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Περίληψη 

Από την πρώτη αλληλούχιση του ανθρώπινου γονιδιώματος το 2003, η ανθρώπινη γενετική 

έχει υποστεί μια πραγματική επανάσταση λόγω της μεγάλης διαθεσιμότητας συνόλων 

δεδομένων με γενετικές πληροφορίες και της εισαγωγή της βιοπληροφορικής σε αυτόν τον  

τομέα. Οι νέες γενετικές ανακαλύψεις επιτρέπουν την κατανόηση του τρόπο με τον οποίο τα 

γονίδια αλληλεπιδρούν με διάφορους παράγοντες του τρόπου ζωής ή του περιβάλλοντος, σε 

μια πορεία προς ένα πιο αποτελεσματικό κλινικό έλεγχο. Οι μελέτες συσχέτισης σε ό λο το 

γονιδίωμα (GWAS) αποσκοπούν στον εντοπισμό συσχετίσεων γονότυπων με φαινότυπους, 

ελέγχοντας για διαφορές στη συχνότητα αλληλομόρφων γενετικών παραλλαγών μεταξύ 

ατόμων. Ο τυπικός στόχος των GWAS είναι ο εντοπισμός τόπων που φιλοξενούν αιτιολογικές 

παραλλαγές και η χρήση γενετικών παραγόντων κινδύνου για να γίνουν προβλέψεις σχετικά 

με το ποιος διατρέχει κίνδυνο και να αναπτυχθούν νέες στρατηγικές πρόληψης και θεραπείας. 

Μια απλή και διαισθητική προσέγγιση για τη μετατροπή των γενετικών δεδομένων σε ένα  

προγνωστικό μέτρο επιδεκτικότητας σε ασθένειες είναι η συγκέντρωση των επιδράσεων αυτών 

των τόπων σε ένα ενιαίο μέτρο, το πολυγενετικό σκορ κινδύνου (PRS). Παρουσιάζονται επίσης 

κάποιες έρευνες που έχουν πραγματοποιηθεί για την εύρεση βιοδεικτών.  
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Abstract 

Since the first sequencing of the human genome in 2003, human genetics has undergone a 

real revolution due to the wide availability of datasets with genetic information and the 

introduction of bioinformatics in this field. New genetic discoveries are enabling an 

understanding of how genes interact with various lifestyle or environmental factors, in a move 

towards more effective clinical control. Genome-wide association studies (GWAS) aim to 

identify genotype-phenotype associations by testing for differences in the frequency of allelic 

genetic variants between individuals. The typical goal of GWAS is to identify loci harboring 

causal variants and use genetic risk factors to make predictions about who is at risk and to 

develop new prevention and treatment strategies. A simple and intuitive approach to converting 

genetic data into a predictive measure of disease susceptibility is to aggregate the effects of 

these loci into a single measure, the polygenic risk score (PRS). Some research that has been 

carried out to find biomarkers is also presented. 
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CHAPTER 1 

HUMAN GENOMICS 

 

1.1 Introduction 

Since the human genome was first sequenced in 2003, human genetics has undergone a 

veritable revolution. The growth in computing power, the explosion in the availability of  

datasets with genetic information, and the infusion of bioinformatics into this field have  

changed our views about how we think about disease and behavior. The relevance of genetics 

has also penetrated disciplines far beyond its original homes in biology, epidemiology, and 

the medical sciences to gain relevance in new areas across the biomedical, social, and 

psychological sciences. As of 2019, around 4,000 genetic discoveries have been published, 

linking the genetic basis of thousands of traits ranging from height, type 2 diabetes, and body 

mass index (BMI) to coffee consumption, depression, neuroticism, and even the age when 

you have your first child. Researchers in the biomedical sciences can now estimate the genetic 

component of many major diseases such as type 2 diabetes, breast cancer, or cardiovascular  

lar disease. More importantly, new genetic discoveries allow them to understand how genes 

interact with different lifestyle or environmental factors in a move toward more  effective 

clinical screening and interventions. The goal of statistical genetics is to explain population 

variation or, in other words, to ask why humans differ in their health outcomes, behavior, or 

appearance. [58] 

1.2 Definitions 

DNA (deoxyribonucleic acid) is the molecule that makes up the genetic material contained 

within our bodies' cells. As Figure 1.1 illustrates, two long DNA chains, composed of simpler 

molecular units (called nucleotides), coil around each other to form a double helix. DNA 

contains the genetic instructions that tell each cell which proteins to make. A genome is the 

complete set of genetic material of an organism or, in other words, the entire set of DNA 

contained within the nuclei of somatic cells in the human body. The size of each organisms' 

genome is the total number of bases in one representative copy of its nuclear DNA. As the 

figure shows, a gene is a section of DNA found on a chromosome that consists of a particular 

sequence of nucleotides at a given position on a given chromosome that in turn codes for a 



2 
 

specific protein (or an RNA molecule). A gene is a segment of DNA that tells the cell how to 

make a certain protein. Humans are estimated to have 20,000 to 25,000 genes.[58] 

 

Figure 1.1 Organization of DNA in the cell nucleus [58] 

DNA strands are polymers, which are made up of many repeating units called nucleotides. 

Nucleotides form the structure of DNA and consist of one of four nitrogenous bases-

cytosine (C), thymine (T), adenine (A), and guanine (G)-plus a molecule of sugar 

(deoxyribose) and a phosphate molecule. The sugar and phosphate molecules on the  nucleotides 

alternate but also form the backbone of the DNA strands. One of the four dif ferent nitrogenous 

bases-A, T, C, or G-joins to each sugar. Recall from Figure 1.1 that DNA is in the form of 

a double helix. Each base links to a base on the opposite end of the  strand in the double helix. 

Humans are thus composed of diploid cells or in other words, pairs of chromosomes with one 

set of chromosomes inherited from each parent. Since we are diploids, DNA's two strands are 

complementary to each other or in other words they follow complementary base pairing rules. 

Complementary base pairing means that A always pairs with T and C always pairs with G, 

forming base pairs. The two strands are complementary to each other and therefore contain the 

same information. As figure 1.1 also illustrates, it is the order of these bases along a single 

strand that comprises the genetic code.[58] 

A chromosome is a single molecule of DNA that comprises part of the genome. It consists 

of nucleic acids and protein and is found in the nucleus of somatic cells and carries genetic 

information in the form of genes. As Figure 1.1 demonstrates, chromosomes are central to our 

understanding of genetics. Humans have 23 chromosome pairs (i.e., 46 chromosomes) in total 

consisting of 22 autosomal chromosomes and one pair of sex chromosomes, two Xs for females 

(XX) and an X and a Y for males (XY). Autosomal chromosomes are the numbered 
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chromosomes that are not related to sex determination or, in other words, chromosome 1 

through 22. [58] 

The term genotype is defined as the observed genetic sequence information and can be 

thought of as a categorical variable. Humans carry two homologous chromosomes, which are 

defined as segments of deoxyribonucleic acid (DNA), one inherited from each parent, that code 

for the same trait but may carry different genetic information. Thus, in its rawest form in 

humans, the genotype is the pair of DNA bases adenine (A), thymine (T), guanine (G) and/or 

cytosine (C) observed at a location on the organism’s genome. This pair includes one base 

inherited from each of the two parental genomes and should not be confused with the pairing 

that occurs to form the DNA double helix. Genotype data can take different forms across the 

array of genetic association studies and depend both on the specific organism under 

investigation and the scientific questions being considered. For example, in humans, most SNPs 

are biallelic, indicating there are two possible bases at the corresponding site within a gene (e.g., 

A and a). Furthermore, since humans are diploid, each individual will carry two bases, 

corresponding to each of two homologous chromosomes. As a result, the possible genotype 

values in the population are AA, Aa and aa. In the context of genotype data, it might be possible 

to test the null hypothesis that cholesterol levels are the same for individuals with genotype AA 

and genotype aa. In the expression setting, the null hypothesis may instead be framed as the 

gene expression level being the same for individuals with cardiovascular disease and those 

without cardiovascular disease. [50] A measure of disease status or disease progress, referred 

to as the trait or phenotype, is also collected for analysis. Notably, in population association 

studies, it generally treats the genotype as the predictor variable and the trait as the dependent 

variable.[50]  

Genes are defined simply as regions of DNA that are eventually made into proteins or are 

involved in the regulation of transcription; that is, regions that regulate the production of 

proteins from other segments of DNA.[50] 

A mutation is a permanent change in the sequence that makes up a gene. Mutations can affect 

a single base pair or multiple genes across a large segment of a chromosome. There are two 

types of gene mutations. The first is the hereditary mutation, which is inherited from a parent, 

is present for an individual's entire life, and is in almost all cells in the body. It is also often 

referred to as germ line mutation, which is a mutation that will be inherited by the offspring of 
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the organism. The second type is somatic or acquired mutations that occur during an individual's 

lifetime and exist only in certain cells. These mutations are generally related to environmental 

factors. This could include, for example, smoking or exposure to ultraviolet radiation from the 

sun. They can also occur if there is an error during DNA replication before or during cell 

division. These acquired mutations in somatic cells are not passed on to the next generation. 

[58] 

A genetic polymorphism refers to the variation in the DNA sequence between individuals. 

The possible variants of a polymorphism are referred to as alleles. A variation must be present 

in at least 1% of a population to be classified as a polymorphism. Such a variable site is 

commonly referred to as a single-nucleotide polymorphism (SNP).[50] In population-based 

association studies, the fundamental unit of analysis is the single-nucleotide polymorphism 

(SNP). A SNP simply describes a single base pair change that is variable across the general 

population at a frequency of at least 1%.[50] To date, they have not found polymorphisms at 

every site in the genome. This is due to the fact that only a selection of people have been 

genotyped but also that variation at some sites cannot be tolerated.[58] 

The most common form of human genome variation is SNPs, and they can be used to 

associate genotypic variation with phenotype. SNPs are the markers that are the focus of the 

genome wide association study (GWAS), a search across the genome, examining each genetic 

variant (or region) one by one to see if there is a statistical relationship  (association) between 

SNPs and a phenotype. The genetic variants that are isolated from these GWASs are then often 

used to engage in either further statistical or downstream biological analysis. For this thesis, 

SNPs are the genetic markers of choice because they are heritable and abundantly distributed 

across the genome.[58] 

The minor allele frequency (MAF), also referred to as the variant allele frequency, refers to 

the frequency of the less common allele at a variable site. In the literature, polymorphisms are 

distinguished by their MAF and categorized as common (MAF > 0.05), low-frequency (0.01 < 

MAF <0.05), or rare (MAF <0.01) variants.[58] 

The phenomenon of polygenicity implies that no single genetic variant determines or is 

associated with a trait, but rather that it is often hundreds and thousands of genetic variants that 

each have a small influence on a trait. Such phenotypes are called "complex" since they have a 

multifactorial genetic basis. This is often related to the common disease-common variant (CD-
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CV) hypothesis, which holds that common disease-associated alleles will be found in all 

populations that manifest a given common disease. In the most extreme omnigenic model, each 

variant on each gene is assumed to influence a complex trait and will have a small additive or 

multiplicative effect on the phenotype. [58] The most important recent developments in 

statistical genetics surround the discovery of ubiquitous polygenicity in most traits that we 

study. An intuitive implication of polygenicity is that the effect sizes of individual SNPs are 

smaller than if only a few SNPs would be associated with an outcome. Small effects are harder 

to discover given a fixed statistical measure of the certainty of the discovery. Polygenicity 

therefore explains the disappointingly small effects of discovered variants as well as the small 

number of robustly identified variants.[58]  

Recall that polymorphic refers to the presence of more than one allele at a specific locus. A 

locus (plural loci) is a location on the genome, which could be the location of a gene or marker. 

A locus or position may refer to the part of the genome that codes for a gene or to the position 

of a nucleotide in the genome. When an individual has two of the same alleles, regardless of 

whether it is dominant or recessive, they are called homozygous. Heterozygous refers to having 

one of each of the different alleles. A person is heterozygous at a gene locus when their cells 

contain two different alleles. Heterozygosity thus refers to a specific genotype. Homozygous 

wildtype, on the other hand, refers to the state of having two copies of the more common allele.  

This distinction also explains the difference between dominant traits, which is when only one 

allele of a gene is necessary to express the trait versus recessive traits, where both alleles of a 

gene must be identical to express the trait. For dominant traits we use two capital letters (e.g., 

AA) and for a recessive trait we use two lowercase letters (e.g., aa). Dominance in melanin 

deposits results in freckles, for instance. A homozygous freckled person would have the FF 

genotype while someone without freckles with the homozygous gene would be represented by 

ff. [58] 

A quantitative trait locus (QTL) is a region of DNA which is associated with a particular 

phenotypic trait, which varies in degree, and which can be attributed to polygenic effects, i.e., 

the product of two or more genes, and their environment. These QTLs are often found on 

different chromosomes. The number of QTLs which explain variation in the phenotypic trait 

indicates the genetic architecture of a trait. Typically, QTLs underlie continuous traits (those 

traits which vary continuously, e.g., height) as opposed to discrete traits (traits that have two or 

several character values, e.g., red hair in humans, a recessive trait). Moreover, a single 
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phenotypic trait is usually determined by many genes. Consequently, many QTLs are associated 

with a single trait. Another use of QTLs is to identify candidate genes underlying a trait. The 

DNA sequence of any genes in this region can then be compared to a database of DNA for 

genes whose function is already known, this task being fundamental for marker-assisted crop 

improvement. [62] 

1.3 Genomic Medicine 

Genomic medicine is an interdisciplinary medical specialty involving the use of genomic 

information that has rapidly grown since the completion of the Human Genome Project (HGP) 

more than a decade ago. The genome is the complete set of information in an organism’s 

DNA.[48] The HGP allowed the investigation of basic genome physiology, and the 

identification of approximately 10 million common DNA variants. These projects were the first 

to postulate the possibility of a better understanding of disease pathobiology and 

pathophysiology via catering the identification and characterization of small variations in the 

genome, termed single nucleotide polymorphism (SNPs). The venerable field of genetics 

studies single genes, whereas the emerging field of genomics studies all of a person's genes.[47] 

Some key precision medicine applications lie within the realm of cancer diagnosis and 

potential treatment, for example, the identification of a prostate-specific antigen (a single-strand 

glycoprotein) which is now routinely used for clinical diagnosis of prostate cancer (PCa). Other 

pioneering examples relate to the diagnosis of rare diseases. For example, the CFTR gene has 

been identified as a causal gene for cystic fibrosis, an autosomal, recessive disease. Such 

advances have led to routine clinical use of both biomarker panels as well as whole exome and 

genome sequencing both for the case of cancer as well as rare diseases. It has been long been 

recognized that there is a significant variability in drug response with respect to the efficacy, 

optimal dose, and adverse drug reactions, with the prevalence of medication -related adverse 

events among inpatients in the Western world estimated to affect 19% of patients. Genome 

technology allows for the screening and identification of the right drugs for the right patients, 

forming the so-called pharmacogenomics field, a key component of the personalized medicine 

vision.[55] 

The prior probability of any variant discovered through genome sequencing being the cause 

of a patient's rare condition is exceedingly low. Attempts to catalog human genetic diversity 

have revealed that a typical human genome differs from the reference human genome at 4.1-5 
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million locations. Most of these variations will be completely benign, while some may have a 

minor impact on the risk of several common diseases, and only a tiny number may have the 

ability to cause significant disease in an individual or their children (potentially in combination 

with variants inherited from their partner). The bulk of these variants are identified through 

genome sequencing and require thorough filtering to obtain a relevant output. The human 

genome sequence will someday change many elements of healthcare practice. It will improve 

our understanding of disease mechanisms and lead to the development of new medications and 

treatments. In the short term, molecular phenotyping based on genetic and genomic information 

will enable earlier and more accurate disease prediction and diagnosis, as well as disease 

progression. The focus of medicine will shift away from late-stage illness cures and toward 

disease prevention.[49] 

A classical biomarker, also known as a biological marker, is any trait that can be used to 

evaluate a certain disease condition or physiological function. Biomarkers might be 

correlational (just related to disease) or functional (that is, they have an identified mechanism 

of action related to disease). Biomarkers can be measured individually or in groups to infer risk, 

diagnosis, prognosis, and therapy response. Biomarkers include DNA, RNA, proteins, 

metabolites, host cells, and microbes. Biomarkers can be detected in a wide range of biological 

materials, including blood, organ tissue, stool, saliva, and urine.[47] 

A genomic biomarker is "a DNA or RNA characteristic that is an indicator of normal 

biologic processes, pathogenic processes, and/or response to therapeutic or other 

intervention".[47] It is a DNA sequence that causes disease or is associated with susceptibility 

to disease. It generally represents the expression, function, or regulation of a gene and can be 

used clinically to diagnose and monitor disease. Α genomic biomarker represents the 

expression, function, or regulation of a gene. The definition of a genomic biomarker does not 

include the measurement and characterization of proteins or low molecular weight metabolites. 

Robust, reproducible, and accessible genomic biomarkers are of diagnostic value and may lead 

to the identification of causal factors. They can therefore be used clinically to screen for 

diagnoses, to monitor the activity of diseases, and may also be useful to guide molecularly 

targeted therapy and personalized regimens or to assess therapeutic response.[47] 
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1.3.1 Advances in Genomic Medicine 

Healthcare is becoming more personalized as a result of genomic applications.  One of the 

important approaches for precision medicine is stratifying individual genetic susceptibility 

based on inherited DNA variation. Disease susceptibility and risk can now be quantified and 

predicted during birth using "stable genomics," or DNA-based assessments that do not change 

over a person's lifetime.[3] The ultimate goal of precision medicine is that medicine will be 

informed by a genetic understanding of the disease rather than a "one size fits all" approach. 

Precision medicine involves not only researching DNA but also taking into account aspects 

such as where a person lives, what they do, and their family's health history. Instead of 

depending on tactics that are the same for everyone, the idea is to develop personalized 

prevention or treatment approaches to help specific individuals stay healthy or get better.[47] 

The application of knowledge gained from sequencing human genomes is critical for precision 

medicine, allowing patients to be matched to the best therapy, so that a patient is treated with 

the appropriate drug at the right dose at the right time, or changing treatment due to resistance 

or adaptability through disease evolution.[4] Patients with the same signs and symptoms of 

cancer often have different outcomes. The precision medicine approach provides a research 

strategy to develop biomarkers that can be used to classify patients with the same cancer into 

finer taxa (subclass 1 versus subclass 2) by biomarkers that predict prognoses derived from the 

synthesis of large amounts of data to identify discriminating biomarkers. For example, patients 

in subclass 1 who have a worse prognosis (that is, have biomarkers that are associated with 

poor survival) may be given a more aggressive treatment (treatment X) versus those in subclass 

1 who have a better prognosis (that is, have biomarkers that are associated with good outcome) 

and require a less aggressive therapy (treatment Y). Additionally, the converse may be true 

where individuals with a worse prognosis are provided less aggressive therapy if no benefit 

from aggressive treatment has been observed for this subclass.[47] 
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Figure 1.2 

Classifying patients into new, specific taxa [47] 

Genetic testing is a type of medical test that detects chromosomal, gene, or protein changes. 

The majority of the time, testing is used to detect changes associated with inherited disorders. 

A genetic test’s results can confirm or rule out a suspected genetic condition, or they can help 

determine a person’s risk of developing or passing on a genetic disorder. There are now two 

types of genetic testing available: clinical and direct-to-consumer (DTC). A clinical genetic test 

is typically performed in a clinical setting with access to trained medical professionals, such as 

genetic counselors, to assist patients in interpreting the results, which can be extremely difficult 

to misinterpret. For example, sometimes the results of a genetic test can give a false sense of 

assurance or sound a false alarm, but a conversation with a genetic counselor can help put the 

test results into context or explain their implications. By contrast, DTC genetic testing is done 

at home after ordering a simple test kit online. However, since, the validity of some DTC 

genetic tests is questionable, and their results are not usually interpreted by a qualified medical 

professional, their purpose may be more recreational than medical. Privacy and security of 

genetic data are not completely guaranteed with any DTC genetic test, but consumers can take 

control of their privacy by knowing and reading the privacy policy and opting out of consent 

so that their information is not shared with a third party.[47] 

Gene therapy is a type of treatment that involves inserting healthy foreign genetic material 

into a person’s cells in order to cure a rare condition or disease. Gene therapy, rather than just 

treating symptoms, aims to correct the underlying genetic cause of the disease and thus serve 

as a one-time cure. While gene therapies are becoming more widely available, they are still out 

of reach for the general public. Luxturna, which is used to treat a rare type of vision loss, has a 

$850,000 list price. 
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Understanding why the same genetic condition can manifest so differently in different 

people is often at an early stage, which makes genetic counselling difficult, particularly in the 

prenatal setting. It is becoming possible to provide more personalized risk estimates for some 

genetic conditions by combining knowledge of a person’s genetic diagnosis with analysis of 

other factors that may influence their risk. In general, risk personalization has relied on 

clinically obvious characteristics: for example, men with pathogenic BRCA variants have a 

lower risk of developing breast cancer than women with pathogenic BRCA variants. Recently, 

genetic testing has been developed to supplement ‘key’ genetic test results in order to provide 

a more refined personal risk assessment. For example, using a polygenic risk score based on 

breast and ovarian cancer susceptibility SNPs identified through population GWAS revealed 

significant differences in absolute cancer risks between women with pathogenic BRCA variants 

and higher versus lower polygenic risk score values. This has yet to be implemented in routine 

clinical practice, but it has the potential to help women with pathogenic BRCA variants make 

better decisions about how and when to manage their cancer risk.[49] 

1.4 LD-HWE  

This section presents two controls that are very important for processing genetic data.  

1.4.1 Linkage disequilibrium (LD) 

Linkage disequilibrium (LD), which refers to the fact that alleles are not randomly associated 

at different loci. Polymorphisms are inherited together through what is called linkage 

disequilibrium (LD), which is the nonrandom occurrence in members of a population of the 

combinations of 2 or more linked genomic loci. In other words, linkage disequilibrium is 

defined as an association of the alleles present at each of two positions in a genome. For 

instance, if a T at one SNP locus is generally observed with a G at another SNP locus, these 

two SNPs are said to be in linkage disequilibrium. Their co-occurrence is more correlated than 

we would expect by random (equilibrium) conditions. Two alleles (i.e., that are variants of 

polymorphisms) which are located at different positions at the same chromosome are in LD if 

they are not inherited independently from one another. In general, alleles which are located 

close together at the same chromosome will have stronger LD. Conversely, when two SNPs are 

inherited randomly (i.e., unlinked), they are said to be in equilibrium. The hypothesis of interest 

is whether the gene is involved in the disease's causal pathway. In this case, the SNP loci chosen 

within the gene may not be functional; that is, they may not directly cause the disease. These 
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sites, however, are likely to be associated with disease because they are in linkage 

disequilibrium (LD) with the functional variant.[50] High LD thus means that two SNPs are 

linked, which is measured r2. 

This measure is based on Pearson’s  𝜒2-statistic for the test of no association between 

the rows and columns of an r × c contingency table. Specifically, r2 is defined as 

r2 = 𝜒1
2/𝛮     (1.1) 

Pearson’s 𝜒2-test statistic is given by  

𝜒1
2 =   ∑

(𝑂𝑖𝑗−𝐸𝑖𝑗)2

𝐸𝑖𝑗
𝑖,𝑗      (1.2) 

where I = 1, 2, . . ., r, j = 1, 2, . . ., c and Oij and Eij are respectively the observed and expected 

cell counts for the I, j cell of an r × c table.[50] The r2 measure is a statistical measure of shared 

information between two markers and is commonly used to determine how well one SNP can 

act as a proxy for another. [58] 

1.4.2 Hardy-Weinberg equilibrium (HWE) 

The Hardy-Weinberg equilibrium (HWE) is a theoretical mathematical model describing the 

probability and distribution of genotype frequencies in a population. The main purpose of the 

HWE is to express the principle that the amount of genetic variation (allele and genotype 

frequencies) in a population will remain constant from one generation to the next in the absence 

of evolutionary influences. HWE denotes independence of alleles at a single site between two 

homologous chromosomes. Consider for example the simple case of one biallelic SNP with 

genotypes AA, Aa and aa. HWE implies that the probability of an allele occurring on one 

homolog does not depend on which allele is present on the second homolog. The HWE is used 

to model and predict genotype frequencies in large, stable populations.  It is an important tool 

for understanding population structure. If certain assumptions are met, genotype and allele 

frequencies can be estimated from one generation to the next. In genetic association studies, 

HWE principles have been applied to detect genotyping error and disease susceptibility loci. 

When a population is in HWE for a gene, it is not evolving, and allele frequencies will remain 

the same across generations. The HWE dictates that the frequencies and relative proportions of 

genotypes remain stable-or in other words in equilibrium-over time if all assumptions of the 
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HWE are met. The proportions will remain constant at this equilibrium if these five assumptions 

hold: 

1. There is no natural selection (i.e., all genotypes have equal fitness). Natural selection is the 

increase or decrease of particular genetic traits as a function of the differential fitness and the 

reproductive success of individuals. In other words, natural selection operates when particular 

genetic variants render the individuals who bear them more likely to survive. Consequently, 

those genetic variants increase in frequency in the next generation. Natural selection is said to 

drive adaptive evolution to select for traits that are beneficial to a particular population within 

an environment. One way to think about selection is that it is a filter that removes suboptimal 

alleles from a population so that it is better adapted to its environment. Fitness-also sometimes 

referred to as longer reproducing, they are considered as no longer evolutionary fit.  

2. There is no genetic drift. Genetic drift is a change in allele frequencies oner time in a 

population of finite size due to random transmission of parental alleles from parents to offspring 

and due to the fact that some individuals randomly produce more offspring than others, 

irrespective of their genotype. 

3. A closed population (there is no significant migration in or out of the population) 

4. Mutation does not occur 

5. There is no assortative mating. In genetic research refers to a mating structure in which pairs 

of individuals that are genetically similar to each other mate with a higher probability than 

expected under random mating. 

If all of these assumptions are met, then four important conclusions can be drawn from the 

HWE theorem: (1) allele frequencies do not change from one generation to the next, (2) 

genotype frequencies can be inferred from allele frequencies, (3) only one generation is required 

to go from non-equilibrium to equilibrium, and (4) once the system is in HWE, it stays in HWE. 

These assumptions thus entail that the population structure is not from two or more 

subpopulations, there is no inbreeding (i.e., mating without one or more common ancestors), 

males and females have similar allele frequencies, all members of the population have equal 

reproductive success and the population is infinitely large. If the basic assumptions are not met 

for a particular gene, the population may evolve. Or in other words, genotype frequencies might 

change. In practice, violation of the HWE may also point to measurement error in genetic data. 
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Testing the HWE is therefore a crucial part of the quality control process in handling genetic 

data.[58] 

Tests of HWE include Pearson’s 𝜒2-test and Fisher’s exact test. The 𝜒2-test is 

computationally advantageous but relies on asymptotic theory. Thus, when more than 20% of 

the expected counts are less than five, Fisher’s exact test is preferable. Consider the 2 × 2 table 

of genotypes at a single locus given in Figure 1.3. Here n11 and n22 are the number of individuals 

with genotypes AA and aa, respectively, and these counts are observed. Notably, the genotypes 

Aa and aA are indistinguishable in population-based investigations, and thus we only observe 

the sum 𝑛12
∗ = n21 + n12 and not the individual cell counts, n21 and n12. The expected counts 

corresponding to these three observed counts, n11, 𝑛12
∗ , n22, are given respectively by E11 = N𝑝𝐴

2, 

E12 = 2N𝑝𝐴 (1 – 𝑝𝐴 ) and E22 = N(1 − 𝑝𝐴)2, where 𝑝𝐴  is the probability of A and is estimated 

based on the observed allele count. That is, we let 𝑝𝐴  = (2n11 + 𝑛12
∗ ) /(2N). The 𝜒2-test statistic 

is  

𝜒2 = ∑
(𝑂𝑖𝑗−𝐸𝑖𝑗 )2

𝐸𝑖𝑗
(𝑖,𝑗)𝜖𝐶   ̴𝜒1

2     (1.3) 

where now the summation is over the set C of three observed cells. This statistic is compared 

with the appropriate quantile of a 𝜒1
2-distribution to determine whether to reject the null 

hypothesis of HWE. 

 

Figure 1.3 

Genotype counts for two homologous chromosomes 

A statistically significant test of HWE suggests that the SNP under investigation is in Hardy-

Weinberg disequilibrium (HWD).[50] 
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The p-value from Fisher’s exact test is based on summing the exact probabilities of seeing 

the observed count data or something more extreme in the direction of the alternative 

hypothesis. Fisher showed that the exact probability from a contingency table such as Figure 

1.3 is given by 

𝑝𝐴 =
( 𝑛1.

𝑛11
)( 𝑛2.

𝑛22
)

( 𝑁
𝑛.1

)
=

𝑛1.!𝑛2.!𝑛.1!𝑛.2!

𝑁!𝑛11!𝑛12!𝑛21!𝑛22!
    (1.4) 

In practice, a test of HWE is used to assess whether either population admixture or 

stratification is present. While admixture and stratification represent two different 

phenomena—the former describes in-breeding while the latter implies the presence of multiple 

subpopulations in which there is no inbreeding—the manifestation of both is a violation of the 

HWE assumption.[50]
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CHAPTER 2 

HERITABILITY 

 

2.1 Introduction  

Heritability on the liability scale, h2, quantifies the proportion of variance of liability to disease 

attributable to inherited genetic factors. Is a measure of how well differences in people’s genes 

account for differences in their traits. [18] All individuals in the population carry some genetic 

risk variants and likely experience some nongenetic risk factors, but most individuals in the 

population are not affected– disease status results when the cumulative load exceeds a burden 

of risk threshold.[18] Heritability is formally defined as a ratio of variances.[17] Two types of 

heritability can be estimated. The broad-sense heritability (H2) evaluates the proportion of 

phenotypic variance explained by all genetic factors, including additive effects, dominant 

effects, and epistasis effects and the narrow-sense heritability (h2), on the other hand, evaluates 

the proportion of phenotypic variance explained by additive genetic effects.[39] It measures 

with a single number the fraction of variation between individuals in a population that is due to 

their genotypes. Because individuals transmit only one copy of each gene to their offspring, 

most relatives share only single or no copies that are identical by descent (IBD) (the most 

important exceptions are identical twins and full siblings (sibs)), and dominance and other non-

additive genetic effects that are based on sharing two copies do not contribute to their 

phenotypic resemblance. This is why the selection response and correlation of most relatives 

depend on h2 and not H2, and why h2 is the usual parameter.[17] Identical by descent (IBD) is 

a term used in genetic genealogy to describe a matching segment of DNA shared by two or 

more people that has been inherited from a common ancestor without any 

intervening recombination. The segments are considered to match if all the alleles on a paternal 

or maternal chromosome are identical (barring rare mutations and genotyping errors) and if 

the minimum threshold conditions set by the testing company have been met. Everyone has two 

copies of each chromosome – one chromosome inherited from their father and one chromosome 

inherited from their mother. Matching segments can be on half-identical regions (HIRs) 

(matches on the paternal or maternal chromosome) or fully identical regions (FIRs) (matches 

on both the paternal and maternal chromosome). FIRs are generally only seen in full siblings 
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and double cousins but are sometimes found in more distant relatives if the individual comes 

from an endogamous (intermarrying) population. [63] 

2.2 Definition of heritability 

Because heritability is a ratio of variances, both the numerator and denominator need close 

scrutiny. The denominator contains the total observed variation, usually excluding variation 

that is due to known fixed factors and covariates such as sex, age and cohort. The numerator of 

h2 contains variation that is due to additive genetic values in the population. These values, called 

‘breeding values’ in the literature, are defined as the sum of the average effects of parents’ 

genes that give rise to the mean genotypic value of their progeny. Breeding values can be 

measured even when the average effects of individual genes cannot. A consequence of the 

definition of heritability is that it depends on the population, because both the variation in 

additive and non-additive genetic factors, and the environmental variance, are population 

specific. Genetic variance depends on segregation in a population of the alleles that influence 

the trait, the allele frequencies, the effect sizes of the variants and the mode of gene actions. All 

these variables can differ across populations. Similarly, environmental variance can vary across 

populations. Therefore, the heritability in one population does not, in theory, predict the 

heritability of the same trait in another population. In practice, heritabilities of similar traits are 

often remarkably similar in other populations of the same species, or even across species. 

Heritability can also differ between sexes, and heritability of the same trait can differ early and 

late in life.[17] 

Observed phenotypes (P) of a trait of interest can be partitioned, according to biologically 

plausible nature–nurture models, into a statistical model representing the contribution of the 

unobserved genotype (G) and unobserved environmental factors (E):  

Phenotype (P) = Genotype (G) + Environment (E)  (2.1) 

The variance of the observable phenotypes (𝜎𝑃
2) can be expressed as a sum of unobserved 

underlying variances (𝜎𝐺
2 and 𝜎𝐸

2 ): 

𝜎𝑃
2 = 𝜎𝐺

2 + 𝜎𝐸
2          (2.2) 

Heritability is defined as a ratio of variances, by expressing the proportion of the phenotypic 

variance that can be attributed to variance of genotypic values: 
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Heritability (broad sense) = H2 = 
𝜎𝐺

2

𝜎𝑃
2   (2.3) 

The genetic variance can be partitioned into the variance of additive genetic effects (breeding 

values; 𝜎𝐴
2), of dominance (interactions between alleles at the same locus) genetic effects (𝜎𝐷

2), 

and of epistatic (interactions between alleles at different loci) genetic effects (𝜎𝐼
2): 

𝜎𝐺
2=𝜎𝐴

2 + 𝜎𝐷
2 + 𝜎𝐼

2     (2.4) 

and 

 heritability (narrow or strict sense) = h2 = 
𝜎𝐴

2

𝜎𝑃
2    (2.5) 

2.3 Heritability Estimation 

Estimates of heritability on the liability scale depend on knowledge of baseline risk of disease 

in the population from which the twin and family cohorts are drawn and estimates of baseline 

risk are often surprisingly difficult to pin down. They may also vary between populations, 

across ages and may depend on whether nongenetic factors have been recorded and included in 

the analysis. Hence, in reality heritability estimates should be viewed as pragmatic benchmarks 

representing evidence for low, moderate or high contributions of genetic effects.[18] 

Accurate estimation of heritability can show the degree to which genetic factors influence 

phenotypes and improve our understanding of the genetic basis of disease and disease -related 

complex traits. Indeed, heritability plays an important role across a range of genetic 

applications: it is a key for understanding the evolutionary forces underlying natural selection; 

it determines how a population will respond to selection; it predicts, at least in part, gene 

mapping power in genome-wide association studies; it can estimate, quite accurately in some 

cases, the phenotypic value of an individual and thus facilitate genomic selection via predicted 

breeding values; and it provides an upper limit for the genetic prediction of phenotypes.[39] 

2.3.1 Heritability with unknown pedigrees 

Genetic markers can help to estimate heritability in novel ways. When phenotypes are collected 

on a sample of individuals whose relatedness is partially or wholly unknown, genetic markers 

can be used to infer relatedness between pairs of individuals, because related individuals tend 

to share more marker alleles than unrelated individuals. The inferred relatedness can then be 

correlated with phenotypic similarity, and quantitative genetic parameters, including 
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heritability, can be estimated. This method has been applied in evolutionary studies to estimate 

heritability for quantitative traits when phenotypes and DNA samples are available, but 

pedigree information is not, for example in fish and plants. A disadvantage of this method is 

that many polymorphic markers, typically hundreds, are needed to estimate relatedness 

accurately, for distant relatives in particular. Generally, the closer the relatives the fewer 

markers are needed. Offspring–parent pairs can be easily identified with only a few 

polymorphic markers because they always share at least one allele at all marker loci. Funding, 

rather than the availability of large numbers of polymorphic markers, could be the only limiting 

factor in the near future, given the rapid discovery of new markers in many species and the 

development and application of high-density array technology.   

2.3.2 Exploiting variation in relatedness 

Genetic markers can also be used to estimate heritability when the pedigree is known, by 

estimating the actual or realized relationship between relatives. Apart from offspring–parent 

pairs (who always share 50% of their genes IBD) and monozygotic twins (who share 100% 

IBD), the proportion of the genome that is shared IBD varies around its expectation for pairs of 

relatives because of the stochastic nature of segregation and recombination. A parent has one 

chromosome from each of its parents, and which parts of these two grandparental chromosomes 

are passed on to an offspring is a chance event (random segregation). This segregation causes 

variation in the actual number of alleles shared IBD between relatives. For example, for full sib 

pairs at a single locus, 25% of all the sib pairs share no alleles IBD (they are ‘unrelated’ at that 

locus), 25% share two alleles IBD (they are ‘clones’ at that locus) and the remaining 50% share 

one allele IBD. Recombination events during the formation of gametes reduce the variation in 

the proportion of a chromosome (or genome) that is shared IBD between relatives, by creating 

more segregating segments: the larger the number of segregating units, the smaller the variation 

in the proportion of segments shared. The measuring of multiple genetic markers in relatives 

allows the estimation of the total proportion of the genome that is shared. The amount of 

variation around the expectation is modest, but measurable. For example, for sib pairs the 

average proportion shared is 50%, with a standard deviation of approximately 4%. For half sibs 

the mean and standard deviation are 25% and 3%, respectively. The significance of this new 

approach is that heritability can be estimated without strong assumptions about the causes of 

family resemblance, because it is estimated from data within families. In the future, with 

sufficient data, this will allow unbiased estimation of heritability of contentious phenotypes 
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such as IQ in humans, unbiased estimation of the genetic contribution to concordance for 

disease in relatives, and unbiased estimation of additive and non-additive variance that is not 

affected by confounding factors.[17] 

A high heritability means that most of the variation that is observed in the present population 

is caused by variation in genotypes. It means that, in the current population, the phenotype of 

an individual is a good predictor of the genotype. However, it does not mean that the phenotype 

is determined once we know the genotype, because the environment can change or can be 

manipulated to alter the phenotype. A low heritability means that of all observed variation, a 

small proportion is caused by variation in genotypes. It does not mean that the additive genetic 

variance is small. This difference matters because the response to natural or artificial selection 

depends on the amount of genetic variation in the population. Many phenotypes relating to 

fitness in natural populations have a large amount of additive genetic variation relative to the 

mean [17] 

2.4 Heritability in Genomic Area  

GWAS identify SNPs that are statistically correlated with phenotypes of interest. After nearly 

a century of twin and family studies consistently demonstrating relatively high heritability of 

traits, there was some expectation that early GWAS would find a few genes of large effect. 

GWAS results in this respect have been disappointing. While twin studies indicate that roughly 

50% of the total variance in cognitive ability is explained by genetic differences, individual 

SNPs associated with cognitive ability typically explain less than .04% total variance. [64] 

One simple method of increasing the amount of phenotypic variance accounted for by 

GWAS (sometimes referred to as ‘ ℎ𝐺𝑊𝐴𝑆
2 ’) is to sum the total effects of genome-wide 

significant SNP hits. The first efforts to do this were met with disappointing results as well. 

Weedon et al. (2008) conducted a GWAS of height which identified 20 SNPs with a combined 

effect of 3%. These meager results inspired an impetus in the GWAS community to conduct 

bigger and better studies that would be required to power the small effect sizes of individual 

SNPs. Bigger data meant more SNPs, which meant more variance explained and, consequently, 

increased ℎ𝐺𝑊𝐴𝑆
2 . Even when summing the small effects of hundreds of genome-wide 

significant SNPs, variance explained by GWAS results are still quite small. [64] 
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To increase the amount of phenotypic variance accounted for by GWAS results , has been 

developed the ‘SNP heritability’ (or ℎ𝑆𝑁𝑃
2 ). SNP-based heritability only measures the variance 

explained by additive effects of the genotyped or imputed SNPs.  First, instead of limiting 

analysis to SNPs who meet the strict p-value GWAS significance threshold, SNP heritability is 

derived by analyzing the complete set of SNPs for each participant sample- even those that are 

not associated with the trait of interest. To this end, SNP heritability is biologically non-

obvious. Second, SNP heritability assumes linear additivity of SNP effects. Third, SNP 

heritability represents the current limit on the total variance that could be explained by SNPs, 

for any given phenotype. So, for example, if a polygenic score were maximally predictive, it 

would be equivalent to SNP heritability. Fourth, SNP heritability is consistently lower than 

traditional heritability. This gap between traditional heritability and SNP heritability is 

sometimes referred to as the missing heritability problem. [39] 

2.4.1 SNP Heritability estimation 

Accurate estimation of SNP heritability can help us better understand the degree to which 

measured genetic variants influence phenotypes. A common method to estimate SNP 

heritability based on summary-statistics is LD Score regression (LDSC). For each SNP, LDSC 

first computes its LD score, ℓj =∑ 𝑟𝑗𝑘
2

𝑘 , which captures approximately the number of genetic 

variants tagged by this SNP. LD score cannot be computed exactly due to the large number of 

genome-wide SNPs. Instead, it is typically estimated based on SNPs. After obtaining LD score, 

LDSC regresses the χ2 test statistic from GWAS on the per-SNP LD scores. Under a polygenic 

model, in which effect sizes are drawn independently from distributions with variance 

proportional to 1/ (p(1 – p)), where p is the minor allele frequency (MAF), the expected χ2 

statistic of variant j is: 

E [χ2| ℓj] =n ℓj·

ℎ𝑔
2

𝑀
 + na +1    (2.6) 

where a measure the confounding bias due to potential population stratification and cryptic 

relatedness, n is the sample size, M is the number of SNPs, such that 
ℎ𝑔

2

𝑀
 is the average heritability 

explained per SNP. Here, population stratification refers to the presence of a systematic 

difference in allele frequencies between subpopulations in the data possibly due to different 

ancestry. Cryptic relatedness occurs when individuals in the study are more closely related to 

another than thought. Both population stratification and cryptic relatedness, if uncontrolled, can 
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lead to upward biased SNP heritability estimation. By controlling for population stratification 

and cryptic relatedness using the parameter a, LDSC can mitigate their influence for SNP 

heritability estimation. Thus, regressing the 𝜒𝑗
2 statistics from GWAS against per-SNP LD score 

ℓj allows for estimation of ℎ𝑔
2. By modeling summary statistics, LDSC is not only applied to 

many data sets that previously cannot be analyzed for SNP heritability estimation, it also 

substantially improves computational speed and makes SNP heritability scalable to large data 

sets.[39] 

2.5 Missing Heritability 

The development of alternative methods of estimating heritability (e.g., GWAS and SNP 

heritability) has given rise to what is commonly referred to as the ‘missing heritability problem’. 

The missing heritability arises out of a numerical gap between the heritability measured using 

pedigree information and the measure through GWAS of the same trait. For example, traditional 

heritability estimates for IQ obtained using twin and family studies range between .5 and .7 

while SNP-based heritability estimates of IQ are currently no greater than .25. Missing 

heritability is greatest among complex, behavioral traits.  

Below pointed out some explanations for missing heritability. Epistatic interactions between 

SNPs entail that the effect of a given SNP will be modified (enhanced or diminished, for 

example) in the presence of another SNP, which violates the additivity assumption of SNP 

heritability. Similarly, gene-environment interaction and epigenesis have been proposed as 

explanations for missing heritability.[64] The GWAS analyses were not powered enough to 

capture all the genetic variants involved in disease susceptibility and that a lot of variants with 

small effects were missed. It is also possible the causal variants are not in complete linkage 

disequilibrium (LD) with the genotyped SNPs. Genomic heritability estimates could, therefore, 

be improved by taking into account all the genetic data to incorporate smaller effects that did 

not reach significance but could, however, significantly contribute to phenotype variability.  End 

of another explanation for the missing heritability is that rare variants that are not captured by 

SNP-chips could be major contributors of common disease susceptibility. [40] 
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CHAPTER 3 

GWAS 

3.1 Introduction 

Genome-wide association studies (GWAS) aim to identify associations of genotypes with 

phenotypes by testing for differences in the allele frequency of genetic variants between 

individuals who are ancestrally similar but differ phenotypically as well as genetic associations 

that may differ across ancestries, complicating direct comparisons between groups of 

individuals. The typical goal of the GWAS is to identify loci that harbor causative variants 

(hoping to implicate genes near these loci, thus leading to a better understanding of a disease 

and novel therapeutics) and to use genetic risk factors to make predictions about who is at risk 

and to identify the biological underpinnings of disease susceptibility for developing new 

prevention and treatment strategies. The most commonly studied genetic variants in GWAS are 

single-nucleotide polymorphisms (SNPs). [41] GWAS are more likely to provide insights into 

disease pathogenesis than useful information on personalized risk assessment. [21] Previous 

GWAS have shown that most traits are influenced by thousands of causal variants that 

individually confer very little risk, are often associated with many other traits and are correlated 

with causal and non-causal variants that are physically close as a result of linkage 

disequilibrium, making direct biological, causal inferences complicated.[41] GWASs test 

millions of separate regression models for associations between genetic variants and a 

phenotype. Phenotypes can be monogenic traits, strongly influenced by variation within a single 

gene, but many are polygenic complex traits, which are the result of variation within multiple 

genes and their interaction with behavioral and environmental factors. The results of a GWAS 

show the association of each individual SNP with a particular trait or phen otype across all 

genotyped regions. Since many traits are complex and linked to multiple genetic loci (i.e., 

polygenic), a GWAS often identifies many genetic variants that each have a small influence on 

a phenotype. Due to small effect sizes, very large data sources are required and the GWAS 

discovery typically culminates in many GWAS analyses conducted on multiple data sources 

and then combined into one meta-analysis.   
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3.2 Study Design 

A well-planned study can avoid systematic bias in analysis results while also providing enough 

statistical power to detect association signals. A trait can be a categorical disease status, such 

as affected or unaffected, or a disease-related biomarker, such as low-density lipoprotein 

cholesterol levels. In both population-based and family-based studies, quantitative phenotypes 

have been shown to have higher power than categorical traits. The choice of trait implies the 

appropriate statistical tests - logistic regression can be used to model disease susceptibility if 

the trait is categorical, whereas linear regression can be used for continuous phenotypes.  A 

retrospective case-control study begins with the selection of subjects based on disease status, 

followed by the collection of genetic and environmental data. This design benefits from a low-

cost and convenient sample collection process, and subject recall bias is not an issue when the 

variables being evaluated are genetic markers. To increase study power, the case-control genetic 

study can benefit from combining working data with external samples, though ideally the same 

protocol of sample storage, DNA collection, and genotyping should be followed to avoid 

systematic bias. A prospective cohort study establishes a cohort and performs baseline 

genotyping on all subjects, who are then followed up on and disease development is observed. 

The prospective study nested with a case-control design is a more cost-effective version in 

which a cohort is followed up on and those who develop disease are collected as cases while a 

subset of disease-free subjects is selected as controls. The study of genetic association using 

subjects collected in families is referred to as a family-based association study, and the simplest 

design consists of affected offspring with one or both parents. This type of study has the 

advantage of being resistant to population admixture, which is a common problem in case -

control studies, because it tests for the disequilibrium of alleles transmitted and not transmitted 

to affected offspring. According to studies, the family-based design is better suited for disorders 

with low prevalence (1%), and it has lower power when the disease has a polygenic genetic 

architecture or unscreened control subjects are used, compared to the unrelated case -control 

design. [43] The choice of data resource and study design for a GWAS depends on the required 

sample size, the experimental question and the availability of pre-existing data or the ease with 

which new data can be collected. There are several excellent public resources available that 

provide access to large cohorts with both genotypic and phenotypic information, and the 

majority of GWAS are conducted using these pre-existing resources.[41] 
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3.3 Quality Control (QC) Of Genetic Data 

The analysis of genetic data to conduct a GWAS entails an understanding of statistical 

inference in this setting but also numerous quality checks-referred to as quality control (QC). 

QC is one of the central aspects of working with genetic data.  Low-quality samples and 

genotype-calling errors will result in an increased number of false-positive and false-

negative findings. Quality control (QC) procedures can be used to exclude low-quality  

samples or markers and prevent misleading associations in subsequent analysis. Because 

the impact of removing a biomarker is possibly bigger than the impact of removing one 

subject, the QC should be performed first on a 'per-individual' basis and then on a 'per-

biomarker' basis to reduce the likelihood of incorrectly removing a causal association.[43]  

3.3.1 Sample QC 

The first step is to ensure that the individuals included in the sample have high-quality data.  

1. Sex inconsistencies occur if discrepancies are found (e.g., an individual is recorded 

being female but appears homozygous for every X chromosome marker). This can be checked 

by estimating the homozygosity rate on the X-chromosome. Because males have only one X-

chromosome, the expected homozygosity rate is 1 for males and < 0.2 for females[ 

Homozygous, as related to genetics, refers to having inherited the same versions (alleles) of a 

genomic marker from each biological parent. Thus, an individual who is homozygous for a 

genomic marker has two identical versions of that marker]. If a subject's homozygosity rate 

deviates from the expected homozygosity rate based on the determined sex information, it 

indicates the likelihood of a sample mix-up or incorrect subject information. If differences are 

discovered (for example, an individual is listed as female yet seems homozygous for every X 

chromosome marker), any available study questionnaires should be checked to determine 

whether there was a sample-handling error that resulted in a sample mix-up. Checking X 

chromosome heterozygosity may also reveal sex chromosome anomalies such as Turner 

syndrome (females having karyotype XO), Kleinfelter syndrome (males having karyotype 

XXY), mosaic individuals (XX/XO, XX/XXY), or females with large stretches of loss -of-

heterozygosity on the X chromosome who are otherwise phenotypically normal. [43] The 

intensity plot depicts the intensity of the X and Y probes (Figure 3.1). Females are intended 

to have low Y intensity and high X intensity (bottom right corner), while men should have 

similar X and Y intensities (top left corner). Subjects with inconsistent sex information should 

be deleted if the discrepancy cannot be addressed by consulting the clinical record. However, 
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depending on the study's objectives, these people are frequently not excluded from the study 

just because of sex chromosome anomalies. [42] 

 

Figure 3.1 

 Intensity plot [42] 

 

2. Sample relatedness or duplicate subjects. It is critical to discover unexpected relatives 

in data when using association tests that assume subject independence. Duplicates and related 

individuals can significantly introduce bias in association analysis. To related samples in the 

dataset would result in increased type I and type II errors. This step can be performed by 

calculating the estimated identity-by-descent (IBD) that measures the proportion of the loci 

where two individuals sharing 0, 1, or 2 alleles inherited from a common ancestor.  The IBD 

is calculated on the autosomes using SNPs in low linkage disequilibrium (r2 < 0.2). Individuals 

who share two alleles at each locus are considered duplicated samples or monozygotic twins, 

and their IBD = 1. IBD = 0.5 for parent-offspring or full siblings, 0.25 for second degree 

relatives, and 0 for unrelated persons. The observed IBD may vary due to genotyping errors. 

Thus, if the IBD is greater than 0.98, a pair of subjects may be termed duplicates and, in this 

case, one subject from the pair should be removed from the data. When relatedness among the 

subjects is observed, methods that control for kinship relationships can be applied.[43] Using 

these data, the proportion of loci sharing one allele IBD (Z1) can be plotted by the proportion 

of loci where individuals share zero alleles IBD (Z0) and points color coded by the relationship 

type. For clarity, this plot can be restricted to points where the overall kinship coefficient is 

≥0.05, as most of the individuals where kinship ≤0.05 will be unrelated. This will produce a 

plot as shown in Figure 3.2. If it is believed that pedigree records obtained through the original 

data are accurate, then a point out of place (e.g., points colored as unrelated showing up where 

most of the parent-offspring pairs cluster) would be indicative of either nonpaternity, adoption, 
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sample mix-up, or duplicate processing of a single individual. Further investigation employing 

the original data can be used to attempt to identify the problem. It is also worth noting in 

studies where datasets from multiple sites are combined that it is possible that the same 

participant is present in more than one study. These two data points would appear genetically 

identical across sites. In addition to potentially discovering sample-handling issues, 

visualizing sample relatedness as shown in Figure 3.2 also reveals any cryptic relatedness that 

may be present in the study sample. Figure 3.2 shows that many individuals who indicated 

that they were unrelated (black points) or distantly related (blue points) line up along the 

diagonal in this plot. These individuals represent second-, third-, fourth-, and fifth-degree 

relatives. If treated as independent samples in the downstream analyses, having many such as 

mixed-model regression must be used in place of simple linear or logistic regression. [41] 

 

 

Figure 3.2  

IBD presentation[42] 

 

3. Population substructure. Population structure refers to the patterns found in the genetic 

data that allow us to determine an individual's ancestry. There is population structure when 

mating is more likely to occur between some subsets of the population than between others, 

typically due to geographical structure. Individuals located in geographical proximity to each 

other are more likely to mate. Population structure is also used to describe a population in which 

allele frequencies differ between different geographic regions, so a SNP that is common in one 

population may be rare in another one or even show no variation at all. [58] 
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The presence of multiple subpopulations (e.g., individuals with different ancestral 

background) in a study called population stratification. Because allele frequencies can differ 

between subpopulations, population stratification can lead to false positive associations and/or 

mask true associations. Restricting analysis to an ancestry group, such as individuals with 

European ancestry, does not protect us from the risk of including bias in the analysis due to 

population stratification.[58] The apparent associations would be attributable to ancestral 

differences rather than an actual association of genes to disease. As a result, it is necessary to 

examine the study samples for population stratification and use this information to inform 

subsequent analyses [42]. Principal component analysis (PCA) is frequently used to detect this 

issue. The idea behind this approach is to provide a low-dimensional representation of the data 

that captures information on the variability between individuals across SNPs. The aim of PCA 

is to identify k(k<p) linear combinations of the data, commonly referred to as principal 

components, that capture overall variability, where p is the number of variables, or SNPs. [50] 

In PCA, the genotype matrix is normalized and transformed through a linear combination of the 

input SNPs. The first vector of the converted matrix is called the first principal component (PC), 

which explains the most variation in the genotype data, followed by the second PC and so on. 

Finally, the top 10-20 PCs can be incorporated as covariates in a generalized linear model to 

analyze the effect of a SNP. 

The genomic control method computes a variance inflation factor or genomic inflation 

factor λ, obtained from the robust estimate: �̂�= median(𝛸1
2, 𝛸2

2, … , 𝛸𝑝
2)/0,456, where each X2 

is a chi-squared distributed statistic calculated from the genome-wide scan of p SNPs. The test 

statistic Y2, adjusted for the genomic inflation, can be used for the association test: Y2 = X2 /�̂�, 

which follows the chi-square distribution under the null hypothesis. A number of λ close to 1 

indicates that data have been properly corrected for population substructure. If the value is more 

than 1.2, stratification is present. By dividing all of the test data by the value of lambda, it is 

often possible to adjust for population stratification. [43] 

4. Samples with a low genotyping efficiency, or call rate, should be excluded from further 

analysis. A sample with low DNA concentration will result in a poor genotyping call rate, 

influenced by where the sample is collected and the amount of sample collected. A sample with 

more than the usual number of missing genotypes indicates poor sample quality, and the subject 

should be removed from the data set.  Individuals who have missing genotype data across more 
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than a pre-defined percentage of the typed SNP excluded. A common genotype missing 

threshold is 5%.  If a 98% threshold is applied, this is interpreted as individuals missing 

genotype data for more than 2% of the standard SNPs being removed. The exact threshold may 

differ from study to study. The threshold should be set with the purpose of striking a 

compromise between minimizing the number of samples dropped and maximizing genotyping 

efficiency. Figure 3.3 shows the proportion of samples (red and blue lines) or SNPs (green line) 

remaining at different call rate thresholds.[42] 

 

Figure 3.3  

Proportion of SNPs or samples remaining as call rate threshold increases [42] 

 

3.3.2 Marker (SNPs) QC 

A second set of quality control analyses focuses on the data quality of variants. Several steps 

are taken sequentially to remove low-quality variants that might introduce bias in the study.  

1. Μarker genotyping efficiency/call rate. The call rate for a given SNP is defined as the 

proportion of individuals in the study for which the corresponding SNP information is not 

missing. Μarker genotyping efficiency is a good indicator of marker quality. Excludes SNPs 

that are missing in a large proportion of the subjects. A recommended threshold for removing 

SNPs with low call rate is approximately 98% to 99%, although this threshold may vary from 

study to study. Using a call rate of 98%, meaning that it retains SNPs for which there is less 

than 2% missing data. Turner et al. recommend removing poor-quality SNPs before running the 

sample genotyping efficiency check discussed above, so that fewer samples will be dropped 

from the analysis simply because they were genotyped with SNP assays that had poor 

performance (Figure 3.3).[42] 
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2. Minor allele frequency. It is particularly critical to filter SNPs based on minor allele 

frequency (MAF) because SNPs with a low MAF are infrequent, and hence power for 

discovering SNP phenotype correlations is limited. These SNPs are also more susceptible to 

genotyping errors. A high degree of homogeneity across research participants at a given SNP 

often results in insufficient power to infer a statistically meaningful association between the 

SNP and the characteristic under consideration. This can happen when the MAF is so minimal 

that the vast majority of people have two copies of the main allele. The MAF threshold should 

be determined by the sample size. Lower MAF thresholds can be used with larger samples. 

Figure 1.19.7 illustrates that for uncommon SNPs (1% frequency), the power to identify an 

association in a large dataset (n = 10,000) with a relatively high effect (odds ratio between 1.3 

and 1.7) is quite low. In addition to having reduced power for SNPs with low MAF, these SNPs 

may also result in misleading relationships due to genotyping errors or population stratification.  

Turner et al. recommend removing any extremely rare SNPs (including any monomorphic 

SNPs). The threshold chosen depends on the size of the study and the effect sizes expected. 

However, in studies with very large sample sizes, it may be beneficial to avoid removing these 

rare SNPs.[42] 

 

Figure 3.4 [42] 

3. Hardy-Weinberg equilibrium. Hardy-Weinberg assumptions (see Chapter 1) hold that 

allele and genotype frequencies remain constant throughout generations. If p represents the 

frequency of one allele (A) and q represents the frequency of an alternative allele (a), then the 

genotype frequencies for AA, Aa, and aa are p2, pq, and q2, respectively. The Chi-square 

goodness-of-fit test can be used to calculate the deviation of observed frequencies from HWE. 
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The Pearson test is easy to compute, but the χ2 approximation can be poor when there are low 

genotype counts, and it is better to use a Fisher exact test, which does not rely on the χ2 

approximation. [see section1.4.2] [43] Deviation from this equilibrium can indicate potential 

genotyping errors, population stratification, or even true relationship with the trait under study. 

A real relationship might also cause disequilibrium. SNPs that are significantly out of HWE 

should not be excluded from the study, but rather identified for further investigation when the 

association analyses are completed. It is occasionally recommended that HWE be estimated 

just within the control cohort to avoid omitting potentially meaningful departures (caused by 

illness connection). The significance level for rejecting based on HWE differs by study and 

spans from 10-5 to 10-7. If various ethnicities are employed in the same study, HWE must be 

tested independently for each group. [42] 

3.4 Association Analysis 

The proper association test is determined by a number of parameters, including the type of 

phenotype, the need to adjust for clinical covariates and population structure. Before using 

association tests, the genotype data must be coded according to the genetic model that has been 

established. If two SNP alleles are A and a, a dominant model for A will translate the genotypes 

(AA, Aa, aa) to (1, 1, 0), implying that the presence of the A allele increases the risk of disease 

by the same amount for AA and Aa genotypes relative to the baseline risk for aa. An additive 

or co-dominant model will code (AA, Aa, aa) as (2, 1, 0), suggesting that each extra copy of 

the A allele additively raises disease risk (or an appropriate function of disease risk, such as the 

log odds of disease). A recessive genetic model for A codes (AA, Aa, aa) as (1, 0, 0), implying 

that two copies of the A allele are needed to express the phenotypic trait associated with this 

allele. In GWAS analysis, it is typical to begin with the co-dominant genetic model to search 

the genome, and then, after related markers are identified, one may opt to do association tests 

under all scenarios.[43] 

3.4.1 Single Locus Tests 

By focusing on one SNP at a time, a single locus statistical test compares genotype and 

phenotype. The genotype at a given SNP in the human genetic setting has three levels: 

homozygous wildtype(AA), heterozygous(Aa), and homozygous rare(aa). If the result is binary, 

the data can be represented by the two×three contingency table shown in Figure 3.5. In these 

tests, the null hypothesis states that there is no relationship between genotype and phenotypic 
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status (the null hypothesis of no association between rows and columns of the 2 × 3 matrix).[43] 

The odds ratio (OR) is a commonly used measure of association, defined as the ratio of the odds 

of disease among the exposed to the odds of disease among the unexposed.[50] 

 

Figure 3.5 

 2 × 3 contingency table for genotype–disease association[50] 

The OR is written 

                                                 𝑂𝑅 =
𝑃(𝐷+|𝐸+)/[1−𝑃(𝐷+|𝐸+)]

𝑃(𝐷+|𝐸−)/[1−𝑃(𝐷+|𝐸−)]
   (3.1) 

For example, the genotype can be set as an indicator for the presence of any other variant. If 

the three possible genotypes are AA, Aa and aa. Then a dichotomized genotype report could be 

defined as E+ = (Aa or aa) and E- = (AA). The corresponding count data is now given in Figure 

3.6. In this case, a 2 × 2 contingency matrix results and the OR is equal to  

𝑂�̂� =
(𝑛11 𝑛.1)/(𝑛21 𝑛.1⁄ )⁄

(𝑛12 𝑛.2)/(𝑛22 𝑛.2⁄ )⁄
=

𝑛11𝑛22

𝑛21𝑛12
              (3.2) 

 

Figure 3.6  

2× 2 contingency table for genotype–disease association[50] 
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A formal test of association between a categorical exposure (genotype) and categorical 

disease variable (trait) is conducted using Pearson’s 𝜒2-test or Fisher’s exact test. In the context 

of a 2 × 2 table, a test of no association between the rows and columns is equivalent to a test of 

the single null hypothesis, H0: OR = 1. Pearson’s 𝜒2-test involves first determining the expected 

cell counts of a corresponding contingency table under the assumption of independence 

between the genotype and trait. The expected count for the (I,j)-cell is given by Eij = 𝑛𝑖.𝑛.𝑗 𝑛⁄  

for I = 1, 2 and j = 1, 2, 3. Letting the corresponding observed cell counts be denoted O ij , 

Pearson’s 𝜒2-statistic is given by 

𝜒2 = ∑
(𝑂𝑖𝑗−𝐸𝑖𝑗 )2

𝐸𝑖𝑗
𝑖,𝑗   ̴𝜒(𝑟−1)(𝑐−1)

2     (3.3) 

This statistic has a 𝜒2-distribution with (r−1)(c−1) degrees of freedom, where r = 2 and c = 3 

are the number of rows and columns, respectively.[50] 

Fisher’s exact test is preferable when at least 20% of the expected cell counts are small (𝐸𝑖𝑗< 

5). The exact p-value is given by the probability of seeing something as extreme or more 

extreme in the direction of the alternative hypothesis than what is observed. Fisher derived this 

probability for the 2 ×2 table of Figure3.6, and it is defined explicitly in Section 1.2.2 for testing 

HWE.[50] 

The following analytical methods shall be used to characterize the association between a 

genotype and a quantitative trait. Genotype can be defined as an M-level factor and in the 

simplest case reduces to a binary indicator, for example, for the presence of at least one variant 

allele at a given SNP locus. Specifically, the t-test is a test of the null hypothesis that the mean 

is the same in two populations, written H0: µ1 = µ2, where populations are defined by genotype. 

For example, defining µ1 as the population mean for individuals with genotype AA and µ2 as 

the population mean for individuals with genotype Aa or aa. The two-sample t-test statistic, 

assuming equal variances, is given by 

𝑡 =  
𝑦1̅̅̅̅ − 𝑦2̅̅̅̅

√𝑠𝑝
2[1 𝑛1+1 𝑛2⁄⁄ ]

 ̴ 𝑇𝑛1+𝑛2−2   (3.4) 

where 𝑦1̅̅ ̅ and 𝑦2̅̅ ̅ are the sample means of the quantitative trait for genotype groups 1 and 2, 𝑠𝑝
2is 

the pooled estimate of the variance, and n1 and n2 are the respective sample sizes. Under the 
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null, this statistic has a T-distribution with degrees of freedom equal to 𝑛1 + 𝑛2 − 2. The 

Wilcoxon rank-sum test (also called the Mann-Whitney U -test) is a non-parametric analog to 

the two-sample t-test and is more appropriate than the t-test if the trait is not normally 

distributed and the sample size is small. The Wilcoxon rank-sum test is a rank-based test and is 

used to test the null hypothesis that the medians of a quantitative trait in each of two populations 

are equal.[50] 

If a priori dichotomization of the genotype variables is not desirable, we can perform an 

analysis of variance (ANOVA) or the non-parametric analog, the Kruskal-Wallis test, to 

characterize association with a quantitative trait. ANOVA is an extension of the two-sample t-

test to the M-sample setting and is based on an F-test for a full model with M −1 genotype 

indicators (dummy variables) compared with the reduced model with an overall mean. The null 

hypothesis of an ANOVA using a single SNP is that there is no difference between the trait 

means of any genotype group. The assumptions of GLM and ANOVA are 1) the trait is 

normally distributed; 2) the trait variance within each group is the same (the groups are 

homoskedastic); 3) the groups are independent. The Kruskal-Wallis test similarly extends the 

Wilcoxon rank-sum test. A Kruskal-Wallis (K-W) test can also be applied and is more 

appropriate in small-sample settings in which the assumption of normality may not be 

reasonable.[50] 

Because these single-marker tests are special examples of regression models with one 

predictor variable, simple linear regression produces the same result as the t-test and logistic 

regression produces the same result as the odds ratio test when testing a single locus.  Logistic 

regression is an extension of linear regression where the outcome of a linear model is 

transformed using a logistic function that predicts the probability of having case status given a 

genotype class. Logistic regression is often the preferred approach because it allows for 

adjustment for clinical covariates (and other factors), and can provide adjusted odds ratios as a 

measure of effect size. In either case, tests require the trait to be approximately normally 

distributed for each genotype, with a common variance. If normality does not hold, a 

transformation (for example, log) of the original trait values might lead to approximate 

normality. [43] 



35 
 

3.4.2 Generalized Linear Models for Covariate Control 

Consideration of additional variables in the context of analysis will depend on the scientific 

question at hand, the biological pathways to disease, and the overarching goal of the analysis. 

For example, if the aim of a study is to identify the best predictive model (that is, to determine 

the model that can give the most accurate and precise prediction of cholesterol level for a new 

individual), then it is generally a good idea to include variables previously associated with the 

outcome in the model. If the goal is to characterize the association between a given gene and 

the outcome, then including additional variables, for example, self -reported race, may also be 

warranted if these variables are associated with both the genotype and the outcome. This 

phenomenon is typically referred to as "confounding". On the other hand, if a variable such as 

smoking status is in the causal pathway to disease (that is, the gene under investigation 

influences the smoking status of an individual, which in turn tends to increase cholesterol 

levels), then inclusion of smoking status in the analysis may not be appropriate. In this text, the 

term "covariate" is used loosely to refer to any explanatory variables that are not of specific 

independent interest in the present investigation. Covariates are also commonly referred to as 

independent or predictor variables.[50] 

A confounding factor is defined as a variable that: (1) is related to the exposure variable, (2) 

is independently related to the outcome variable, and (3) is not involved in the causal pathway 

between exposure and disease. For example, determining whether high alcohol consumption 

(the exposure) is associated with a total cholesterol level (the outcome). Because smoking is 

associated with heavy alcohol use and also with cholesterol levels in non-heavy alcohol users, 

smoking status is a possible cause in the aforementioned relationship. In population-based 

genetic settings, we are generally interested in the association between genotype, as defined by 

one or more SNPs, and a trait. In this case, a confounding factor is defined as a clinical or 

demographic variable that is associated with both the genotype and the trait under consideration. 

The generalized linear model (GLM) can be used to control potential confounding variables 

such as age, gender, and medication. Multivariate models have the main advantage that they 

allow multiple possible confounders and effect modifiers to be properly accounted for. The 

generalized linear model (GLM) should not be confused with the general linear model for 

multivariate data. The generalized linear model is a modeling framework that is applicable to a 

variety of dependent variables, including both quantitative and binary traits, as well as count 
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data. In this section, we discussed the linear regression model for quantitative traits and then 

the logistic model for binary outcomes. Both represent special cases of the generalized linear 

model. The GLM is given in matrix notation by the equation  

𝑔(𝐸[𝑦])= Xβ      (3.5) 

where E[Y] = µ denotes the expectation of Y, g() is a link function  that performs a monotone 

transformation on the mean of response variable and X is the design matrix. In the case of a 

quantitative trait, we let g() be the identity link, and Equation (3.5) reduces to the ordinary linear 

regression model. The multivariable linear regression model is: 

𝑦𝑖 = 𝛽0 + 𝛽1 𝑥𝑖 + ∑ 𝑎𝑗𝑧𝑖𝑗
𝑚
𝑗=1 + 𝜀𝑖    (3.6) 

in which additional variables are included. The measure of association between the genotype 

and trait is given by 𝛽1 . Now, however, estimation and testing of this parameter takes into 

account the additional variables in the model. These additional variables may be confounders 

or may help to explain the variability in our trait. The inclusion of confounding variables is 

important for drawing valid conclusions about the effect of genotype on the trait. Adding non-

confounding variables to the model will not change our genotype effect estimate substantially. 

However, by reducing the unexplained variability in our model, including these variables may 

increase our power to detect the association of our primary independent variable. [50] 

As described above, the generalized linear model can also be applied to  a binary trait. In this 

setting, g() is commonly defined as the logit function, reducing Equation (3.5) to the logistic 

regression model. Logistic regression models provide a setting for modeling dichotomous 

outcomes based on multiple categorical or continuous predictors. The general form of a 

univariate logistic model in scalar form is given by 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽1 𝑥𝑖     (3.7) 

where 𝜋𝑖= P (𝑦𝑖 = 1|𝑥𝑖) and logit (𝜋𝑖) = ln [𝜋𝑖/ (1 − 𝜋𝑖)]. 

For example, suppose y is an indicator for disease status. The β parameter is then interpreted 

as the effect of one unit increase in 𝑥 on the log odds of disease. If x is again a binary variable 

for the presence of a variant allele, then β is the log odds of disease for individuals with this 

variant versus those that are homozygous wildtype. In this case, we have OR = exp [𝛽1 ]. Again, 

additional variables can be added to this model to account for potential confounding and effect 
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modification. Estimation of the parameters is achieved using maximum likelihood methods.  

Tests of these parameters can be carried out based on the Wald statistic . An advantage of 

multivariable models is that they provide a natural setting for inclusion of multiple independent 

variables. This allows for consideration of many predictors of disease as well as providing a 

means for assessing the potential confounding or mediating role of additional clinical and 

demographic factors. [50] 

3.4.3 Linear Mixed Models for Complicated Data Structures 

A linear mixed model (LMM) is an extension of the standard linear regression model, wherein 

the variables are divided into two groups: fixed effects and random effects. Fixed effects are 

modelled as parameters, i.e., fixed, but unknown, quantities, while random effects are modelled 

as being drawn from a random distribution – typically a Gaussian distribution with mean zero 

and an unknown variance. Intuitively, this formulation allows accounting for the random 

effects, while not specifically estimating the value of each random effect. The linear mixed 

model (LMM) is an effective method for controlling covariation caused by complex correlation 

structures. The LMM treats the SNP under test as a fixed effect variable, as well as the clinical 

and environmental covariates, and the remaining genotypes as random ef fect variables. The 

model has the following form: 

𝑌 = ∑ 𝑗𝑋𝑗 + 𝑢𝐺 + ∑ 𝑣𝑘𝑍𝑘 + 𝜀𝑘𝑗     (3.7) 

where G is the test SNP, the variables Xj are fixed effect covariates, and Zk are genotypes with 

random effects 𝑣𝑘. J is the index of fixed effect covariates and k is the index of random effect 

genotypes. 𝑣𝑘is assumed to be independently drawn from a normal distribution with mean 0 

and variance τ, i.e., 𝑣𝑘∼ N(0, τ). Ε is the error term with ε ∼ N(0, σ2In). In is the identity matrix 

for n individuals and σ2 is the variance of the error term. An LMM decomposes the variance 

associated with phenotype y into the sum of a linear additive genetic and residual component. 

The variance of Y can be written as: 

𝑉𝑎𝑟(𝑌) = τK+ σ2In     (3.8) 

where K is the genetic relationship matrix, or the kinship matrix for related subjects.  Because 

the LMM can account for extra covariance caused by subject relatedness, it can be utilized for 

association testing in family data as well as data with population stratification. In fact, the LMM 

is a generalization of the PCA approach in which all PCs are included by default. In short, the 
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GLM simply corrects population structure; the LMM corrects both population structure and 

individual kinship relationships.[43] 

3.4.4 Correcting for Multiple Testing in a GWAS 

In a single statistical test, the type I error rate α is the probability of falsely rejecting the null 

hypothesis when it is true. The p-value for a given hypothesis is determined based on a sample 

of data and is defined as the probability of observing something as extreme or more extreme,  

given that the null hypothesis is true. If the p-value is less than α (typically 0.05), then we reject 

the null hypothesis in favor of the alternative. Formally, for a given null hypothesis denoted H0 

Type-1 error rate = P(reject H0 | H0 is true) ≤ α   (3.9) 

In the case where it is desired to test K null hypotheses, given by H0k, for k = 1, . . .,K the 

family-wise error under the complete null (FWEC) is defined as the probability of rejecting one 

or more of these null hypotheses given that all of them are true. If each test is independent and 

tested at level a, then 

FWEC = P(reject at least one H0k | H0k is true for all k) 

= 1 – P(reject no H0k | H0k is true for all k) ≤ 1 – (1 – α)K  (3.9) 

This ceiling is increasing rapidly. For example, for K = 10 independent trials, FWEC ≤ 

0.401. That is, if ten independent trials are conducted, each at level a, then the probability of a 

type 1 error is 40.1%. This phenomenon is referred to as the inflation of the type 1 error rate 

and is a serious concern in the context of analyzing associations between a large number of 

SNPs and a trait. [50] 

The Bonferroni adjustment for multiple comparisons is perhaps the simplest adjustment 

that can be applied to address this problem. It simply involves using α = α/m in place of α for 

the level of each test, where m is the number of tests to be performed. For example, if m = 10 

hypothesis tests are performed at a total level of α = 0.05, then let αʹ= 0.05/10 = 0.005, so FWEC 

≤ 1 − (1 − 0.005)10 = 1 − 0.951 = 0.049. This technique is overly conservative since it 

presupposes test independence, which is not true for SNPs which are in linkage disequilibrium. 

Despite this restriction, the Bonferroni adjustment is still a popular GWAS benchmark.[43] 
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3.5 GWAS Results Presentation 

The primary output of a GWAS analysis is a list of p-values, effect sizes and their directions 

generated from the association tests of all tested genetic variants with a phenotype of interest. 

These data are routinely visualized using Manhattan plots and quantile–quantile plots. Further 

analysis is then needed to interpret this list of  p-values, determining the most likely causal 

variants, their functional interpretation and possible convergence in meaningful biological 

pathways.[41] 

Association results from GWAS are in the form of lists of summary statistics for millions of 

genetic variants. Results are "clustered" in blocks corresponding to genetic loci with high LD. 

For this reason, it is impossible to open the file and browse the results by looking at the summary 

statistics. The most widely used, recognizable visual tool to explore genome-wide association 

statistics is the Manhattan plot, which is a type of scatterplot that plots the negative logarithm 

(base 10) of the association p-value for each genetic variant (y axis) and the chromosome 

position for each SNP tasted (x axis), where each circle represents a SNP. Manhattan plots are 

used to visualize GWA significance level by chromosome location. The height of the points in 

a Manhattan plot is thus inversely related to their p-values. The SNPs shown in the figure are 

markers, and many will not be the actual causal variant but rather a "tag." In other words, they 

are tags since nearby variants might actually be driving the association.[58] Due to linkage 

disequilibrium, typical true signals arise in stacks, formed by neighboring loci in high LD with 

the causal marker. Figure 3.7 shows a Manhattan plot from a GWAS of 1583 nasopharyngeal 

carcinoma (NPC) cases and 1894 controls of Chinese descent. The tall stack on chromosome 6 

is in the HLA region that has been extensively studied and is known to in duce immune response 

to the EVB virus infection, which is a major risk factor for NPC.[43] 
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Figure 3.7  

Manhattan Plot For GWAS of Nasopharyngeal Carcinoma[43] 

Manhattan plots show the statistical associations of all genetic variants but conceal a 

considerable amount of important information. Regional associations plots provides additional 

information regarding chromosome position, genes, recombination rate and linkage 

disequilibrium levels in a specific genomic region. The x-axis and the y-axis are the same as in 

a Manhattan plot (genomic position and negative logarithm of association p-value).  Figure3.8 

is an example of a LocusZoom plot in which the top signal rs1412829 in gene CDNK2A/2B on 

Chromosome 9 is surrounded by neighboring loci in high LD. The green segments indicate 

gene regions. 

 

Figure 3.8 

 LocusZoom Plot[58] 
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Another typical figure associated with a GWAS is the Quantile-Quantile (Q-Q) plot, which 

is examined together with the λ (lambda) statistic. Q-Q plots show the link between the expected 

and observed distributions of SNP-level test statistics. It is a tool that is used to visualize the 

appropriate control of population substructure and the presence of an association.  Despite 

meticulous study design and sample collection from a homogeneous cohort, various degrees of 

population stratification may exist. A blend of unknown or unmanageable ethnicity groups 

would result in allele frequency differences, inflated variances, and enhanced false 

relationships. Post-analysis population stratification can be found by visually inspecting the 

Quantile-Quantile (Q-Q) plot, which compares observed test statistics (or some function of the 

p-values) to the values that would be obtained from a theoretical distribution. Deviation from 

the diagonal line suggests the possibility of population stratification and an increase in spurious 

correlations. The degree of deviation from the line is formally measured by the λ-

statistic(genomic control) [43] 

 

Figure 3.9 

a)Q-Q plot of GWAS showing obvious population stratification (λ = 1.14) b) Q-Q plot of normal 

GWAS corrected for population stratification[41] 

 

3.6 Post GWAS issues 

3.6.1 Statistical fine-mapping 

Because of linkage disequilibrium, many non-causal variations are strongly related with a 

trait of interest; whether they approach the significance threshold relies on their level of 

correlation with and intensity of association with the causative variant.  As a result, the 

output of GWAS is grouped in risk loci — groups of correlated variants that all exhibit a 

statistically significant correlation with the trait of interest — and linkage disequilibrium 
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often hinders pinpointing causal variations without additional research. Based on observed 

patterns of linkage disequilibrium and association statistics, fine mapping is an in silico 

procedure that prioritizes the set of variants most likely to be causal to the target phenotype 

within each of the genetic loci discovered by GWAS. The most basic fine-mapping analysis 

is a conditional association analysis of the regional variants (a genetic association analysis 

that includes fixed effects of genetic variants), which adjusts the regional association signals 

according to the set of variants in the locus by including the lead variant as a covariate in 

genotype-phenotype regression models. When there are several association signals, it is 

typical to apply forward stepwise selection until no relationships remain. This stepwise 

conditional analysis method is confined to searching all combinatory patterns of potentially 

credible variations. This is due to the fact that the variant search pattern in each iterative 

step is heavily dependent on the previously selected variant sets, and the lead initial step 

frequently includes the lead variant. [41] In Figure 3.10 fine-mapping is applied to identify 

a set of variants that are likely to include the causal variant (blue box) as well as the most 

likely causal variant (rs12345; blue dot). 

 

 

Figure 3.10 [41] 

 

3.6.2 GWAS Meta-Analysis  

Meta-analysis is the statistical synthesis of information from multiple independent studies that 

increases power and subsequently reduces the risk of false-positive findings. GWAS meta-

analyses use what is called summary data, which provide regression coefficients, standard 

errors, and so on for each genetic marker in a population following a prespecified analysis plan. 

It is thus not individual-level data but the aggregated summary results. Summary statistics, in a 

GWAS, is the results obtained after conducting a GWAS, including information on 

chromosome number, position of the SNP, MAF, effect size (odds ratio/beta), standard error, 
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and p-value. These statistics are used, for example, to create polygenic scores. Quality Control 

(QC) is required before conducting a GWAS such as removing variants with low allele 

frequency, low imputation quality, allele frequency that diverges substantially from a reference 

sample, or results driven by a specific study that are not replicated elsewhere. An important and 

time-consuming step in the GWAS meta-analysis is a second set of quality control, which is 

basically harmonizing the results across studies. Despite providing a unified analysis plan, this 

cleaning process might take the longest time in an initial project, since analysts might use 

different software or there are other inconsistencies in the results.[58] Meta-analyses can be 

performed using a fixed effect model — which assumes error variances are equal across cohorts 

— or a random effect model to test for heterogeneity in the results; for example, testing whether 

one or two cohorts clearly deviate from the rest. Combining the contributions of all cohorts 

allows for a more precise estimation of effect sizes and the significance of effects in GWAS by 

weighting each individual cohort’s results by their sample size or by using the inverse variance 

method. Sequencing data sets can identify rare variants, although current sequencing data sets 

are typically too underpowered to test their effects on a phenotype individually; instead, their 

effects are usually measured in aggregate, such as in genes or gene sets through rare variant 

burden testing. 

3.7 GWAS Studies  

3.7.1 Study 1 

Widmer et al., examined improvements to the linear mixed model (LMM) that better correct 

for population structure and familial relatedness in genome-wide association studies (GWAS). 

LMMs are based on the estimation of a genetic similarity matrix (GSM), which encodes the  

pairwise similarity between any two individuals in a cohort. These similarities are estimated 

from single nucleotide polymorphisms (SNPs) or other genetic variants. Traditionally, when an 

LMM is used for GWAS, its GSM is estimated from all available SNPs. In this paper, Widmer 

et al. evaluate possible improvements to this approach. They discovered that modifying this 

approach improves GWAS performance as measured by type I error checking and power. 

Specifically, when there is only population structure, a GSM constructed from SNPs that predict 

the phenotype well in combination with principal components as covariates controls type I error 

and yields higher power than the traditional LMM. In any setting, with or without population 

structure or family relatedness, a GSM consists of a mixture of two GSM components, one 
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constructed from all SNPs and the other constructed from SNPs that predict the phenotype well. 

This again controls for type I error and yields more power than the traditional LMM.[50] 

Synthetic SNPs and phenotypes: To reveal the weaknesses of the different models tested, 

they varied the degree of population structure, family structure, number of causal SNPs, and 

signal strength across a wide range of possible parameters, including those that yield s trong 

confounding by population structure and family relatedness. Each data set was created with M 

= 50,000 SNPs and N = 4,000 individuals, as is typical of many GWASs.[50] 

The models used to carry out the comparison are presented in the table below. 

 

Figure 3.11 

Models Table[50] 

Where the LMM(all + select) model is a new LMM model having a GSM made up of a mixture 

of two GSMs ((1-π) K0 + π K1), one based on all SNPs (K0) and one based on SNP selection 

(K1).  

No population or family relatedness [Three data sets were generated for each possible 

combination of parameters (number of SNPs and narrow-sense heritability for causal signal), 

totaling 90 data sets.] SNPs were chosen to maximize phenotypic prediction accuracy. SNPs 

were identified in particular by searching through multiple sets of SNPs to find those that 

maximized out-of-sample prediction accuracy as measured by the log likelihood of the 

phenotype under the LMM. It measured the empirical type I error rate (the proportion of non-

causal SNPs deemed significant) as a function of P-value threshold and the empirical power 

(the proportion of causal SNPs deemed significant) as a function of empirical type I error for 

each of the three models. The results are shown for various numbers of causal SNPs. Type I 

error was well controlled by all models. Furthermore, LMM (select) had the greatest power, 

particularly when the number of causal SNPs was small (and thus the effect sizes were large). 

It is not surprising that LMM(select) had greater power than Linreg when considering the LMM 

as linear regression with selected SNPs as covariates. Conditioning on specific SNPs, in other 
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words, reduces noise in the phenotype. It is also expected that LMM(select) had more power 

than LMM(all) when there were few causal SNPs, as the use of all SNPs in the GSM obfuscated 

the true causal signal, a phenomenon known as "dilution."[50] 

 

Figure 3.12 

Empirical type I error rate and power for no population or family relatedness with purely synthetic 

data. [50] 

 

Population structure but no family relatedness [Parameter values used in these simulations 

were as follows: Number of causal SNPs, Narrow-sense heritability, Degree of population 

structure Three data sets for each possible combination of parameters were generated, yielding 

360 data sets] 
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Figure 3.13 

Empirical type I error rate and power for population structure but no family relatedness with purely 

synthetic data.[50] 

The inclusion of PCs had differing effects on the performance of the models (Figure 3.13). 

LMM(all) controlled type I error well, whether or not PCs were included as fixed effects, and 

inclusion did not affect power. In contrast, for Linreg, inclusion of PCs led to control of type I 

error and had little effect on power. Furthermore, the inclusion of PCs led to control of type I 

error and improved power for LMM(select), as was recently reported in an independent 

investigation. 

Population structure and family relatedness [The parameter values used in these simulations 

were as follows: Narrow-sense heritability, population structure, family relatedness, and the 

fraction of individuals belonging to a family. Three data sets for each possible combination of 

parameters were generated, yielding 1800 data sets in all. No two sets of SNPs were the same]  

The model LMM(all + select), which performed best for the setting of family relatedness 

without population structure, also performed best here (Figure 3.14). These results indicate that 

the inclusion of all SNPs as part of the mixture GSM led to good control of type I error for both 
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forms of confounding structure, consistent with our findings for family relatedness alone and 

population structure alone. Furthermore, the inclusion of selected SNPs as part of the mixture 

GSM led to improved power, again most notably so when there were a small number of causal 

SNPs with large effect size (Figure 3.14b). Also on purely synthetic data with population 

structure but no family relatedness, it was found that LMM(select) yielded better GWAS 

performance than LMM(all), but only when PCs were used as covariates.[50] 

 

Figure 3.14 

a) Empirical type I error rate and power with and without population structure (PS) and family 

relatedness (FR) b) Empirical type I error rate and power for both family relatedness and population 

structure with purely synthetic data[50] 

In summary, one potential improvement, building a GSM based on selected SNPs that well 

predict the phenotype failed rather dramatically. In particular, when population structure, 

family relatedness, or both were present, this approach failed to control for type I error. 

Nonetheless, when SNP selection was used in combination with other improvements, it proved 

useful. Specifically, in the presence of population structure alone, SNP selection in combination 

with PCs used as covariates-controlled type I error and also yielded more power than the 

traditional approach. In all settings, with or without population structure or family relatedness, 

a mixture of two GSMs, one constructed from all SNPs and another constructed from SNPs 

identified by SNP selection both controlled type I error and yielded more power than the 
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traditional LMM. Furthermore, the improvements to power afforded by SNP selection were the 

strongest when some SNPs had a large effect size. Interestingly, we found that a GSM based 

on all SNPs (or LDsampled SNPs) could account for population structure just as well as PCs. 

Consequently, if SNP selection picks all SNPs, then there is no need to add PCs to the 

LMM.[50]  
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3.7.2 Study 2 

Recently, genome-wide analysis has identified variants in five chromosomal regions that are 

significantly associated with a risk of prostate cancer. These variants occur in three independent 

regions at 8q244-7 and in one region at 17q12 and another at 17q24.3.8 These five regions 

probably harbor genes that confer susceptibility to prostate cancer or regulate factors affecting 

critical genes, but the specific genes in these regions have not been identified.  Individually, 

single-nucleotide polymorphisms (SNPs) in each of the five chromosomal regions were shown 

to have only a moderate association with prostate cancer in previous studies. In this study, 

Zheng, S. L. et al., investigated whether a combination of SNPs would have a stronger 

association with prostate cancer than any individual SNP. For this purpose, they assessed the 

joint associations of SNPs in the five chromosomal regions with prostate cancer in a large-scale 

study of Swedish men.[57] 

Among 3648 identified subjects with prostate cancer, 3161 (87%) agreed to participate. 

DNA samples from blood, tumor–node– metastasis (TNM) stage, Gleason grade (as determined 

by biopsy), and levels of prostate-specific antigen (PSA) at diagnosis were available for 2893 

subjects (92%). Case subjects were classified as having advanced disease if they met any of the 

following criteria: a grade 3 or 4 tumor, spread to nearby lymph nodes and metastasis, a Gleason 

score of 8 or more, or a PSA level of more than 50 ng per milliliter; otherwise, subjects were 

classified as having localized disease. Control subjects, who were recruited concurrently with 

case subjects, were randomly selected from the Swedish Population Registry and matched 

according to the expected age distribution of cases (groups of 5-year intervals) and geographic 

region. A total of 2149 of 3153 control subjects (68%) who were invited subsequently agreed 

to participate in the study. DNA samples from blood were available for 1781 control subjects 

(83%). Serum PSA levels were measured for all control subjects but were not used as an 

exclusionary variable. A history of prostate cancer among first-degree relatives was obtained 

from a questionnaire for both case subjects and control subjects.[57] 

They selected 16 SNPs from five chromosomal regions (three at 8q24 and one each at 17q12 

and 17q24.3) that have been reported to be associated with prostate cancer. Tests for Hardy–

Weinberg equilibrium(p>0.05) were performed for each SNP separately  among case subjects 

and control subjects with the use of Fisher’s exact test. Pairwise linkage disequilibrium was 

tested for SNPs within each of the five chromosomal regions in control subjects. Differences in 
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allele frequencies between case subjects and control subjects were tested for each SNP with the 

use of a chi-square test with 1 degree of freedom. For genotypes, a series of tests assuming an 

additive, dominant, or recessive genetic model were performed for each of the 16 SNPs with 

the use of unconditional logistic regression with adjustment for age and geographic region; the 

model that had the highest likelihood was considered to be the best-fitting genetic model for 

the respective SNP.[57] 

They tested the independent effect of each of the five previously implicated regions by 

including the most significant SNP from each of the five regions in a logistic-regression model 

with the use of a backward-selection procedure. Multiplicative interactions were tested for each 

pair of SNPs by including both main effects and an interaction term (a product of two main 

effects) in a logistic regression model. They tested the cumulative effects of the five SNPs on 

prostate cancer by counting the number of genotypes associated with prostate cancer (on the 

basis of the best-fitting genetic model from single-SNP analysis) for these five SNPs in each 

subject. The odds ratio for prostate cancer for men carrying any combination of one, two, three, 

or four or more genotypes associated with prostate cancer was estimated by comparing them 

with men carrying none of the prostate cancer–associated genotypes with the use of logistic 

regression analysis. They also performed tests for the cumulative effect on prostate-cancer 

association, which included five SNPs and family history. 

Associations of these five SNPs with aggressiveness of prostate cancer (advanced or 

localized), and family history (yes or no) were tested only among case subjects with the use of 

a chi-square test of a 2×K table, in which K is the number of possible categories within each 

variable. Associations of SNPs with the mean age at diagnosis were tested only among case 

subjects with the use of a two-sample t-test. Because serum PSA levels were not normally 

distributed, a nonparametric analysis (Wilcoxon rank sum test) was used to assess the 

association between SNPs and preoperative serum PSA levels in case subjects or PSA levels at 

the time of sampling in control subjects. All reported p-values are based on a two-sided test.[57] 

Results: Significantly different frequencies (p<0.05) between case and control subjects were 

observed for SNPs in each of the five chromosomal regions. At 17q12, SNP rs4430796 had the 

strongest association with prostate cancer; the frequency of allele T (SNP rs4430796) was 0.61 

in case subjects and 0.56 in control subjects(p=6×10 -7). Of the four SNPs at 17q24.3, three were 

associated with prostate cancer, but only rs1859962 had a highly significant association 
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(P=2.1×10-4). For SNPs at 8q24, significant associations with prostate cancer were found for 

all SNPs examined across the three independent regions at 8q24. Of the 16 SNPs, 13 remained 

significant at p<0.05 after adjustment for 16 tests with the use of a Bonferroni correction.  

 

Figure 3.15 

Association of SNPs at Five Chromosomal Regions with Prostate Cancer[57] 

Strong genetic dependence (linkage disequilibrium) among SNPs within each region 

allowed for a combined analysis in which we were able to select one SNP (the most significant 

SNP from single SNP analysis) to represent each of the five regions in tests for an independent 

association with prostate cancer (Figure 3.16). When these five SNPs were included in a 

multivariate logistic regression model, each of the five remained significantly associated with 

prostate cancer after adjustment for other SNPs, and each continued to be highly significant 

when family history was included in the model.  
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Table 3.16 

Adjusted Odds Ratios for Representative SNPs at Five Chromosomal Regions and Family History [57] 

When multiplicative interaction was tested for each possible pair of these five SNPs with the 

use of an interaction term in logistic regression, none were significant at P<0.05. However, the 

five SNPs appeared to have a cumulative association with prostate cancer, after adjustment for 

age, geographic region, and family history (Figure 3.17). Men who carried one, two, three, or 

four or more of the five SNPs had an increasing likelihood of having prostate cancer, as 

compared with men who did not carry any of the five SNPs (p-value for trend, 6.75×10-27). 

When family history was included as another risk factor (coded as 0 or 1) for  a total of six 

possible prostate-cancer associated factors, they observed a stronger cumulative effect after 

adjustment for age and geographic region (p-value for trend, 4.78×10-28). For example, men 

who carried any five or more of these six factors had an odds ratio of 9.46 (95% confidence 

interval [CI], 3.62 to 24.72) for prostate cancer, as compared with men who carried none of the 

six factors (P=1.29×10-8).[57] 
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Figure 3.17 

Cumulative Effect of Associated Factors on the Risk of Prostate Cancer[57] 

They calculated the specificity and sensitivity of the regression model by constructing 

receiver operating-characteristic (ROC) curves and calculated statistics for the area under the 

curve (AUC) to estimate the ability of each of three models to distinguish case subjects from 

control subjects. The AUC was 57.7 (95% CI, 56.0 to 59.3) for model 1 (age and region alone), 

60.8 (95% CI, 59.1 to 62.4) for model 2 (age, region, and family history), and 63.3 (95% CI, 

61.7 to 65.0) for model 3 (age, region, family history, and the number of genotypes associated 

with prostate cancer at the five SNPs). The AUC was significantly higher for model 3 than for 

model 2 (P=6.12×10-6).[57] 

Zheng, S. L. et al., found that the presence of the five prostate-cancer–associated SNPs was 

independent of PSA levels in both case subjects and control subjects, which suggests that some 

men with low PSA levels may have an increased risk of prostate cancer if they carry one or 

more of the prostate-cancer–associated genotypes described here. However, this proposition 

also requires testing in a prospective trial, particularly one that uses PSA in combination with 

the associated SNPs and family history. They do not know the mechanism by which the SNPs 

we analyzed could affect the risk of prostate cancer. Other than SNP rs4430796, which is 

located within the TCF2 gene, the specific genes that are affected by the rest of the SNPs have 

not been identified. Since the five SNPs in our study appear to be associated with a risk of 

prostate cancer in general, rather than with a more or less aggressive form, we suspect that the 

genetic variants act at an early stage of carcinogenesis. This study is only a first step toward 
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defining a genetic association with prostate cancer in populations. Future investigations will 

need to test the value of these findings in assessing the risk of prostate cancer in individual 

men.[57]
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CHAPTER 4 

POLYGENIC RISK SCORE (PRS) 

4.1 Introduction 

GWAS have made clear that only a very small proportion of the total genetic contribution 

can be unambiguously attributed to variation in particular loci of the genome. Most such 

genetic contributions are thus spread across the huge landscape of the genome, with many 

loci each contributing a small, almost undetectable effect on the phenotypes.  To date, 

GWAS have identified thousands of loci that are associated with a range of complex human  

traits and diseases, including cardiovascular diseases, cancers, obesity and Alzheimer’s 

disease. These data have provided numerous insights into the genes and pathways that 

cause disease, but more recently the use of these data for disease risk predictio n has gained 

interest. Many common, complex diseases now have numerous, well-established risk loci 

and likely harbor many genetic determinants with effects too small to be detected at 

genome-wide levels of statistical significance. A simple and intuitive approach for 

converting genetic data to a predictive measure of disease susceptibility is to aggregate the 

effects of these loci into a single measure, the polygenetic risk score (PRS). The genetic 

architecture of most phenotypes and health conditions is po lygenic in nature. With the 

growth of genome-wide association studies (GWASs) and larger samples, PRSs have 

increasingly emerged as a major tool in several areas of quantitative genetic research. [58] 

This approach is particularly valuable for complex traits that lack common risk variants of 

large effect, including schizophrenia and height. The predictive power of a PRS is limited 

by the number of SNPs tested and a trait’s heritability and prevalence, but theoretically can 

be high. In practice, in some situations, a PRS may identify high-risk individuals and can 

identify risk classes that could inform a range of treatment options. [1] 

A polygenic risk score (PRS) is a numeric summary of the relationship between multiple 

genetic loci and a phenotype. A PRS estimates the genetic risk of an individual for some disease 

or trait, calculated by aggregating the effects of many common variants in the genome, each of 

which can have a small effect on a person’s genetic risk for a given disease or condition [4]. 

PRS analyses aim to provide insight into the genetic architecture using evidence for association 

from variants that do not pass the stringent threshold of association. As the threshold of sample 
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dataset p-value increases, the number of SNPs included in the PRS also increases, and hence 

the ratio of false/true positives increases. [18] PRS can also be used to determine the presence 

of a genetic signal in underpowered studies, to infer the genetic architecture of a trait, for 

screening in clinical trials, and as a biomarker.[58] 

4.2 PRS theory 

Polygenic scores are derived directly from the genome-wide associations in GWASs. Using the 

summary statistics from these to construct an estimate of how SNPs combine to explain the trait 

of interest. With the increasing availability of genetic data in large cohort studies such as the 

UK Biobank, inclusion of this genetic risk as a covariate in statistical analyses is becoming 

more widespread [4]. The purpose of risk scores is twofold: (1) to predict the likelihood of an 

individual developing disease, a reaction to a drug or a particular outcome of interest based on 

some amount of available information, usually genetic, clinical, demographic, or a 

combination, and (2) to estimate the level of predictive power that is captured by associated 

variants. Predicting a greater proportion of the "risk" for the outcome of interest indicates the 

level of success of predictors included in the risk score. A PRS may estimate the overall 

likelihood, or risk, that an individual has of developing an outcome of interest based on the 

genotypes and variants identified as being associated with that outcome. Because an 

individual’s genetic profile is set at birth, and therefore because risk for disease could 

theoretically be determined prior to (most) environmental exposures, a great deal of hope has 

been invested in developing these models as an advancement of precision medicine. Family 

history is typically seen as a good proxy for genetic risk as it reflects shared genetic a nd 

environmental factors and thus is incorporated into clinical history, when possible, for genetic 

diseases. Furthermore, a positive family history reflects a certain level of disease risk, while a 

negative family history does not imply the opposite. One goal of implementing the PRS is to 

improve upon these factors for a more comprehensive and accurate assessment of disease risk 

beyond what family history can estimate. A PRS can be based solely on available genetic data 

or can incorporate environmental, phenotypic, and/or demographic information. [1] As genetic 

factors capture only the genetic contribution to risk and as PGSs capture only part of the genetic 

risk, PGSs cannot be diagnostically accurate risk predictors. Nonetheless, for many common 

complex genetic disorders, such as cancers and heart disease, there is increasing interest in 

evaluating PGSs for early disease detection, prevention, and intervention [8] 
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PRS analyses can be characterized by the two key input data sets that they require: (i) base 

data (GWAS), which consists of summary statistics (e.g., betas and p-values) of genotype-

phenotype associations at genetic variants (SNPs) genome-wide, and (ii) target data, which 

consists of genotypes and, in most cases, phenotypes, and should be independent of the GWAS 

sample to avoid additional bias and overfitting. It is in the target sample that the PRS analyses 

were performed, which may involve merely computing PRSs in all the target individuals, 

conducting association testing between the PRSs and phenotypes or outcomes of interest, or 

predicting individuals’ risk of disease or medication side effects in clinical settings. It is 

important to distinguish between base and target data to avoid overfitting. Overfitting can be 

defined as fitting a model too closely to one set of data, greatly limiting its predictive ability in 

external data. Often, an overfit model will reflect effects beyond true biological effects, such as 

random noise or population-specific effects. PRS weights are generated in base, or training, 

data. The standard approach to choosing weights involves using GWAS summary statistics. 

The natural logarithm of the odds ratio (ln [OR] = β) is the common selection and is considered 

as the β for each copy of each SNP. These effect estimates can carry either risk (OR > 1, β > 0) 

or a protective effect (OR < 1, β < 0). Test, or target data is the genomic data to which the 

weights from the base data are applied. Only SNPs that are included in both the base and target 

data with strand agreement will be considered in generation of the PRS. In general, target and 

base data should not include any of the same participants, in order to, again, avoid  overfitting 

by biasing the sets used to generate the weights.[53] It is also important to consider overlap in 

participants between the base and target data. This must take into account not only individuals 

that may be present in both the base and target data, but also the potential existence of close 

relatives between the datasets. Because of this, it is ideal to remove these close relatives or 

choose alternative base or target data to avoid such relationships. Failure to do so can lead to 

“overfitting” of the PRS model by capturing environmental or behavioral effects that are due 

to similar upbringing and exposures among relatives. If the parameters of the PRS calculation 

have not been previously optimized, then the target sample can be used both for this 

optimization and for the analysis, as long as careful cross-validation or permutation procedures 

are applied. Ideally, analysis is also performed on an independent validation sample to ensure 

the generalizability of results. [5] Using an independent validation dataset allows unbiased 

estimation of the predictive performance, avoiding optimism due to overfitting. Generally, once 

predictive performance plateaus or declines in the validation set, the optimal trade-off of signal 
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and noise has been reached.[52] To find an appropriate dataset, ensure that the data is 

phenotypically relevant. It is important to note that the target sample, should not be too different 

from the base sample. The base sample is the sample or the collection of studies that have been 

used to calculate the original summary statistics of the GWAS. Also, ancestry composition 

should not differ too much between the base and the target sample. If allele frequencies of the 

SNPs used in the score differ too much between the two samples, this will result in a very 

imprecise score that cannot be used for any further analysis, even for highly heritable traits. 

GWAS genotypes in a PRS discovery sample may not be representative of those in the 

validation or application set leading to attenuated performance of the PRS. [58] In practice, 

PRSs are linear combinations of the phenotype-associated alleles across the genome, typically 

weighted by GWAS effect sizes. It is thus a single quantitative measure that can be interpreted 

as a measure of an individual's genetic propensity toward a phenotype relative to a population. 

[58] In general, PRS for an individual defined as the weighted sum of a person's genotypes at 

M loci. A PRS for individual i can be calculated as the sum of the allele counts αij (0, 1, or 2) 

for each SNP j = l, ... M, multiplied by a weight βj 

PRSi = ∑ 𝑎𝑖𝑗
𝑀
𝑗=1     (5.1) 

where the weights (or effect sizes : the increase in the trait value (usually reported as a beta) or 

disease risk (usually reported as an OR) associated with each additional copy of the risk allele) 

βj are transformations of GWAS coefficients [58] (the log odds ratio or the estimated regression 

coefficient from a linear or logistic regression) [13] It is also important to underline that in 

calculating PRSs on a binary (e.g., case/control) phenotype, the effect sizes used as weights are 

typically reported as log Odds Ratios (log (ORs)). Assuming that relative risks on a disease 

accumulate on a multiplicative rather than an additive scale, then PRSs should be computed as 

a summation of log (OR)-weighted genotypes. PRS values are computed in relation to a 

hypothetical individual with the non-effect allele at every SNP, and, thus, they provide only a 

relative (compared to other individuals) estimate of risk (or trait effect) rather than an absolute 

estimate.[5] Equation 1.1 shows that it is a linear combination of the effects of multiple SNPs 

on phenotype. The underlying model in a PRS is also usually additive, since it is measured the 

number of "risk alleles" for each SNP included in the score. However, recessive or dominant 

models can also be used in the construction of a PRS. Typically, these scores include hundreds-

to-thousands of SNPs, motivated by theory and data showing that many diseases are polygenic. 
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In this way, PRS aggregate the contribution of an individual’s germline genome into a single 

number proportional to the risk for a given disease.[52] 

The resulting score is approximately normally distributed in the general population, with 

higher scores indicating higher risk.[4] The central limit theorem dictates that if a PRS is based 

on a sum of independent variables (here, SNPs) with identical distributions, then the PRS of a 

sample should approximate the normal (Gaussian) distribution. This is true even if the PRS has 

extremely low predictive accuracy, since the sum of random numbers is approximately 

normally distributed, and so a normally distributed PRS in a sample should not be considered 

as validation of the accuracy of a PRS. However, strong violations of these assumptions, such 

as the use of many correlated SNPs or a sample of heterogenous ancestry (thus, SNPs with 

markedly different genotype distributions), can lead to non-normal PRS distributions. Thus, 

inspection of PRS distributions may highlight calculation errors or problems of population 

stratification in the target sample for which researchers did not adequately control.[5 ] An 

additional assumption is the absence of gene-gene interactions (or epistasis) since SNP effects 

are assumed to be independent. In order to create a PRS, required summary statistics that are 

calculated from a GWAS of the trait of interest and the individual-level genotype data in which 

you would like to apply your PRS. The GWAS summary statistics should not include the same 

data that are used for calculating the PRS, which would introduce additional bias leading to 

overfitting. [58] 

There is a benefit to adding PRS to existing clinical risk scores, the unique characteristics of 

PRS open up possibilities for earlier prevention. Indeed, a study to predict the development of 

T1D in high-risk children (family history of T1D) found that a PRS was only predictive of 

progression to T1D before any metabolic abnormalities were present (high DPT-1 score), 

indicating the value of a T1D PRS for predicting those likely to progress to disease . For 

cardiovascular disease, traditional risk factors are typically not measured early in life and can 

have substantial temporal variation. In contrast, individuals can be genotyped early in life, and 

have their PRS for a wide range of complex diseases. For those at substantially increased 

lifetime risk of disease, but without elevated traditional risk factors, targeted lifestyle 

interventions could be used to reduce their risk, for example, by more frequent follow-ups or 

more stringent targets for traditional risk factors (e.g., cholesterol) [52] 
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4.3 Quality Control 

The power and validity of PRS analyses are dependent on the quality of the base and target 

data. Both data sets must be subjected to QC to at least the standards used in GWAS studies (as 

described in chapter 3), while numerous QC issues unique to PRS analyses require special 

attention and are summarized below: 

Heritability check. A critical factor in the accuracy and predictive power of PRSs is the 

power of the base (GWAS) data, and so to avoid reaching misleading conclusions from the 

application of PRSs, it is recommended to perform PRS analyses only that use GWAS data with 

a ℎ𝑆𝑁𝑃
2 > 0.05. [5] 

Effect allele. Some GWAS results files do not make clear which allele is the effect allele and 

which is the non-effect allele. If an incorrect assumption is made in computing the PRS, then 

the effect of the PRS in the target data will be in the wrong direction, and so to avoid misleading 

conclusions, it is critical that the effect allele from the base (GWAS) data is known. [5] 

Target sample size. It is recommended to perform PRS analyses that involve association 

testing on target sample sizes of ≥100 individuals and caution against analyses that utilize base 

data with low ℎ𝑆𝑁𝑃
2  and small target sample size. This is to minimize the generation of 

misleading results due to the less stringent QC feasible on small samples. 

File transfer. Since most base GWAS data are downloaded online, and base/ target data 

transferred internally, one should ensure that files have not been corrupted during transfer. 

Corrupt files can generate PRS calculation errors. [5] 

Genome build. Ensure that the base and target data SNPs have genomic positions assigned 

on the same genome build. 

Ambiguous SNPs: : If the base and target data were generated using different genotyping 

chips and the chromosome strand (+/-) that was used for either is unknown, then it is not 

possible to pair up the alleles of ambiguous SNPs (i.e., those with complementary alleles, either 

C/G or A/T SNPs) across the data sets, because it will be unknown whether the base  and target 

data are referring to the same allele or not. While allele frequencies could be used to infer which 

alleles are on the same strand, the accuracy of this could be low for SNPs with MAF close to 

50% or when the base and target data are from different populations. Therefore, we recommend 

removing all ambiguous SNPs to avoid introducing this potential source of systematic error. [5] 
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Duplicate SNPs: Ensure that there are no duplicated SNPs in either the base or target data 

since this may cause errors in PRS calculation unless the code/software used specifically checks 

for duplicated SNPs.[5] 

Sex-check: It is standard in GWAS QC to remove individuals for whom there is a difference 

between reported sex and that indicated by the sex chromosomes. While these may be due to 

differences in sex and gender identity, they could also reflect mislabeling of samples or 

misreporting and are, thus, considered potentially unreliable data. In addition to this check, if 

the aim of an analysis is to model autosomal genetics only, then we recommend that all X and 

Y chromosome SNPs are removed from the base and target data to eliminate the possibility of 

non-autosomal sex effects influencing results.  [5] 

Sample overlap: Sample overlap between the base and target data can result in substantial 

inflation of the association between the PRS and trait tested in the target data and so must be 

eliminated.[5] 

Relatedness: A high degree of relatedness among individuals between the base and target 

data can also generate inflation of the association between the PRS and target phenotype. 

Assuming that the results of the study are intended to reflect those of the general population 

without close relatedness between the base and target samples, then relatives should be 

excluded. If genetic data from the relevant base data samples can be accessed, then any closely 

related individuals (eg. 1st/2nd degree relatives) across base and target samples should be 

removed. If this is not an option, then every effort should be made to select base and target data 

that are very unlikely to contain highly related individuals.[5] 

Choi et al. recommend the below QC criteria for standard analyses: genotyping rate >0.99, 

sample missingness<0.02, Hardy-Weinberg Equilibrium p> 1 × 10-6 , heterozygosity within 3 

standard deviations of the mean, minor allele frequency (MAF) >1% (MAF >5% if target 

sample N <1000)[5] In Figure 4.1 summarized the fundamental features of a PRS analysis.  
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Figure 4.1 

The fundamental features of a PRS analysis [5] 

 

4.4 PRS Performing 

There are now many methods to calculate PRSs, which differ in terms of two key criteria: which 

SNPs to include and what weights to allocate to them. The optimal method may differ among 

traits depending on the sample size of the sample data set and on the genetic architecture of the 

trait (the number, frequencies, and effect sizes of causal variants), particularly given the linkage 

disequilibrium (LD) correlation structure between SNPs. Often, when new PGS methods are 

introduced, comparisons are made between a limited set of methods using simulated data and 

their application to some real-data examples. [8] 

4.4.1 Shrinkage of GWAS Effect Size Estimates 

Given that SNP effects are estimated with uncertainty and since not all SNPs influence the trait 

under study, the use of unadjusted effect size estimates of all SNPs could generate poorly 

estimated PRSs with high standard error. To address this, two broad shrinkage strategies have 

been adopted: [5]  

(1) PRS methods that perform shrinkage of all SNPs generally exploit commonly used 

statistical shrinkage/ regularization techniques, such as LASSO or ridge regression, or Bayesian 

approaches that perform shrinkage via prior distribution specification. Under different 

approaches or parameter settings, varying forms of shrinkage can be achieved: e.g., LASSO 
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regression reduces small effects to zero, while ridge regression shrinks the largest effects more 

than LASSO but does not reduce any effects to zero. The most appropriate shrinkage to apply 

is dependent on the underlying mixture of null and true effect size distributions, which is 

probably a complex mixture of distributions that vary by trait. Since the optimal shrinkage 

parameters are unknown a priori, PRS prediction is typically optimized across a range of 

possible parameter values, which in the case of LDpred, for example, includes a parameter for 

the fraction of causal variants.[5] 

(2) In the classic PRS calculation method, only those SNPs with a GWAS association p-

value below a certain threshold (e.g., P < 1 × 10 -5) are included in the calculation of the PRS, 

while all other SNPs are excluded. This approach effectively shrinks all excluded SNPs to an 

effect size estimate of zero and performs no shrinkage on the effect size estimates of those SNPs 

included. Since the optimal p-value threshold is unknown a priori, PRSs are typically calculated 

over a range of thresholds, association with the target trait is tested for each, and the prediction 

is optimized accordingly. This process is analogous to tuning parameter optimization in the 

formal shrinkage methods.[5] 

4.4.2 Controlling LD 

If genetic association testing is performed using joint models of multiple SNPs, then 

independent genetic effects can be estimated despite the presence of LD. However, association 

tests in GWASs are typically performed one SNP at a time, which, combined with the strong 

correlation structure across the genome, makes estimating the independen t genetic effect 

extremely challenging. If independent effects were estimated in the GWAS or by subsequent 

fine-mapping, then PRS calculation can be a simple summation of those effects. If, instead, the 

investigator is using a GWAS based on one-SNP-at-a-time testing, then there are two main 

options for approximating the PRS that would be obtained from independent effect estimates: 

(1) SNPs are clumped (i.e., thinned, prioritizing SNPs at the locus with the smallest GWAS P 

value) so that the retained SNPs are largely independent of each other and, thus, their effects 

can be summed up, assuming additivity; and (2) all SNPs are included, accounting for the LD 

between them. In the classic PRS calculation method, option (1) is combined with p -value 

thresholding and is called the C+T (clumping + thresholding) method, while option (2) is 

generally favored in methods that implement traditional shrinkage techniques. The relatively 

similar performance of the classic approach to more sophisticated methods may be due to the 
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clumping process capturing conditionally independent effects well; note that clumping does not 

merely thin SNPs by LD at random (like pruning) but preferentially selects SNPs most 

associated with the trait under study and retains multiple SNPs in the same genomic region if 

there are multiple independent effects there: clumping does not simply retain only the most-

associated SNP in a region. A criticism of clumping, however, is that researchers typically 

select an arbitrarily chosen correlation threshold for the removal of SNPs in LD. Both clumping 

and LD modeling require estimation of the LD between SNPs. Assuming that LD values 

derived from the base data are unavailable, then those from a reference sample of the same 

ancestry should be used to approximate these. If there are no reference samples well matched 

to the population composition of the base data, then the target data can be used to estimate the 

LD instead. However, if base and target samples are drawn from different populations, then the 

base data LD may be poorly approximated and the PRS accuracy reduced accordingly.[5] 

4.4.3 Population stratification  

When selecting the analysis data for the survey, it is important to be aware of the potential for 

PGS inflation in the target sample due to population stratification. A major concern in GWAS 

and PRS studies is that their results may be affected by confounding due to population genetic 

structure. Since environmental risk factors also tend to be geographically structured, this creates 

the potential for associations between many genetic variants and the tested trait that are 

confounded by, for example, location. Uncorrected, this can lead to false positive genotype-

phenotype associations and consequently inflated estimates of PRS prediction. PRS predic tion 

can also be inflated by a household effect, whereby the genetics of an individual are correlated 

with their household environment when created by parents (or siblings) with shared genetic 

tendencies (e.g., of diet, books or exercise). A key difference between these sources of PRS 

inflation is that the genetic variants leading to inflation due to population genetic structure are 

typically non-causal of the outcome, being incidentally associated with location and 

environmental risk factors, whereas those creating the household effect are (indirectly) causal. 

Stringent adjustment of effects via genetic principal components (PCs) or the use of mixed 

models should be applied to both the base and target samples to minimize inflation due to 

population structure, but the possibility of complex structure causing residual confounding 

cannot be ruled out. On genome-wide association studies (GWASs) most discoveries to date 

have been conducted on European ancestry populations. European ancestry -based polygenic 

scores derived from GWASs cannot be directly used for prediction in non-European ancestry 
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populations due to differences in linkage disequilibrium (LD), allele frequencies, and genetic 

architecture. The frequencies of the SNPs used for PRSs contain a strong population component 

even without applying any PRS weighting. [58] 

4.4.4 Clumping and thresholding method (C+T) 

This method can be used to calculate a score based on any number of genetic variants, including 

all SNPs. It considers the LD structure of the data by selecting independent SNPs to avoid 

oversampling of more densely genotyped SNPs.[58] Briefly, C+T uses the GWAS effect size 

estimates as SNP weights and includes independent SNPs with association p-values lower than 

a threshold (chosen after application in a tuning sample). It is the most commonly used method. 

[8] For prediction purposes, including less significant SNPs (than the GWAS p-value threshold) 

can substantially improve predictive performance. Therefore, when using C+T, one has to 

choose a p-value threshold that balances between removing informative variants when using a 

stringent p-value threshold and adding too much noise in the score by including too many 

variants with no effect.[58] Generally, it selects the  p-value threshold that achieves the highest 

correlation/association with the phenotypes in a validation dataset that contains a measure of 

the phenotype under study. This approach, however, becomes less useful if the phenotype is 

not available in the target dataset.[11] The clumping step aims at removing redundancy in 

included effects that is simply due to linkage disequilibrium (LD) between variants. Yet, 

clumping may as well remove independently predictive variants in nearby regions; to balance 

this, C+T uses as hyper-parameter a threshold on correlation between variants included, 

therefore the correct choice must be made for the hyper-parameters, so to maximize predictive 

performance of the polygenic score derived. Most of the time, people use default values for 

these parameters, except for the p-value threshold, for which they look at different values and 

choose the one maximizing predictive ability in a training set.[9] A PRS is defined as the sum 

of allele counts of the remaining SNPs weighted by the corresponding regression 

coefficients.[9] 

It is important to avoid double-counting causal variants. Two main approaches can be 

used to select independent SNPs:  

1. LD pruning is the process of genetic marker selection based on their LD. LD pruning is a 

statistical procedure used to remove redundant SNPs or, in other words, pairs of correlated 

SNPs. This method selects only one representative SNP from each LD block in the genotype 
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data. For LD pruning, the pairwise correlation between the markers in a specific range of the 

genome is calculated. This region is then scanned and if for any pair of markers, the correlation 

is greater than the specified threshold, the marker with the smallest minor allele frequency 

(MAF) is discarded, otherwise both markers are retained. In the event that both markers have 

the same MAF, the one in the latter position is pruned. The process continues until the whole 

genome has been scanned.The aim is for the final set of markers to contain those that are nearly 

uncorrelated. [14] 

2. Clumping, instead, selects the SNP with the lowest p-value association in each LD block. 

Clumping looks at the most significant SNP first, computes correlation between this index SNP 

and nearby SNPs and removes all the nearby SNPs that are correlated with this index SNP 

beyond a particular threshold (e.g., r2 = 0.2). The clumping step aims at removing redundancy 

in included effects that is simply due to linkage disequilibrium (LD) between variants. 

Clumping is preferred since it selects the most statistically significant variant in the locus. [58] 

While clumping retains one SNP per LD block, pruning can end up with multiple SNPs or no 

SNPs at all for a region.[14] 

A common approach to selecting SNPs for PRS’s calculation is based on the p -value of the 

association within the summary statistics. [58] Thresholding consists of removing SNPs with a 

p-value larger than a p-value threshold in order to reduce noise in the score.[9] Generally, 

several p-value thresholds are tested to maximize prediction.[9] Generally speaking, stricter p-

value thresholds are more suitable for traits that are not polygenic while more lenient thresholds 

perform the best for polygenic traits. The aim of the research will also shape the decision. If the 

goal is to maximize prediction, having more SNPs would be the better choice. However, the 

more variants that are included in the calculation, the greater the risk that it includes 

unnecessary "noise" in the PRS. Both steps, clumping and thresholding, represent a statistical 

compromise between signal and noise.[7] The clumping step prunes redundant co rrelated 

effects caused by linkage disequilibrium (LD) between variants. Similarly, thresholding must 

balance between including truly predictive variants and reducing noise in the score by excluding 

null effects.[7] Next comes the calculation of PRS as described below. The gold-standard 

strategy for guarding against generating overfit prediction models and results is to perform out-

of-sample prediction. First, parameters are optimized using a training sample, and then the 

optimized model is tested in a test or validation data set to assess performance. In the PRS 

setting involving base and target data sets, it would be incorrect to believe that out-of-sample 
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prediction has already been performed, because polygenic scoring involves two different data 

sets; in fact, the training is performed on the target data set, meaning that a third data set is 

required for out-of-sample prediction.[5] 

4.4.5 LDpred Method 

Polygenic risk scores have shown great promise in predicting complex disease risk and will 

become more accurate as training sample sizes increase. As discussed above, the standard 

approach to calculating P+T risk scores is likely to discard information and may reduce forecast 

accuracy. Another, more advanced class of PRS methods is based on approaches typically used 

either to perform regression with correlated data and/or to select an optimal subset of predictors 

in a regression model. Unlike the P+T model, these approaches attempt to model the effects of 

all markers jointly. In the Bayesian statistical framework, a prior probability distribution for the 

parameters of interest is combined with data to produce a refined posterior distribution, from 

which inference is made. These prior distributions are based on prior knowledge of how genetic 

effects are distributed. This prior knowledge is combined with the data to yield a posterior 

distribution, from which inference is made. LD information is incorporated via  appropriate 

reference populations to account for correlation between effects. Each of these methods aims 

to shrink effect sizes of non-causal SNPs to increase sparsity, thereby increasing predictive 

accuracy and computational tractability. In general, these models apply shrinkage to marker 

effects (i.e., summary statistics) that incorporate LD information from a reference panel.[10]. 

Vilhj�́�lmsson et al. introduce LDpred, a method that infers the posterior mean effect size of 

each marker by using a prior on effect sizes and LD information from an external reference 

panel. By using a point-normal mixture prior to the marker effects, LDpred can be applied to 

traits and diseases with a wide range of genetic architectures. Unlike P+T, LDpred has the 

desirable property that its prediction accuracy converges to the heritability explained by the 

SNPs as sample size grows. [12] In practice, LDpred is a different way to estimate the weights 

using a Bayesian approach. The method assumes a point-normal mixture prior to the 

distribution of effect sizes and takes into account the correlation structure of SNPs by estimating 

the LD patterns from a reference sample of unrelated individuals.[10] 

The method: LDpred calculates the posterior mean effects from GWAS summary statistics 

by conditioning on a genetic architecture prior and LD information from a reference panel. The 

inner product of these re-weighted and the test-sample genotypes is the posterior mean 
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phenotype and thus, under the model assumptions and available data, an optimal (minimum 

variance and unbiased) predictor. The prior for the effect sizes is a point-normal mixture 

distribution, which allows for non-infinitesimal genetic architectures. The prior has two 

parameters: the heritability explained by the genotypes and the fraction of causal markers (i.e., 

the fraction of markers with non-zero effects). The heritability parameter is estimated from 

GWAS summary statistics and accounts for sampling noise and LD. The fraction of causal 

markers is allowed to vary and can be optimized with respect to prediction accuracy in a 

validation dataset, analogous to how P+T is applied in practice. Hence, similar to P+T (where 

p-value thresholds are varied and multiple PRSs are calculated), multiple LDpred  risk scores 

are calculated with the use of priors with varying fractions of markers with non -zero effects. 

The value that optimizes prediction accuracy can then be determined in an independent 

validation dataset. LD is approximated using data from a reference panel (e.g., independent 

validation data). The posterior mean effect sizes are estimated via the Markov chain Monte 

Carlo (MCMC) method and applied to the validation data to obtain the PRS. In the special case 

of no LD, posterior mean effect sizes with a point normal prior can be viewed as a soft threshold 

and can be computed analytically. A key feature of LDpred is that it relies on GWAS summary 

statistics, which are often available even when raw genotypes are not. For this reason , the main 

approaches that Vilhj�́�lmsson et al. compare with LDpred are: PRS based on all markers 

(unadjusted PRS), P+T, and LDpred specialized to an infinitesimal prior (LDpred-inf). [12] 

Phenotype Model: For phenotype model, Y be a N×1 phenotype vector and X be a N×M 

genotype matrix, where N is the number of individuals, and M is the number of genetic variants. 

Vilhj�́�lmsson et al. assumed throughout that the phenotype Y and individual genetic variants 

Xi have been mean centered and standardized to have variance 1. They model the phenotype as 

a linear combination of M genetic effects and an independent environmental effect ε, i.e., 𝑌 =

∑ 𝑋𝑖𝛽𝑖 + 𝜀𝑀
𝑖=1 , where Xi denotes the ith genetic variant, βi is its true effect, and ε is the 

environmental and noise contribution. In this setting, the (marginal) least-squares estimate of 

an individual marker effect is 𝛽�̂� =
𝑋𝑖

′𝑌

𝑁
. For clarity, they implicitly assume that they have the 

standardized effect estimates available as summary statistics. In practice, they usually have 

other summary statistics, including the p value and direction of the effect estimates, from which 

they infer the standardized effect estimates.[12] 
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 First, they exclude all markers with ambiguous effect directions, i.e., A/T and G/C SNPs. 

Second, from the p-values, they obtain Z scores and multiply them by the sign of the effects 

(obtained from the effect estimates or effect direction). Finally, they approximate the least-

squares estimate for the effect by 𝛽�̂� = 𝑠𝑖 (
𝑧𝑖

√𝑁
) , where si is the sign of the effect, zi is the z-

score obtained from the p-value and N is the sample size. If the trait is a case-control trait, this 

transformation from the p value to the effect size can be thought of as being an effect estimate 

for an underlying quantitative liability or risk trait.[12]  

Bpred: Bayesian Approach in the Special Case of No LD. Under the assumption that the 

phenotype has an additive genetic architecture and is linear, then estimating the posterior mean 

phenotype boils down to estimating the posterior mean effects of each SNP and then summing 

their contribution into a risk score. Under a model, the optimal linear prediction given some 

statistic is the posterior mean prediction. This prediction is optimal in the sense that it minimizes 

the prediction error variance. Under the linear model described above, the posterior mean 

phenotype (or the optimal predictor of the trait Y [14]) given GWAS summary statistics and LD 

is 

E (Y|�̂�, �̂�)=∑ 𝑋𝑖
′𝑀

𝑖=1 𝐸(𝛽𝑖|�̂�, �̂�)    (1.2) 

Here, �̂� denotes a vector of marginally estimated least-squares estimates obtained from the 

GWAS summary statistics and �̂� refers to the observed genome-wide LD matrix in the training 

data, i.e., the samples for which the effect estimates are calculated. Hence, th e quantity of 

interest is the posterior mean marker effect given LD information from the GWAS sample and 

the GWAS summary statistics. In practice, we might not have this information available to us 

and are forced to estimate the LD from a reference panel. In most of our analyses, we estimated 

the local LD structure in the training data from the independent validation data. Although this 

choice of LD reference panel can lead to a small bias when one estimates individual prediction 

accuracy, this choice is valid whenever the aim is to calculate accurate PRSs for a cohort 

without knowing the case-control status a priori. In other words, it is an unbiased estimate of 

the PRS accuracy when the validation data is used as an LD reference, which we recommend 

in practice.[12] 

If all samples are independent and all markers are unlinked and have effects drawn from a 

Gaussian distribution, i.e., 𝛽𝑖~𝑖𝑖𝑑𝑁(0, (ℎ𝑔
2 𝑀⁄ )), then this is an infinitesimal model, which 
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represents a genetic architecture where all genetic variants are causal. Under this model, the 

posterior mean can be derived analytically:[12] 

E (𝛽𝑖|�̃�) = E(𝛽𝑖|𝛽�̃�)= 
ℎ𝑔

2

ℎ𝑔
2+

𝑀

𝑁

𝛽�̃�    (1.3) 

An arguably more reasonable prior for the effect sizes is a non-infinitesimal model, where 

only a fraction of the markers is causal and affect the trait. We can model non-infinitesimal 

genetic architectures by using mixture distributions with a mixture parameter p, which denotes 

the fraction of causal markers. Consider the following Gaussian mixture prior to this. Assume 

that the effects are drawn from a mixture distribution as follows: [12] 

𝛽𝑖~𝑖𝑖𝑑 {
𝑁 (0,

ℎ𝑔
2

𝑀𝑝
) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝 

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑝),

 

Where p is the probability that a marker is drawn from a Gaussian distribution, i.e., the 

fraction of causal markers. Under this model, the posterior mean (which is a shrinkage of the 

original GWAS effect (𝛽і̃)[14]) can be derived as:[12] 

E(𝛽𝑖|𝛽і̃) =(
ℎ𝑔

2

ℎ𝑔
2+

𝑀𝑝

𝑁

)𝑝�̅�𝛽і̃ ,    (1.5) 

Where 𝑝�̅�  is the posterior probability that the ith marker (SNP) is causal and can be calculated 

analytically.[12] For more accurate predictions, the authors recommend that the user specify a 

range of different fraction values 𝑝, which will be optimized on independent testing data.[14] 

Vilhj�́�lmsson et al. refer to this Bayesian shrink without LD as Bpred.[12] 

LDpred: Bayesian Approach in the Presence of LD. If we allow for loci to be linked, then 

we can derive posterior mean effects analytically under a Gaussian infinitesimal prior 

(described above). We call the resulting method LDpred-inf, and it represents a computationally 

efficient special case of LDpred. If we assume that distant markers are unlinked, the posterior 

mean for the effect sizes within a small region 𝑙 under an infinitesimal model is well 

approximated by [12] 

E (𝛽𝑙|�̃�𝑙 , 𝐷)≈ (
𝑀

𝑁ℎ𝑔
2 𝐼 + 𝐷𝑙)

−1

�̃� 𝑙    (1.6) 
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Here, 𝐷𝑙 denotes the regional LD matrix within the region of LD, and �̃�𝑙 denotes the least-

squares-estimated effects for SNPs within that region. The approximation assumes that the 

heritability explained by the region is small and that LD with SNPs outside of the region is 

negligible. Interestingly, under these assumptions, the resulting effects approximate the 

standard mixed-model genomic BLUP effects. LDpred-inf is therefore a natural extension of 

the genomic BLUP to summary statistics. In practice, we do not know the LD pattern in the 

training data, and we need to estimate it by using LD in a reference panel. Deriving an analytical 

expression for the posterior mean under a non-infinitesimal Gaussian mixture prior is difficult, 

and thus LDpred approximates it numerically by using an approximate MCMC Gibbs sampler. 

[12] 

In general, the LD matrix is given by the following relation: 𝐷 =
𝑋𝑋′

𝑁
 and for the locus-LD the 

relation becomes: 𝐷𝑙 =
𝑋(𝑙)𝑋(𝑙)′

𝑁
 . 

Estimation of the Heritability Parameter: In the absence of population structure and assuming 

independent and identically distributed mean-zero SNP effects, the following equation has been 

shown to hold: 

E (𝑥𝑗
2)=1+

𝑁 ℎ𝑗
2 𝑙𝑗

𝑀
      (1.7) 

where 𝑥𝑗
2 is the 𝑥2-distributed test statistic at the jth SNP, and 𝑙𝑗 = ∑ [𝑟2(𝑗, 𝑘) −𝑘

(1 −
𝑟2(𝑗,𝑘)

𝑁
− 2)] summing over k neighboring SNPs in LD, is the LD score for the j th SNP. 

Taking the average of both sides over SNPs and rearranging them, we obtain a heritability 

estimate: ℎ𝑗
2̃ = 

(𝑥2̅̅ ̅̅ ̅−1)𝑀

𝑙�̅�
 ,where 𝑥2̅̅ ̅ = ∑ (

𝑥𝑗
2

𝑀
)𝑗  and 𝑙 ̅ = ∑ (

𝑙𝑗

𝑀
)𝑗  . [12] 

When LDpred is applied to real data, two parameters need to be specified beforehand. The 

first parameter is the LD radius, i.e., the number of SNPs that we adjust for on each side of a 

given SNP. There is a trade-off when we decide on the LD radius. If the LD radius is too large, 

then errors in LD estimates can lead to apparent LD between unlinked loci, which can lead to 

worse effect estimates and poor convergence. If the LD radius is too small, then we risk not 

accounting for LD between linked loci. Vilhj�́�lmsson et al. found that an LD radius of 

approximately M/3,000 (the default value in LDpred), where M is the total number of SNPs 

used in the analysis, works well in practice. Regarding the choice of the LD panel, its LD 
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structure should ideally be similar to the training data for which the summary statistics are 

calculated. In simulations, Vilhj�́�lmsson et al. found that the LD reference panel should contain 

at least 1,000 individuals. The second parameter is the fraction p of non-zero effects in the prior. 

This parameter is analogous to the p value threshold used in P+T. Vilhj�́�lmsson et al. 

recommendation is to try a range of values for p (e.g., 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 3E-

4, 1E-4, 3E-5, 1E-5; these are default values in LDpred). This will generate 11 sets of SNP 

weights, which can be used for calculating polygenic scores. One can then use independent 

validation data to optimize the parameter, analogous to how the p value threshold is optimized 

in the P+T method.[12] 

When using LDpred, Vilhj�́�lmsson et al. recommend that SNP weights (posterior mean 

effect sizes) are calculated for exactly the SNPs used in the validation data. This ensures that 

all SNPs with non-zero weights are in the validation dataset. In practice, we use the intersection 

of SNPs present in the summary-statistics dataset, the LD reference genotypes, and the 

validation genotypes. If the validation cohort contains more than 1,000 individuals, with the 

same ancestry as the individuals used for the GWAS summary statistics, then we suggest using 

the validation cohort as the LD reference as well. These steps are implemented in the LDpred 

software package.[12] 

LDpred-inf is a special case of LDpred when all variants are assumed to be causal (i.e., p = 

1). Under this infinitesimal model, the posterior mean effect sizes are closely approximated by 

E (β|�̃�, �̂�) ≈ (
𝛭

𝛮𝑔ℎ
2 𝐼 + 𝐷)-1 �̃�     (1.8) 

where D denotes the LD matrix between the markers in the training data, and �̃� denotes the 

marginally estimated marker effects. [12] 

Although LDpred is a substantial improvement over existing methods for using summary 

statistics to conduct polygenic prediction, it still has limitations. First, the method’s reliance on 

LD information from a reference panel requires that the reference panel be a good match for 

the population from which summary statistics were obtained; in the case of a mismatch, 

prediction accuracy might be compromised. Second, the point-normal mixture prior distribution 

used by LDpred might not accurately model the true genetic architecture, and it is possible that 

other prior distributions might perform better in some settings. Third, in those instances where 

raw genotypes are available, fitting all markers simultaneously might achieve higher accuracy 
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than methods based on marginal summary statistics. Fourth, LD reference panels are likely to 

be inadequate for rare variants, motivating future work on how to treat rare variants in PRSs. 

Despite these limitations, LDpred is likely to be broadly useful in leveraging summary-statistics 

datasets for polygenic prediction of both quantitative and case-control traits. As sample sizes 

increase and polygenic predictions become more accurate, their value increases, both in clinical 

settings and for understanding genetics. LDpred represents substantial progress, but more work 

remains to be done. One future direction would be to develop methods that combine different 

sources of information. In addition, using different prior distributions across genomic regions 

or functional annotation classes could further improve the prediction.[12] 

4.4.6 LASSOSUM 

As there is no inherent information on linkage disequilibrium (LD) in summary statistics, a 

pertinent question is how we can use LD information available elsewhere to supplement such 

analyses. To answer this question, Mak T.S.H et al., propose a method for constructing PRS 

using summary statistics and a reference panel in a penalized regression framework, called 

lassosum. They also propose a general method for choosing the value of the tuning parameter 

in the absence of validation data. Lassosum use non-Bayesian strategies to consider large 

numbers of markers jointly applies least absolute shrinkage and selection operator (LASSO) 

regression to downweight, and perhaps omit altogether, effects of correlated markers. Two 

important parameters for lassosum, which may require optimizing using external data, are λ, 

which determines the fraction of effects shrunk to 0, and s, the shrinkage parameter.[10]  

The method: Given a linear regression problem 𝑦 = 𝑋𝛽 + 𝜀 , where X denotes an 𝑛-by-𝑝 

data matrix, and y a vector of observed outcomes, the LASSO(least absolute shrinkage and 

selection operator) is a popular method for deriving estimates of β and predictors of (future 

observations of) y, especially in the case where 𝑝 (the number of predictors/columns in X) is 

large and when it is reasonable to assume that many β are 0. LASSO obtains estimates of β 

(weights in the linear combination of X) given y and X by minimizing the objective function 

𝑓(𝛽) = (𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) + 2𝜆‖𝛽‖
1
1    (1.9) 

= 𝑦𝑇𝑦 + 𝛽𝑇𝛸𝑇𝛸𝛽 − 2𝛽𝑇𝛸𝑇𝑦 + 2𝜆‖𝛽‖
1
1    (1.10) 

where ‖𝛽‖
1
1= ∑ 𝛽𝑖𝑖  denote the 𝐿1 norm of 𝜷, for a particular fixed value of 𝜆. In general, 

depending on 𝜆, a proportion of the 𝛽𝑖  are given the estimate of 0. It is also a specific instance 
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of penalized regression where the usual least square formulation of the linear regression 

problem is augmented by a penalty, in this case 2𝜆‖𝛽‖
1
1. LASSO lends itself to being used for 

estimation of 𝜷 in the event where only summary statistics are available, because if 𝑿 represent 

standardized genotype data and 𝒚 standardized phenotype, divided by √𝑛, then Equation (1.10) 

can be written as 

𝑓(𝛽) = 𝑦𝑇𝑦 + 𝛽𝑇𝑅𝛽 − 2𝛽𝑇𝑟 + 2𝜆‖𝛽‖
1
1    (1.11) 

where r= 𝛸𝑇 y represents the SNP-wise correlation between the SNPs and the phenotype, and 

R=𝛸𝑇𝛸  is the LD matrix, a matrix of correlations between SNPs. Equation (1.11) suggests a 

method for deriving PGS weights as estimates of 𝜷 by minimizing 𝑓(𝜷). Estimates of 𝒓 can be 

obtained from summary statistics databases that are publicly available for major 

diseases/phenotypes and estimates of LD (𝑹) from publicly available genotypes such as the 

1000 Genome database. Equation (1.11) suggests a method for deriving PGS weights as 

estimates of 𝜷 by minimizing 𝑓(𝜷). [11] 

An issue that surfaces when we substitute 𝑹 and 𝒓 with the estimates derived from publicly 

available data is that the genotype 𝑿 used to estimate 𝑹 and 𝒓 will in general be different. In 

particular, it will be more appropriate to write 𝑹 = 𝑋𝑟
𝑇𝑋𝑟 to indicate that the genotype used to 

derive estimates of LD (𝑋𝑟) will not in general be the same as the genotype that gave rise to the 

correlations 𝒓. Writing Equation (1.11) as 

𝑓(𝛽) = 𝑦𝑇𝑦 + 𝛽𝑇𝑋𝑟
𝑇𝑋𝑟𝛽 − 2𝛽𝑇𝛸𝑇𝑦 + 2𝜆‖𝛽‖

1
1   (1.12) 

however, would imply that (1.12) is no longer a LASSO problem, because it is no longer a 

penalized least squares problem. A minimum to (1.12) can still be sought, although the solutions 

would often be unstable and nonunique, since  𝑦𝑇𝑦 + 𝛽𝑇𝑋𝑟
𝑇𝑋𝑟𝛽 − 2𝛽𝑇𝛸𝑇𝑦 will not generally 

have a finite minimum. 

A natural solution to this problem is to regularize Equation (1.12). In particular, if we replace 

𝑋𝑟
𝑇𝑋𝑟 with 𝑅𝑠 = (1 − 𝑠)𝑋𝑟

𝑇𝑋𝑟 𝑠𝐼, for some 0 <𝑠< 1, then 

𝑓(𝛽) = 𝑦𝑇𝑦 + 𝛽𝑇𝑅𝑠𝛽 − 2𝛽𝑇𝑟 + 2𝜆‖𝛽‖
1
1  (1.13) 

will be equivalent to a LASSO problem. First, we note that 𝑦𝑇𝑦 is a constant and thus replacing 

it with any other constant will not change the solution. 𝑅𝑠 is necessarily positive definite for 0 

<𝑠< 1. This means that there always exists W and v such that 
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𝑊𝑇𝑊 = 𝑅𝑠 and 𝑊𝑇𝑣 = 𝑟     (1.14) 

Substituting (1.14) into (1.13) and replacing 𝑦𝑇𝑦 with 𝑣𝑇𝑣, we see that (1.13) can be written 

in a form such as (1.9) and is therefore a LASSO problem. Expanding (1.13) into 

𝑓(𝛽) = 𝑦𝑇𝑦 + (1 − 𝑠)𝛽𝑇𝑋𝑟
𝑇𝑋𝑟𝛽 − 2𝛽𝑇𝑟 + 𝑠𝛽𝑇𝛽 + 2𝜆‖𝛽‖

1
1   (1.15) 

Equation (1.15) encompasses a number of submodels as special cases. For example, when 𝜆 

= 0 and 𝑠 = 1, the estimated PGS becomes equivalent to simply using the entire set of correlation 

estimates without shrinkage or subset selection.[11] 

Tuning parameters selection: 𝜆 and 𝑠 need to be chosen. Generally, in the presence of a 

validation dataset, 𝜆 can be chosen by maximizing the correlation of the PGS with the 

validation phenotype data, just as it has been done in the choice of a p-value cutoff points in 

standard PGS calculation method(C+T). In principle, this method can be used to choose a 

suitable value for 𝑠 also, although repeating the estimation over different values of 𝑠 is much 

more time-consuming. Thus, in this paper, Mak T.S.H et al. set 𝑠 to a few chosen values and 

examined whether they are sufficient in arriving at a PGS with reasonable prediction accuracy. 

A more pressing problem is that validation phenotypes are not often available. And here Mak 

T.S.H et al. try to simulate this procedure in the following manner, which they refer to as 

pseudovalidation in this paper and can be applied to any PGS method that requires a tuning 

parameter. The analysis of this method is beyond the scope of this thesis and is therefore not 

discussed further. The reader is referred to the source [11]. 

 

Figure 4.2 

Comparison of different approaches for performing PRS analyses [10] 
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When performing a PRS analysis, it is important to consider which approach and software 

may be best suited for handling the research question. The primary decisions to make are how 

to decide which SNPs to include and how to modify effect size estimates. Depending on the 

genetic architecture of the trait or disease in question, each of these approaches could have 

merit. Beyond the method, the choice of approach and software could be influenced by the 

specific research question, data availability and type of data, goodness of fit metrics, and 

computation speed.[53] 

4.5 Validation and prediction 

Validation of the PRS underpins its usefulness. If incorrect decisions or conclusions are drawn, 

the PRS may lack precision and accuracy. Validation is also inherently intertwined with 

prediction. Prediction is the estimation of R2, which is the proportion of variance explained by 

the regression model. Generally, it is important to understand the amount of variability that can 

be explained by including a particular PRS in a model, namely the increase in the R2 when a 

PRS is entered into a model compared to the baseline model. The baseline model is the simplest 

possible prediction, which is used as a starting point against which additional variables are 

added. Then, it also generally included the population stratification variables (e.g., the first 10 

or 20 PCAs) and other relevant covariates. Typically, a regression is performed on the target 

sample, with the PRS as a predictor of the target trait or experimental outcome, and covariates 

are included as appropriate. Dudbridge also showed that the power of PRS association testing 

is optimized using equal-sized base and target sample sizes, while individual-level predictive 

accuracy is optimized by maximizing base sample size. For binary traits, Nagelkerke R2 used 

to measure more generally how much of the variation in the observed outcomes can be 

explained by the model’s predictions [5] 

A typical PRS study involves testing evidence for an association between a PRS and a trait(s) 

in the target data. The association between PRS and outcome can be measured with standard 

association or goodness-of-fit metrics, such as the p-value derived in testing a null hypothesis 

of no association, phenotypic variance explained (R2) or effect size estimate (beta or OR) per 

unit of PRS or between specific strata (e.g., high versus low-risk individuals), and with 

measures of discrimination in disease prediction, such as area under the receiver operator curve 

(AUC) or area under the precision recall curve. The most frequent way to describe how much 

variance is explained by a PRS is to run a regression model with the phenotype as the dependent 
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variable and the PRS as an independent variable and calculate the R2. The interpretation of R2 

is that it is the proportion of variance explained by the regression model. When using covariates, 

it is common to estimate the gain in R2 in two steps. First, a regression model with covariates 

but without a PRS is estimated. In the second step, the PRS was added to the models and 

estimated the differences in the R2 of the two models. Since the statistical distribution of the R2 

is not a standard one, it is not possible to estimate a confidence interval unless we use 

nonparametric statistical techniques. R2 has a theoretical upper bound equal to the heritability 

of the phenotype; however, SNP heritability (ℎ𝑆𝑁𝑃
2 ), the heritability using all available SNPs in 

the data, will be the upper bound for PRS.  For binary traits, the approach is very similar, but 

instead of estimating a series of linear regression models, we estimate logistic regression models 

and report the gain in pseudo-R2. Alternatively, it is possible for binary traits to estimate the 

area under the curve as a measure of the accuracy of the PRS to explain the phenotype.[58] The 

area under the curve (AUC) measures the predictive ability of a receiver operating characteristic 

(ROC) generated based on the PRS for a sample of individuals. The AUC is a function of the 

ability of the risk score to correctly identify the presence (sensitivity) or absence (specificity) 

of the outcome of interest.[58] 

The AUC compares the rates of true positives (sensitivity) and false positives (1–specificity) 

and indicates the overall performance of predictive models. Sensitivity, the probability of 

correctly classifying an affected individual as affected, indicates the ability of the model to 

correctly predict individuals with the outcome of interest; specificity, the probability of 

correctly classifying an unaffected individual as unaffected, indicates the ability of the model 

to accurately screen out individuals without the outcome of interest. The AUC of the ROC 

curve is a measure of overall performance of the model, and ranges from 0 to 1. Model 

performance based on AUC may differ depending on the phenotype being measured but, in 

general, an AUC of 0.5 is considered null (no better than chance), and an AUC of at least 0.8 

is considered to be very good, especially for a complex trait. An AUC less than 0.5 likely 

indicates a data error or that the model is predicting the wrong outcome. Diagnostic tests, by 

contrast, tend to have AUCs at 0.95 or higher for clinical use.[53] Models are expected to have 

an AUC >0.75 for informative screening of individuals who are at increased disease risk and a 

very high AUC (as high as 0.99) for a diagnostic test. The higher the AUC, the more precise 

the prediction and, thus, the greater the clinical utility of the combination of factors included in 

the model.[1] Other than the ROC curve, there are a few options to visualize goodness of fit 
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metrics of a PRS model. The first of these includes a common boxplot (binary traits or 

categorized quantitative traits) or scatter plot (quantitative traits) for plotting the PRSs against 

the trait of interest. These visually demonstrate the ability of the model to discriminate the 

outcome. To graphically depict fit of a model against other models, one option is to plot the R2 

values across multiple thresholds in a bar plot.[53] 

4.6 PRS Studies 

4.6.1 Study 1 

About simulations: Vilhjálmsson et al., performed three types of simulations: (1) simulated 

traits and simulated genotypes; (2) simulated traits, simulated summary statistics and simulated 

validation genotypes; and (3) simulated traits based on real genotypes. They used the point-

normal model for effect sizes, for most of the simulations: 

𝛽𝑖~𝑖𝑖𝑑 {
𝑁 (0,

ℎ𝑔
2

𝑀𝑝
) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝 

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑝),

 

Furthermore, for all of the simulations, they used four different values for p (the fraction of 

causal loci). They simulated genotypes with the adjacent squared correlation between SNPs set 

to 0 (unlinked SNPs) and 0.9 (SNPs in LD). In order to compare the performance of the LDpred 

method at large sample sizes, they simulated summary statistics that they used as training data 

for the PRSs. They also simulated two smaller samples (2,000 individuals) representing 

independent validation data and a LD reference panel. 

When there is no LD, the least-squares effect estimates (summary statistics) are sampled 

from a Gaussian distribution, 𝛽і̂|𝛽𝑖   ̴𝑖𝑖𝑑𝑁(𝛽𝑖 , (
1

𝑁
)) , where 𝛽𝑖  are the true effects. To simulate 

marginal effect estimates without genotypes in the presence of LD, they first estimate the LD 

pattern empirically by simulating 100 linked SNPs for 1,000 individuals for a given value and 

average over 1,000 simulations. This matrix captures the LD pattern in the validation data given 

that they simulate it by using the same procedure. Using this LD matrix D, we then sample the 

marginal least-squares estimates within a region of LD (SNP chunk) as �̂�|𝛽 ̴𝑖𝑖𝑑𝑁(𝐷𝛽, (
𝐷

𝑁
)), 

where D is the LD matrix. When simulating traits by using the Wellcome Trust Case Control 

Consortium (WTCCC) genotypes (Figure 5.6), they performed simulations under four different 

scenarios representing different number of chromosomes: (1) all chromosomes, (2) 
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chromosomes 1–4, (3) chromosomes 1 and 2, and (4) chromosome 1. They used 16,179 

individuals in the WTCCC data and 376,901 SNPs that passed quality control (QC). Also, they 

used 3-fold cross-validation, whereby 1/3 of the data was validation data and 2/3 were training 

data. 

Results: Vilhjálmsson et al., first considered simulations with simulated genotypes. They 

assessed accuracy by using squared correlation (prediction R2) between observed and predicted 

phenotypes. The Bayesian shrink imposed by LDpred generally performed well in simulations 

without LD. In Figure 4.3 the four subfigures a-d correspond to different genetic architectures 

where they vary p, the fraction of variants with (non-zero) effects drawn from a Gaussian 

distribution. Bpred denotes the analytical solution to LDpred, which can be derived in the 

absence of LD. As expected, Bpred outperforms P-value thresholding in the absence of LD, 

although not by much. 

 

Figure 4.3   

Comparison of methods using simulated genotypes without LD[12] 

However, LDpred performed particularly well in simulations with LD (Figure 4.4); the 

larger improvement (e.g., versus P+T) in this case indicates that the main advantage of LDpred 

is in its explicit modeling of LD. The four subfigures a-d correspond to different genetic 

architectures where p varies, which represents the fraction of variants with (non-zero) effects 

drawn from a Gaussian distribution. Note that when p=0.001, the chance of two causal variants 

being in LD is very small (~1%), and thus the improvement from accounting for LD in LDpred 

is negligible compared to P+T. 
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Figure 4.4   

Comparison of methods using simulated genotypes with LD[12] 

They also evaluated the prediction accuracy as a function of the sample size of the LD 

reference panel (Figure 4.5). LDpred performs best with an LD reference panel of at least 1,000 

individuals. These results also highlight the importance of using an LD reference population 

with LD patterns similar to the training sample, given that an inaccurate reference sample will 

have effects similar to those of a small reference sample. 

 

Figure 4.5  

Prediction accuracy for methods as a function of LD reference sample size[12] 

Using real WTCCC genotypes (15,835 samples and 376,901 markers after QC), 

Vilhjálmsson et al. simulated infinitesimal traits with the heritability set to 0.5. They 
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extrapolated results for larger sample sizes (Neff) by restricting the simulations to a subset of 

the genome (smaller M), leading to larger N/M. Results are displayed in Figure 4.6A. LDpred-

inf and LDpred (which are expected to be equivalent in the infinitesimal case) performed well 

in these simulations—particularly at large values of Neff, consistent with the intuition from 

Equation 1.8 that the LD adjustment arising from the reference-panel LD matrix (D) is more 

important when Nℎ𝑔
2/M is large. On the other hand, P+T performed less well, consistent with 

the intuition that pruning markers loses information. The four subfigures correspond to p = 1 

(A), p =0.1 (B), p = 0.01 (C), and p = 0.001 (D) for the fraction of simulated causal markers 

with (non-zero) effect sizes sampled from a Gaussian distribution. To aid interpretation of the 

results, they plot the accuracy against the effective sample size, defined as N eff = (N/Msim)M , 

where N = 10,786 is the training sample size, M = 376,901 is the total number of SNPs, and 

Msim is the actual number of SNPs used in each simulation: 376,901 (all chromosomes), 112,185 

(chromosomes 1–4), 61,689 (chromosomes 1 and 2), and 30,004 (chromosome 1). The effective 

sample size is the sample size that maintains the same N/M ratio if all SNPs are used.  

They next simulated non-infinitesimal traits by using real WTCCC genotypes and varying 

the proportion p of causal markers. Results are displayed in Figures 4.6(B–D). LDpred 

outperformed all other approaches, including P+T, particularly at large values of N/M. For p 

=0.01 and p= 0.001, the methods that do not account for non-infinitesimal architectures 

(unadjusted PRSs and LDpred-inf) performed poorly, and P+T was second best among these 

methods. 

 

Figure 4.6   

Comparison of Four Prediction Methods Applied to Simulated Traits[12] 
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In this section, we present the results of a study carried out by Vilhjálmsson et al. using real 

data. WTCCC Genotype Data were initially used, and a quality check was performed on them. 

In particular  pruning variants with missing rates above 1%, and removing individuals with 

genetic relatedness coefficients above 0.05, so they lef t 15,835 individuals genotyped for 

376,901 SNPs, including 1,819 individuals with bipolar disease (BD), 1,862 individuals with 

coronary artery disease (CAD), 1,687 individuals with Crohn disease (CD), 1,907 individuals 

with hypertension (HT), 1,831 individuals with rheumatoid arthritis (RA), 1,953 individuals 

with type 1 diabetes (T1D), and 1,909 individuals with type 2 diabetes (T2D).  For each of the 

seven diseases, was performed 5-fold cross-validation, whereby 1/5 of the data was validation 

data and 4/5 were training data, on affected individuals and 2,867 control individuals. For each 

of these analyses, they used the validation data as the LD reference data when using LDpred and 

when performing LD pruning. In Figure 4.7, represents the comparison of LDpred to other 

summary-statistics-based methods across the seven WTCCC disease datasets. It plotted the 

prediction accuracy of the different methods as estimated from 5-fold-cross-validation. The 

Nagelkerke prediction R2 is shown on the y axis. LDpred significantly improved the prediction 

accuracy for the immune-related diseases T1D, RA, and CD. LDpred attained significant 

improvement in prediction accuracy over P+T for T1D (p-value= 4.4E-15), RA (p-value = 

1.2E-5), and CD (p-value = 2.7E-8). For the other diseases with more-complex genetic 

architectures, the prediction accuracy of LDpred was similar to that of P+T, potentially because 

the training sample size was not sufficiently large enough for modeling LD to have a sizeable 

impact. [12] 
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Figure 4.7   

Comparison of Methods Applied to Seven WTCCC Disease Datasets[12] 

Finally, six large summary-statistics datasets were analyzed in this study. For all of the 

validation datasets, it was used the chip genotypes and filter individuals with more than 10% of 

genotype calls missing and filtered SNPs that had a missing rate more than 1% and a minor 

allele frequency (MAF) greater than 1%. In addition, SNPs that had ambiguous nucleotides, 

i.e., A/T and G/C removed. They matched the SNPs between the validation and GWAS 

summary-statistics datasets on the basis of the SNP rsID and excluded triplets, SNPs for which 

one nucleotide was unknown, and SNPs that had different nucleotides in different datasets. This 

was Vilhjálmsson et al. QC procedure for all large summary-statistics datasets that they 

analyzed. For all six of these traits, they used the validation dataset as the LD reference data 

when using LDpred and when performing LD pruning. By using the validation dataset as LD 

reference data, they were only required to coordinate two different datasets, i.e., the GWAS 

summary statistics and the validation dataset. They calculated P+T risk scores for different p-

value thresholds by using grid values (1E-8, 1E-6, 1E-5, 3E-5, 1E-4, 3E-4, 1E-3, 3E-3, 0.01, 

0.03, 0.1, 0.3, 1), and for LDpred they used the mixture probability (fraction of causal markers) 

values (1E-4, 3E-4, 1E-3, 3E-3, 0.01, 0.03, 0.1, 0.3, 1). They are used to find the optimal 

prediction value from a validation dataset for LDpred and P+T. 

The Psychiatric Genomics Consortium 2 (PGC2) SCZ summary statistics consisted of 

34,241 affected and 45,604 control individuals. The ISC (International Schizophrenia 

Consortium) cohorts and the MGS (Molecular Genetics of Schizophrenia) cohorts  used as 

validation datasets. After the QC the ISC cohort consisted of 1,562 affected and 1,994 control 
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individuals genotyped on ~518,000 SNPs that overlapped with the GWAS summary statis tics. 

The MGS dataset consisted of 2,681 affected and 2,653 control individuals after QC and had 

~549,000 SNPs that overlapped with the GWAS summary statistics.  

The International Multiple Sclerosis Genetics Consortium summary statistics used for 

multiple sclerosis (MS). These were calculated with 9,772 affected and 17,376 control 

individuals (27,148 individuals in total) for ~465,000 SNPs. As an independent validation 

dataset, used the BWH/MIGEN chip genotypes with 821 affected and 2,705 control individuals. 

After QC, the overlap between the validation genotypes and the summary statistics only 

consisted of ~114,000 SNPs, which used for the analysis. 

For breast cancer (BC), the Genetic Associations and Mechanisms in Oncology (GAME-

ON) BC GWAS summary statistics used, consisting of 16,003 affected and 41,335 control 

individuals. As validation genotypes, we combined genotypes from five different datasets. 

None of these 307 affected or 560 control individuals were included in the GWAS summary-

statistics analysis, and they thus represent an independent validation dataset. We used the chip 

genotypes that overlapped the GWAS summary statistics, which resulted in ~444,000 

genotypes after QC. 

For CAD, we used the transatlantic Coronary Artery Disease Genome-wide Replication and 

Meta-analysis (CARDIoGRAM) consortium GWAS summary statistics. These were calculated 

with 22,233 affected and 64,762 control individuals (86,995 individuals in total) for 2.4 million 

SNPs. For T2D, we used the Diabetes Genetics Replication and Meta-analysis (DIAGRAM) 

consortium GWAS summary statistics. These were calculated with 12,171 affected and 56,862 

control individuals (69,033 individuals in total) for 2.5 million SNPs. For both CAD and T2D, 

we used the Women’s Genomes Health Study (WGHS) dataset as validation data, where we 

randomly down-sampled the control individuals. For CAD, we validated the predictions in 923 

individuals with cardiovascular disease and 1,428 control individuals, and for T2D we used 

1,673 affected and 1,434 control individuals. We used the genotyped SNPs that overlapped the 

GWAS summary statistics, which amounted to about ~290,000 SNPs for both CAD and T2D 

after QC.  

Prediction accuracies for LDpred and other methods are reported in Figure 4.8 (Nagelkerke 

R2). For all five traits, LDpred provided significantly better predictions than other approaches 

(for the improvement over P+T, the p values were 6.3E-47 for SCZ, 2.0E-14 for MS, 0.020 for 
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BC, 0.004 for T2D and 0.017 for CAD). The relative increase in Nagelkerke R2 over other 

approaches ranged from 11% for T2D to 25% for SCZ. This is consistent with the fact that the 

simulations showed larger improvements for highly polygenic traits, such as SCZ. Noted that 

for both CAD and T2D, the accuracy attained with >60,000 training samples from large meta-

analyses (Figure 4.8) is actually lower than the accuracy attained with <5,000 training samples 

from the WTCCC (Figure 4.7). 

 

Figure 4.8  

Comparison of Methods Training on Large GWAS Summary Statistics for Five Different Diseases [12] 

PRSs are likely to become clinically useful as GWAS sample sizes continue to grow. 

However, unless LD is appropriately modeled, their predictive accuracy will fall short of their 

maximal potential. Our results show that LDpred is able to address this problem—even when 

only summary statistics are available—by estimating posterior mean effect sizes by using a 

point normal prior and LD information from a reference panel. Intuitively there are two reasons 

for the relative gain in prediction accuracy of LDpred PRSs over P+T. First, LD pruning 

discards informative markers and thereby limits the overall heritability explained by the 

markers. Second, LDpred accounts for the effects of linked markers, which can otherwise lead 

to biased estimates. These limitations hinder P+T regardless of the LD pruning and p -value 

thresholds used.[12] 

Clarifications: In this study the unadjusted PRS is simply the sum of all the estimated marker 

effects for each allele, i.e., the standard unadjusted polygenic score for the I th individual is 

∑ 𝑋𝑖𝑗𝛽�̂�
𝑀
𝑗=1 , where 𝑋𝑖𝑗 denotes the genotype for the ith individual and the jth genetic variant.   
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P+T refers to the strategy of first applying informed LD pruning with r2 threshold 0.2 and 

subsequently applying p-value thresholding, where the p-value threshold is optimized over a 

grid with respect to prediction accuracy in the validation data. 

4.6.2 Study 2 

Mak T.S.H et al, performed a number of simulation studies to assess the performance of their 

proposed method, lassosum. In their first simulation study, they used the Wellcome Trust Case 

Control Consortium (WTCCC) Phase 1 data for seven diseases. They filtered variants and 

participants using the following QC criteria: genotype rate >0.99, minor allele frequency >0.01, 

missing genotype per individual<0.01. SNP rsID included in the 1000 Genome project (Phase 

3, release May 2013) genotype data, with matching reference and alternative alleles, on top of 

the QC done by the original researchers (Wellcome Trust Case Control Consortium, 2007). 

This resulted in 358,179 SNPs and 15,603 individuals, of which 2,859 were con trols. [11] 

They randomly chose two 1,000 samples as two test datasets. In the first dataset 𝑿(1),  

validation and pseudovalidation were performed to determine the optimal value of 𝜆. This 

choice of 𝜆 and/or 𝑠 was applied in the other test dataset 𝑿(2) in the assessment of prediction 

accuracy. Prediction accuracy was assessed by the correlation of the PGS with the true predictor 

X(2)β. Except when assessing the performance of using different reference panels, they used the 

first test dataset 𝑿(1) as the reference panel also. In assessing the impact of using different 

reference panels, they let the 1000 Genome East Asian (EAS) subpopulation (𝑛 = 503) be their 

test dataset. They compared the performance of using four different reference panels: (1) the 

original sample that generated the summary statistics, (2) a sample of 1,000 from the WTCCC, 

(3) the EUR subpopulation from the 1000 Genome project, and (4) the EAS subpopulation from 

the 1000 Genome project. The above simulations were repeated 10 times and were compared 

with the approach of p-value thresholding (with and without clumping) and LDpred. For 

clumping, they used an 𝑅2 of {0.1, 0.2, 0.5, 0.8}. (As mentioned before, Clumping is a method 

for selectively clumping together SNPs in a LD region. Each region is tagged by a lead SNP. 

In the method implemented in this paper, they start with the most significant SNP. All SNPs 

that are correlated with this SNP by an R2 of greater than a certain threshold (e.g. 0.2) within a 

certain region are clumped together with this SNP. They continue this process with the second 

and third most significant SNP, until all SNPs are clumped into a region). For p-value 

thresholding, they used the set of p-values {5𝑒−8, 1𝑒−5, 1𝑒−4, 1𝑒−3, 0.0015,0.002,0.0025, …, 
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0.995, 1} as possible p-value thresholds. For LDpred, they used the set of proportion of causal 

SNPs {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}. For p-value thresholding and LDpred, they used a 

validation dataset as well as pseudovalidation to select the best threshold and proportion of 

causal SNPs, respectively.[11] 

Results: WTCCC simulations were run in this study with summary statistics sample sizes of 

10,000, 50,000, and 250,000, respectively. They used two different values for P (causal), which 

represents the expected proportion of causal SNPs: 0.1 and 0.01. P (causal)=0.01 represents a 

scenario with fewer causal SNPs and larger effect sizes, whereas P (causal) = 0.1, represents  a 

scenario in which causal SNPs have smaller effect sizes and are more evenly distributed across 

the genome. Figure 4.9 displays the performance of lassosum with different values of 𝜆 for one 

of the simulations. It can be seen that in all the simulation scenarios, the general pattern is that 

predictive performance increases with 𝜆 up to a point and then decreases, often rapidly. Using 

a validation dataset or alternatively pseudovalidation is usually effective in helping us select a 

value of 𝜆 that is close to the optimal (Circles are values of λ chosen with a validation dataset 

and triangles are values of λ chosen with pseudovalidation). Comparing different values of 𝑠, 

the shrinkage parameter, they see that the maximum attainable correlation is generally lower 

for 𝑠 = 1, the scenario where lassosum reduces to soft thresholding, that is, where information 

on LD is ignored, except when 𝑛 = 10,000 and 𝑃 (causal)=0.1. In addition, 𝑠 = 0.5 and 𝑠 = 0.2 

usually gives better performance than 𝑠 = 0.9.[11] 

 

Figure 4.9  

The predictive performance of lassosum with respect to λ[11] 

Figure 4.10, shows the average prediction performance over 10 simulations, comparing the 

use of pseudovalidation and a validation dataset with phenotype data as well as using the 
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minimum 𝜆 value of 0.001. They use 𝜆 = 0.001 for comparison because it is shown in Figure 

4.9 that in general the prediction performance of lassosum approaches a constant as 𝜆 tends to 

0, whereas when 𝜆 approaches 1, the performance drops sharply. Thus, using 𝜆 close to 0 

represents a conservative, safe option. When 𝑠 = 0.2 or 0.5, the performance of pseudovalidation 

was very similar to using a real validation phenotype. Both approaches were clearly superior to 

the conservative option of setting 𝜆 = 0.001. When 𝑠 = 0.9 or 𝑠 = 1, pseudovalidation was still 

clearly superior to setting 𝜆 = 0.001 for 𝑛 = 10, 000 and 𝑛 = 50, 000 and 𝑃 (causal)=0.01. In all 

simulations, the performance of p-value thresholding was similar to the use of lassosum with 𝑠 

= 1. It is also observed that lassosum with 𝑠 = 0.2 or 𝑠 = 0.5 tended to give the best performance 

overall. Thus, it is reasonable to maximize over 𝑠 also using either a validation phenotype or 

pseudovalidation when using lassosum. [11] 

 

Figure 4.10 

Comparing the use of a validation dataset with phenotype data and pseudovalidation in selecting the 

tuning parameter λ[11] 

Figure 4.11 shows the comparison of the performance of lassosum with clumping and p-

value thresholding, as well as with LDpred. For lassosum, there has been optimization over 

both 𝜆 and 𝑠 = {0.2, 0.5, 0.9, 1}. For comparison, there has been optimization over p-value 

thresholds and clumping 𝑅2 = {0.1, 0.2, 0.5, 0.8, no clumping}. Finally, there has been 

optimization for LDpred over 𝑃 (causal) = {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}. For p-value 

thresholding, clumping led to a noticeable increase in prediction accuracy, except when 𝑃 

(causal)=0.1 and 𝑛 = 10, 000. However, in all scenarios, lassosum was superior to clumping 

and thresholding. The result was similar whether the method was optimized using a validation 
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dataset or pseudovalidation. LDpred did not appear to have the claimed advantage over p-value 

thresholding in these simulations. Which may be due to the fact that the size of the reference 

sample used was only 1,000, smaller than the recommended size of at least 2,000 in the paper. 

However, they found that the performance of LDpred did not improve even when the sample 

size of the reference panel (and test panels) was set to 5,000 (Figure 4.12). [11] 

 

Figure 4.11 

Comparing the performance lassosum, (p-thres), C + T and LDpred[11] 

 

Figure 4.12 

Examining the impact of the size of the reference panel in the prediction accuracy of lassosum[11] 
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The effect of using different reference panels when using lassosum was investigated in 

Figure 4.13. There has been generation of the summary statistics using the entire WTCCC 

sample and using four different reference panels for their LD information: (1) the original 

WTCCC sample that generated the summary statistics, (2) a sample of 1,000 from the WTCCC, 

(3) the EUR subpopulation from the 1000 Genome project, and (4) the EAS subpopulation from 

the 1000 Genome project, which also served as the test sample. It was found that for the small 

sample size (𝑛 = 10, 000) scenario the use of the different reference panels made relatively little 

difference to predictive performance. However, as sample size increased, using the true sample 

that generated the summary statistics led to noticeably improved predictive performance. For 

many scenarios, using the 1000 Genome EUR sample as the reference panel led to a similar 

performance as using the original summary statistic sample. A clear advantage for using the 

summary statistics sample was only shown in the scenario with the most power (𝑛 = 250,000 

and 𝑃 (causal)=0.01). Using the wrong (EAS) reference sample was clearly inferior when the 

sample size was above 50,000, but it was still better than simple p-value thresholding. [11] 

 

Figure 4.13 

The effect of using different reference panels on lassosum[11] 
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Next, it was examined the performance of lassosum in a larger simulated dataset with around 

8 million SNPs, with a focus on clumping, to see whether prefiltering by clumping can be an 

effective method in reducing the number of SNPs in the analysis. The sample size for  the 

summary statistics was set at 200,000. Six levels of clumping (R2 = 0.01, 0.05, 0.1,0.2, 0.5, and 

0.8) were applied to the data, resulting in around 190.000, 330.000, 430.000, 610.000, 

1.170.000, and 1.940.000 SNPs respectively. (The actual number depends on the simulations) 

It was not perform LDpred for R2 > 0.2 because it was too time and memory intensive. In Figure 

4.14A, the results from this simulation appear. As shown, clumping was beneficial in improving 

prediction performance for p-value thresholding, and the best performance was achieved with 

an R2 of 0.5 or 0.8. For lassosum, performance decreased with increasing level of clumping 

(decreasing R2). lassosum with no clumping gave the best performance overall. LDpred 

performed poorly in this simulation, likely because the reference panel size was too small. [11] 

 

 

Figure 4.14 

(A) Performance of lassosum in a large simulated dataset. (B) Performance of lassosum vs. other 

methods when using real summary statistics data from meta-analyses[11] 

In Figure 4.14B, the results were presented for using real summary statistics from five large 

meta-analyses to predict phenotypes in the WTCCC data. [Bipolar disorder:𝑛(cases)=7, 481, 

𝑛(controls) = 9, 250, coronary artery disease:𝑛(cases) = 60, 801, 𝑛(controls) = 123, 504, 

Crohn’s disease:𝑛(cases) = 22, 575, 𝑛(controls) = 46, 693, RA:𝑛(cases) = 14, 361, 𝑛(controls) 
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= 43, 923, Type 2 diabetes:𝑛(cases) = 26, 488, 𝑛(controls) = 83, 964]. Because all these meta-

analyses included the WTCCC as one of the studies, PGS derived using these summary 

statistics directly would overfit the data. To overcome this problem, we attempted to isolate the 

non-WTCCC components of the summary statistics by reversing the fixed-effects meta-

analysis equations: 𝛽𝑚𝑒𝑡𝑎 =
𝛽𝑠 𝜎𝑠

2⁄ +𝛽�̅� 𝜎�̅�
2⁄

1 𝜎𝑠
2+1 𝜎�̅�

2⁄⁄
 ,  

1

𝜎𝑚𝑒𝑡𝑎
2 =

1

𝜎𝑠
2 +

1

𝜎�̅�
2 , 

where, 𝛽𝑠 and 𝜎𝑠, denote the log odds ratio and standard error from the WTCCC study and 𝛽�̅� 

and 𝜎�̅� the contribution to the meta-analysis apart from WTCCC. SNPs with negative 𝜎�̅�
2 were 

set to have zero effect size. Prediction accuracy of the summary statistics-derived PGS were 

assessed by the area under the ROC curve (AUC) statistic when used to predict disease status 

in the WTCCC dataset with the relevant disease and the 2,859 controls. The testing sample was 

also used as the reference panel.[11] 

In all cases, the use of pseudovalidation resulted in a PGS that is close to the maximum AUC 

across all tuning parameters and was clearly superior to using 𝜆 =0.001. For BD, CAD, CD, 

and RA, the performance of lassosum, LDpred, and clumping and thresholding were similar, 

although a slightly higher AUC was observed for lassosum. For T2D, the maximum AUC was 

surprisingly achieved by p-value thresholding without clumping. [11] 

In summary, Mak T.S.H et al. have proposed the calculation of PGS using a penalized 

regression approach using summary statistics and examined its performance in simulation 

experiments. Their proposed approach, lassosum, in general appeared to give better prediction 

than p-value thresholding with or without clumping as well as the LDpred, for which they failed 

to demonstrate the claimed superior performance over p-value thresholding. Clumping was 

beneficial for p-value thresholding in most scenarios but not for lassosum. In some scenarios, 

clumping actually decreases the predictive power of p-value thresholding, such as in the 

simulations with 𝑃(causal)=0.1 and 𝑛 = 10,000. Also, increasing the sample size of the 

reference panel will generally increase prediction accuracy as well, although this comes at a 

cost of exponentially increasing running times. In simulations, Mak T.S.H found that gains in 

prediction accuracy from a larger reference panel were usually modest.[11] 

Moreover, they showed that pseudovalidation method is effective in selecting a parameter 

value that is close to the optimum. Having a validation dataset with phenotype data generally 

provides an even more reliable method for selecting the tuning parameter. However, in the 
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event where this is unavailable, pseudovalidation offers an alternative and can be applied to any 

PGS method that requires a tuning parameter. Mak T.S.H et al. have focused on the 

performance of lassosum as a method, they note that it is more generally an instance of 

penalized regression. Potentially, other penalties can be used, which can lead to even better 

prediction. They chose the LASSO penalty because of its simplicity. Some limitations of the 

present study are worth bearing in mind when considering these results. For example, summary 

statistics may be inflated due to population stratification in the data where they are generated. 

As summary statistics are often derived from meta-analyses, it is also possible that there is 

underlying heterogeneity in effect sizes. How these impact PRS calculation is currently 

unknown. The simplicity of lassosum makes it an ideal framework from which more complex 

methods can be developed. [11] 

4.6.3 Study 3 

Type 2 diabetes (T2D) is a global public health problem. Identifying individuals at high risk 

for T2D for early targeted detection, prevention and intervention is of great public health 

importance. In addition to known behavioral and environmental factors, T2D has been shown 

to have a strong genetic component. Genome-wide association studies (GWAS) have 

successfully identified many common genetic variants that confer susceptibility to T2D. 

However, all of these common genetic variants discovered by GWAS may  only be able to 

explain a small proportion of the overall heritability and therefore result in low predictive 

power. The polygenic risk score (PRS) that aggregates the information of many common single 

nucleotide polymorphisms (SNPs), weighted by the effect size resulting from large-scale 

GWAS discovery, has been used to predict T2D risk. PRS is expected to have better predictive 

power and the potential to improve performance in T2D risk assessment.  In this study, Liu et 

al., to further explore the prediction capability of the PRS model in identifying high-risk 

individuals for T2D, proposed a new strategy to construct PRS model by the following three -

step filtering procedure to consider a statistical compromise between signal and noise. First, 

rather than including SNPs across the whole genome, it selected a subset of SNPs by a lenient 

significance threshold (p ≤ 5 × 10 -2) from a huge number of SNPs included in large-scale 

GWASs. Second, it set r2 equal to 0.2, 0.4, 0.6, and 0.8 as candidate LD pruning thresholds. 

Third, it set p-value thresholds as 5 × 10-2, 5 × 10-4, 5 × 10-6, and 5 × 10-8. After applying the 

above thresholds to the GWAS summary data, a total of 16 candidate PRS models were then 

generated. Testing was conducted using the UKB testing dataset (n = 182,422) to avoid the 
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model overfitting issue. Finally, the best predictive PRS model among a set of candidate PRS 

models was chosen and evaluated in the UKB validation dataset (n = 262,751). They also 

considered non-genetic risk factors, including sex, age, physical measurements, and clinical 

factors, to further increase prediction accuracy. [54] 

The study was conducted based on the UKB project, one of the largest prospective cohort 

studies. A total of 487,409 individuals with available genotyping array and a total of 625,394 

variants were originally collected from UKB. Subsequently, SNPs and individuals with very 

high levels of missingness were filtered out. Based on a relaxed threshold of 0.2 (>20%), 89,752 

variants and 30,855 subjects removed. There were also 262,751 SNPs removed with minor 

allele frequency < 1 × 10-6. Finally, 456,451 individuals and 271,687 variants passed QC and 

were considered in the following analysis. Liu et al., further imputed the inevitably missing 

values of T2D-related risk factors, including sex, age, physical measures [e.g., BMI, waist 

circumference] and clinical factors [e.g., high-density lipoprotein (HDL), low-density 

lipoprotein (LDL)] by their means. To analyze individuals with a relatively homogeneous 

ancestry, the population was constructed centrally based on a combination of self -reported 

ancestry and genetically confirmed ancestry using the first 10 principal components (i.e., PC1, 

..., PC10). To construct, test, and further validate the robustness of the polygenic predictor of 

T2D, they randomly divided the overall data into two parts, i.e., the testing and validation 

dataset. The data were split over two datasets, a testing dataset and a validation dataset. Liu et 

al., assigned 40% of all individuals to the UKB testing dataset (n = 182,422) and the remaining 

60% to the UKB validation dataset (n = 274,029). Other ratios were also tried to divide the 

testing and validation datasets, i.e., 30–70%, 50–50%, 60–40%, and 70–30%. There were 

nearly 5.494% (n = 10,023) participants who were cases in the testing dataset and 5.575% (n = 

15,277) in the validation dataset. Individuals in the UKB validation dataset were distinct from 

those in the UKB testing dataset. The details of the study design are described in Figure 4.15. 

For PRS model construction, summary statistics from a T2D GWAS conducted among 60,786 

participants with 12,056,346 SNPs of European ancestry were used. The UKB samples did not 

overlap with the samples from the discovery GWAS. From these summary statistics, SNPs were 

selected according to the association p-values (p ≤ 5 × 10-2) obtained from the above GWAS, 

and 50,224 SNPs remained. Liu et al., then considered multiple r2 thresholds (0.2, 0.4, 0.6, and 

0.8) and p-value thresholds (5 × 10-2,5 × 10-4,5 × 10-6, and 5 × 10-8).  [54] 
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Figure 4.15  

Flowchart for the polygenic risk score (PRS) model for type 2 diabetes[54] 

A total of 16 candidate PRS models were generated to obtain an optimal PRS model. The 

performance of these 16 PRS models was evaluated in the UKB testing dataset and they chose 

the best one for further validation analysis. The AUCs of these 16 candidate PRS models ranged 

from 0.691 to 0.792 (Figure 4.16). The best PRS model was selected with the highest AUC 

[AUC = 0.792, 95% CI: (0.787, 0.796)] based on 25,454 SNPs when p ≤ 5 × 10 -2 and r2 < 0.2. 

The AUCs of different ratios of the testing and validation datasets are shown in Figure 5.17. 

The AUCs of different ratios were very close to each other, ranging from 0.791 to 0.795. The 

AUC of the 40–60% ratio had the best performance in the validation dataset [AUC = 0.795, 

95% CI: (0.790, 0.800)].  
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Figure 4.16  

The predictive power of candidate polygenic risk score (PRS) models for T2D[54] 

 

 

Figure 4.17 

AUCs of different ratios of the testing and validation dataset[54] 
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Figure 4.18  

PRS among type 2 diabetes (T2D) cases versus controls in the UKB validation dataset[54] 

To facilitate interpretation, they scaled PRS to have a zero mean and one standard deviation.  

Liu et al., investigated whether their PRS model could identify individuals at high T2D risk. 

Figure 4.18 showed that the median of the standardized PRS was 0.941 for individuals with 

T2D versus -0.056 for individuals without T2D, a difference of 0.997 (p < 0.00001). The 

standardized PRS approximated a normal distribution across the population, with the empirical 

risk of T2D rising sharply in the right tail of the distribution (Figure 4.19). The PRS model 

identified nearly 30% of the population at greater than or equal to fivefold risk, 12% of the 

population at greater than or equal to sixfold risk, and the top 7% of the population at greater 

than or equal to sevenfold increased risk for T2D, as shown in Figure 4.19A. Then, they 

stratified the population according to the percentiles of the PRS and defined the top 10 

percentiles as the "high risk" group while the bottom 10 percentiles were the "low risk" group.  

The odds ratio was assessed in a logistic regression model adjusting for sex, age, and the first 

10 principal components of ancestry. Figure 4.19B shows the prevalence of T2D increases with 

the percentiles of the PRS model. There were 5,642 (18.698%) cases in the "high risk" group 

among 30,174 individuals, while only 282 (0.935%) cases in the "low risk" group, 

corresponding to a nearly 20-fold increase in the risk of T2D comparing the top 10 percentiles 

versus the bottom 10 percentiles.[54] 
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Figure 4.19 | Risk for type 2 diabetes (T2D) according to polygenic risk score (PRS)  

(A) Distribution of PRS for T2D in the UKB validation dataset (n = 301,736) (B) Prevalence of T2D 

according to 100 groups of the UKB validation dataset stratified according to the percentile of the PRS for 

T2D[54] 

Figure 4.20 showed that the AUCs of model3, which only included PRS into the prediction 

model without adjusting for any other covariates, was 0.749 [95% CI: (0.744,0.754)] in the 

testing dataset and 0.755 [95% CI: (0.752, 0.755)] in the validation dataset. Interestingly, if 

only considering sex, age, and the first 10 principal components of ancestry into the model, 

the AUC was 0.667 [95% CI: (0.663, 0.672)]. After adding PRS, the AUC reached 0.795 

[95% CI: (0.790, 0.800)], which increased about 13% than model2. The AUC of model4 (i.e., 

considering sex, age, PC, BMI, WC, DBP, SBP, GL, CL, HDL, LDL, and TL simultaneously) 

was 0.880 [95% CI: (0.878, 0.888)] and raised to 0.901 [95% CI: (0.897, 0.904)] in the 

validation dataset when adding PRS into the model. In brief, the polygenic score indeed helps 

to identify high-risk individuals for T2D, while the role of T2D-related covariates could also 

help increase prediction accuracy. As showed in Figure 5.22, PRS, sex, age, physical 

measurements, and most clinical factors were all significantly associated with T2D (p < 

0.0001).[54] 

 

Figure 4.20 | AUC of different models in the testing and validation dataset[54] 
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Figure 4.21 

Prediction models[54] 

 

In summary, about 30% of participants were at greater than or equal to fivefold increased risk 

of developing T2D, 12%were at greater than or equal to sixfold risk, and the top 7% were at 

greater than or equal to sevenfold increased risk. Particularly, the stratified PRS according to 

their percentiles showed that the “high-risk” group is strongly associated with the risk of T2D. 

The above results suggest that our PRS model can be used as a powerful tool in identifying 

individuals at high risk of T2D. Although the present study has made important contributions 

in identifying individuals with increased risk of developing T2D; however, there exists one 

major limitation. Individuals in the UKB dataset are primarily European ancestry; the specific 

PRS calculated here may not have optimal predictive power for other ethnic groups because the 

allele frequencies, LD patterns, and effect sizes of common SNPs may be different across 

populations with different ethnic backgrounds.[54] 
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Figure 4.22 

Parameter estimations under model5 in validation dataset]54] 

4.7 Conclusion 

PRS is a useful tool that can be used to summarize genetic information into a single variable 

for statistical analysis. However, PRSs are only now beginning to make the transition from 

association analyses in research settings to utility in clinical settings, and there are a number of 

technical, practical, and ethical issues that must be addressed before widespread clinical 

adoption. As the body of literature surrounding PRS increases, so too will the ability to use 

PRSs to predict relative disease risk earlier in life. This relies upon the notion that an 

individual’s personal genome is effectively unchanging from birth to death, so genetic risk 

should remain constant. Although there is much work to be done to make this a reality, it may 

eventually be possible that clinicians will be able to determine risk for a wide array of diseases 

based on a single PRS-optimized genotyping chip. Informing disease risk for a myriad of 

outcomes early in life will help improve individualized prevention efforts, screening, and life 

planning. 

The utilities of PRS have been explored in many common diseases, such as cancer, coronary 

artery disease, obesity, and diabetes, and in various non-disease traits, such as clinical 

biomarkers. These applications demonstrated that PRS could identify a high-risk subgroup of 

these diseases as a predictive biomarker and provide information on modifiable risk factors 

driving health outcomes. On the other hand, there are several limitations to implementing PRSs 

in clinical practice, such as biased sensitivity for the ethnic background of PRS calculation and 
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geographical differences even in the same population groups. Also, it remains unclear which 

method is the most suitable for the prediction with high accuracy among numerous PRS 

methods developed so far. Although further improvements of its comprehensiveness and 

generalizability will be needed for its clinical implementation in the future, PRS will be a 

powerful tool for therapeutic interventions and lifestyle recommendations in a wide range of 

diseases.[56] 

In summary, this thesis has reviewed common methods to construct and evaluate PRSs. In 

developing and performing a PRS analysis, there are many options to consider depending on 

the underlying goals of the study. Careful use of data and interpretation of results are a necessity 

in order not to overstate the current clinical importance of PRSs. Nevertheless, the potential for 

disease prediction using PRSs should not be ignored and, with increasing sample sizes, their 

use should increase if limitations are appropriately identified.[53] Predictive diagnosis or risk 

profiling should provide opportunities for environmental modification (such as smoking 

cessation), early therapy (for example, administering statins for individuals at risk of 

cardiovascular disease) or targeted cancer screening (for example, the use of colonoscopy in 

families or individuals at genetic risk of colorectal cancer). Diagnostic medicine will become 

increasingly important as our understanding of disease susceptibility and progression markers 

improves and as the tools for rapid and effective disease prediction and monitoring are 

developed.[2]  
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