even when summing the small effects of hundreds of genome-wide

significant SNPs, variance explained by GWAS results are still quite small. [64]
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To increase the amount of phenotypic variance accounted for by GWAS results, has been
developed the ‘SNP heritability’ (or hZy). SNP-based heritability only measures the variance
explained by additive effects of the genotyped or imputed SNPs. First, instead of limiting
analysis to SNPs who meet the strict p-value GWAS significance threshold, SNP heritability is
derived by analyzing the complete set of SNPs for each participant sample- even those that are
not associated with the trait of interest. To this end, SNP heritability is biologically non-
obvious. Second, SNP heritability assumes linear additivity of SNP effects. Third, SNP
heritability represents the current limit on the total variance that could be explained by SNPs,
for any given phenotype. So, for example, if a polygenic score were maximally predictive, it
would be equivalent to SNP heritability. Fourth, SNP heritability is consistently lower than
traditional heritability. This gap between traditional heritability and SNP heritability is

sometimes referred to as the missing heritability problem. [39]

2.4.1 SNP Heritability estimation

Accurate estimation of SNP heritability can help us better understand the degree to which
measured genetic variants influence phenotypes. A common method to estimate SNP
heritability based on summary-statistics is LD Score regression (LDSC). For each SNP, LDSC
first computes its LD score, ¢ =X rﬁ{, which captures approximately the number of genetic
variants tagged by this SNP. LD score cannot be computed exactly due to the large number of
genome-wide SNPs. Instead, it is typically estimated based on SNPs. After obtaining LD score,
LDSC regresses the y2 test statistic from GWAS on the per-SNP LD scores. Under a polygenic
model, in which effect sizes are drawn independently from distributions with variance
proportional to 1/ (p(1 — p)), where p is the minor allele frequency (MAF), the expected 2

statistic of variant j is:
hj
E [X2| 1,0J] =n {)jAM +na+1 (26)

where a measure the confounding bias due to potential population stratification and cryptic
. . . h% . -
relatedness, nisthe sample size, M is the number of SNPs, such thatﬁ"lsthe average heritability

explained per SNP. Here, population stratification refers to the presence of a systematic
difference in allele frequencies between subpopulations in the data possibly due to different
ancestry. Cryptic relatedness occurs whenindividuals in the study are more closely related to

anotherthan thought. Both populationstratificationand cryptic relatedness, if uncontrolled, can
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lead to upward biased SNP heritability estimation. By controlling for population stratification
and cryptic relatedness using the parameter a, LDSC can mitigate their influence for SNP
heritability estimation. Thus, regressingthe )(f statistics from GWASagainstper-SNP LD score
¢; allows for estimation of hZ. By modeling summary statistics, LDSC is not only applied to

many data sets that previously cannot be analyzed for SNP heritability estimation, it also
substantially improves computational speed and makes SNP heritability scalable to large data
sets.[39]

2.5 Missing Heritability

The development of alternative methods of estimating heritability (e.g., GWAS and SNP
heritability) has given rise to whatis commonly referred to as the ‘missingheritability problem’.
The missing heritability arises out of a numerical gap between the heritability measured using
pedigree informationand the measure through GWAS of the same trait. Forexample, traditional
heritability estimates for 1Q obtained using twin and family studies range between .5 and .7
while SNP-based heritability estimates of 1Q are currently no greater than .25. Missing

heritability is greatest among complex, behavioral traits.

Below pointed outsome explanations for missing heritability. Epistatic interactions between
SNPs entail that the effect of a given SNP will be modified (enhanced or diminished, for
example) in the presence of another SNP, which violates the additivity assumption of SNP
heritability. Similarly, gene-environment interaction and epigenesis have been proposed as
explanations for missing heritability.[64] The GWAS analyses were not powered enough to
capture all the genetic variants involved in disease susceptibility and that a lot of variants with
small effects were missed. It is also possible the causal variants are not in complete linkage
disequilibrium (LD) with the genotyped SNPs. Genomic heritability estimates could, therefore,
be improved by taking into account all the genetic data to incorporate smaller effects that did
notreach significance butcould, however, significantly contribute to phenotype variability. End
of another explanation for the missing heritability is that rare variants that are not captured by

SNP-chips could be major contributors of common disease susceptibility. [40]
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CHAPTER 3

GWAS

3.1 Introduction

Genome-wide association studies (GWAS) aim to identify associations of genotypes with
phenotypes by testing for differencesin the allele frequency of genetic variants between
individuals who are ancestrally similar but differ phenotypically as well as genetic associations
that may differ across ancestries, complicating direct comparisons between groups of
individuals. The typical goal of the GWAS is to identify loci that harbor causative variants
(hoping to implicate genes near these loci, thus leading to a better understanding of a disease
and novel therapeutics) and to use genetic risk factors to make predictions about who is at risk
and to identify the biological underpinnings of disease susceptibility for developing new
prevention and treatmentstrategies. The mostcommonly studied genetic variants in GWAS are
single-nucleotide polymorphisms (SNPs). [41] GWAS are more likely to provide insights into
disease pathogenesis than useful information on personalized risk assessment.[21] Previous
GWAS have shown that most traits are influenced by thousands of causal variants that
individually confer very little risk, are often associated with many other traits and are correlated
with causal and non-causal variants that are physically close as a result of linkage
disequilibrium, making direct biological, causal inferences complicated.[41] GWASs test
millions of separate regression models for associations between genetic variants and a
phenotype. Phenotypes can be monogenic traits, strongly influenced by variationwithin asingle
gene, but many are polygenic complex traits, which are the result of variation within multiple
genes and their interaction with behavioral and environmental factors. The results of a GWAS
show the association of each individual SNP with a particular trait or phenotype across all
genotyped regions. Since many traits are complex and linked to multiple genetic loci (i.e.,
polygenic), a GWAS often identifies many genetic variants that each have a small influence on
a phenotype. Due to small effect sizes, very large data sources are required and the GWAS
discovery typically culminates in many GWAS analyses conducted on multiple data sources
and then combined into one meta-analysis.
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3.2 Study Design

A well-planned study can avoid systematic bias in analysis results while also providing enough
statistical power to detect association signals. A trait can be a categorical disease status, such
as affected or unaffected, or a disease-related biomarker, such as low-density lipoprotein
cholesterol levels. In both population-based and family-based studies, quantitative phenotypes
have been shown to have higher power than categorical traits. The choice of trait implies the
appropriate statistical tests - logistic regression can be used to model disease susceptibility if
the trait is categorical, whereas linear regression can be used for continuous phenotypes. A
retrospective case-control study begins with the selection of subjects based on disease status,
followed by the collection of genetic and environmental data. This design benefits froma low-
costand convenient sample collection process, and subject recall bias is not an issue when the
variables beingevaluated are genetic markers. To increase study power, the case-control genetic
study can benefit from combining working data with external samples, though ideally the same
protocol of sample storage, DNA collection, and genotyping should be followed to avoid
systematic bias. A prospective cohort study establishes a cohort and performs baseline
genotyping on all subjects, who are then followed up on and disease development is observed.
The prospective study nested with a case-control design is a more cost-effective version in
which a cohort is followed up on and those who develop disease are collected as cases while a
subset of disease-free subjects is selected as controls. The study of genetic association using
subjects collected in familiesis referred to asa family-based association study,and the simplest
design consists of affected offspring with one or both parents. This type of study has the
advantage of being resistant to population admixture, which is a common problem in case-
control studies, because it tests for the disequilibrium of alleles transmitted and not transmitted
to affected offspring. Accordingto studies, the family-based design is better suited for disorders
with low prevalence (1%), and it has lower power when the disease has a polygenic genetic
architecture or unscreened control subjects are used, compared to the unrelated case-control
design. [43] The choice of data resource and study design for a GWAS depends on the required
sample size, the experimental question and the availability of pre-existing data or the ease with
which new data can be collected. There are several excellent public resources available that
provide access to large cohorts with both genotypic and phenotypic information, and the

majority of GWAS are conducted using these pre-existing resources.[41]
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3.3 Quality Control (QC) Of Genetic Data

The analysis of genetic data to conduct a GWAS entails an understanding of statistical
inference in this setting but also numerous quality checks-referred to as quality control (QC).
QC is one of the central aspects of working with genetic data. Low-quality samples and
genotype-calling errors will result in an increased number of false-positive and false-
negative findings. Quality control (QC) procedures can be used to exclude low-quality
samples or markers and prevent misleading associations in subsequent analysis. Because
the impact of removing a biomarker is possibly bigger than the impact of removing one
subject, the QC should be performed first on a 'per-individual’' basis and then on a 'per-

biomarker' basis to reduce the likelihood of incorrectly removing a causal association.[43]

3.3.1Sample QC

The first step is to ensure that the individuals included in the sample have high-quality data.
1. Sex inconsistencies occur if discrepancies are found (e.g., an individual is recorded
being female butappearshomozygous forevery X chromosome marker). This can be checked
by estimating the homozygosity rate on the X-chromosome. Because males have only one X-
chromosome, the expected homozygosity rate is 1 for males and < 0.2 for females[
Homozygous, as related to genetics, refers to having inherited the same versions (alleles) of a
genomic marker from each biological parent. Thus, an individual who is homozygous for a
genomic marker has two identical versions of that marker]. If a subject's homozygosity rate
deviates from the expected homozygosity rate based on the determined sex information, it
indicates the likelihood of a sample mix-up or incorrect subject information. If differences are
discovered (for example, an individual is listed as female yet seems homozygous for every X
chromosome marker), any available study questionnaires should be checked to determine
whether there was a sample-handling error that resulted in a sample mix-up. Checking X
chromosome heterozygosity may also reveal sex chromosome anomalies such as Turner
syndrome (females having karyotype XO), Kleinfelter syndrome (males having karyotype
XXY), mosaic individuals (XX/XO, XX/XXY), or females with large stretches of loss-of-
heterozygosity on the X chromosome who are otherwise phenotypically normal.[43] The
intensity plot depicts the intensity of the X and Y probes (Figure 3.1). Females are intended
to have low Y intensity and high X intensity (bottom right corner), while men should have
similar X and Y intensities (top left corner). Subjects with inconsistent sex information should

be deleted if the discrepancy cannot be addressed by consulting the clinical record. However,
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depending on the study's objectives, these people are frequently not excluded from the study

just because of sex chromosome anomalies. [42]
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Figure3.1
Intensity plot[42]

2. Sample relatedness or duplicate subjects. Itis critical to discover unexpected relatives
in data when using association tests that assume subject independence. Duplicates and related
individuals can significantly introduce bias in association analysis. To related samples in the
dataset would result in increased type | and type Il errors. This step can be performed by
calculating the estimated identity-by-descent (IBD) that measures the proportion of the loci
where two individuals sharing 0, 1, or 2 alleles inherited from a common ancestor. The IBD
is calculated on the autosomes using SNPs in low linkage disequilibrium (r2<0.2). Individuals
who share two alleles at each locus are considered duplicated samples or monozygotic twins,
and their IBD = 1. IBD = 0.5 for parent-offspring or full siblings, 0.25 for second degree
relatives, and O for unrelated persons. The observed IBD may vary due to genotyping errors.
Thus, if the IBD is greater than 0.98, a pair of subjects may be termed duplicates and, in this
case, one subject from the pair should be removed from the data. When relatedness among the
subjects is observed, methods that control for kinship relationships can be applied.[43] Using
these data, the proportion of loci sharing one allele IBD (Z1) can be plotted by the proportion
of lociwhere individuals share zeroalleles IBD (Z0) and points color coded by the relationship
type. For clarity, this plot can be restricted to points where the overall kinship coefficient is
>0.05, as most of the individuals where kinship <0.05 will be unrelated. This will produce a
plotas shownin Figure 3.2. If it is believed that pedigree records obtained through the original
data are accurate, then a point out of place (e.g., points colored as unrelated showing up where
mostof the parent-offspring pairs cluster) would be indicative of either nonpaternity, adoption,
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sample mix-up, orduplicate processingof asingle individual. Further investigation employing
the original data can be used to attempt to identify the problem. Itis also worth noting in
studies where datasets from multiple sites are combined that it is possible that the same
participant is present in more than one study. These two data points would appear genetically
identical across sites. In addition to potentially discovering sample-handling issues,
visualizing sample relatedness as shown in Figure 3.2 also reveals any cryptic relatedness that
may be presentin the study sample. Figure 3.2 shows that many individuals who indicated
that they were unrelated (black points) or distantly related (blue points) line up along the
diagonal in this plot. These individuals represent second-, third-, fourth-, and fifth-degree
relatives. If treated as independent samples in the downstream analyses, having many such as

mixed-model regression must be used in place of simple linear or logistic regression. [41]
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Figure 3.2
IBD presentation[42]

3. Population substructure. Population structure refers to the patterns found in the genetic
data that allow us to determine an individual's ancestry. There is population structure when
mating is more likely to occur between some subsets of the population than between others,
typically due to geographical structure. Individuals located in geographical proximity to each
otherare more likely to mate. Population structureis also used to describe a populationin which
allele frequencies differ between different geographic regions, so a SNP that is common in one

population may be rare in another one or even show no variation at all. [58]
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The presence of multiple subpopulations (e.g., individuals with different ancestral
background) in a study called population stratification. Because allele frequencies can differ
between subpopulations, population stratification can lead to false positive associations and/or
mask true associations. Restricting analysis to an ancestry group, such as individuals with
European ancestry, does not protect us from the risk of including bias in the analysis due to
population stratification.[58] The apparent associations would be attributable to ancestral
differences rather than an actual association of genes to disease. As a result, it is necessary to
examine the study samples for population stratification and use this information to inform
subsequent analyses [42]. Principal component analysis (PCA) is frequently used to detect this
issue. The idea behind this approach is to provide a low-dimensional representation of the data
that captures information on the variability between individuals across SNPs. The aim of PCA
is to identify k(k<p) linear combinations of the data, commonly referred to as principal
components, that capture overall variability, where p is the number of variables, or SNPs. [50]
In PCA, the genotype matrix is normalized and transformed through a linear combination of the
input SNPs. The first vector of the converted matrix is called the first principal component (PC),
which explains the most variation in the genotype data, followed by the second PC and so on.
Finally, the top 10-20 PCs can be incorporated as covariates in a generalized linear model to

analyze the effect of a SNP.

The genomic control method computes a variance inflation factor or genomic inflation
factor A, obtained from the robust estimate: 1= median(X?, X2, ... ,X2)/0,456, where each X2
is a chi-squared distributed statistic calculated from the genome-wide scan of p SNPs. The test
statistic Y2, adjusted for the genomic inflation, can be used for the association test: Y2= X2/4,
which follows the chi-square distribution under the null hypothesis. A number of A close to 1
indicatesthatdata have been properly corrected for population substructure. If the value ismore
than 1.2, stratification is present. By dividing all of the test data by the value of lambda, it is

often possible to adjust for population stratification. [43]

4. Samples with a low genotyping efficiency, or call rate, should be excluded from further
analysis. A sample with low DNA concentration will result in a poor genotyping call rate,
influenced by where the sample is collectedand the amount of sample collected. A sample with
more than the usual number of missing genotypes indicates poor sample quality, and the subject

should be removedfromthe dataset. Individuals who have missinggenotype data across more
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than a pre-defined percentage of the typed SNP excluded. A common genotype missing
threshold is 5%. If a 98% threshold is applied, this is interpreted as individuals missing
genotype datafor more than 2% of the standard SNPs being removed. The exact threshold may
differ from study to study. The threshold should be set with the purpose of striking a
compromise between minimizing the number of samples dropped and maximizing genotyping
efficiency. Figure 3.3 showsthe proportion of samples (red and bluelines) or SNPs (green line)

remaining at different call rate thresholds.[42]
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Figure 3.3
Proportionof SNPsor samples remainingas call rate threshold increases[42]

3.3.2 Marker (SNPs) QC

A second set of quality control analyses focuses on the data quality of variants. Several steps
are taken sequentially to remove low-quality variants that might introduce bias in the study.

1. Marker genotyping efficiency/call rate. The call rate for a given SNP is defined as the
proportion of individuals in the study for which the corresponding SNP information is not
missing. Marker genotyping efficiency is a good indicator of marker quality. Excludes SNPs
that are missing in a large proportion of the subjects. A recommended threshold for removing
SNPs with low call rate is approximately 98% to 99%, although this threshold may vary from
study to study. Using a call rate of 98%, meaning that it retains SNPs for which there is less
than 2% missing data. Turner et al. recommend removing poor-quality SNPs before running the
sample genotyping efficiency check discussed above, so that fewer samples will be dropped
from the analysis simply because they were genotyped with SNP assays that had poor

performance (Figure 3.3).[42]
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2. Minor allele frequency. It is particularly critical to filter SNPs based on minor allele
frequency (MAF) because SNPs with a low MAF are infrequent, and hence power for
discovering SNP phenotype correlations is limited. These SNPs are also more susceptible to
genotypingerrors. A high degree of homogeneity across research participants at a given SNP
often results in insufficient power to infer a statistically meaningful association between the
SNP and the characteristic under consideration. This can happen when the MAF is so minimal
that the vast majority of people have two copies of the main allele. The MAF threshold should
be determined by the sample size. Lower MAF thresholds can be used with larger samples.
Figure 1.19.7 illustrates that for uncommon SNPs (1% frequency), the power to identify an
association in a large dataset (n =10,000) with a relatively high effect (odds ratio between 1.3
and 1.7)isquite low. Inaddition to havingreduced power for SNPs with low MAF, these SNPs
may also resultin misleadingrelationships due to genotypingerrors or population stratification.
Turner et al. recommend removing any extremely rare SNPs (including any monomorphic
SNPs). The threshold chosen depends on the size of the study and the effect sizes expected.
However, in studies with very large sample sizes, it may be beneficial to avoid removing these
rare SNPs.[42]
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Figure 1.19.7 This shows the power to detect an association at genome-wide significance (p <
5x10#), assuming the actual causal SNP is genotyped in a case-control study consisting of 5000
cases and 5000 contrels of a common disease with 10% prevalence under an additive model at
several different odds ratios. Note that when the MAF is low, power is extremely low even for very
large effects (odds ratio = 1.7).

Figure 3.4[42]
3. Hardy-Weinberg equilibrium. Hardy-Weinberg assumptions (see Chapter 1) hold that

allele and genotype frequencies remain constant throughout generations. If p represents the
frequency of one allele (A) and q represents the frequency of an alternative allele (a), then the
genotype frequencies for AA, Aa, and aa are p2, pq, and g2, respectively. The Chi-square
goodness-of-fit test can be used to calculate the deviation of observed frequencies from HWE.
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The Pearson test is easy to compute, but the y2 approximation can be poor when there are low
genotype counts, and it is better to use a Fisher exact test, which does not rely on the 2
approximation. [see sectionl1.4.2] [43] Deviation from this equilibrium can indicate potential
genotyping errors, population stratification, or even true relationship with the trait under study.
A real relationship might also cause disequilibrium. SNPs that are significantly out of HWE
should not be excluded from the study, but rather identified for further investigation when the
association analyses are completed. It is occasionally recommended that HWE be estimated
just within the control cohort to avoid omitting potentially meaningful departures (caused by
iliness connection). The significance level for rejecting based on HWE differs by study and
spans from 10-5to 10-7. If various ethnicities are employed in the same study, HWE must be

tested independently foreach group. [42]
3.4 Association Analysis

The proper association test is determined by a number of parameters, including the type of
phenotype, the need to adjust for clinical covariates and population structure. Before using
association tests, the genotype data must be coded according to the genetic model that has been
established. If two SNP alleles are A and a, a dominantmodel for A will translate the genotypes
(AA, Aa,aa)to (1, 1, 0), implying that the presence of the A allele increases the risk of disease
by the same amount for AA and Aa genotypes relative to the baseline risk for aa. An additive
or co-dominant model will code (AA, Aa, aa) as (2, 1, 0), suggesting that each extra copy of
the A allele additively raises disease risk (or an appropriate function of disease risk, such as the
log odds of disease). A recessive genetic model for A codes (AA, Aa, aa) as (1, 0, 0), implying
that two copies of the A allele are needed to express the phenotypic trait associated with this
allele. In GWAS analysis, it is typical to begin with the co-dominant genetic model to search
the genome, and then, after related markers are identified, one may opt to do association tests

under all scenarios.[43]

3.4.1Single Locus Tests

By focusing on one SNP at a time, a single locus statistical test compares genotype and
phenotype. The genotype at a given SNP in the human genetic setting has three levels:
homozygous wildtype (AA), heterozygous(Aa), andhomozygous rare(aa). If the resultis binary,
the data can be represented by the two xthree contingency table shown in Figure 3.5. In these

tests, the null hypothesis states that there is no relationship between genotype and phenotypic
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status (the null hypothesis of no association between rows and columnsof'the 2 x 3 matrix).[43]
The oddsratio (OR) isacommonly used measureof association, defined as the ratio of the odds

of disease among the exposed to the odds of disease among the unexposed.[50]

Genotype
aa Aa AA

+ | N ni2 13 ny.
Disease
— | 7n21 122 n23 2.
n.i n.2 n.3 n
Figure3.5

2 x 3 contingency table for genotype—disease association[50]
The OR is written

p(D*|E*)/1i-p(DF|ET))

OR = (O E ) =r(D¥E )

(3.1)

For example, the genotype can be set as an indicator for the presence of any other variant. If
the three possible genotypes are AA, Aa and aa. Then a dichotomized genotype report could be
defined as E* = (Aa or aa) and E-=(AA). The corresponding count data is now given in Figure

3.6. In this case, a 2 x 2 contingency matrix results and the OR is equal to

OR = (n11/n1)/(Ma1/n1) _ niing; (32)

N (ny2/n2)/(na2/n2) N Nz1Mi12

Genotype
(Aa or aa) AA

+ ni1 n12 n1.
Disease (D)
— n21 n22 na.
n n.o n
Figure 3.6

2x2 contingency table for genotype—disease association[50]
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A formal test of association between a categorical exposure (genotype) and categorical
disease variable (trait)is conductedusing Pearson’s jy ?-testor Fisher’s exacttest. In the context
of a2 x 2 table, a test of no association between the rows and columns is equivalent to a test of
the single null hypothesis, Ho. OR = 1. Pearson’s y 2-testinvolves firstdeterminingthe expected
cell counts of a corresponding contingency table under the assumption of independence
between the genotype and trait. The expected count for the (1,j)-cell is given by E;; = nl-_n_j/n
forl =1,2andj =1, 2, 3. Letting the corresponding observed cell counts be denoted Oj; ,
Pearson’s y 2-statistic is given by

X2=Z..(Oi1'__EU)2

L g “Xr—1ye-1) (3.3)

This statistic has a y2-distribution with (r—1)(c—1) degrees of freedom,wherer=2 andc = 3

are the number of rows and columns, respectively.[50]

Fisher’s exacttest is preferable when atleast20% of the expected cell counts are small (E <
5). The exact p-value is given by the probability of seeing something as extreme or more
extreme in the direction of the alternative hypothesis than what is observed. Fisher derived this
probability forthe 2 x2 table of Figure3.6, and itis defined explicitly in Section 1.2.2 for testing
HWE.[50]

The following analytical methods shall be used to characterize the association between a
genotype and a quantitative trait. Genotype can be defined as an M-level factor and in the
simplest case reduces to a binary indicator, for example, for the presence of at least one variant
allele at a given SNP locus. Specifically, the t-test is a test of the null hypothesis that the mean
is the same in two populations, written Ho: p1 =2, where populations are defined by genotype.
For example, defining p1 as the population mean for individuals with genotype AA and p2 as
the population mean for individuals with genotype Aa or aa. The two-sample t-test statistic,

assuming equal variances, is given by

Vi=Y2
t= =2 E T (3.4)
spl1/n1+1/n5]

where y; and ¥, are the sample means of the quantitative traitfor genotype groups 1and 2, sZis

the pooled estimate of the variance, and n1 and n2 are the respective sample sizes. Under the
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null, this statistic has a T-distribution with degrees of freedom equal to n; + n, — 2. The
Wilcoxon rank-sum test (also called the Mann-Whitney U -test) is a non-parametric analog to
the two-sample t-test and is more appropriate than the t-test if the trait is not normally
distributed and the sample size is small. The Wilcoxon rank-sum test is a rank-based test and is
used to test the null hypothesisthatthe medians of a quantitativetraitin each of two populations

are equal.[50]

If a priori dichotomization of the genotype variables is not desirable, we can perform an
analysis of variance (ANOVA) or the non-parametric analog, the Kruskal-Wallis test, to
characterize association with a quantitative trait. ANOVA is an extension of the two-sample t-
test to the M-sample setting and is based on an F-test for a full model with M —1 genotype
indicators (dummy variables) compared with the reduced model with an overall mean. The null
hypothesis of an ANOVA using a single SNP is that there is no difference between the trait
means of any genotype group. The assumptions of GLM and ANOVA are 1) the trait is
normally distributed; 2) the trait variance within each group is the same (the groups are
homoskedastic); 3) the groups are independent. The Kruskal-Wallis test similarly extends the
Wilcoxon rank-sum test. A Kruskal-Wallis (K-W) test can also be applied and is more
appropriate in small-sample settings in which the assumption of normality may not be

reasonable.[50]

Because these single-marker tests are special examples of regression models with one
predictor variable, simple linear regression produces the same result as the t-test and logistic
regression produces the same result as the odds ratio test when testing a single locus. Logistic
regression is an extension of linear regression where the outcome of a linear model is
transformed using a logistic function that predicts the probability of having case status given a
genotype class. Logistic regression is often the preferred approach because it allows for
adjustment for clinical covariates (and other factors), and can provide adjusted odds ratios as a
measure of effect size. In either case, tests require the trait to be approximately normally
distributed for each genotype, with a common variance. If normality does not hold, a
transformation (for example, log) of the original trait values might lead to approximate

normality. [43]
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3.4.2 Generalized Linear Models for Covariate Control

Consideration of additional variables in the context of analysis will depend on the scientific
question at hand, the biological pathways to disease, and the overarching goal of the analysis.
For example, if the aim of a study is to identify the best predictive model (that is, to determine
the model that can give the most accurate and precise prediction of cholesterol level for a new
individual), then itis generally a good idea to include variables previously associated with the
outcome in the model. If the goal is to characterize the association between a given gene and
the outcome, then including additional variables, for example, self -reported race, may also be
warranted if these variables are associated with both the genotype and the outcome. This
phenomenon s typically referred to as "confounding". On the other hand, if a variable such as
smoking status is in the causal pathway to disease (that is, the gene under investigation
influences the smoking status of an individual, which in turn tends to increase cholesterol
levels), then inclusion of smoking status in the analysis may not be appropriate. In this text, the
term "covariate" is used loosely to refer to any explanatory variables that are not of specific
independent interest in the present investigation. Covariates are also commonly referred to as

independent or predictor variables.[50]

A confounding factor is defined as a variable that: (1) is related to the exposure variable, (2)
is independently related to the outcome variable, and (3) is not involved in the causal pathway
between exposure and disease. For example, determining whether high alcohol consumption
(the exposure) is associated with a total cholesterol level (the outcome). Because smoking is
associated with heavy alcohol use and also with cholesterol levels in non-heavy alcohol users,
smoking status is a possible cause in the aforementioned relationship. In population-based
genetic settings, we are generally interested in the association between genotype, as defined by
one or more SNPs, and a trait. In this case, a confounding factor is defined as a clinical or

demographic variablethatis associated with both the genotype andthe traitunder consideration.

The generalized linear model (GLM) can be used to control potential confounding variables
such as age, gender, and medication. Multivariate models have the main advantage that they
allow multiple possible confounders and effect modifiers to be properly accounted for. The
generalized linear model (GLM) should not be confused with the general linear model for
multivariate data. The generalized linear model is a modeling framework that is applicable to a

variety of dependent variables, including both quantitative and binary traits, as well as count
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data. In this section, we discussed the linear regression model for quantitative traits and then
the logistic model for binary outcomes. Both represent special cases of the generalized linear

model. The GLM is given in matrix notation by the equation

g(E[yD=Xp (3.5)

where E[Y] = u denotes the expectation of Y, g() is a link function that performs a monotone
transformation on the mean of response variable and X is the design matrix. In the case of a
quantitative trait, we let g() be the identity link, and Equation (3.5) reduces to the ordinary linear

regression model. The multivariable linear regression model is:
Yi=Bo+Bixi+ 2 a7+ ¢ (3.6)

in which additional variables are included. The measure of association between the genotype
and trait is given by B;. Now, however, estimation and testing of this parameter takes into
account the additional variables in the model. These additional variables may be confounders
or may help to explain the variability in our trait. The inclusion of confounding variables is
important for drawing valid conclusions about the effect of genotype on the trait. Adding non-
confounding variables to the model will not change our genotype effect estimate substantially.
However, by reducing the unexplained variability in our model, including these variables may

increase our power to detect the association of our primary independent variable. [50]

As described above, the generalized linear model can also be applied to a binary trait. In this
setting, g() is commonly defined as the logit function, reducing Equation (3.5) to the logistic
regression model. Logistic regression models provide a setting for modeling dichotomous
outcomes based on multiple categorical or continuous predictors. The general form of a

univariate logistic model in scalar form is given by
logit(m;) = Bo + Brx; (3.7)
where ;= P (y; = 1|x;) and logit (r;) = In [r;/ (1 — m;)].

For example, supposey is an indicator for disease status. The [ parameter is then interpreted
as the effect of one unitincrease in x on the log odds of disease. If x is again a binary variable
for the presence of a variantallele, then B is the log odds of disease for individuals with this
variant versus those that are homozygous wildtype. In this case, we have OR = exp [S;]. Again,

additional variables can be added to this model to account for potential confounding and effect
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modification. Estimation of the parameters is achieved using maximum likelihood methods.
Tests of these parameters can be carried out based on the Wald statistic. An advantage of
multivariable models is that they provide a natural setting for inclusion of multiple independent
variables. This allows for consideration of many predictors of disease as well as providing a
means for assessing the potential confounding or mediating role of additional clinical and

demographic factors. [50]

3.4.3 Linear Mixed Models for Complicated Data Structures

A linear mixed model (LMM) is an extension of the standard linear regression model, wherein
the variables are divided into two groups: fixed effects and random effects. Fixed effects are
modelled as parameters, i.e., fixed,butunknown, quantities, while randomeffects are modelled
as beingdrawn from a random distribution — typically a Gaussian distribution with mean zero
and an unknown variance. Intuitively, this formulation allows accounting for the random
effects, while not specifically estimating the value of each random effect. The linear mixed
model (LMM) is an effective methodfor controllingcovariation caused by complex correlation
structures. The LMM treats the SNP under test as a fixed effect variable, as well as the clinical
and environmental covariates, and the remaining genotypes as random ef fect variables. The

model has the following form:
Y=2jX +uG+XyviZp+¢ (3.7)

where G is the test SNP, the variables Xj are fixed effect covariates, and Zy are genotypes with
random effects vy. J is the index of fixed effect covariates and k is the index of random effect
genotypes. v,is assumed to be independently drawn from a normal distribution with mean 0
and variance 1, i.e., v~ N(0, 7). E is the error term with € ~ N(0, &2l,). I, is the identity matrix
forn individuals and o2 is the variance of the error term. An LMM decomposes the variance
associated with phenotype y into the sum of a linear additive genetic and residual component.

The variance of Y can be written as:
Var(Y) = 1K+ &2l (3.8)

where K is the genetic relationship matrix, or the kinship matrix for related subjects. Because
the LMM can account for extra covariance caused by subject relatedness, it can be utilized for
association testingin family dataas well as data with population stratification. In fact, the LMM

is a generalization of the PCA approach in which all PCs are included by default. In short, the
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GLM simply corrects population structure; the LMM corrects both population structure and
individual kinship relationships.[43]

3.4.4 Correcting for Multiple Testingina GWAS

In a single statistical test, the type I error rate a is the probability of falsely rejecting the null
hypothesis when it is true. The p-value for a given hypothesis is determined based on a sample
of data and is defined as the probability of observing something as extreme or more extreme,
given that the null hypothesis is true. If the p-value is less than a (typically 0.05), then we reject

the null hypothesis in favor of the alternative. Formally, for a given null hypothesis denoted Hg
Type-1 error rate = P(reject Ho | Ho is true) < a (3.9)

In the case where it is desired to test K null hypotheses, given by He, fork =1, . . .,K the
family-wise errorunderthe complete null (FWEC) is defined as the probability of rejecting one
or more of these null hypotheses given that all of them are true. If each test is independent and
tested at level a, then

FWEC = P(reject at least one Hox | Hok is true for all k)
=1-P(reject no Hok | Hok is true forallk) <1 — (1 — a)K (3.9)

This ceiling is increasing rapidly. For example, for K = 10 independent trials, FWEC <
0.401. Thatis, if ten independent trials are conducted, each at level a, then the probability of a
type 1 error is 40.1%. This phenomenon is referred to as the inflation of the type 1 error rate
and is a serious concern in the context of analyzing associations between a large number of
SNPs and a trait. [50]

The Bonferroni adjustment for multiple comparisons is perhaps the simplest adjustment
that can be applied to address this problem. It simply involves using a = o/m in place of a for
the level of each test, where m is the number of tests to be performed. For example, if m =10
hypothesistestsare performed atatotal level of o= 0.05, then leta'=0.05/10=0.005, so FWEC
<1—(1—-0.005%0=1-0.951= 0.049. This technique is overly conservative since it
presupposes test independence, which is not true for SNPs which are in linkage disequilibrium.

Despite this restriction, the Bonferroni adjustmentis still a popular GWAS benchmark.[43]
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3.5 GWAS Results Presentation

The primary output of a GWAS analysis is a list of p-values, effect sizes and their directions
generated from the association tests of all tested genetic variants with a phenotype of interest.
These data are routinely visualized using Manhattan plots and quantile—quantile plots. Further
analysis is then needed to interpret this list of p-values, determining the most likely causal
variants, their functional interpretation and possible convergence in meaningful biological

pathways.[41]

Association results from GWAS are in the form of lists of summary statistics for millions of
genetic variants. Results are "clustered" in blocks corresponding to genetic loci with high LD.
For thisreason, itis impossible to open the file and browse the results by lookingatthe summary
statistics. The most widely used, recognizable visual tool to explore genome-wide association
statistics is the Manhattan plot, which is a type of scatterplot that plots the negative logarithm
(base 10) of the association p-value for each genetic variant (y axis) and the chromosome
position for each SNP tasted (x axis), where each circle represents a SNP. Manhattan plots are
used to visualize GWA significance level by chromosome location. The height of the points in
a Manhattan plot is thus inversely related to their p-values. The SNPs shown in the figure are
markers, and many will not be the actual causal variant but rather a "tag.” In other words, they
are tags since nearby variants might actually be driving the association.[58] Due to linkage
disequilibrium, typical true signals arise in stacks, formed by neighboring loci in high LD with
the causal marker. Figure 3.7 shows a Manhattan plot from a GWAS of 1583 nasopharyngeal
carcinoma (NPC) cases and 1894 controls of Chinese descent. The tall stack on chromosome 6
isinthe HLA region thathas been extensively studied andis known to in duce immuneresponse

to the EVB virus infection, which is a major risk factor for NPC.[43]
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Figure3.7

Manhattan Plot For GWAS of Nasopharyngeal Carcinoma[43]

Manhattan plots show the statistical associations of all genetic variants but conceal a
considerable amount of important information. Regional associations plots provides additional
information regarding chromosome position, genes, recombination rate and linkage
disequilibrium levels in a specific genomic region. The x-axis and the y-axis are the same as in
a Manhattan plot (genomic position and negative logarithm of association p-value). Figure3.8
is an example of a LocusZoom plot in which the top signal rs1412829 in gene CDNK2A/2B on
Chromosome 9 is surrounded by neighboring loci in high LD. The green segments indicate
gene regions.
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Figure3.8

LocusZoom Plot[58]
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Another typical figure associated with a GWAS is the Quantile-Quantile (Q-Q) plot, which
is examined together with the A (lambda) statistic. Q-Q plots show the link between the expected
and observed distributions of SNP-level test statistics. It is a tool that is used to visualize the
appropriate control of population substructure and the presence of an association. Despite
meticulous study design and sample collection from a homogeneous cohort, various degrees of
population stratification may exist. A blend of unknown or unmanageable ethnicity groups
would result in allele frequency differences, inflated variances, and enhanced false
relationships. Post-analysis population stratification can be found by visually inspecting the
Quantile-Quantile (Q-Q) plot, which compares observed test statistics (or some function of the
p-values) to the values that would be obtained from a theoretical distribution. Deviation from
the diagonal line suggests the possibility of population stratification and an increase in spurious
correlations. The degree of deviation from the line is formally measured by the A-

statistic(genomic control) [43]
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Figure3.9

a)Q-Q plotof GWAS showing obvious populationstratification (A\=1.14) b) Q-Q plot of normal
GWAS corrected for population stratification[41]

3.6 Post GWAS issues
3.6.1 Statistical fine-mapping

Because of linkage disequilibrium, many non-causal variations are strongly related with a
trait of interest; whether they approach the significance threshold relies on their level of
correlation with and intensity of association with the causative variant. As a result, the
output of GWAS is grouped in risk loci — groups of correlated variants that all exhibita

statistically significant correlation with the trait of interest — and linkage disequilibrium
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often hinders pinpointing causal variations without ad ditional research. Based on observed
patterns of linkage disequilibrium and association statistics, fine mapping is an in silico
procedure that prioritizes the set of variants most likely to be causal to the target phenotype
within each of the genetic loci discovered by GWAS. The mostbasic fine-mappinganalysis
is a conditional association analysis of the regional variants (a genetic association analysis
thatincludes fixed effects of genetic variants), whichadjusts the regional association signals
according to the set of variants in the locus by including the lead variant as a covariate in
genotype-phenotype regression models. When there are several association signals, it is
typical to apply forward stepwise selection until no relationships remain. This stepwise
conditional analysis method is confined to searching all combinatory patterns of potentially
credible variations. This is due to the fact that the variant search pattern in each iterative
step is heavily dependent on the previously selected variant sets, and the lead initial step
frequently includes the lead variant. [41] In Figure 3.10 fine-mapping is applied to identify
a set of variants that are likely to include the causal variant (blue box) as well as the most

likely causal variant (rs12345; blue dot).

ey

@ rs12345

GWAS -log, (P)

Chromosome position

Figure 3.10 [41]

3.6.2 GWAS Meta-Analysis

Meta-analysis is the statistical synthesis of information from multiple independent studies that

increases power and subsequently reduces the risk of false-positive findings. GWAS meta-

analyses use what is called summary data, which provide regression coefficients, standard

errors,and so on foreach genetic marker ina population followinga prespecified analysis plan.

It is thus not individual-level data but the aggregated summary results. Summary statistics, in a

GWAS, is the results obtained after conducting a GWAS, including information on

chromosome number, position of the SNP, MAF, effectsize (odds ratio/beta), standard error,
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and p-value. These statistics are used, for example, to create polygenic scores. Quality Control
(QC) is required before conducting a GWAS such as removing variants with low allele
frequency, low imputation quality, allele frequency that diverges substantially from a reference
sample, orresults driven by a specific study thatare not replicated else where. An importantand
time-consuming step in the GWAS meta-analysis is a second set of quality control, which is
basically harmonizing the results across studies. Despite providing a unified analysis plan, this
cleaning process might take the longest time in an initial project, since analysts might use
different software or there are other inconsistencies in the results. [58] Meta-analyses can be
performed usingafixed effectmodel —which assumeserror variances are equal across cohorts
—orarandom effectmodel to testfor heterogeneity in the results; forexample, testingwhether
one or two cohorts clearly deviate from the rest. Combining the contributions of all cohorts
allows for a more precise estimation of effect sizes and the significance of effects in GWAS by
weighting each individual cohort’s results by their sample size or by using the inverse variance
method. Sequencing data sets can identify rare variants, although current sequencing data sets
are typically too underpowered to test their effects on a phenotype individually; instead, their
effects are usually measured in aggregate, such as in genes or gene sets through rare variant

burden testing.

3.7 GWAS Studies
3.7.1Study 1

Widmer et al., examined improvements to the linear mixed model (LMM) that better correct
for population structure and familial relatedness in genome-wide association studies (GWAS).
LMMs are based on the estimation of a genetic similarity matrix (GSM), which encodes the
pairwise similarity between any two individuals in a cohort. These similarities are estimated
from single nucleotide polymorphisms (SNPs) or other genetic variants. Traditionally, when an
LMM is used for GWAS, its GSM is estimated from all available SNPs. In this paper, Widmer
et al. evaluate possible improvements to this approach. They discovered that modifying this
approach improves GWAS performance as measured by type | error checking and power.
Specifically, whenthere isonly population structure, a G SM constructed from SNPs that predict
the phenotype wellin combinationwith principal components as covariatescontrols type I error
and yields higher power than the traditional LMM. In any setting, with or without population

structure or family relatedness, a GSM consists of a mixture of two GSM components, one
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constructed fromall SNPs and the other constructed from SNPs that predictthe phenotypewell.

This again controls for type | error and yields more power than the traditional LMM. [50]

Synthetic SNPs and phenotypes: To reveal the weaknesses of the different models tested,
they varied the degree of population structure, family structure, number of causal SNPs, and
signal strength across a wide range of possible parameters, including those that yield strong
confounding by population structure and family relatedness. Each data set was created with M
=50,000 SNPs and N = 4,000 individuals, as is typical of many GWASs.[50]

The models used to carry out the comparison are presented in the table below.

Name of model Model description

Linreg Linear regression

LMM(all) LMM with GSM based on all SNPs

LMM(select) LMM with GSM based on SNP selection

LMM(select) + PCs LMM(select) with PCs added as fixed effects

IMM(all + select) LMM with a mixture of two GSMs
Figure3.11

Models Table[50]

Where the LMM(all + select) model is a new LMM model havinga GSM made up of a mixture
of two GSMs ((1-n) Ko + w K3), one based on all SNPs (K) and one based on SNP selection

(Ky).

No population or family relatedness [Three data sets were generated for each possible
combination of parameters (number of SNPs and narrow-sense heritability for causal signal),
totaling 90 data sets.] SNPs were chosen to maximize phenotypic prediction accuracy. SNPs
were identified in particular by searching through multiple sets of SNPs to find those that
maximized out-of-sample prediction accuracy as measured by the log likelihood of the
phenotype under the LMM. It measured the empirical type I error rate (the proportion of non-
causal SNPs deemed significant) as a function of P-value threshold and the empirical power
(the proportion of causal SNPs deemed significant) as a function of empirical type I error for
each of the three models. The results are shown for various numbers of causal SNPs. Type |
error was well controlled by all models. Furthermore, LMM (select) had the greatest power,
particularly when the number of causal SNPs was small (and thus the effect sizes were large).
Itis not surprisingthat LMM(select) had greater power than Linregwhen consideringthe LMM

as linear regression with selected SNPs as covariates. Conditioning on specific SNPs, in other
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words, reduces noise in the phenotype. Itis also expected that LMM(select) had more power
than LMM(all) when there were few causal SNPs, as the use of all SNPs in the GSM obfuscated

the true causal signal, a phenomenon known as "dilution."[50]

10 causals
B 10

100 causals

Figure3.12

Empirical type I errorrate and power for no population or family relatedness with purely synthetic
data. [50]

Population structure but no family relatedness [Parameter values used in these simulations
were as follows: Number of causal SNPs, Narrow-sense heritability, Degree of population
structure Three data sets for each possible combination of parameters were generated, yielding
360 data sets]
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Linear regression

LMzl

2

s LM@Y}
* = LMM[all} + PCs
o

LMM(select)

i LMM{sslect}
| ® - LMM(sslect) 4 PCs

Figure3.13

Empirical type | errorrate and power for population structure but no family relatedness with purely
synthetic data.[50]

The inclusion of PCs had differing effects on the performance of the models (Figure 3.13).
LMM(all) controlled type I error well, whether or not PCs were included as fixed effects, and
inclusion did not affect power. In contrast, for Linreg, inclusion of PCs led to control of type |
error and had little effect on power. Furthermore, the inclusion of PCs led to control of type |
error and improved power for LMM(select), as was recently reported in an independent

investigation.

Population structure and family relatedness [The parameter values used in these simulations
were as follows: Narrow-sense heritability, population structure, family relatedness, and the
fraction of individuals belonging to a family. Three data sets for each possible combination of

parameters were generated, yielding 1800 data sets in all. No two sets of SNPs were the same]

The model LMM(all + select), which performed best for the setting of family relatedness
without population structure, also performed best here (Figure 3.14). These results indicate that

the inclusion of all SNPs as part of the mixture GSM led to good control of type I error for both
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forms of confounding structure, consistent with our findings for family relatedness alone and
population structure alone. Furthermore, the inclusion of selected SNPs as part of the mixture
GSM led to improved power, again most notably so when there were a small number of causal
SNPs with large effect size (Figure 3.14Db). Also on purely synthetic data with population
structure but no family relatedness, it was found that LMM(select) yielded better GWAS
performance than LMM(all), but only when PCs were used as covariates.[50]

10 causals
PS, no FR

100 causals

PS, FR 1000 causals
Vo

Figure3.14

a) Empiricaltype l error rateand power with and without population structure (PS) and family
relatedness (FR) b) Empirical type | error rate and power for both family relatedness and population

structure with purely synthetic data[50]

In summary, one potential improvement, buildinga GSM based on selected SNPs that well
predict the phenotype failed rather dramatically. In particular, when population structure,
family relatedness, or both were present, this approach failed to control for type | error.
Nonetheless, when SNP selection was used in combination with other improvements, it proved
useful. Specifically, inthe presenceof population structurealone, SNP selection in combination
with PCs used as covariates-controlled type | error and also yielded more power than the
traditional approach. In all settings, with or without population structure or family relatedness,
a mixture of two GSMs, one constructed from all SNPs and another constructed from SNPs

identified by SNP selection both controlled type I error and yielded more power than the
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traditional LMM. Furthermore, the improvements to power afforded by SNP selection were the
strongest when some SNPs had a large effectsize. Interestingly, we found thata GSM based
on all SNPs (or LDsampled SNPs) could account for population structure just as well as PCs.
Consequently, if SNP selection picks all SNPs, then there is no need to add PCs to the
LMM.[50]
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3.7.2 Study 2

Recently, genome-wide analysis has identified variants in five chromosomal regions that are
significantly associated with arisk of prostate cancer. These variants occur in three independent
regions at 8q244-7 and in one region at 17gq12 and another at 17q24.3.8 These five regions
probably harbor genes that confer susceptibility to prostate cancer or regulate factors affecting
critical genes, but the specific genes in these regions have not been identified. Individually,
single-nucleotide polymorphisms (SNPs) in each of the five chromosomal regions were shown
to have only a moderate association with prostate cancer in previous studies. In this study,
Zheng, S. L. et al., investigated whether a combination of SNPs would have a stronger
association with prostate cancer than any individual SNP. For this purpose, they assessed the
jointassociations of SNPs in the five chromosomal regions with prostate cancerina large -scale
study of Swedish men.[57]

Among 3648 identified subjects with prostate cancer, 3161 (87%) agreed to participate.
DNA samplesfrom blood, tumor—node— metastasis (TNM) stage, Gleason grade (as determined
by biopsy), and levels of prostate-specific antigen (PSA) at diagnosis were available for 2893
subjects (92%). Case subjects were classified as having advanced disease if they met any of the
followingcriteria: agrade 3 or 4 tumor, spread to nearby lymphnodes and metastasis, a Gleason
score of 8 or more, or a PSA level of more than 50 ng per milliliter; otherwise, subjects were
classified as having localized disease. Control subjects, who were recruited concurrently with
case subjects, were randomly selected from the Swedish Population Registry and matched
according to the expected age distribution of cases (groups of 5-year intervals) and geographic
region. A total of 2149 of 3153 control subjects (68%) who were invited subsequently agreed
to participate in the study. DNA samples from blood were available for 1781 control subjects
(83%). Serum PSA levels were measured for all control subjects but were not used as an
exclusionary variable. A history of prostate cancer among first-degree relatives was obtained
from a questionnaire for both case subjects and control subjects.[57]

They selected 16 SNPs from five chromosomal regions (three at8g24 and one each at 17912
and 17g24.3) that have been reported to be associated with prostate cancer. Tests for Hardy—
Weinberg equilibrium(p>0.05) were performed for each SNP separately among case subjects
and control subjects with the use of Fisher’s exact test. Pairwise linkage disequilibrium was

tested for SNPs within each of the five chromosomal regions in control subjects. Differences in
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allele frequencies between case subjects and control subjects were tested for each SNP with the
use of a chi-square test with 1 degree of freedom. For genotypes, a series of tests assuming an
additive, dominant, or recessive genetic model were performed for each of the 16 SNPs with
the use of unconditional logistic regression with adjustment for age and geographic region; the
model that had the highest likelihood was considered to be the best-fitting genetic model for
the respective SNP.[57]

They tested the independent effect of each of the five previously implicated regions by
including the most significant SNP from each of the five regions in a logistic-regression model
with the use of abackward-selection procedure. Multiplicative interactions were tested for each
pair of SNPs by including both main effects and an interaction term (a product of two main
effects) in a logistic regression model. They tested the cumulative effects of the five SNPs on
prostate cancer by counting the number of genotypes associated with prostate cancer (on the
basis of the best-fitting genetic model from single-SNP analysis) for these five SNPs in each
subject. The odds ratio for prostate cancer for men carrying any combination of one, two, three,
or four or more genotypes associated with prostate cancer was estimated by comparing them
with men carrying none of the prostate cancer—associated genotypes with the use of logistic
regression analysis. They also performed tests for the cumulative effect on prostate-cancer

association, which included five SNPs and family history.

Associations of these five SNPs with aggressiveness of prostate cancer (advanced or
localized), and family history (yes or no) were tested only among case subjects with the use of
a chi-square test of a 2xK table, in which K is the number of possible categories within each
variable. Associations of SNPs with the mean age at diagnosis were tested only among case
subjects with the use of a two-sample t-test. Because serum PSA levels were not normally
distributed, a nonparametric analysis (Wilcoxon rank sum test) was used to assess the
association between SNPs and preoperative serum PSA levels in case subjects or PSA levels at

the time of samplingin controlsubjects. All reported p-values are basedon a two-sided test.[57]

Results: Significantly different frequencies (p<0.05) between case and control subjects were
observed for SNPs in each of the five chromosomal regions. At 17912, SNP rs4430796 had the
strongest association with prostate cancer; the frequency of allele T (SNP rs4430796) was 0.61
in case subjectsand 0.56 in control subjects(p=6x10-7). Of the four SNPs at 17924.3, three were

associated with prostate cancer, but only rs1859962 had a highly significant association
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(P=2.1x10-4). For SNPs at 8924, significant associations with prostate cancer were found for
all SNPs examined across the three independent regions at 8q24. Of the 16 SNPs, 13 remained

significant at p<0.05 after adjustment for 16 tests with the use of a Bonferroni correction.

rs1447295  8q24 (region1) 128,554,220  C, A
rs4242382  8q24 (region 1) 128,586,755  G,A
rs7017300  8q24 (region 1) 128,594,450 A, C
rs10090154  8q24 (region 1) 128,601,319 C,T
rs7837688  8q24 (region 1) 128,608,542  G,T

0.17 014 1.21(1.07-1.36) 1.6x10 Dominant cc CAorAA 1.26 (1.10-1.44) 8.27x10™*
0.16 014 1.24 (1.10-1.39) 5.3x10* Dominant GG AGorAA 1.29 (1.12-1.47) 2.53x10™*
0.20 0.18  1.15 (1.03-1.28) 0.01 Dominant AA CAorCC 1.20 (1.05-1.36) 6.20x107
0.16 013 1.26 (1.11-1.42) 2.0x10* Dominant CcC CTorTT 1.31(1.14-1.50) 1.03x10™*
0.15 013 117 (1.04-1.13) 9.6x10> Dominant GG GTorTT 1.21 (1.06-1.39) 5.87x10

Chromosomal Alternative
SNP Region Positiont Alleles Allelic Tests Best-Fitting Genetic Model:;
Associated Odds Ratio Odds Ratio
Allelef Frequency (95% 1) P Value Model Genotype| (95% C1) P Value**
case  control
subjects subjects reference associated

rs4430796 17q12 33,172,153 T,C T 0.61 056 1.24 (1.14-1.36) 6.0x1077 Recessive CCorTC T 1.40 (1.23-1.59) 2.68x107
rs7501939 17q12 33,175,269 G A G 0.66 0.62 1.22(1.12-1.33) 9.0x10° Recessive AAorGA GG 1.33 (1.17-1.50) 5.54x10°
rs3760511 17q12 33,180,426 AC C 0.41 038 117 (1.07-1.27) 50x10™* Recessive AAorCA cc 1.42 (1.20-1.68) 4.47x10°*
rs1859962 17q24.3 66,620,348 G, T G 0.54 050 1.17 (1.08-1.28) 2.1x10* Recessive GTorTT GG 1.28 (1.12-1.46) 3.54x10*
rs7214479 17q24.3 66,702,544 CT T 0.50 048 1.08 (0.99-1.18) 0.07 Recessive CCor CT T 1.15 (1.00-1.32) 0.06
rs6501455 17q24.3 66,713,406 A G A 0.56 0.54  1.09 (1.00-1.19) 0.05 Recessive AG or GG AA 1.13 (0.99-1.29) 0.06
rs983085 17q24.3 66,723,656 A G A 0.57 055 1.07 (0.98-1.16) 013 Recessive GAor GG AA 1.11 (0.97-1.26) 012
rs6983561 8q24 (region2) 128,176,062 A C C 0.06 0.03  1.65(1.33-2.05) 4.2x10° Dominant AA CAorCC 1.60(1.28-2.00) 2.14x10°*
rs16901979 8q24 (region 2) 128,194,098 CA A 0.06 0.03  1.65(1.33-2.05) 4.3x10° Dominant cC AAorCA 1.60(1.28-2.01) 2.14x10°°
rs6983267 8q24 (region 3) 128,482,487 G, T G 0.56 051  1.22(1.12-1.33) 3.9x10° Dominant T GTorGG 1.38 (1.19-1.59) 1.74x10°°
rs7000448 8q24 (region 3) 128,510,352 GAT T 0.43 040 1.15(1.06-1.25) 1.4x10> Dominant cC CTorTT 1.18 (1.04-1.33) 1.21x102

A (

A (

< (

T (

T (

Cl denotes confidence interval, and SNP single-nucleotide polymorphism.

The position is based on the National Center for Biotechnology Information database, build 35.

The best-fitting model for each SNP was determined after testing associations of a series of genetic models, including dominant and recessive models, with prostate cancer.
These alleles were reported to be associated with prostate cancer in studies published previously.*5*

Allelic odds ratios are based on the multiplicative model.

Reference genotypes and those associated with prostate cancer for each SNP were defined on the basis of the best-fitting genetic model

P values are two-sided and were calculated by the likelihood-ratio test with one degree of freedom, adjusted for age and geographic region.

o AP %

Figure3.15

Association of SNPs at Five Chromosomal Regions with Prostate Cancer[57]

Strong genetic dependence (linkage disequilibrium) among SNPs within each region
allowed for a combined analysis in which we were able to select one SNP (the most significant
SNP from single SNP analysis) to represent each of the five regions in tests for an independent
association with prostate cancer (Figure 3.16). When these five SNPs were included in a
multivariate logistic regression model, each of the five remained significantly associated with
prostate cancer after adjustment for other SNPs, and each continued to be highly significant

when family history was included in the model.
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Chromosomal  Alternative Frequency of Regression Odds Ratio
Variable or SNP{ Region Alleles Reference Associated Factorsi  Coefficient (95% C1) P Value§ PAR

001 1.01 (1.00-1.02) 002
077 0.46 (0.39-0.54) <0.001

y No Yes 019 009 030 2.22 (1.83-2.68) 115x10 989
rs4430796 17q12 T.C cCic T 038 030 032 1.38 (1.21-1.57) 1.62x10°* 10.23
rs1859962 17q24.3 G,T GT/TT GG 030 025 024 1.28 (1.11-1.47) 5.49x10°* 654
1516901979 8q24 (region2)  C,A cc AA[CA 010 007 0.42 153 (1.22-1.92) 1.83x10° 358
16983267 8q24 (region3) G, T L GT/GG 0382 077 032 137 (1.18-1.59) 3.44x10° 217
11447295 8q24 (region1)  C.A cc CA/AA 031 026 019 122 (1.06-1.40) 5.31x10 5.41
All five SNPs 4045
4634

with adjustment for age and geographic region
n the basis of the best.fitting model after testing associations of a series of

Table 3.16
Adjusted Odds Ratios for Representative SNPs at Five Chromosomal Regions and Family History [57]

When multiplicative interaction was tested for each possible pair of these five SNPs with the
use of an interaction term in logistic regression, none were significant at P<0.05. However, the
five SNPs appeared to have a cumulative association with prostate cancer, after adjustment for
age, geographic region, and family history (Figure 3.17). Men who carried one, two, three, or
four or more of the five SNPs had an increasing likelihood of having prostate cancer, as
compared with men who did not carry any of the five SNPs (p-value for trend, 6.75x10-27).
When family history was included as another risk factor (coded as 0 or 1) for a total of six
possible prostate-cancer associated factors, they observed a stronger cumulative effect after
adjustment for age and geographic region (p-value for trend, 4.78x10-28), For example, men
who carried any five or more of these six factors had an odds ratio of 9.46 (95% confidence
interval [Cl], 3.62 to 24.72) for prostate cancer, as compared with men who carried none of the
six factors (P=1.29x108).[57]
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Case Control Regression Odds Ratio P Value
Variable Subjects Subjects Coefficient (95% CI) P Valuet  for Trendi
no. of subjects (%)
Genotypes at five SNPs{j
Age 0.01 1.01 (1.00-1.02) 0.02
Geographic region -0.76 046 (0.40-0.55)  <0.001
Family history 08 222 (183-2.68) 7.73x107%
No. of associated geno-
types§
0 162 (5.6) 173 (10.1) NA 1.00
1 283 (30.8) 631 (36.8) 0.41 150 (1.18-192)  9.46x107*
2 1123 (39.1) 618 (36.0) 0.67 1.96 (1.54-2.49)  4.19x10°®
3 548 (19.1) 255 (14.9) 0.79 2.21(1.70-2.89)  4.33x107
=4 154 (5.4) 38 (2.2) L5 447 (293-6.80)  1.20x10  6.75x10°77
Genotypes at five SNPs
and family
history|
Age 0.01 1.01 (1.00-1.02) 0.02
Geographic region -0.75 0.47 (0.40-0.55)  <0.001
No. of associated
L] 144 (5.0 174 (10.1) NA 1.00
1 778 (26.9) 581 (33.6) 0.48 162 (1.27-2.08)  1.27x10°
2 1053 (36.4) 622 (36.0) 0.73 207 (162-264)  5.86x107
3 642 (22.2) 286 (16.6) 0.99 2.71(2.08-3.53)  9.54x107*
4 236 (8.2) 60 (3.5) 156 476(331-6.84)  9.17x10°°
=5 40 (1.4) 5(03) 224 946 (3.62-24.72) 1.29x10°  4.78x10°
Figure3.17

Cumulative Effect of Associated Factors on the Risk of Prostate Cancer[57]

They calculated the specificity and sensitivity of the regression model by constructing
receiver operating-characteristic (ROC) curves and calculated statistics for the area under the
curve (AUC) to estimate the ability of each of three models to distinguish case subjects from
control subjects. The AUC was57.7 (95% ClI, 56.0 to 59.3) for model 1 (age and region alone),
60.8 (95% ClI, 59.1 to 62.4) for model 2 (age, region, and family history), and 63.3 (95% ClI,
61.7 to 65.0) for model 3 (age, region, family history, and the number of genotypes associated
with prostate cancer at the five SNPs). The AUC was significantly higher for model 3 than for
model 2 (P=6.12x10%).[57]

Zheng, S. L. et al., found that the presence of the five prostate-cancer—associated SNPs was
independent of PSA levels in both case subjects and control subjects, which suggests that some
men with low PSA levels may have an increased risk of prostate cancer if they carry one or
more of the prostate-cancer—associated genotypes described here. However, this proposition
also requires testing in a prospective trial, particularly one that uses PSA in combination with
the associated SNPs and family history. They do not know the mechanism by which the SNPs
we analyzed could affect the risk of prostate cancer. Other than SNP rs4430796, which is
located within the TCF2 gene, the specific genes that are affected by the rest of the SNPs have
not been identified. Since the five SNPs in our study appear to be associated with a risk of
prostate cancer in general, rather than with a more or less aggressive form, we suspect that the

genetic variants act at an early stage of carcinogenesis. This study is only a first step toward
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defininga genetic association with prostate cancer in populations. Future investigations will
need to test the value of these findings in assessing the risk of prostate cancer in individual
men.[57]
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CHAPTER 4

POLYGENIC RISK SCORE (PRS)

4.1 Introduction

GWAS have made clear that only a very small proportion of the total genetic contribution
can be unambiguously attributed to variation in particular loci of the genome. Most such
genetic contributions are thus spread across the huge landscape of the genome, with many
loci each contributing a small, almost undetectable effect on the phenotypes. To date,
GWAS have identified thousands of loci that are associated with a range of complex human
traits and diseases, including cardiovascular diseases, cancers, obesity and Alzheimer’s
disease. These data have provided numerous insights into the genes and pathways that
cause disease, but more recently the use of these data for disease risk prediction has gained
interest. Many common, complex diseases now have numerous, well-established risk loci
and likely harbor many genetic determinants with effects too small to be detected at
genome-wide levels of statistical significance. A simple and intuitive approach for
converting genetic data to a predictive measure of disease susceptibility is to aggregate the
effects of these loci into a single measure, the polygenetic risk score (PRS). The genetic
architecture of most phenotypes and health conditions is polygenic in nature. With the
growth of genome-wide association studies (GWASs) and larger samples, PRSs have
increasingly emerged as a major tool in several areas of quantitative genetic research. [58]
This approach is particularly valuable for complex traits that lack common risk variants of
large effect, including schizophrenia and height. The predictive power of a PRS is limited
by the number of SNPs tested and a trait’s heritability and prevalence, but theoretically can
be high. In practice, in some situations, a PRS may identify high-risk individuals and can

identify risk classes that could inform a range of treatment options. [1]

A polygenic risk score (PRS) is a numeric summary of the relationship between multiple
genetic loci and aphenotype. A PRS estimates the genetic risk of an individual for some disease
or trait, calculated by aggregating the effects of many common variants in the genome, each of
which can have a small effect on a person’s genetic risk for a given disease or condition [4].
PRS analyses aim to provide insight into the genetic architecture using evidence for association

from variants that do not pass the stringent threshold of association. As the threshold of sample
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dataset p-value increases, the number of SNPs included in the PRS also increases, and hence
the ratio of false/true positivesincreases. [18] PRS can also be used to determine the presence
of a genetic signal in underpowered studies, to infer the genetic architecture of a trait, for

screeningin clinical trials, and as a biomarker.[58]

4.2 PRS theory

Polygenic scores are derived directly from the genome-wide associations in GWASs. Using the
summary statistics from these to constructan estimate of how SNPs combine to explain the trait
of interest. With the increasing availability of genetic data in large cohort studies such as the
UK Biobank, inclusion of this genetic risk as a covariate in statistical analyses is becoming
more widespread [4]. The purpose of risk scores is twofold: (1) to predict the likelihood of an
individual developing disease, a reaction to a drug or a particular outcome of interest based on
some amount of available information, usually genetic, clinical, demographic, or a
combination, and (2) to estimate the level of predictive power that is captured by associated
variants. Predicting a greater proportion of the "risk™ for the outcome of interest indicates the
level of success of predictors included in the risk score. A PRS may estimate the overall
likelihood, or risk, that an individual has of developingan outcome of interest based on the
genotypes and variants identified as being associated with that outcome. Because an
individual’s genetic profile is set at birth, and therefore because risk for disease could
theoretically be determined prior to (most) environmental exposures, a great deal of hope has
been invested in developing these models as an advancement of precision medicine. Family
history is typically seen as a good proxy for genetic risk as it reflects shared genetic and
environmental factorsand thus is incorporated into clinical history, when possible, for genetic
diseases. Furthermore, a positive family history reflects a certain level of disease risk, while a
negative family history does not imply the opposite. One goal of implementing the PRS is to
improve upon these factors for a more comprehensive and accurate assessment of disease risk
beyond what family history can estimate. A PRS can be based solely on available genetic data
or can incorporate environmental, phenotypic, and/or demographic information. [1] As genetic
factors capture only the genetic contributionto risk and as PGSs capture only part of the genetic
risk, PGSs cannot be diagnostically accurate risk predictors. Nonetheless, for many common
complex genetic disorders, such as cancers and heart disease, there is increasing interest in

evaluating PGSs for early disease detection, prevention, and intervention [8]
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PRS analyses can be characterized by the two key input data sets that they require: (i) base
data (GWAS), which consists of summary statistics (e.g., betas and p-values) of genotype-
phenotype associations at genetic variants (SNPs) genome-wide, and (ii) target data, which
consists of genotypes and, in most cases, phenotypes, and should be independent of the GWAS
sample to avoid additional bias and overfitting. It is in the target sample that the PRS analyses
were performed, which may involve merely computing PRSs in all the target individuals,
conducting association testing between the PRSs and phenotypes or outcomes of interest, or
predicting individuals’ risk of disease or medication side effects in clinical settings. It is
important to distinguish between base and target data to avoid overfitting. Overfitting can be
defined as fitting a model too closely to one set of data, greatly limiting its predictive ability in
external data. Often, an overfit model will reflect effects beyond true biological effects, such as
random noise or population-specific effects. PRS weights are generated in base, or training,
data. The standard approach to choosing weights involves using GWAS summary statistics.
The natural logarithm of the oddsratio (In [OR] =) is the common selection and is considered
asthe B for each copy of each SNP. These effect estimates can carry either risk (OR>1,  >0)
or a protective effect (OR < 1, B < 0). Test, or target data is the genomic data to which the
weights from the base data are applied. Only SNPs that are included in both the base and target
data with strand agreement will be considered in generation of the PRS. In general, target and
base data should not include any of the same participants, in order to, again, avoid overfitting
by biasing the sets used to generate the weights.[53] It is also important to consider overlap in
participants between the base and target data. This must take into account not only individuals
that may be presentin both the base and target data, but also the potential existence of close
relatives between the datasets. Because of this, it is ideal to remove these close relatives or
choose alternative base or target data to avoid such relationships. Failure to do so can lead to
“overfitting” of the PRS model by capturing environmental or behavioral effects that are due
to similar upbringing and exposures among relatives. If the parameters of the PRS calculation
have not been previously optimized, then the target sample can be used both for this
optimization and for the analysis, as long as careful cross-validation or permutation procedures
are applied. Ideally, analysis is also performed on an independent validation sample to ensure
the generalizability of results. [5] Using an independent validation dataset allows unbiased
estimation of the predictive performance, avoidingoptimism due to overfitting. Generally, once

predictive performance plateaus or declinesin the validation set, the optimal trade-off of signal
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and noise has been reached.[52] To find an appropriate dataset, ensure that the data is
phenotypically relevant. Itisimportantto note that the target sample, should notbe too different
from the base sample. The base sample is the sample or the collection of studies that have been
used to calculate the original summary statistics of the GWAS. Also, ancestry com position
should not differ too much between the base and the target sample. If allele frequencies of the
SNPs used in the score differ too much between the two samples, this will result in a very
imprecise score that cannot be used for any further analysis, even for highly heritable traits.
GWAS genotypes in a PRS discovery sample may not be representative of those in the
validation or application set leading to attenuated performance of the PRS. [58] In practice,
PRSs are linear combinations of the phenotype-associated alleles across the genome, typically
weighted by GWAS effectsizes. It is thus a single quantitative measure that can be interpreted
as a measure of an individual's genetic propensity toward a phenotype relative to a population.
[58] In general, PRS for an individual defined as the weighted sum of a person's genotypes at
M loci. A PRS for individual i can be calculated as the sum of the allele counts o (0, 1, or 2)

foreach SNPj =1, ... M, multiplied by a weight f;
PRS; = XIL, ay; (5.1)

where the weights (or effect sizes : the increase in the trait value (usually reported as a beta) or
disease risk (usually reported as an OR) associated with each additional copy of the risk allele)
Bjare transformations of GWAS coefficients [58] (the logodds ratio or the estimated regression
coefficient from a linear or logistic regression) [13] It is also important to underline that in
calculating PRSs on a binary (e.qg., case/control) phenotype, the effect sizes used as weights are
typically reported as log Odds Ratios (log (ORs)). Assuming that relative risks on a disease
accumulate on a multiplicative rather than an additive scale, then PRSs should be computed as
a summation of log (OR)-weighted genotypes. PRS values are computed in relation to a
hypothetical individual with the non-effect allele at every SNP, and, thus, they provide only a
relative (compared to other individuals) estimate of risk (or trait effect) rather than an absolute
estimate.[5] Equation 1.1 shows that it is a linear combination of the effects of multiple SNPs
on phenotype. The underlying model in a PRS is also usually additive, since it is measured the
number of "risk alleles” for each SNP included in the score. However, recessive or dominant
models can also be used in the construction of a PRS. Typically, these scores include hundreds-

to-thousands of SNPs, motivated by theory and data showing that many diseases are polygenic.
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In this way, PRS aggregate the contribution of an individual’s germline genome into a single

number proportional to the risk for a given disease.[52]

The resulting score is approximately normally distributed in the general population, with
higher scores indicating higher risk.[4] The central limit theorem dictates that if a PRS is based
on a sum of independent variables (here, SNPs) with identical distributions, then the PRS of a
sample should approximate the normal (Gaussian) distribution. This is true even if the PRS has
extremely low predictive accuracy, since the sum of random numbers is approximately
normally distributed, and so a normally distributed PRS in a sample should not be considered
as validation of the accuracy of a PRS. However, strong violations of these assumptions, such
as the use of many correlated SNPs or a sample of heterogenous ancestry (thus, SNPs with
markedly different genotype distributions), can lead to non-normal PRS distributions. Thus,
inspection of PRS distributions may highlight calculation errors or problems of population
stratification in the target sample for which researchers did not adequately control.[5] An
additional assumption is the absence of gene-gene interactions (or epistasis) since SNP effects
are assumed to be independent. In order to create a PRS, required summary statistics that are
calculated froma GWAS of the trait of interest and the individual-level genotype data in which
you would like to apply your PRS. The GWAS summary statistics should not include the same
data that are used for calculating the PRS, which would introduce additional bias leading to
overfitting. [58]

There is a benefit to adding PRS to existing clinical risk scores, the unique characteristics of
PRS open up possibilities for earlier prevention. Indeed, a study to predict the development of
T1D in high-risk children (family history of T1D) found that a PRS was only predictive of
progression to T1D before any metabolic abnormalities were present (high DPT-1 score),
indicating the value of a T1D PRS for predicting those likely to progress to disease. For
cardiovascular disease, traditional risk factors are typically not measured early in life and can
have substantial temporal variation. In contrast, individuals can be genotyped early in life, and
have their PRS for a wide range of complex diseases. For those at substantially increased
lifetime risk of disease, but without elevated traditional risk factors, targeted lifestyle
interventions could be used to reduce their risk, for example, by more frequent follow -ups or

more stringent targets for traditional risk factors (e.g., cholesterol) [52]
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4.3 Quality Control

The power and validity of PRS analyses are dependent on the quality of the base and target
data. Both data sets must be subjected to QC to at least the standards used in GWAS studies (as
described in chapter 3), while numerous QC issues unique to PRS analyses require special

attention and are summarized below:

Heritability check. A critical factor in the accuracy and predictive power of PRSs is the
power of the base (GWAS) data, and so to avoid reaching misleading conclusions from the
application of PRSs, it is recommended to perform PRSanalyses only thatuse GWAS data with
a hyp> 0.05. [5]

Effectallele. Some GWAS results files do notmake clearwhich allele is the effectallele and
which is the non-effectallele. If an incorrect assumption is made in computing the PRS, then
the effectof the PRS in the target data will be in the wrongdirection, and so to avoid misleading

conclusions, itis critical that the effect allele from the base (GWAS) data is known. [5]

Target sample size. It is recommended to perform PRS analyses that involve association
testing on target sample sizes of >100 individuals and caution against analyses that utilize base
data with low h%,, and small target sample size. This is to minimize the generation of

misleading results due to the less stringent QC feasible on small samples.

File transfer. Since most base GWAS data are downloaded online, and base/ target data
transferred internally, one should ensure that files have not been corrupted during transfer.

Corrupt files can generate PRS calculation errors. [5]

Genome build. Ensure that the base and target data SNPs have genomic positions assigned

on the same genome build.

Ambiguous SNPs: : If the base and target data were generated using different genotyping
chips and the chromosome strand (+/-) that was used for either is unknown, then it is not
possible to pair up the alleles of ambiguous SNPs (i.e., those with complementaryalleles, either
C/G or A/T SNPs) across the data sets, because it will be unknown whether the base and target
dataare referringto the same allele or not. While allele frequencies could be used to infer which
alleles are on the same strand, the accuracy of this could be low for SNPs with MAF close to
50% orwhenthe base and target dataare from differentpopulations. Therefore, we recommend

removingall ambiguous SNPsto avoid introducingthis potential source of systematic error. [ 5]
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Duplicate SNPs: Ensure that there are no duplicated SNPs in either the base or target data
since thismay cause errors in PRS calculation unless the code/software used specifically checks
for duplicated SNPs.[5]

Sex-check: Itis standard in GWAS QC to remove individuals forwhom there is a difference
between reported sex and that indicated by the sex chromosomes. While these may be due to
differences in sex and gender identity, they could also reflect mislabeling of samples or
misreporting and are, thus, considered potentially unreliable data. In addition to this check, if
the aim of an analysis is to model autosomal genetics only, then we recommend that all X and
Y chromosome SNPs are removed from the base and target data to eliminate the possibility of

non-autosomal sex effects influencing results. [5]

Sample overlap: Sample overlap between the base and target data can result in substantial
inflation of the association between the PRS and trait tested in the target data and so must be

eliminated.[5]

Relatedness: A high degree of relatedness among individuals between the base and target
data can also generate inflation of the association between the PRS and target phenotype.
Assuming that the results of the study are intended to reflect those of the general population
without close relatedness between the base and target samples, then relatives should be
excluded. If genetic data from the relevant base data samples can be accessed, then any closely
related individuals (eg. 1st/2nd degree relatives) across base and target samples should be
removed. If this is not an option, then every effort should be made to select base and target data

that are very unlikely to contain highly related individuals.[5]

Choi et al. recommend the below QC criteria for standard analyses: genotyping rate >0.99,
sample missingness<0.02, Hardy-Weinberg Equilibrium p>1 x 10, heterozygosity within 3
standard deviations of the mean, minor allele frequency (MAF) >1% (MAF >5% if target

sample N <1000)[5] In Figure 4.1 summarized the fundamental features of a PRS analysis.
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The fundamental features of a PRS analysis [5]

4.4 PRS Performing

There are now many methodsto calculate PRSs, which differ in terms of two key criteria: which
SNPs to include and what weights to allocate to them. The optimal method may differ among
traits depending on the sample size of the sample data set and on the genetic architecture of the
trait (the number, frequencies,and effectsizes of causal variants), particularly given the linkage
disequilibrium (LD) correlation structure between SNPs. Often, when new PGS methods are
introduced, comparisons are made between a limited set of methods using simulated data and

their application to some real-data examples. [8]

4.4.1 Shrinkage of GWAS Effect Size Estimates

Given that SNP effects are estimated with uncertainty and since not all SNPs influence the trait
under study, the use of unadjusted effect size estimates of all SNPs could generate poorly
estimated PRSs with high standard error. To address this, two broad shrinkage strategies have
been adopted: [5]

(1) PRS methods that perform shrinkage of all SNPs generally exploit commonly used
statistical shrinkage/ regularization techniques,such as LASSO or ridge regression, or Bayesian
approaches that perform shrinkage via prior distribution specification. Under different

approachesor parameter settings, varying forms of shrinkage can be achieved: e.g., LASSO
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regression reduces small effects to zero, while ridge regression shrinks the largest effects more
than LASSO but does not reduce any effects to zero. The most appropriate shrinkage to apply
is dependent on the underlying mixture of null and true effect size distributions, which is
probably a complex mixture of distributions that vary by trait. Since the optimal shrinkage
parameters are unknown a priori, PRS prediction is typically optimized across a range of
possible parameter values, which in the case of LDpred, for example, includes a parameter for

the fraction of causal variants.[5]

(2) In the classic PRS calculation method, only those SNPs with a GWAS association p-
value below a certain threshold (e.g., P <1 x 10-%) are included in the calculation of the PRS,
while all other SNPs are excluded. This approach effectively shrinks all excluded SNPs to an
effectsize estimate of zero and performs no shrinkage on the effectsize estimates of those SNPs
included. Since the optimal p-value threshold isunknown a priori, PRSs are typically calculated
over arange of thresholds, association with the target trait is tested for each, and the prediction
is optimized accordingly. This process is analogous to tuning parameter optimization in the

formal shrinkage methods.[5]

4.4.2 Controlling LD

If genetic association testing is performed using joint models of multiple SNPs, then
independent genetic effects can be estimated despite the presence of LD. However, association
tests in GWASs are typically performed one SNP at a time, which, combined with the strong
correlation structure across the genome, makes estimating the independent genetic effect
extremely challenging. If independent effects were estimated in the GWAS or by subsequent
fine-mapping, then PRS calculation can be a simple summation of those effects. If, instead, the
investigator is usinga GWAS based on one-SNP-at-a-time testing, then there are two main
options for approximating the PRS that would be obtained from independent effect estimates:
(1) SNPs are clumped (i.e., thinned, prioritizing SNPs at the locus with the smallest GWAS P
value) so that the retained SNPs are largely independent of each other and, thus, their effects
can be summed up, assuming additivity; and (2) all SNPs are included, accounting for the LD
between them. In the classic PRS calculation method, option (1) is combined with p-value
thresholding and is called the C+T (clumping + thresholding) method, while option (2) is
generally favored in methods that implement traditional shrinkage techniques. The relatively

similar performance of the classic approach to more sophisticated methods may be due to the
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clumpingprocess capturingconditionally independent effects well; note that clumpingdoes not
merely thin SNPs by LD at random (like pruning) but preferentially selects SNPs most
associated with the trait under study and retains multiple SNPs in the same genomic region if
there are multiple independent effects there: clumping does not simply retain only the most-
associated SNP in a region. A criticism of clumping, however, is that researchers typically
selectan arbitrarily chosen correlation threshold for the removal of SNPsin LD. Both clumping
and LD modeling require estimation of the LD between SNPs. Assuming that LD values
derived from the base data are unavailable, then those from a reference sample of the same
ancestry should be used to approximate these. If there are no reference samples well matched
to the population composition of the base data, then the target data can be used to estimate the
LD instead. However, if base and target samples are drawn from different populations, then the

base data LD may be poorly approximated and the PRS accuracy reduced accordingly. [5]

4.4.3 Population stratification

When selecting the analysis data for the survey, it is important to be aware of the potential for
PGS inflation in the target sample due to population stratification. A major concernin GWAS
and PRS studies is that their results may be affected by confounding due to population genetic
structure. Since environmental risk factors also tend to be geographically structured, this creates
the potential for associations between many genetic variants and the tested trait that are
confounded by, for example, location. Uncorrected, this can lead to false positive genotype-
phenotype associations and consequently inflated estimates of PRS prediction. PRS prediction
can also be inflated by a household effect, whereby the genetics of an individual are correlated
with their household environment when created by parents (or siblings) with shared genetic
tendencies (e.g., of diet, books or exercise). A key difference between these sources of PRS
inflation is that the genetic variants leading to inflation due to population genetic structure are
typically non-causal of the outcome, being incidentally associated with location and
environmental risk factors, whereas those creating the household effect are (indirectly) causal.
Stringent adjustment of effects via genetic principal components (PCs) or the use of mixed
models should be applied to both the base and target samples to minimize inflation due to
population structure, but the possibility of complex structure causing residual confounding
cannot be ruled out. On genome-wide association studies (GWASs) most discoveries to date
have been conducted on European ancestry populations. European ancestry -based polygenic

scores derived from GWASs cannot be directly used for prediction in non-European ancestry
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populations due to differencesin linkage disequilibrium (LD), allele frequencies, and genetic
architecture. The frequencies of the SNPs used for PRSs contain a strong population component

even without applying any PRS weighting. [58]

4.4.4 Clumping and thresholding method (C+T)

This method can be used to calculate a score based on any number of genetic variants, including
all SNPs. It considers the LD structure of the data by selecting independent SNPs to avoid
oversampling of more densely genotyped SNPs.[58] Briefly, C+T uses the GWAS effect size
estimates as SNP weights and includes independent SNPs with association p-values lower than
a threshold (chosen afterapplicationinatuning sample). It is the mostcommonly used method.
[8] For prediction purposes, including less significant SNPs (than the GWAS p-value threshold)
can substantially improve predictive performance. Therefore, when using C+T, one has to
choose a p-value threshold that balances between removing informative variants when using a
stringent p-value threshold and adding too much noise in the score by including too many
variants with no effect.[58] Generally, it selects the p-value threshold that achieves the highest
correlation/association with the phenotypes in a validation dataset that contains a measure of
the phenotype under study. This approach, however, becomes less useful if the phenotype is
not available in the target dataset.[11] The clumping step aims at removing redundancy in
included effects that is simply due to linkage disequilibrium (LD) between variants. Yet,
clumping may as well remove independently predictive variants in nearby regions; to balance
this, C+T uses as hyper-parameter a threshold on correlation between variants included,
therefore the correct choice must be made for the hy per-parameters, so to maximize predictive
performance of the polygenic score derived. Most of the time, people use default values for
these parameters, except for the p-value threshold, for which they look at different values and
choose the one maximizing predictive ability in a training set.[9] A PRS is defined as the sum
of allele counts of the remaining SNPs weighted by the corresponding regression

coefficients.[9]

It is important to avoid double-counting causal variants. Two main approaches can be

used to select independent SNPs:

1. LD pruning is the process of genetic marker selection based on their LD. LD pruningis a
statistical procedure used to remove redundant SNPs or, in other words, pairs of correlated

SNPs. This method selects only one representative SNP from each LD block in the genotype
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data. For LD pruning, the pairwise correlation between the markers in a specific range of the
genome is calculated. This region is then scanned and if for any pair of markers, the correlation
is greater than the specified threshold, the marker with the smallest minor allele frequency
(MAF) is discarded, otherwise both markers are retained. In the event that both markers have
the same MAF, the one in the latter position is pruned. The process continues until the whole
genome has been scanned.The aim is for the final set of markers to contain those that are nearly

uncorrelated. [14]

2. Clumping, instead, selects the SNP with the lowest p-value association in each LD block.
Clumping looks at the most significant SNP first, computes correlation between this index SNP
and nearby SNPs and removes all the nearby SNPs that are correlated with this index SNP
beyond a particular threshold (e.g., r2=0.2). The clumping step aims at removing redundancy
in included effects that is simply due to linkage disequilibrium (LD) between variants.
Clumping is preferred since it selects the most statistically significant variant in the locus. [58]
While clumping retains one SNP per LD block, pruning can end up with multiple SNPs or no
SNPs at all for aregion.[14]

A common approach to selecting SNPs for PRS’s calculation is based on the p-value of the
association within the summary statistics. [58] Thresholding consists of removing SNPs with a
p-value larger than a p-value threshold in order to reduce noise in the score.[9] Generally,
several p-value thresholds are tested to maximize prediction.[9] Generally speaking, stricter p-
value thresholds are more suitable for traits thatare not polygenic while more lenient thresholds
perform the best for polygenic traits. The aim of the research will also shape the decision. If the
goal is to maximize prediction, having more SNPs would be the better choice. However, the
more variants that are included in the calculation, the greater the risk that it includes
unnecessary "noise" in the PRS. Both steps, clumping and thresholding, represent a statistical
compromise between signal and noise.[7] The clumping step prunes redundant correlated
effects caused by linkage disequilibrium (LD) between variants. Similarly, thresholding must
balance between includingtruly predictive variantsand reducingnoise in the score by excluding
null effects.[7] Next comes the calculation of PRS as described below. The gold-standard
strategy for guarding against generating overfit prediction models and results is to perform out-
of-sample prediction. First, parameters are optimized using a training sample, and then the
optimized model is tested in a test or validation data set to assess performance. In the PRS

setting involving base and target data sets, it would be incorrect to believe that out-of-sample
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prediction has already been performed, because polygenic scoring involves two different data
sets; in fact, the training is performed on the target data set, meaningthat a third data set is

required for out-of-sample prediction.[5]

4.4.5 LDpred Method

Polygenic risk scores have shown great promise in predicting complex disease risk and will
become more accurate as training sample sizes increase. As discussed above, the standard
approachto calculatingP+T risk scores s likely to discard information and may reduce forecast
accuracy. Another, more advanced class of PRS methods is based on approaches typically used
eitherto perform regression with correlated dataand/or to selectan optimal subset of predictors
in a regression model. Unlike the P+T model, these approaches attempt to model the effects of
all markersjointly. In the Bayesian statistical framewaork, a prior probability distribution for the
parameters of interestis combined with data to produce a refined posterior distribution, from
which inference ismade. These prior distributions are based on prior knowledge of how genetic
effects are distributed. This prior knowledge is combined with the data to yield a posterior
distribution, from which inference is made. LD information is incorporated via appropriate
reference populations to account for correlation between effects. Each of these methods aims
to shrink effect sizes of non-causal SNPs to increase sparsity, thereby increasing predictive
accuracy and computational tractability. In general, these models apply shrinkage to marker
effects (i.e., summary statistics) that incorporate LD information from a reference panel.[10].
Vilhjdlmsson et al. introduce LDpred, a method that infers the posterior mean effect size of
each marker by using a prior on effectsizes and LD information from an external reference
panel. By usinga point-normal mixture prior to the marker effects, LDpred can be applied to
traits and diseases with a wide range of genetic architectures. Unlike P+T, LDpred has the
desirable property that its prediction accuracy converges to the heritability explained by the
SNPs as sample size grows. [12] In practice, LDpred is a different way to estimate the weights
using a Bayesian approach. The method assumes a point-normal mixture prior to the
distribution of effectsizesand takes into account the correlation structure of SNPs by estimating

the LD patterns from a reference sample of unrelated individuals.[10]

The method: LDpred calculates the posterior mean effects from GWAS summary statistics
by conditioning on a genetic architecture prior and LD information from a reference panel. The

inner product of these re-weighted and the test-sample genotypes is the posterior mean
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phenotype andthus, under the model assumptions and available data, an optimal (minimum
variance and unbiased) predictor. The prior for the effect sizes is a point-normal mixture
distribution, which allows for non-infinitesimal genetic architectures. The prior has two
parameters: the heritability explained by the genotypes and the fraction of causal markers (i.e.,
the fraction of markers with non-zero effects). The heritability parameter is estimated from
GWAS summary statistics and accounts for sampling noise and LD. The fraction of causal
markers is allowed to vary and can be optimized with respect to prediction accuracy in a
validation dataset, analogousto how P+T is applied in practice. Hence, similar to P+T (where
p-value thresholds are varied and multiple PRSs are calculated), multiple LDpred risk scores
are calculated with the use of priors with varying fractions of markers with non-zero effects.
The value that optimizes prediction accuracy can then be determined in an independent
validation dataset. LD is approximated using data from a reference panel (e.g., independent
validation data). The posterior mean effect sizes are estimated via the Markov chain Monte
Carlo (MCMC) method and applied to the validation data to obtain the PRS. In the special case
of no LD, posterior mean effectsizeswith apointnormal prior can be viewed as a softthreshold
and can be computed analytically. A key feature of LDpred is that it relies on GWAS summary
statistics, which are often available even when raw genotypesare not. For this reason, the main
approaches that Vilhjdlmsson et al. compare with LDpred are: PRS based on all markers

(unadjusted PRS), P+T, and LDpred specialized to an infinitesimal prior (LDpred-inf). [12]

Phenotype Model: For phenotype model, Y be a Nx1 phenotype vector and X be a NxM
genotype matrix, where N isthe number of individuals, and M is the number of genetic variants.
VilhjdImsson et al. assumed throughout that the phenotype Y and individual genetic variants
Xi have been mean centered and standardized to have variance 1. They model the phenotype as
a linear combination of M genetic effects and an independent environmental effect ¢, i.e.,Y =

M XiB; + &, where X; denotes the ith genetic variant, p; is its true effect, and ¢ is the

environmental and noise contribution. In this setting, the (marginal) least-squares estimate of

b’

N

an individual marker effectis 8, = ==. For clarity, they implicitly assume that they have the

standardized effect estimates available as summary statistics. In practice, they usually have
othersummary statistics, includingthe p value and direction of the effect estimates, from which

they infer the standardized effect estimates.[12]
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First, they exclude all markers with ambiguous effect directions, i.e., A/T and G/C SNPs.
Second, from the p-values, they obtain Z scores and multiply them by the sign of the effects

(obtained from the effect estimates or effect direction). Finally, they approximate the least-
zi
VN
score obtained from the p-value and N is the sample size. If the trait is a case-control trait, this

squares estimate for the effectby B, = si ( ) , Where s; is the sign of the effect, z; is the z-

transformation fromthe p value to the effect size can be thought of as being an effect estimate

for an underlying quantitative liability or risk trait.[12]

Bpred: Bayesian Approach in the Special Case of No LD. Under the assumption that the
phenotype has an additive genetic architecture and is linear, then estimating the posterior mean
phenotype boils down to estimating the posterior mean effects of each SNP and then summing
their contribution into a risk score. Under a model, the optimal linear prediction given some
statistic is the posterior mean prediction. This predictionisoptimal in the sense thatitminimizes
the prediction error variance. Under the linear model described above, the posterior mean
phenotype (orthe optimal predictor of the trait Y [14]) given GWAS summary statisticsand LD

IS
E (Y8, D)=X!, X{ E(B;|B, D) (1.2)

Here, § denotes a vector of marginally estimated least-squares estimates obtained from the
GWAS summary statistics and D refers to the observed genome-wide LD matrix in the training
data, i.e., the samples for which the effect estimates are calculated. Hence, the quantity of
interest is the posterior mean marker effect given LD information from the GWAS sample and
the GWAS summary statistics. In practice, we might not have this information available to us
and are forced to estimate the LD from a reference panel. In most of our analyses, we estimated
the local LD structure in the training data from the independent validation data. Although this
choice of LD reference panel can lead to a small bias when one estimates individual prediction
accuracy, this choice is valid whenever the aim is to calculate accurate PRSs for a cohort
without knowing the case-control status a priori. In other words, it is an unbiased estimate of
the PRS accuracy when the validation data is used as an LD reference, which we recommend

in practice.[12]

If all samples are independent and all markers are unlinked and have effects drawn from a

Gaussian distribution, i.e., B;~;iaN (O, (hﬁ/M)), then this is an infinitesimal model, which
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represents a genetic architecture where all genetic variants are causal. Under this model, the

posterior mean can be derived analytically:[12]
E (5| = EBiIB)= 15, Mﬁl (1.3)

An arguably more reasonable prior for the effect sizes is a non-infinitesimal model, where
only a fraction of the markers is causal and affect the trait. We can model non-infinitesimal
genetic architectures by using mixture distributions with a mixture parameter p, which denotes
the fraction of causal markers. Consider the following Gaussian mixture prior to this. Assume

that the effects are drawn from a mixture distribution as follows: [12]

h2>

N | 0,—Z | with probabilit

Bi~iia ( Mp p yp
0 with probability (1 —p),

Where p is the probability that a marker is drawn from a Gaussian distribution, i.e., the
fraction of causal markers. Under this model, the posterior mean (which is a shrinkage of the

original GWAS effect (5,)[14]) can be derived as:[12]

E(ﬂllﬁl) < >plﬁll (1.5)

Where p, is the posterior probability that the it marker (SNP) is causal and can be calculated
analytically.[12] For more accurate predictions, the authors recommend that the user specify a
range of different fraction values p, which will be optimized on independent testing data.[14]

VilhjdImsson et al. refer to this Bayesian shrink without LD as Bpred.[12]

LDpred: Bayesian Approach in the Presence of LD. If we allow for loci to be linked, then
we can derive posterior mean effects analytically under a Gaussian infinitesimal prior
(described above). We call the resultingmethod LDpred-inf, anditrepresents a computationally
efficient special case of LDpred. If we assume that distant markers are unlinked, the posterior
mean for the effect sizes within a small region [ under an infinitesimal model is well
approximated by [12]

-1
E A D (sl + 1) B (1.6)

Nh?
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Here, D, denotes the regional LD matrix within the region of LD, and ! denotes the least-
squares-estimated effects for SNPs within that region. The approximation assumes that the
heritability explained by the region is small and that LD with SNPs outside of the region is
negligible. Interestingly, under these assumptions, the resulting effects approximate the
standard mixed-model genomic BLUP effects. LDpred-inf is therefore a natural extension of
the genomic BLUP to summary statistics. In practice, we do not know the LD pattern in the
training data, and we need to estimate it by using LD in areference panel. Derivingan analytical
expression for the posterior mean under a non-infinitesimal Gaussian mixture prior is difficult,
and thus LDpred approximates it numerically by using an approximate MCMC Gibbs sampler.
[12]

In general, the LD matrix is given by the following relation: D = % and for the locus-LD the

xOxOr
N

relation becomes: D; =

Estimation of the Heritability Parameter: In the absence of population structure and assuming
independentand identically distributed mean-zero SNP effects, the followingequation has been
shown to hold:

2
Nhj Ly
M

E (xf)=1+ (1.7)

where xf is the x2-distributed test statistic at the j® SNP, and ; =Zk[r2(j,k) —

20
(1 — %]k) — 2)] summing over k neighboring SNPs in LD, is the LD score for the jth SNP.

Taking the average of both sides over SNPs and rearranging them, we obtain a heritability

. > (xZ-1)M - X T lj
estimate: A} = ~—-— where x* = Zf(ﬁj) and [ = Zf(ﬁj) [12]

When LDpred is applied to real data, two parameters need to be specified beforehand. The
first parameter is the LD radius, i.e., the number of SNPs that we adjust for on each side of a
given SNP. There is a trade-off when we decide on the LD radius. If the LD radius is too large,
then errors in LD estimates can lead to apparent LD between unlinked loci, which can lead to
worse effect estimates and poor convergence. If the LD radius is too small, then we risk not
accounting for LD between linked loci. VilhjdImsson et al. found that an LD radius of
approximately M/3,000 (the default value in LDpred), where M is the total number of SNPs

used in the analysis, works well in practice. Regarding the choice of the LD panel, its LD
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structure should ideally be similar to the training data for which the summary statistics are
calculated. Insimulations, Vilhjdlmsson etal. foundthatthe LD reference panel should contain
atleast1,000 individuals. The second parameter is the fraction p of non-zero effects in the prior.
This parameter is analogous to the p value threshold used in P+T. Vilhjdlmsson et al.
recommendation is to try a range of values forp (e.g., 1, 0.3, 0.1, 0.03,0.01, 0.003, 0.001, 3E-
4, 1E-4, 3E-5, 1E-5; these are default values in LDpred). This will generate 11 sets of SNP
weights, which can be used for calculating polygenic scores. One can then use independent
validation data to optimize the parameter, analogous to how the p value threshold is optimized
in the P+T method.[12]

When using LDpred, Vilhjalmsson et al. recommend that SNP weights (posterior mean
effectsizes) are calculated for exactly the SNPs used in the validation data. This ensures that
all SNPs with non-zero weightsare in the validation dataset. In practice, we use the intersection
of SNPs present in the summary-statistics dataset, the LD reference genotypes, and the
validation genotypes. If the validation cohort contains more than 1,000 individuals, with the
same ancestry as the individuals used for the GWAS summary statistics, then we suggest using
the validation cohort as the LD reference as well. These steps are implemented in the LDpred

software package.[12]

LDpred-inf is a special case of LDpred when all variants are assumed to be causal (i.e.,p =

1). Under this infinitesimal model, the posterior mean effect sizes are closely approximated by
E(BIB. D)= (e 1+D)1 (18)
Ngh

where D denotes the LD matrix between the markers in the training data, and S denotes the

marginally estimated marker effects. [12]

Although LDpred is a substantial improvement over existing methods for using summary
statistics to conduct polygenic prediction, it still has limitations. First, the method’s reliance on
LD information from a reference panel requires that the reference panel be a good match for
the population from which summary statistics were obtained; in the case of a mismatch,
prediction accuracy mightbe compromised. Second, the point-normal mixture prior distribution
used by LDpred might not accurately model the true genetic architecture, and it is possible that
other prior distributions might perform better in some settings. Third, in those instances where

raw genotypes are available, fitting all markers simultaneously might achieve higher accuracy

70



than methods based on marginal summary statistics. Fourth, LD reference panels are likely to
be inadequate for rare variants, motivating future work on how to treat rare variants in PRSs.
Despite these limitations, LDpred is likely to be broadly useful in leveraging summary -statistics
datasets for polygenic prediction of both quantitative and case-control traits. As sample sizes
increase and polygenic predictions become more accurate, their value increases, both in clinical
settings and for understanding genetics. LDpred represents substantial progress, but more work
remains to be done. One future direction would be to develop methods that combine different
sources of information. In addition, using different prior distributions across genomic regions

or functional annotation classes could further improve the prediction.[12]

4.4.6 LASSOSUM

As there is no inherent information on linkage disequilibrium (LD) in summary statistics, a
pertinent question is how we can use LD information available elsewhere to supplement such
analyses. To answer this question, Mak T.S.H et al., propose a method for constructing PRS
using summary statistics and a reference panel in a penalized regression framework, called
lassosum. They also propose a general method for choosing the value of the tuning parameter
in the absence of validation data. Lassosum use non-Bayesian strategies to consider large
numbers of markers jointly applies least absolute shrinkage and selection operator (LASSO)
regression to downweight, and perhaps omit altogether, effects of correlated markers. Two
important parameters for lassosum, which may require optimizing using external data, are A,

which determines the fraction of effects shrunk to 0, and s, the shrinkage parameter.[10]

The method: Given a linear regression problem y = X + ¢, where X denotes an n-by-p
data matrix, and y a vector of observed outcomes, the LASSO(least absolute shrinkage and
selection operator) is a popular method for deriving estimates of  and predictors of (future
observations of) y, especially in the case where p (the number of predictors/columns in X) is

large and when it is reasonable to assume that many B are 0. LASSO obtains estimates of

(weights in the linear combination of X) given y and X by minimizing the objective function
fB =6 -xB"0-xp) + 22l (1.9)
=yTy + BTXTXB —2BTXTy + 2AllBIlT (1.10)

where ||8ll1= X; B; denote the L; norm of B, for a particular fixed value of A. In general,

dependingon A, a proportion of the j; are given the estimate of 0. Itis also a specific instance
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of penalized regression where the usual least square formulation of the linear regression
problem is augmented by a penalty, in this case 24 |5ll{. LASSO lends itself to being used for
estimation of B in the event where only summary statistics are available, because if X represent
standardized genotype dataand y standardized phenotype, divided by /n, then Equation (1.10)

can be written as

fB) =yTy +BTRE —2B8Tr + 2AlIBII} (1.11)

where r= XT y represents the SNP-wise correlation between the SNPs and the phenotype, and
R=XTX is the LD matrix, a matrix of correlations between SNPs. Equation (1.11) suggests a
method for deriving PGS weights as estimates of B by minimizing f(f). Estimates of 1 can be
obtained from summary statistics databases that are publicly available for major
diseases/phenotypes and estimates of LD (R) from publicly available genotypes such as the
1000 Genome database. Equation (1.11) suggests a method for deriving PGS weights as
estimates of B by minimizing f(pB). [11]

An issue that surfaces when we substitute R and r with the estimates derived from publicly
available data is that the genotype X used to estimate R and r will in general be different. In
particular, it will be more appropriate to write R = X1 X, to indicate that the genotype used to
derive estimates of LD (X,.) will not in general be the same as the genotype that gave rise to the

correlations r. Writing Equation (1.11) as

f(B) =yTy +BTXIX,.— 287Xy + 2AllBlIE (1.12)

however, would imply that (1.12) is no longer a LASSO problem, because it is no longer a
penalized leastsquares problem. Aminimum to (1.12) canstill be sought, although the solutions
would often be unstable and nonunique, since yTy + BTXI X,.p — 28T X Ty will not generally

have a finite minimum.

A natural solution to this problemisto regularize Equation (1.12). In particular, if we replace

XI'X, withR, = (1 — s)XTX, ,, forsome 0 <s<1,then

s’
f(B) =yTy +BTRS — 2877 + 22118111 (1.13)

will be equivalent to a LASSO problem. First, we note that yTy is a constant and thus replacing
it with any other constant will not change the solution. R is necessarily positive definite for 0

<s< 1. This means that there always exists W and v such that
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WTW = Rgand WTv =r (1.14)

Substituting (1.14) into (1.13) and replacing yT y with v v, we see that (1.13) can be written
ina formsuch as (1.9) and is therefore a LASSO problem. Expanding (1.13) into

fB) =yTy+ (A —s)BTXIX,B— 28Tr + spT R + 2AllBlI1 (1.15)

Equation (1.15) encompasses a number of submodels as special cases. For example, when A
=0ands=1,theestimated PGS becomesequivalentto simply usingthe entire set of correlation

estimates without shrinkage or subset selection.[11]

Tuning parameters selection: A2 and s need to be chosen. Generally, in the presence of a
validation dataset, 4 can be chosen by maximizing the correlation of the PGS with the
validation phenotype data, justas it has been done in the choice of a p-value cutoff points in
standard PGS calculation method(C+T). In principle, this method can be used to choose a
suitable value for s also, although repeating the estimation over different values of s is much
more time-consuming. Thus, in this paper, Mak T.S.H et al. set s to a few chosen values and
examined whether they are sufficient in arriving at a PGS with reasonable prediction accuracy.
A more pressing problem is that validation phenotypes are not often available. And here Mak
T.S.H et al. try to simulate this procedure in the following manner, which they refer to as
pseudovalidation in this paper and can be applied to any PGS method that requires a tuning
parameter. The analysis of this method is beyond the scope of this thesis and is therefore not

discussed further. The reader is referred to the source [11].

P-value Standard approach: Penalised Bayesian

thresholding Clumping + Regression Shrinkage
w/o clumping  thresholding (C+T)
Shrinkage strategy P-value P-value threshold LASSO, Prior
threshold Elastic Net, distribution,
penalty e.g. fraction of
parameters causal SNPs
Handling Linkage N/A Clumping LD matrix is Shrink effect
Disequilibrium integral to sizes with
algorithm respect to LD
Example software PLINK PRSice [12] Lassosum [19]  LDpred [38]
Figure4.2

Comparison of differentapproaches for performing PRS analyses [10]
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When performinga PRS analysis, it is important to consider which approach and software
may be best suited for handling the research question. The primary decisions to make are how
to decide which SNPs to include and how to modify effect size estimates. Depending on the
genetic architecture of the trait or disease in question, each of these approaches could have
merit. Beyond the method, the choice of approach and software could be influenced by the
specific research question, data availability and type of data, goodness of fit metrics, and

computation speed.[53]

4.5 Validation and prediction

Validation of the PRS underpins its usefulness. If incorrect decisions or conclusionsare drawn,
the PRS may lack precision and accuracy. Validation is also inherently intertwined with
prediction. Prediction is the estimation of R2, which is the proportion of variance explained by
the regression model. Generally, it is important to understand the amount of variability that can
be explained by including a particular PRS in a model, namely the increase in the R2 when a
PRS is entered into a model compared to the baseline model. The baseline model is the simplest
possible prediction, which is used as a starting point against which additional variables are
added. Then, italso generally included the population stratification variables (e.qg., the first 10
or 20 PCAs) and other relevant covariates. Typically, a regression is performed on the target
sample, with the PRS as a predictor of the target trait or experimental outcome, and covariates
are included as appropriate. Dudbridge also showed that the power of PRS association testing
is optimized using equal-sized base and target sample sizes, while individual-level predictive
accuracy is optimized by maximizing base sample size. For binary traits, Nagelkerke R2? used
to measure more generally how much of the variation in the observed outcomes can be

explained by the model’s predictions [5]

A typical PRS study involvestestingevidence for an association between a PRSand a trait(s)
in the target data. The association between PRS and outcome can be measured with standard
association or goodness-of-fit metrics, such as the p-value derived in testing a null hypothesis
of no association, phenotypic variance explained (R2) or effect size estimate (beta or OR) per
unit of PRS or between specific strata (e.g., high versus low-risk individuals), and with
measures of discrimination in disease prediction, such as area under the receiver operator curve
(AUC) or area under the precision recall curve. The most frequent way to describe how much

variance isexplained by aPRS is to run aregression model with the phenotypeas the dependent
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variable and the PRS as an independent variable and calculate the R2. The interpretation of R2
is thatit isthe proportion of varianceexplained by the regression model. When using covariates,
it is common to estimate the gain in R2 in two steps. First, a regression model with covariates
but without a PRS is estimated. In the second step, the PRS was added to the models and
estimated the differencesin the R2 of the two models. Since the statistical distribution of the R?
is not a standard one, it is not possible to estimate a confidence interval unless we use
nonparametric statistical techniques. R? has a theoretical upper bound equal to the heritability
of the phenotype; however, SNP heritability (h%,p), the heritability using all available SNPs in
the data, will be the upper bound for PRS. For binary traits, the approach is very similar, but
instead of estimatinga series of linear regression models, we estimate logistic regression models
and report the gain in pseudo-R2. Alternatively, it is possible for binary traits to estimate the
area under the curve as a measure of the accuracy of the PRS to explain the phenotype.[58] The
areaunderthe curve (AUC) measuresthe predictive ability of areceiver operating characteristic
(ROC) generated based on the PRS for a sample of individuals. The AUC is a function of the
ability of the risk score to correctly identify the presence (sensitivity) or absence (specificity)

of the outcome of interest.[58]

The AUC comparesthe rates of true positives (sensitivity) and false positives (1—specificity)
and indicates the overall performance of predictive models. Sensitivity, the probability of
correctly classifying an affected individual as affected, indicates the ability of the model to
correctly predict individuals with the outcome of interest; specificity, the probability of
correctly classifying an unaffected individual as unaffected, indicates the ability of the model
to accurately screen out individuals without the outcome of interest. The AUC of the ROC
curve is a measure of overall performance of the model, and ranges from 0 to 1. Model
performance based on AUC may differ dependingon the phenotype being measured but, in
general, an AUC of 0.5 is considered null (no better than chance), and an AUC of at least 0.8
is considered to be very good, especially for a complex trait. An AUC less than 0.5 likely
indicates a data error or that the model is predicting the wrong outcome. Diagnostic tests, by
contrast, tend to have AUCs at 0.95 or higher for clinical use.[53] Models are expected to have
an AUC >0.75 for informative screening of individuals who are at increased disease risk and a
very high AUC (as high as 0.99) for a diagnostic test. The higher the AUC, the more precise
the prediction and, thus, the greater the clinical utility of the combination of factors included in

the model.[1] Other than the ROC curve, there are a few options to visualize goodness of fit
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metrics of a PRS model. The first of these includes a common boxplot (binary traits or
categorized quantitative traits) or scatter plot (quantitative traits) for plotting the PRSs against
the trait of interest. These visually demonstrate the ability of the model to discriminate the
outcome. To graphically depict fit of a model against other models, one option is to plot the R2

values across multiple thresholds in a bar plot.[53]

4.6 PRS Studies
4.6.1Study 1

About simulations: Vilhjalmsson et al., performed three types of simulations: (1) simulated
traits and simulated genotypes; (2) simulated traits, simulated summary statistics and simulated
validation genotypes; and (3) simulated traits based on real genotypes. They used the point-

normal model for effect sizes, for most of the simulations:

h2>
N | 0,—Z | with probabilit
Bi~iia ( Mp P yPp

0 with probability (1 —p),

Furthermore, for all of the simulations, they used four different values for p (the fraction of
causal loci). They simulated genotypes with the adjacent squared correlation between SNPs set
to 0 (unlinked SNPs) and 0.9 (SNPs in LD). In orderto compare the performance of the LDpred
method at large sample sizes, they simulated summary statistics that they used as training data
for the PRSs. They also simulated two smaller samples (2,000 individuals) representing

independent validation data and a LD reference panel.

When there is no LD, the least-squares effect estimates (summary statistics) are sampled
from a Gaussian distribution, ;| B8;~iaN(B;, (%)) , Where f3; are the true effects. To simulate

marginal effect estimates without genotypes in the presence of LD, they first estimate the LD
pattern empirically by simulating 100 linked SNPs for 1,000 individuals for a given value and
average over 1,000 simulations. This matrix captures the LD pattern in the validation data given

that they simulate it by using the same procedure. Using this LD matrix D, we then sample the
marginal least-squares estimates within a region of LD (SNP chunk) as £|8~;aN(DB, (%)),

where D is the LD matrix. When simulating traits by using the Wellcome Trust Case Control
Consortium (WTCCC) genotypes (Figure 5.6), they performedsimulations under four different
scenarios representing different number of chromosomes: (1) all chromosomes, (2)
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chromosomes 1-4, (3) chromosomes 1 and 2, and (4) chromosome 1. They used 16,179
individuals in the WTCCC data and 376,901 SNPs that passed quality control (QC). Also, they
used 3-fold cross-validation, whereby 1/3 of the data was validation dataand 2/3 were training

data.

Results: Vilhjalmsson et al., first considered simulations with simulated genotypes. They
assessed accuracy by using squared correlation (prediction R2) between observed and predicted
phenotypes. The Bayesian shrink imposed by LD pred generally performed well in simulations
without LD. In Figure 4.3 the four subfigures a-d correspond to different genetic architectures
where they vary p, the fraction of variants with (non-zero) effects drawn from a Gaussian
distribution. Bpred denotes the analytical solution to LDpred, which can be derived in the
absence of LD. As expected, Bpred outperforms P-value thresholding in the absence of LD,

although not by much.
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Figure4.3
Comparison of methods using simulated genotypes without LD[12]

However, LDpred performed particularly well in simulations with LD (Figure 4.4); the
larger improvement (e.g., versus P+T) in this case indicates that the main advantage of LDpred
is in its explicit modeling of LD. The four subfigures a-d correspond to different genetic
architectures where p varies, which represents the fraction of variants with (non-zero) effects
drawn from a Gaussian distribution. Note that when p=0.001, the chance of two causal variants
beingin LD is very small (~1%), and thus the improvement from accounting for LD in LDpred

is negligible compared to P+T.
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Comparison of methods using simulated genotypes with LD[12]

They also evaluated the prediction accuracy as a function of the sample size of the LD
reference panel (Figure 4.5). LDpred performs bestwith an LD reference panel of atleast1,000
individuals. These results also highlight the importance of using an LD reference population
with LD patterns similar to the training sample, given that an inaccurate reference sample will

have effects similar to those of a small reference sample.
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Prediction accuracy for methods as a function of LD referencesample size[12]

Using real WTCCC genotypes (15,835 samples and 376,901 markers after QC),
Vilhjalmsson et al. simulated infinitesimal traits with the heritability set to 0.5. They
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extrapolated results for larger sample sizes (N¢s) by restricting the simulations to a subset of
the genome (smaller M), leading to larger N/M. Results are displayed in Figure 4.6 A. LDpred-
inf and LDpred (which are expected to be equivalent in the infinitesimal case) performed well
in these simulations—particularly at large values of N, consistent with the intuition from
Equation 1.8 that the LD adjustment arising from the reference-panel LD matrix (D) is more
importantwhen Nh2/M is large. On the other hand, P+T performed less well, consistent with
the intuition that pruning markers loses information. The four subfigures correspondtop =1
(A), p=0.1(B),p=0.01(C), and p = 0.001 (D) for the fraction of simulated causal markers
with (non-zero) effect sizes sampled from a Gaussian distribution. To aid interpretation of the
results, they plot the accuracy against the effective sample size, defined as N = (N/Mgim)M
where N = 10,786 is the training sample size, M = 376,901 is the total number of SNPs, and
Msim isthe actual number of SNPs used ineach simulation: 376,901 (all chromosomes), 112,185
(chromosomes 1-4),61,689 (chromosomes 1 and 2), and 30,004 (chromosome 1). The effective

sample size is the sample size that maintains the same N/M ratio if all SNPs are used.

They next simulated non-infinitesimal traits by using real WTCCC genotypes and varying
the proportion p of causal markers. Results are displayed in Figures 4.6(B-D). LDpred
outperformed all other approaches, including P+T, particularly at large values of N/M. For p
=0.01 and p= 0.001, the methods that do not account for non-infinitesimal architectures
(unadjusted PRSs and LDpred-inf) performed poorly, and P+T was second best among these
methods.
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Comparison of Four Prediction Methods Applied to Simulated Traits[12]
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In this section, we present the results of a study carried out by Vilhjalmsson et al. using real
data. WTCCC Genotype Data were initially used, and a quality check was performed on them.
In particular pruning variants with missing rates above 1%, and removing individuals with
genetic relatedness coefficients above 0.05, so they left 15,835 individuals genotyped for
376,901 SNPs, including 1,819 individuals with bipolar disease (BD), 1,862 individuals with
coronary artery disease (CAD), 1,687 individuals with Crohn disease (CD), 1,907 individuals
with hypertension (HT), 1,831 individuals with rheumatoid arthritis (RA), 1,953 individuals
with type 1 diabetes (T1D), and 1,909 individuals with type 2 diabetes (T2D). For each of the
seven diseases, was performed 5-fold cross-validation, whereby 1/5 of the data was validation
data and 4/5 were training data, on affected individuals and 2,867 control individuals. For each
of these analyses, they used the validation dataas the LD reference datawhen using LDpred and
when performing LD pruning. In Figure 4.7, represents the comparison of LDpred to other
summary-statistics-based methods across the seven WTCCC disease datasets. It plotted the
prediction accuracy of the different methods as estimated from 5-fold-cross-validation. The
Nagelkerke prediction R2 is shown on the y axis. LDpred significantly improved the prediction
accuracy for the immune-related diseases T1D, RA, and CD. LDpred attained significant
improvement in prediction accuracy over P+T for T1D (p-value= 4.4E-15), RA (p-value =
1.2E-5), and CD (p-value = 2.7E-8). For the other diseases with more-complex genetic
architectures, the prediction accuracy of LDpred was similarto thatof P+T, potentially because
the training sample size was not sufficiently large enough for modeling LD to have a sizeable
impact. [12]
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Comparisonof Methods Applied to Seven WTCCC Disease Datasets[12]

Finally, six large summary-statistics datasets were analyzed in this study. For all of the
validation datasets, it was used the chip genotypes and filter individuals with more than 10% of
genotype calls missing and filtered SNPs that had a missing rate more than 1% and a minor
allele frequency (MAF) greater than 1%. In addition, SNPs that had ambiguous nucleotides,
i.e., A/T and G/C removed. They matched the SNPs between the validation and GWAS
summary-statistics datasets on the basis of the SNP rsID and excluded triplets, SNPs for which
one nucleotide wasunknown, and SNPsthathad differentnucleotides in different datasets. This
was Vilhjalmsson et al. QC procedure for all large summary-statistics datasets that they
analyzed. For all six of these traits, they used the validation dataset as the LD reference data
when using LDpred and when performing LD pruning. By using the validation datasetas LD
reference data, they were only required to coordinate two different datasets, i.e., the GWAS
summary statistics and the validation dataset. They calculated P+T risk scores for different p-
value thresholds by using grid values (1E-8, 1E-6, 1E-5, 3E-5, 1E-4, 3E-4, 1E-3, 3E-3, 0.01,
0.03,0.1,0.3,1),and for LDpred they used the mixture probability (fraction of causal markers)
values (1E-4, 3E-4, 1E-3, 3E-3, 0.01, 0.03, 0.1, 0.3, 1). They are used to find the optimal

prediction value from a validation dataset for LDpred and P+T.

The Psychiatric Genomics Consortium 2 (PGC2) SCZ summary statistics consisted of
34,241 affected and 45,604 control individuals. The ISC (International Schizophrenia
Consortium) cohorts and the MGS (Molecular Genetics of Schizophrenia) cohorts used as
validation datasets. After the QC the ISC cohort consisted of 1,562 affected and 1,994 control
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individuals genotyped on ~518,000 SNPs that overlapped with the GWAS summary statistics.
The MGS dataset consisted of 2,681 affected and 2,653 control individuals after QC and had
~549,000 SNPs that overlapped with the GWAS summary statistics.

The International Multiple Sclerosis Genetics Consortium summary statistics used for
multiple sclerosis (MS). These were calculated with 9,772 affected and 17,376 control
individuals (27,148 individuals in total) for ~465,000 SNPs. As an independent validation
dataset, used the BWH/MIGEN chip genotypeswith 821 affected and 2,705 control individuals.
After QC, the overlap between the validation genotypes and the summary statistics only

consisted of ~114,000 SNPs, which used for the analysis.

For breast cancer (BC), the Genetic Associations and Mechanisms in Oncology (GAME-
ON) BC GWAS summary statistics used, consisting of 16,003 affected and 41,335 control
individuals. As validation genotypes, we combined genotypes from five different datasets.
None of these 307 affected or 560 control individuals were included in the GWAS summary-
statistics analysis, and they thus represent an independent validation dataset. We used the chip
genotypes that overlapped the GWAS summary statistics, which resulted in ~444,000
genotypes after QC.

For CAD, we used the transatlantic Coronary Artery Disease Genome-wide Replication and
Meta-analysis (CARDIoGRAM) consortium GWAS summary statistics. These were calculated
with 22,233 affected and 64,762 control individuals (86,995 individuals in total) for 2.4 million
SNPs. For T2D, we used the Diabetes Genetics Replication and Meta-analysis (DIAGRAM)
consortium GWAS summary statistics. These were calculated with 12,171 affected and 56,862
control individuals (69,033 individuals in total) for 2.5 million SNPs. For both CAD and T2D,
we used the Women’s Genomes Health Study (WGHS) dataset as validation data, where we
randomly down-sampled the control individuals. For CAD, we validated the predictions in 923
individuals with cardiovascular disease and 1,428 control individuals, and for T2D we used
1,673 affected and 1,434 control individuals. We used the genotyped SNPs that overlapped the
GWAS summary statistics, which amounted to about ~290,000 SNPs for both CAD and T2D
after QC.

Prediction accuracies for LDpred and other methods are reported in Figure 4.8 (Nagelkerke
R2). For all five traits, LDpred provided significantly better predictions than other approaches
(for the improvement over P+T, the p values were 6.3E-47 for SCZ, 2.0E-14 for MS, 0.020 for
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BC, 0.004 for T2D and 0.017 for CAD). The relative increase in Nagelkerke R2 over other
approachesranged from 11% for T2D to 25% for SCZ. This is consistent with the fact that the
simulations showed larger improvements for highly polygenic traits, such as SCZ. Noted that
for both CAD and T2D, the accuracy attained with >60,000 training samples from large meta-
analyses (Figure 4.8) is actually lower than the accuracy attained with <5,000 training samples
from the WTCCC (Figure 4.7).
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Comparison of Methods Training on Large GWAS Summary Statistics for Five Different Diseases [12]

PRSs are likely to become clinically useful as GWAS sample sizes continue to grow.
However, unless LD is appropriately modeled, their predictive accuracy will fall short of their
maximal potential. Our results show that LDpred is able to address this problem—even when
only summary statistics are available—by estimating posterior mean effect sizes by using a
point normal prior and LD information from a reference panel. Intuitively there are two reasons
for the relative gain in prediction accuracy of LDpred PRSs over P+T. First, LD pruning
discards informative markers and thereby limits the overall heritability explained by the
markers. Second, LDpred accounts for the effects of linked markers, which can otherwise lead
to biased estimates. These limitations hinder P+T regardless of the LD pruning and p-value
thresholds used.[12]

Clarifications: In this study the unadjusted PRSis simply the sum of all the estimated marker

effects for each allele, i.e., the standard unadjusted polygenic score for the 1™ individual is

ﬂ-”lel-jE], where X;; denotesthe genotype for the it" individual and the jt" genetic variant.
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P+T refers to the strategy of first applying informed LD pruning with r2 threshold 0.2 and
subsequently applying p-value thresholding, where the p-value threshold is optimized over a

grid with respect to prediction accuracy in the validation data.

4.6.2 Study 2

Mak T.S.H et al, performed a number of simulation studies to assess the performance of their
proposed method, lassosum. In their first simulation study, they used the Wellcome Trust Case
Control Consortium (WTCCC) Phase 1 data for seven diseases. They filtered variants and
participants usingthe following QC criteria: genotype rate >0.99, minor allele frequency>0.01,
missing genotype per individual<0.01. SNP rsID included in the 1000 Genome project (Phase
3, release May 2013) genotype data, with matching reference and alternative alleles, on top of
the QC done by the original researchers (Wellcome Trust Case Control Consortium, 2007).
This resulted in 358,179 SNPs and 15,603 individuals, of which 2,859 were controls. [11]

They randomly chose two 1,000 samples as two test datasets. In the first dataset X®),
validation and pseudovalidation were performed to determine the optimal value of A. This
choice of A and/or s was applied in the other test dataset X@ in the assessment of prediction
accuracy. Prediction accuracy was assessed by the correlationof the PGS with the true predictor
X@p. Except when assessing the performance of using different reference panels, they used the
first test dataset X as the reference panel also. In assessing the impact of using different
reference panels, they let the 1000 Genome East Asian (EAS) subpopulation (n =503) be their
test dataset. They compared the performance of using four different reference panels: (1) the
original sample that generated the summary statistics, (2) a sample of 1,000 fromthe WTCCC,
(3) the EUR subpopulation from the 1000 Genomeproject, and (4) the EAS subpopulation from
the 1000 Genome project. The above simulations were repeated 10 times and were compared
with the approach of p-value thresholding (with and without clumping) and LDpred. For
clumping, they used an R2o0f {0.1, 0.2, 0.5, 0.8}. (As mentioned before, Clumping is a method
for selectively clumping together SNPs in a LD region. Each region is tagged by a lead SNP.
In the method implemented in this paper, they start with the most significant SNP. All SNPs
that are correlated with this SNP by an R2 of greater than a certain threshold (e.g. 0.2) within a
certain region are clumped together with this SNP. They continue this process with the second
and third most significant SNP, until all SNPs are clumped into a region). For p-value
thresholding, they used the set of p-values {5e-8, 1e-5, 1le—4, 1e—3,0.0015,0.002,0.0025, ...,
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0.995, 1} as possible p-value thresholds. For LDpred, they used the set of proportion of causal
SNPs {0.001, 0.003,0.01,0.03, 0.1, 0.3, 1}. For p-value thresholding and LDpred, they used a
validation dataset as well as pseudovalidation to select the best threshold and proportion of
causal SNPs, respectively.[11]

Results: WTCCC simulations were run in this study with summary statistics sample sizes of
10,000,50,000,and 250,000, respectively. They usedtwo differentvalues for P (causal), which
represents the expected proportion of causal SNPs: 0.1 and 0.01. P (causal)=0.01 represents a
scenario with fewer causal SNPs and larger effect sizes, whereasP (causal) =0.1, represents a
scenario in which causal SNPs have smaller effect sizes and are more evenly distributed across
the genome. Figure 4.9 displays the performance of lassosum with different values of A for one
of the simulations. It can be seen that in all the simulation scenarios, the general pattern is that
predictive performance increases with A up to a pointand then decreases, often rapidly. Using
a validation dataset or alternatively pseudovalidation is usually effective in helping us selecta
value of A that is close to the optimal (Circles are values of A chosen with a validation dataset
and triangles are values of A chosen with pseudovalidation). Comparing different values of s,
the shrinkage parameter, they see that the maximum attainable correlation is generally lower
for s = 1, the scenario where lassosum reduces to soft thresholding, that is, where information
on LD is ignored, except when n =10,000 and P (causal)=0.1. In addition, s =0.5and s = 0.2

usually gives better performance than s =0.9.[11]
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Figure4.9
The predictive performanceof lassosum with respectto A[11]

Figure 4.10, shows the average prediction performance over 10 simulations, comparing the

use of pseudovalidation and a validation dataset with phenotype data as well as using the

85



minimum A value of 0.001. They use A = 0.001 for comparison because it is shown in Figure
4.9 that in general the prediction performance of lassosum approaches a constant as A tends to
0, whereas when A approaches 1, the performance drops sharply. Thus, using A close to 0
representsaconservative, safe option. Whens =0.2 or 0.5, the performance of pseudovalidation
was very similar to using a real validation phenotype. Both approaches were clearly superior to
the conservative option of setting A =0.001. When s =0.9 or s = 1, pseudovalidation was still
clearly superior to setting A =0.001 for n =10, 000 and n =50, 000 and P (causal)=0.01. In all
simulations, the performance of p-value thresholding was similar to the use of lassosum with s
= 1. Itis also observed that lassosum with s =0.2 or s =0.5 tended to give the best performance
overall. Thus, it is reasonable to maximize over s also using either a validation phenotype or

pseudovalidation when using lassosum. [11]
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Comparingthe use of a validation dataset with phenotype data and pseudovalidation in selecting the
tuning parameter A[11]

Figure 4.11 shows the comparison of the performance of lassosum with clumping and p-
value thresholding, as well as with LDpred. For lassosum, there has been optimization over
both A2 and s = {0.2, 0.5, 0.9, 1}. For comparison, there has been optimization over p-value
thresholds and clumping R2 = {0.1, 0.2, 0.5, 0.8, no clumping}. Finally, there has been
optimization for LDpred over P (causal) = {0.001, 0.003,0.01,0.03, 0.1, 0.3, 1}. For p-value
thresholding, clumping led to a noticeable increase in prediction accuracy, except when P
(causal)=0.1 and n = 10, 000. However, in all scenarios, lassosum was superior to clumping

and thresholding. The result was similar whether the method was optimized using a validation
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dataset or pseudovalidation. LDpred did not appear to have the claimed advantage over p-value
thresholding in these simulations. Which may be due to the fact that the size of the reference
sample used was only 1,000, smaller than the recommended size of at least 2,000 in the paper.
However, they found that the performance of LDpred did not improve even when the sample

size of the reference panel (and test panels) was set to 5,000 (Figure 4.12). [11]
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Comparing the performance lassosum, (p-thres), C+ T and LDpred[11]
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Examining the impact of the size of the reference panel in the prediction accuracy of lassosum[11]
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The effect of using different reference panels when using lassosum was investigated in
Figure 4.13. There has been generation of the summary statistics using the entire WTCCC
sample and using four different reference panels for their LD information: (1) the original
WTCCC sample that generated the summary statistics, (2) asample of 1,000 fromthe WTCCC,
(3) the EUR subpopulation from the 1000 Genomeproject, and (4) the EAS subpopulation from
the 1000 Genome project, which also served as the test sample. It was found that for the small
samplesize (n = 10,000) scenario the use of the differentreference panels made relatively little
difference to predictive performance. However, as sample size increased, using the true sample
that generated the summary statistics led to noticeably improved predictive performance. For
many scenarios, using the 1000 Genome EUR sample as the reference panel led to a similar
performance as using the original summary statistic sample. A clear advantage for using the
summary statistics sample was only shown in the scenario with the most power (n = 250,000
and P (causal)=0.01). Using the wrong (EAS) reference sample was clearly inferior when the
sample size was above 50,000, but it was still better than simple p-value thresholding. [11]
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The effectof using different reference panels on lassosum[11]
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Next, it was examined the performanceof lassosum in a larger simulated dataset with around
8 million SNPs, with a focus on clumping, to see whether prefiltering by clumping can be an
effective method in reducing the number of SNPs in the analysis. The sample size for the
summary statistics was set at 200,000. Six levels of clumping (R2=0.01, 0.05,0.1,0.2, 0.5, and
0.8) were applied to the data, resulting in around 190.000, 330.000, 430.000, 610.000,
1.170.000, and 1.940.000 SNPs respectively. (The actual number depends on the simulations)
It was notperform LDpred for R2> 0.2 because itwas too time and memory intensive. In Figure
4.14A, theresults fromthis simulation appear. As shown, clumpingwas beneficial in improving
prediction performance for p-value thresholding, and the best performance was achieved with
an R2 of 0.5 or 0.8. For lassosum, performance decreased with increasing level of clumping
(decreasing R?). lassosum with no clumping gave the best performance overall. LDpred

performed poorly in this simulation, likely because the reference panel size was too small. [11]
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(A) Performance of lassosum ina large simulated dataset. (B) Performance of lassosumvs. other
methods when using real summary statistics data frommeta-analyses[11]

In Figure 4.14B, the results were presented for using real summary statistics from five large
meta-analyses to predict phenotypes in the WTCCC data. [Bipolar disorder:n(cases)=7, 481,
n(controls) = 9, 250, coronary artery disease:n(cases) = 60, 801, n(controls) = 123, 504,
Crohn’s disease:n(cases) =22, 575, n(controls) =46, 693, RA:n(cases) = 14, 361, n(controls)
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=43,923, Type 2 diabetes:n(cases) = 26, 488, n(controls) =83, 964]. Because all these meta-
analyses included the WTCCC as one of the studies, PGS derived using these summary
statistics directly would overfit the data. To overcome this problem, we attempted to isolate the
non-WTCCC components of the summary statistics by reversing the fixed-effects meta-

: : Bs/ad+Bs/af 1
analysis equations: Bmerq = ,
meta 1/02+1/02 ' 02,4

1 1
==t
o; O3

where, s and g, denote the log odds ratio and standard error from the WTCCC study and s
and o5 the contribution to the meta-analysis apart from WTCCC. SNPs with negative 2 were
set to have zero effectsize. Prediction accuracy of the summary statistics-derived PGS were
assessed by the area under the ROC curve (AUC) statistic when used to predict disease status
in the WTCCC dataset with the relevant disease and the 2,859 controls. The testing sample was

also used as the reference panel.[11]

In all cases, the use of pseudovalidationresulted in a PGS that is close to the maximum AUC
across all tuning parameters and was clearly superior to using 4 =0.001. For BD, CAD, CD,
and RA, the performance of lassosum, LDpred, and clumping and thresholding were similar,
although a slightly higher AUC was observed for lassosum. For T2D, the maximum AUC was
surprisingly achieved by p-value thresholding without clumping. [11]

In summary, Mak T.S.H et al. have proposed the calculation of PGS using a penalized
regression approach using summary statistics and examined its performance in simulation
experiments. Their proposed approach, lassosum, in general appeared to give better prediction
than p-value thresholdingwith or withoutclumpingaswell asthe LDpred, for which they failed
to demonstrate the claimed superior performance over p-value thresholding. Clumping was
beneficial for p-value thresholding in most scenarios but not for lassosum. In some scenarios,
clumping actually decreases the predictive power of p-value thresholding, such as in the
simulations with P(causal)=0.1 and n = 10,000. Also, increasing the sample size of the
reference panel will generally increase prediction accuracy as well, although this comes at a
cost of exponentially increasing running times. In simulations, Mak T.S.H found that gains in

prediction accuracy from a larger reference panel were usually modest.[11]

Moreover, they showed that pseudovalidation method is effective in selecting a parameter
value that is close to the optimum. Having a validation dataset with phenotype data generally
provides an even more reliable method for selecting the tuning parameter. However, in the
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eventwhere thisis unavailable, pseudovalidation offersan alternative and can be appliedto any
PGS method that requires a tuning parameter. Mak T.S.H et al. have focused on the
performance of lassosum as a method, they note that it is more generally an instance of
penalized regression. Potentially, other penalties can be used, which can lead to even better
prediction. They chose the LASSO penalty because of its simplicity. Some limitations of the
present study are worth bearing in mind when considering these results. For example, summary
statistics may be inflated due to population stratification in the data where they are generated.
As summary statistics are often derived from meta-analyses, it is also possible that there is
underlying heterogeneity in effect sizes. How these impact PRS calculation is currently
unknown. The simplicity of lassosum makes it an ideal framework from which more complex

methods can be developed. [11]

4.6.3 Study 3

Type 2 diabetes (T2D) is a global public health problem. Identifying individuals at high risk
for T2D for early targeted detection, prevention and intervention is of great public health
importance. In addition to known behavioral and environmental factors, T2D has been shown
to have a strong genetic component. Genome-wide association studies (GWAS) have
successfully identified many common genetic variants that confer susceptibility to T2D.
However, all of these common genetic variants discovered by GWAS may only be able to
explain a small proportion of the overall heritability and therefore result in low predictive
power. The polygenic risk score (PRS) that aggregates the information of many common single
nucleotide polymorphisms (SNPs), weighted by the effect size resulting from large-scale
GWAS discovery, hasbeen usedto predict T2D risk. PRS is expected to have better predictive
power and the potential to improve performance in T2D risk assessment. In this study, Liu et
al., to further explore the prediction capability of the PRS model in identifying high-risk
individuals for T2D, proposed a new strategy to construct PRS model by the following three -
step filtering procedure to consider a statistical compromise between signal and noise. First,
rather than including SNPs across the whole genome, it selected a subset of SNPs by a lenient
significance threshold (p < 5 x 10-2) from a huge number of SNPs included in large-scale
GWASs. Second, it set r2 equal to 0.2, 0.4, 0.6, and 0.8 as candidate LD pruning thresholds.
Third, it set p-value thresholdsas 5 x 102, 5 x 10,5 x 10%,and 5 x 108, After applyingthe
above thresholds to the GWAS summary data, a total of 16 candidate PRS models were then

generated. Testing was conducted using the UKB testing dataset (n = 182,422) to avoid the
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model overfitting issue. Finally, the best predictive PRS model among a set of candidate PRS
models was chosen and evaluated in the UKB validation dataset (n = 262,751). They also
considered non-genetic risk factors, including sex, age, physical measurements, and clinical

factors, to further increase prediction accuracy. [54]

The study was conducted based on the UKB project, one of the largest prospective cohort
studies. A total of 487,409 individuals with available genotyping array and a total of 625,394
variants were originally collected from UKB. Subsequently, SNPs and individuals with very
high levels of missingness were filtered out. Based on arelaxed threshold 0f 0.2 (>20%), 89,752
variants and 30,855 subjects removed. There were also 262,751 SNPs removed with minor
allele frequency <1 x 10-. Finally, 456,451 individuals and 271,687 variants passed QC and
were considered in the following analysis. Liu et al., further imputed the inevitably missing
values of T2D-related risk factors, including sex, age, physical measures [e.g., BMI, waist
circumference] and clinical factors [e.g., high-density lipoprotein (HDL), low-density
lipoprotein (LDL)] by their means. To analyze individuals with a relatively homogeneous
ancestry, the population was constructed centrally based on a combination of self -reported
ancestry and genetically confirmed ancestry using the first 10 principal components (i.e., PC1,
..., PC10). To construct, test, and further validate the robustness of the polygenic predictor of
T2D, they randomly divided the overall data into two parts, i.e., the testing and validation
dataset. The data were split over two datasets, a testing dataset and a validation dataset. Liu et
al., assigned 40% of all individuals to the UKB testing dataset (n = 182,422) and the remaining
60% to the UKB validation dataset (n = 274,029). Other ratios were also tried to divide the
testing and validation datasets, i.e., 30—-70%, 50-50%, 60—-40%, and 70-30%. There were
nearly 5.494% (n = 10,023) participants who were cases in the testing dataset and 5.575% (n =
15,277) in the validation dataset. Individuals in the UKB validation dataset were distinct from
those in the UKB testing dataset. The details of the study design are described in Figure 4.15.
For PRS model construction, summary statistics froma T2D GWAS conducted among 60,786
participants with 12,056,346 SNPs of European ancestry were used. The UKB samples did not
overlap with the samples from the discovery GWAS. From these summary statistics, SNPs were
selected according to the association p-values (p <5 x 10-2) obtained from the above GWAS,
and 50,224 SNPs remained. Liu etal., then considered multiple r2 thresholds (0.2, 0.4, 0.6, and
0.8) and p-value thresholds (5 x 102,5 x 10-4,5 x 106, and 5 x 10-8). [54]
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A total of 16 candidate PRS models were generated to obtain an optimal PRS model. The
performance of these 16 PRS models was evaluated in the UKB testing dataset and they chose
the bestone for further validationanalysis. The AUCs of these 16 candidate PRSmodelsranged
from 0.691 to 0.792 (Figure 4.16). The best PRS model was selected with the highest AUC
[AUC =0.792,95% CI: (0.787,0.796)] based on 25,454 SNPs when p<5x 102and r2<0.2.
The AUCs of different ratios of the testing and validation datasets are shown in Figure 5.17.
The AUCs of different ratios were very close to each other, ranging from 0.791 to 0.795. The
AUC of the 40-60% ratio had the best performance in the validation dataset [AUC = 0.795,
95% CI: (0.790, 0.800)].
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Tuning parameter SNP number AUC (95% CI)

p<5x 108 andr? <02 363 0.706 (0.701-0.711)
p<56x 108 and? <04 486 0.702 (0.697-0.707)
p<56x 108 and? <06 670 0.696 (0.691-0.701)
p<56x 108 and? <08 957 0.691 (0.686-0.697)
p<56x 10 %andr? <02 750 0.715 (0.710-0.720)
p<5x 108andr? <04 1,013 0.709 (0.704-0.714)
p<5 x 108andr? <06 1,335 0.701 (0.696-0.706)
p=<56x 10 %andr? <08 1,853 0.696 (0.691-0.701)
p<5 x 107%andr® <02 2,616 0.736 (0.732-0.741)
p<5 x 107%andr® <04 3,304 0.726 (0.721-0.731)
p<5 x 107%andr® <06 4,299 0.715 (0.710-0.720)
p<5x 10%andr? <08 5,600 0.708 (0.703-0.713)
p<5x 102andr? <02 25,454 0.792 (0.787-0.796)
p<5x 102andr® <04 32,600 0.782 (0.777-0.787)
p=56x 10 2andr? <06 40,001 0.771 (0.766-0.776)
p<56x 10 2andr? <08 50,224 0.760 (0.755-0.765)

AUC was determined using a logistic regression model adjusted for sex, age, and
the first 10 principal components of ancestry. The highest AUC is denoted by the
bold values.

Figure4.16

The predictive power of candidate polygenic risk score (PRS) modelsfor T2D[54]

Dataset 30-70% 40-60% 50-50% 60-40% 70-30%

Testing 0.791 0.792 0.794 0.795 0.794
(0.781-0.791) (0.787-0.796) (0.790-0.800) (0.791-0.799) (0.790-0.799)

validation 0.794 0.795 0.793 0.792 0.791
(0.790-0.799) (0.790-0.800) (0.789-0.797) (0.787-0.796) (0.781-0.791)

AUC was determined using a logistic regression model adjusted for sex, age, and first 10 principal components of ancestry.

Figure4.17

AUC:s of different ratios of the testing and validation dataset[54]
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PRS among type 2 diabetes (T2D) cases versus controls in the UKB validation dataset[54]

To facilitate interpretation, they scaled PRS to have a zero mean and one standard deviation.
Liu et al., investigated whether their PRS model could identify individuals at high T2D risk.
Figure 4.18 showed that the median of the standardized PRS was 0.941 for individuals with
T2D versus -0.056 for individuals without T2D, a difference of 0.997 (p < 0.00001). The
standardized PRS approximated a normal distribution across the population, with the empirical
risk of T2D rising sharply in the right tail of the distribution (Figure 4.19). The PRS model
identified nearly 30% of the population at greater than or equal to fivefold risk, 12% of the
population at greater than or equal to sixfold risk, and the top 7% of the population at greater
than or equal to sevenfold increased risk for T2D, as shown in Figure 4.19A. Then, they
stratified the population according to the percentiles of the PRS and defined the top 10
percentiles as the "high risk" group while the bottom 10 percentiles were the "low risk™ group.
The odds ratio was assessed in a logistic regression model adjusting for sex, age, and the first
10 principal components of ancestry. Figure 4.19B shows the prevalence of T2D increases with
the percentiles of the PRS model. There were 5,642 (18.698%) cases in the "high risk™ group
among 30,174 individuals, while only 282 (0.935%) cases in the "low risk" group,
corresponding to a nearly 20-fold increase in the risk of T2D comparing the top 10 percentiles
versus the bottom 10 percentiles.[54]
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Figure 4.19 |Risk for type 2 diabetes (T2D) according to polygenic risk score (PRS)

(A) Distribution of PRSfor T2D inthe UKB validation dataset (n=301,736) (B) Prevalence of T2D
accordingto 100groups of the UKB validation dataset stratified according to the percentile of the PRS for
T2D[54]

Figure 4.20 showed that the AUCs of models, which only included PRS into the prediction
model without adjusting for any other covariates, was 0.749 [95% Cl: (0.744,0.754)] in the
testing dataset and 0.755[95% ClI: (0.752, 0.755)] in the validation dataset. Interestingly, if
only considering sex, age, and the first 10 principal components of ancestry into the model,
the AUC was 0.667 [95% ClI: (0.663, 0.672)]. After adding PRS, the AUC reached 0.795
[95% CI: (0.790, 0.800)], whichincreased about 13% than model,. The AUC of model, (i.e.,
considering sex, age, PC, BMI, WC, DBP, SBP, GL, CL, HDL, LDL, and TL simultaneously)
was 0.880 [95% CI: (0.878, 0.888)] and raised to 0.901 [95% CI: (0.897,0.904)] in the
validation dataset when adding PRS into the model. In brief, the polygenic score indeed helps
to identify high-risk individuals for T2D, while the role of T2D-related covariates could also
help increase prediction accuracy. As showed in Figure 5.22, PRS, sex, age, physical
measurements, and most clinical factors were all significantly associated with T2D (p <
0.0001).[54]

Dataset Mean modely models modelq models models
Testing 0.003 0.671 {0.666-0.676) 0.749 (0.744-0.754) 0.792 (0.787-0.796) 0.886 (0.882-0.889) 0.902 (0.899-0.905)
Validation 0.003 0.667 (0.663-0.672) 0.755 (0.752-0.755) 0.795 (0.790-0.800) 0.882 (0.878-0.888) 0.901 (0.897-0.904)

model;: AUC was determined using a logistic regression model adjusted for sex, age, and the first 10 principal components of ancestry. model;: AUC was determined
using a logistic regression model only considering sex and age. models : AUC was determined using a logistic regression mode! only considering genome-wide polygenic
scare. models: AUC was determined using a logistic regression model considering demaographic factors, physical measurements, and clinical factors. models : AUC was
determined using a logistic regression mode! adjusted for sex, age, body mass index, waist circumference, diastolic blood pressure, systolic blood pressure, glucose
level, cholesterol level, high-density lipoprotein, low-density lipoprotein, triglyceride level, and the first 10 principal components of ancestry.

Figure 4.20 | AUC of differentmodels in the testing and validation dataset[54]
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T2D ~ PRS + sex +age + PC

model, : T2D ~ sex + age + PC;
models : T2D ~ PRS;

modely : T2D ~ sex+ age + PC+ BMI 4 GL
+ CL+HDL+ LDL+ TL+ WC + DBP + SBP;

models : T2D ~ PRS 4-sex + age + PC + BMI+ GL4-CL
+HDL + LDL + TL +WC + DBP + SBP.

Figure4.21

Prediction models[54]

In summary, about 30% of participants were at greater than or equal to fivefold increased risk
of developing T2D, 12%were at greater than or equal to sixfold risk, and the top 7% were at
greater than or equal to sevenfold increased risk. Particularly, the stratified PRS according to
their percentiles showed that the “high-risk” group is strongly associated with the risk of T2D.
The above results suggest that our PRS model can be used as a powerful tool in identifying
individuals at high risk of T2D. Although the present study has made important contributions
in identifying individuals with increased risk of developing T2D; however, there exists one
major limitation. Individuals in the UKB dataset are primarily European ancestry; the specific
PRS calculated here may nothave optimal predictive power for other ethnic groups because the
allele frequencies, LD patterns, and effect sizes of common SNPs may be different across

populations with different ethnic backgrounds.[54]
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Variables Estimate beta Stand error 4 p-value

(Intercept) 24,500 0.495 49.474 <2 x 10716
PRS 12370.000 167.400 73.943 <2 x 10716
cL 0.591 0.057 10.377 <2 x 1078
HDL 0.051 0.063 0.876 0.381

LDL 0.010 0.068 0.140 0.888

TL 0.285 0.013 21.826 <2 x 1078
Sex 0.214 0.028 7.731 1.070 x 10714
WC 0.045 0.002 28.356 <2 x 10716
BMI 0.036 0.004 9.325 <2 x 10716
Age 0.0680 0.002 38.401 <2 x 10716
DBP 0.018 0.001 13.928 <2 x 1078
SBP 0.005 0.001 7.626 2.410 x 10778
GL 0.449 0.006 69.917 <2 x 10716
PC10 0.020 0.004 4726 2280 x 106

BMI, bady mass index; CL, cholesterol level; DBF, diastolic blood pressure; GL,
glucose level; PRS, genome-wide polygenic score; HDL, high-density lipoprotein;
LDL, low-density lipoprotein; SBF, systolic blood pressure; TL, triglyceride level;
WC, waist circumference.

Figure4.22

Parameter estimations under model5 invalidation dataset]54]
4.7 Conclusion

PRS is a useful tool that can be used to summarize genetic information into a single variable
for statistical analysis. However, PRSs are only now beginning to make the transition from
association analyses in research settings to utility in clinical settings, and there are a number of
technical, practical, and ethical issues that must be addressed before widespread clinical
adoption. As the body of literature surrounding PRS increases, so too will the ability to use
PRSs to predict relative disease risk earlier in life. This relies upon the notion that an
individual’s personal genome is effectively unchanging from birth to death, so genetic risk
should remain constant. Although there is much work to be done to make this a reality, it may
eventually be possible that clinicians will be able to determine risk for a wide array of diseases
based on a single PRS-optimized genotyping chip. Informing disease risk for a myriad of
outcomes early in life will help improve individualized prevention efforts, screening, and life

planning.

The utilities of PRS have been explored in many common diseases, such as cancer, coronary
artery disease, obesity, and diabetes, and in various non-disease traits, such as clinical
biomarkers. These applications demonstrated that PRS could identify a high-risk subgroup of
these diseases as a predictive biomarker and provide information on modifiable risk factors
driving health outcomes. On the other hand, there are several limitations to implementing PRSs
in clinical practice, such as biased sensitivity for the ethnic background of PRS calculation and
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geographical differences even in the same population groups. Also, it remains unclear which
method is the most suitable for the prediction with high accuracy among numerous PRS
methods developed so far. Although further improvements of its comprehensiveness and
generalizability will be needed for its clinical implementation in the future, PRS will be a
powerful tool for therapeutic interventions and lifestyle recommendations in a wide range of
diseases.[56]

In summary, this thesis has reviewed common methods to construct and evaluate PRSs. In
developing and performing a PRS analysis, there are many options to consider depending on
the underlyinggoals of the study. Careful use of dataandinterpretationof resultsare a necessity
in order not to overstate the current clinical importance of PRSs. Nevertheless, the potential for
disease prediction using PRSs should not be ignored and, with increasing sample sizes, their
use should increase if limitations are appropriately identified.[53] Predictive diagnosis or risk
profiling should provide opportunities for environmental modification (such as smoking
cessation), early therapy (for example, administering statins for individuals at risk of
cardiovascular disease) or targeted cancer screening (for example, the use of colonoscopy in
families or individuals at genetic risk of colorectal cancer). Diagnostic medicine will become
increasingly important as our understanding of disease susceptibility and progression markers
improves and as the tools for rapid and effective disease prediction and monitoring are
developed.[2]
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