University of Piraeus
School of Information and Communication Technologies

Department of Digital Systems

Postgraduate Program of Studies

MSc Digital Systems Security

MSc Dissertation

Creation of an Android Security Training Lab

Supervisor Professor: Xenakis Christos

Name-Surname E-mail Student ID.
Grigoris Papoutsis gpapoutsis@ssl-unipi.gr MTE 1927
Piraeus
28/02/2022

mailto:gpapoutsis@ssl-unipi.gr

Copyright © Papoutsis Grigorios, 2022 — All rights reserved

It is prohibited to copy, store and distribute this work, in whole or in part, for commercial purposes.
Reproduction, storage and distribution for non-profit, educational or research purposes is permitted

provided the source of origin is referenced and the present message maintained.

Questions about the use of work for profit should be addressed to the author
(bertolis24@hotmail.com).

This document reflects the results of a study that has been prepared on behalf of the Postgraduate
Program “Digital Systems Security” at University of Piraeus. The information and conclusions
contained in this thesis express the author’s personal opinion and arguments, and therefore should not

be interpreted that they represent the official concepts of University of Piraeus.

Abstract

Mobile attack incidents have increased in recent years both on enterprise and personal level.
One way to fight this is keeping our security teams up to date with the latest trends, and have
security awareness as individuals. In order to achieve this goal, this thesis will provide a
comprehensive methodology on how to perform Android application security assessment. It
will teach the reader what are the fundamental things that someone needs to know before
starting the Android app assessment, explain in depth some of the most common techniques
that are used, and give a full hands-on experience on the latest mobile security trends,
through an immersive gamified Android Application Security Lab. The topics that we will
study on this thesis include information gathering and local storage enumeration, reverse
engineering, static and dynamic analysis methods, traffic analysis methods and Android
forensics. Usage of various tools and setting up operating systems and virtual environments
are going to be described as well. Finally, we will show how to configure and deploy an open
source CTF web-based platform using the latest technologies like docker, in order for anyone
to be able to create their own security lab. To write this document, it was necessary to have a
solid understanding of the needs for training, the Android OS structure, the structure of the
Android applications and how they are compiled and archived in different file types, the
various programming languages that are used for the creation of the challenges and the other
platforms that involved, the various and different security assessment methodologies, the
technologies, services and virtual environment that were set up, as well as the vulnerabilities
and bad practices that were incorporated in the challenges, and examined later in depth when
assessing them. As the problem has grown, the security training companies have already paid
attention on how to provide a good training content. Similar security training with the one we
are going to see in this project has already been provided online. However, while most of the
existing online projects are providing mostly theoretical content, this project gives a fully
hands-on gamified experience, in a comprehensive and methodical way. To create this lab,
the following technologies/services and opensource projects were used: Android Studio,
AVD Emulator, CTFd platform and Docker. The programing languages that needed were
Java and C++. Finally, the operating systems that used on this project were Parrot Linux and
Android OS. In order to read this thesis and play the Lab, one should know the fundamentals
of cyber security, have a good understanding of Linux systems and be able to handle
command line tools, be familiar with an objective programming language like Java or C++,

and be passionate about mobile application security assessment. On completion of this Lab,

one should be able to understand the need for cyber security training, the structure of an
android phone and apps, how to assess android applications, how to use tools to automate the
assessment, how to do Android forensics, and how to create detailed writeups when
completing a CTF security challenge.

Table of Contents

Y 4111 = (ot USSP 4
1 (0T [Tox 1 o] o SR 13
Android Operating System & APPHCALIONScvoiiriiiiiiiiee e 15
N [0 [o] [0 N OSSR 15

F N (o [o] [0 I o] o LRSS 15
ADOUL TraiNiNg Labs & CTIS ..ottt 17
Online TrainNiNg PlatfOrmsSc.ooiiii e 17
O I Y 1< 0| £ PP PPUURTSRPRTRN 18
=Yoo= (0| 19
ATLACK DETEINSE ...ttt bbbt bbb b e bbbt bt b et b ettt e 19
KNG OF THE Hill ... bbbt b bbbttt 20
T T RSOOSR 20
(=T OSSPSR 20

(O N O 1T o] TSROSO USRS PRRN 20
WVETEBUPS ..ttt etttk bbb sttt he et e bt e b b e h e b€ e E e e E e e h £ e ke A E e e b e b e eb e se e b e s e et e meeh e e b e e nees b eb e e reeneebe b e 21
ASSESSMENT TECHNTGUES.......eetiiieiieie e bbbttt sb e e sbe i 23
Enumerating the Local STOrageccovocveieiie i 23
IMPOTANT QIFECTOTIESeee ittt bbbt bbb bbbt st b et et e st e b e e bt e bt et e e beebeebe b e 23

AR oL E Ao I [T =Tod (o] Y2 24
Extracting Readable Files from the APK ...t 26
Performing Static and Dynamic ANAlYSISccceiiiiiiiiie i 28
SEALIC ANAIYSIS ...ttt h bbbt bt bbb e Rt R e bt R R bt et et eR e e R e Rt e aeebe e b 28
DYNAMIC ANAIYSIS ..ttt ettt h e bbbt bt s b b e e b e b nbeee e e e et e he e b e e e ene e b et 30
EXracting @n APK FIlEoeiicice ettt st st sttt e et et e e e e neeteeteeneere e e 31
Capturing HTTP REQUESTS........coiuiiiiiieieee sttt 34
Rooting the Device and Acquiring a Disk IMagecccoccvvveiieeieiie s 35
oo LT 1o R {TIN [=V o= SRS 35
ACQUITING the dISK IMAGE ...veveeeiiiiiie ittt se et e e e e ese e e e seeneeresreaneereneenes 36
Setting Up the ENVIFONMENT.........coiiiiiiee ettt sre e e 39
F AN o [o] [0 = o 00 =1 o] S PRRTSS 39

ANAroid DebDUQY BrIOgGE.cuoiiiiiieieiiesieeie ettt 44

Operating Systems and TOOIS........ccoiveiiiieie e 47
LERTSY 1] F L o] IR 47
T 0T L LT) o S 48

Setting uUp the CTF PIAtfOrmMcoo i 49

[EY =11 =X A0 IR ORRRRR 50

Challenges WalKtNrOUQRS.........c.ooiiicie et 58

o 10 [(=] (o] o [P RERTRTTRR 59
ENUMEIALIONOL ... eeeee ettt ettt et e s eae e e e et bt e e steeeseabeesasseeesaseeesabeeessabeeesseesesaseesssneeesseesesareeesbenens 59
ENUMEIALION0OZ ... ettt ettt ettt e e ettt e ettt e s eat e e e esb e e e sabeeesebeeessabesesabessesatneesabesesabeesssareessrbeneas 66
ENUMEIALION0OS ...ttt ettt ettt e sttt e e e bt e e st e e s eat e e e esb e e e sabesesbaeessabesesabessesatneesabesesabeesssarnessrbeness 73

(AT L] 1] T 79
LAV =T 6= 0 R 79
[NV =] £T=T 012 86
(LY 1= £T=T 01 T 97
[NV L= £T=10 L 110

TrATTIC ANAIYSIS ..ottt bbb 124
TrAFFICANGIYSISOL......eceeceecece et e et e st e ee st e besee st et e nae e e st eneereeneeneereaneenens 124

(0] (=] 1Y 03T 132
[0 =] 45 (01 0 TR 132
0] =] 4 Y 01 12T 139

(07a] o [F 51101 o FUEE RO TPRR 143
e =] o= 144

Table of Figures

FIQUrE 1 Market SNAIeooveoie e et 13
FIQUIE 2 SQLITES ... oottt ettt e e e st e e teeseesbeeeeeseesreenteaneesneenn 25
FIQUIE 3 SNAred PrefS.... ..o ettt ns 26
Figure 4 AndroidManifeSt. XMoiiiiieee e 27
FIGUIE 5 JAD X ettt b e et b et e e e bt e et e e st e e e st e e s seeenbe e e reeenreenneeenes 29
Figure 6 APKTOOI SMali COURc.vvivieiiieieccce et 29
Figure 7 Firda Native FUNCtION HOOKINGc.cciiiiiieiie it 30
Figure 8 APK Extractor Third Party TOOIcccooiiiiiiiiiiieee s 32
Figure 9 ADB grep apP NAIME ...cc.viiiie ettt e et eabe e beeeaaenreeanes 33
Figure 10 ADB PM PALN......oiiiiieieiciee bbb 33
Figure 11 ADB PUIT QPK . ..c.viiec e 34
Figure 12 Burp Suit get request INtErCEPTIONoceiviiiririiieeeesee s 35
Figure 13 ROOT CHECKET AP .veveeiiirieiieeiesiiesteesie et s ettt e e sta et e e sraesae e e sreenteaneesneennas 36
Figure 14 List MOUNTEA DIIVELSocuoiiiiiiiieieie ittt 37
Figure 15 Disk IMage ACGUISITIONc.eciuiiieieeii ettt 38
Figure 16 AUOPSY HOIME SCIEENMoiuiiiiiiiieiee ettt 38
Figure 17 Android Studio Downloading COMPONENLScccvveieieerieeiesie e e 41
Figure 18 Android Studio NEW PIOJECTccuviiiiiieiieieieiese s 42
Figure 19 Android Studio AVD MaNAQETccveeeieerieiieieesie e ste e sre e see st sre e e 42
Figure 20 Android Studio STart DEVICEcccueiiriiiieiesie ettt 43
FIgUre 21 AVD EMUIALOT........oiiiiicie ettt e e ns 43
Figure 22 ADB INStAllAtioN.........c.ooiiiiiiciic e 45
Figure 23 Enable USB Debagging.......cccoveieiieiiiic e 46
Figure 24 ADB LiSt EMUIALOTSccvviiiieiic ittt ettt 46
Figure 25 Docker ENgin INSTallationcooiiiiiiiiiiieee s 50
Figure 26 Docker Compose INStallationcccooveiieiiieiii e 51
Figure 27 DOCKer COMPOSE VEISION........ciiiiiieiiiieiie sttt 51
Figure 28 Cloning CTFd PIatformMooiiiiiiie e 52
Figure 29 Starting CTRA SEIVICES.oiiiiiiiieieie et 52
Figure 30 DOCKEr LIStING SEIVICESeciviiuiiiieeiieciie ittt ettt sna s 53
Figure 31 CTFA SUBTUP PAJEc.coiuiiiiiiiieeieeeee st 54
Figure 32 Android Security Training Lab HOMe Page.........cccccveveiieceiieicceec e 54

Figure 33 CTFd AdMIN Panel..........oooiiiiiiie e 55

FIgure 34 CTFA ChallENgeSccveiieiiieie ettt sae e esae e e sneens 55
Figure 35 CTFd Create New Challenge..........oooiiiiiiiiiieee s 56
Figure 36 CTFd Challenges PrOPErtiES........ccoiiiiieiiiiiiiiieieie e 56
Figure 37 CTFd Download Challengescccviiiiiiieiiieie e 57
Figure 38 Enumeration01 ADB LiSt DEVICEScccoiiiiriiiiiiieiese e 60
Figure 39 Enumeration01 UNZIP APKooiiii ettt 60
Figure 40 ENUMEratioNOL ADD.....ooueiiiiriiiiieieie ettt sttt sttt b bbb 61
Figure 41 Enumeration01 Download APKTOOIcoceiiiiiiiiicceeceee e 62
Figure 42 Enumeration01 Decompiling APK ..o s 62
Figure 43 Enumeration01 APKTOOI EFTOFcocvveiiiiee e 63
Figure 44 Enumeration0L1 LiSt DIrECIOIYccoveiiiiuiiiiiiiisieieee et 63
Figure 45 ENUMEration0L FIAQocveivieieiieie ettt 64
Figure 46 Enumeration02 ADB LiSt DEVICEScccoiiiiiiiiicieesiese e s 67
Figure 47 Enumeration02 UNZIP APK ..ottt 67
Figure 48 ENUMErationN02 ADP.....coueiueiieriieiieieieteste sttt sttt nb et nre s 68
Figure 49 Enumeration02 ADB FOOL.........cccuiiieieiie e te et sna s 69
Figure 50 Enumeration02 grep APP NAMEcouiiiiiiiieiie e 69
Figure 51 Enumeration02 Listing App Installation DireCtorycccccevvvvvevvsiesivesesse e 70
Figure 52 ENumeration02 Databasecouerieiiririeeieeie ettt 70
Figure 53 Enumeration02 SQLITE3ccviieiieiicie et 71
Figure 54 Enumeration02 TabIes.........c.ooiiiiiii e e 71
Figure 55 ENUMEration02 FIAGcooiiiiiiiiieiesie s 71
Figure 56 ENumeration03 LISt DEVICEScccueeiuiiiiiieiiie ettt 74
Figure 57 Enumeration03 UNZIP APKcooiiiieieiesie e 74
Figure 58 ENUMEratioN03 A DDueoivieiiieiiie it iiee et siee e es e se e ae et e be e e abe e baesnraesreeanes 75
Figure 59 Enumeration03 ADB 00L...........coouiiiiiieieiiieeee s 76
Figure 60 ENUMEration03 greP APD «eeoveeiieiiieiie it esieesieesee e e ssseaseesteesseesseesseesseessseesseesnns 76
Figure 61 Enumeration03 shared_prefs DIreCOrYcoviiieiereieieseseeeeee s 77
Figure 62 Enumeration03 SharedPreferenCes.Xmlccccoovveiiiieiiene e 77
Figure 63 ENUMEration03 FIAGcccooiiiiiiiiieieie e 78
Figure 64 Reverse01 ADB LiSt DEVICES.......cccveiuiiiiiieiectie ettt 80
Figure 65 ReVerse01 UNZIp APK ... 80
FIQUIE 66 REVEISEOL ADD .veiveeieeieitie it et st e steeste et e e e te e esta e tesseesteesbeesaesseesseeseesteenseaneesneenns 81

Figure 67 Decompress APK FIlE ... s 82

Figure 68 ReVerse0l DEX2JARcoioiiieiieie ettt e e sae e saa et saeaneesnaenas 83
FIgure 69 REVEISE0L JADXc.iiiiiie ettt sttt bbbt be et st e b sneees 83
Figure 70 ReVerse01l MaiNACTIVITYcccuiiiiiieieie et 84
Figure 71 ReVerse01l LOGINACHVILYccviiiieiieiie ettt 84
FIgure 72 ReVEISEOL FIAQcoveveiiiiiiiiieeieee e 85
Figure 73 ReVerse0Ll MItIGationccuveiiiiiiieiie ittt 85
Figure 74 Reverse02 ABD LiSt DEVICES.........ccuiiiiiiiiniiiiieie et 86
Figure 75 ReVerse02 UNZIP APK ...ttt sttt sae s 87
FIQUIE 76 REVEISEOZ AP ..ottt b bbbt b bbb s 87
Figure 77 Reverse02 MaiNACHIVILYcciiiiieiiece et 88
Figure 78 Reverse02 Download APKTOOI ... 89
Figure 79 Reverse02 APKTOOI DECOMPIIEccvviuiiiiieiicieceese et 90
Figure 80 Reverse02 Listing Decompressed APK ... 90
Figure 81 Reverse02 SMali FIlESccucouiiiiiiee e 91
Figure 82 Reverse02 Smali COORcoviiiiiiiie s 91
Figure 83 Reverse02 APKTO0l ReCOMPIIEccvveviiiiieececece e 92
Figure 84 ReVerse02 NEW APK ...ttt sttt 93
Figure 85 Reverse02 Signing CertifiCatecccovvvviiieieiiiesee e 93
Figure 86 Reverse02 Signing The NEW APK ... s 94
Figure 87 Reverse02 Uninstalling Old APP......ocveieiieee e 94
Figure 88 Reverse02 INStalling NEW AP ...ccvve it 95
Figure 89 REVEISE02 FIAGcueiveiiiiiiiiieiieeeeee bbb 95
Figure 90 Reverse03 ADB LiStiNg DEVICES.........cccvieiiiiiiieiieiieeiie e sieesia et 97
Figure 91 Reverse03 UNZIP APK ... 98
FIGUIE 92 REVEISEO3 AP .uveiiiiiiieitie ittt ettt e st e te et e e et e et e e b e et e e sbeeasbeesbeeenbaenreeanes 98
Figure 93 Reverse03 MaiNACTIVITYcuiiiiiiiieie i 99
Figure 94 Reverse03 Google Search INI.........cooviiiiiiii i 100
Figure 95 Reverse03 APKTOOI DOWNIOAAcc.ooiiiiiiiiiiieieeseese e 101
Figure 96 Reverse03 DecoOmMPIle APKc..v oot 101
Figure 97 Reverse03 Share LIDrary ... 102
Figure 98 Reverse03 Shared Object CONteNt...........ccveiieiiiieieece e 102
Figure 99 Reverse03 Ghidra INStallation ... 103
Figure 100 Reverse03 Ghidra NEW PrOJECTccvcviiiiiieiecie st sie e se e 103

Figure 101 Reverse03 Ghidra Project Properties.........ooeveieiieieniie e 104

Figure 102 ReVerse03 STart PrOJECTccveiiiieieeie e e e ste et ne e 104
Figure 103 ReVerse03 Load File ...t 105
Figure 104 Reverse03 Ghidara File Propertiesccoviiiieieiiienc e 105
Figure 105 Reverse03 Ghidra ANAlYZe........ccovi oot 106
Figure 106 Reverse03 Ghidra Analazy OPLiONSccccoiiirieiiirene e 106
Figure 107 Reverse03 Ghidra SUMMAIY.........cccccieiieiieeiie e 107
Figure 108 ReVerse03 COUEBIOWSETcccciueierierieiiesiesieeiieieie ettt sre st neeas 107
Figure 109 REVEISE03 FIAQciveiieiie ettt 108
Figure 110 ReVerse03 LOGIN SCIEENMciuiieiiirieiie ettt 109
Figure 111 Reverse04 ADB LiSt DEVICES.......c.cccveiuiiiieiieiecie st ste e sie e sra e se e 111
Figure 112 Reverse04 UNZIP APK ... 111
FIQUIE 113 REVEISEOA ADD .vveitieieeiie ittt st e ste et et este e e st esteeste s e e s beesteesaearaesbeeseesreesreaneens 112
Figure 114 Reverse04 DEXZ2JAR ...ttt 112
Figure 115 ReVEISE04 JADXocii ittt ettt ste e enta e sra e reanee s 113
Figure 116 Reverse04 Download APKTOONcccoiiiiiiiiieicieceeeeee e 114
Figure 117 Reverse04 APKTO00I DeCOMPIIEccovviiiiieece e 114
Figure 118 Reverse04 Shared Object CONTENL..........ccviiiieiieiieie e 115
Figure 119 Reverse04 Download Frida SEIVEN..........ccoveieiieiieieeic e 116
Figure 120 Reverse04 Decompress Frida SEIVE.........coooeieiieieeie e 116
Figure 121 Reverse04 ADB push frida SEIVENcccuviveieiiese e 117
Figure 122 Reverse04 Install Frida TOOIS.........ccoeiiiiiiiiiiciec e 117
Figure 123 Reverse04 INI Frida HOOKccoiiiiiiiiiiiiieieeneses e 118
Figure 124 Reverse04 Git Clone HooKiNg SCript.........cooviiieiiiiiiciec e 118
Figure 125 Reverse04 Hooking Script Variables ... 119
Figure 126 Reverse04 Script Library and FUNCtion NamES.........ccocevvvievieiiieeiie e, 119
Figure 127 Reverse04 Script FINA FUNCHIONS..........ccoiiiiiiiiieiccsce e 119
Figure 128 Reverse04 Install Frida COmMPileccceivieiiiiiicic e 120
Figure 129 Reverse04 Get Package NAME.........cccooiiiiiiiiiiieeree e 120
Figure 130 Reverse04 Start Frida SEIVENcoiviiiiieieeic et 121
Figure 131 Reverse04 Frida HOOK Native FUNCLIONSc.cceiiiiieriniiisieieieese e 121
Figure 132 Reverse04 HOOKed FUNCLIONS..........ccoiiiiiiieiece e 122
Figure 133 Reverse04 Script FUNCHION NAMEcoooiiiiiiieieierce e 122
Figure 134 REVEISEOA FIAQocvveivieie ettt re e 123

Figure 135 TrafficAnalysis ADB LISt DEVICESccceiierieriieiieiieeie et 125

Figure 136 TrafficANalysis UNZIP APK ..ot 125
Figure 137 TraffiCANALYSIS AP .veiieiieieeie ettt sbe e b e b enee s 126
Figure 138 TrafficAnalysis Get LOCal IP...........cccooiiiiiiiiiiicece e 127
Figure 139 TrafficAnalysis Burp ProxXy Tabccccovieiiiiiiciieciic e 127
Figure 140 TrafficAnalysis Burp Binding IP..........ccccoiiiiiiiiiiereeeee e 128
Figure 141 TrafficAnalysis Burp INtercept ON.........cccveiiiiiiciiiciec e 128
Figure 142 TrafficAnalysis EMulator SEttiNgScoovriririiiiieicseeee e 129
Figure 143 TrafficAnalysis Emulator ProxXy Tabccccoeveieiiiieiie e 130
Figure 144 TrafficANAlySIS FIagccooiiiii e 130
Figure 145 FOrensiCSOL Start AULOPSY ...ccvecveiieiieieieesieeiesteseeste e eesre e sreesreeee e e sreaneeas 133
Figure 146 ForensicsO1 Case Name and NUMDETccoiiiiiiieienisesee e 133
Figure 147 ForensicSO1 HOSt and SOUICE TYPE ...ccvvivieiiieiecieie et 134
Figure 148 ForensicSOL IMPOrt FIlE........coiiiiiiieiiiee e 134
Figure 149 ForensicSOL Configute INQESt.......c.coveiiiiiieeiece st 135
Figure 150 ForensicsO1 AUtOpSY HOME SCIEEN.......cceiiiiiieieieiie et 135
Figure 151 ForensicsO1 Communications WINAOW..........cc.ccvevverieiiieiieeneeie e seese e 136
Figure 152 ForensicSOL ApPP Databaseocveiiiiiiiiiieesie et 136
Figure 153 ForensicsO1 EXtract Database..........ccevuvieeivereiiieieese e 137
Figure 154 ForensicsSO1 Open Databaseccoooveiiiriieieiie e 137
Figure 155 ForensicSOL Get TabIEScoveiiiiiiiec e 138
Figure 156 FOrensicSOL FIag.......cooiuiiiiiiiieiie ettt 138
Figure 157 FOrensicS02 Start AULIOPSYcc.veveierierieriesiesieseeieie ettt sne st neeas 140
Figure 158 FOrensicS02 HOME SCIEENeciviiiieeeiie ettt ettt 140
Figure 159 ForensicS02 WEeD HISTOIYccooiiiiiiiienisieeee e 141
Figure 160 Forensics02 Extract Deleted File..........ccoooveiiiiiiciie i 141
Figure 161 Forensics02 Decompress Extracted File ... 142
Figure 162 FOrensicS02 FIag.........couiiiiiiiiciie ettt 142

12

Introduction

Mobile applications have become a part of our daily life. We use them on a personal level
like paying when we buy something to eat or do shopping, but they also used from companies
in order to make processes and communication better between their employees. That means
that mobile applications hold and share personal and sensitive information. Thus, applications

security is a matter that must be taken under serious consideration.

Searching online for Analytics on Android OS, we can find Statcounter's latest publication
about Mobile Operating System Market Share Worldwide [1].

Mobile Operating System Market Share Worldwide

Jan 2021 - Jan 2022

< Android < i0S <O Samsung < KaiOS Unknown <O Nokia Unknown <O Windows Series 40 = Other (dotted)

Figure 1 Market Share

As the chart shows, Android OS holds the biggest share of the market, while together with
iOS they hold the 99 percent of the market Worldwide.

The move to mass remote working during the COVID-19 pandemic have made mobile
devices a fundamental business tool as remote employees are increasingly using their
smartphones to access corporate assets and perform critical work tasks. And this trend is

about to increase.

13

In 2020, 97% of organizations faced mobile threats that used various attack vectors. 46% of

organizations had at least one employee download a malicious mobile application.

According to Check Point's Mobile Security Report 2021, these are some statistics regarding
mobile attacks [2].

e All enterprises at risk from mobile attacks: Almost every organization experienced
at least one mobile malware attack in 2020. 93% of these attacks originated in a
device network attempting to trick users into installing a malicious payload via
infected websites or URLSs, or to steal users’ credentials.

e Nearly half of organizations impacted by malicious mobile apps: 46% of
organizations had at least one employee download a malicious mobile application that
threatened their organization’s networks and data in 2020.

e Four in ten mobiles globally are vulnerable: At least 40% of the world’s mobile
devices are inherently vulnerable to cyberattacks due to flaws in their chipsets, and
need urgent patching.

e Mobile malware on the rise: In 2020, Check Point found a 15% increase in banking
Trojan activity, where users’ mobile banking credentials are at risk of being stolen.
Threat actors have been spreading mobile malware, including Mobile Remote Access
Trojans (MRATS), banking Trojans, and premium dialers, often hiding the malware in
apps that claim to offer COVID-19 related information.

e APT groups target mobile devices: Individuals’ mobiles are a very attractive target

for various APT groups.
In order to mitigate problems like these, more emphasis should be given on developing
application using secure practices. Another factor that will help mitigating this problem, is

the application security assessment, which will also be the topic of this thesis.

Before we start analysing the technical part of the Android application security assessment,

we first need to understand some basic things about android.

14

Android Operating System & Applications

Android OS

Android is a mobile operating system based on a modified version of the Linux kernel and
other open source software, designed primarily for touchscreen mobile devices such as

smartphones and tablets [3].

Android is using the Dalvik Virtual Machine to run applications. Dalvik is a discontinued
process virtual machine (VM) in Android operating system that executes applications written
for Android.

Programs for Android are commonly written in Java and compiled to bytecode for the Java
virtual machine, which is then translated to Dalvik bytecode and stored in .dex (Dalvik
EXecutable) and .odex (Optimized Dalvik EXecutable) files. The compact Dalvik Executable

format is designed for systems that are constrained in terms of memory and processor speed.

The successor of Dalvik is Android Runtime (ART), which uses the same bytecode and .dex
files. The new runtime environment was included for the first time in Android 4.4 "KitKat" as

a technology preview, and replaced Dalvik entirely in later versions [4].

Android Apps

Android apps can be written using Kotlin, Java, and C++ languages. The Android SDK tools
compile your code along with any data and resource files into an APK or an Android App
Bundle.

An Android package, which is an archive file with an .apk suffix, contains the contents of an
Android app that are required at runtime and it is the file that Android-powered devices use to

install the app.

Each Android app lives in its own security sandbox, protected by the following Android

security features:

15

e The Android operating system is a multi-user Linux system in which each app is a
different user.

e By default, the system assigns each app a unique Linux user ID (the ID is used only
by the system and is unknown to the app). The system sets permissions for all the files
in an app so that only the user ID assigned to that app can access them.

e Each process has its own virtual machine (VM), so an app's code runs in isolation
from other apps.

e By default, every app runs in its own Linux process. The Android system starts the
process when any of the app's components need to be executed, and then shuts down
the process when it's no longer needed or when the system must recover memory for

other apps.
It is also interesting to know that the Android system implements the principle of least
privilege. That is, each app, by default, has access only to the components that it requires to

do its work and no more [5].

Android apps are available on Google Play Store and also on other online websites. Google

Play Store application allows the users only to install the app on the phone, while the online

websites provide the APK file, so the users can install it by themselves.

An APK (Android Package) file is an app created for Android. Some apps come pre-installed
on Android devices, while other apps can be downloaded from Google Play. As we said
earlier, apps downloaded from Google Play are automatically installed on your device, while
those downloaded from other sources must be installed manually. Typically, users never see
APK files because Android handles app installation in the background via Google Play or

another app distribution platform [6].

APKs are archived files that among other files, contain the Java classes of the program in a
singe dex file. As for the dex files, they are executable files saved in a format that contains
compiled code written for Android. It is technically referred to as a "Dalvik Executable,” and

can be interpreted by the Dalvik virtual machine [7].

16

https://play.google.com/store

About Training Labs & CTFs

Online training is something that we see a lot these years. Knowledge is transferred through
the internet, from anywhere in the globe to targeted audiences who choose to learn a
particular subject. Some of the platforms provide free content, while on others you have to
pay. Some of them also provide certificates of completion. Notes in PDFs, Word documents,
video tutorials, assessments or hands-on exercises are given as a package with the training

module.

In this section, we are going to see different types of online training that is provided on the
Mobile Security field.

Online Training Platforms

We have seen offensive cyber security training offered in many online platforms, whether as
paid courses, or as gamified challenges. However not all of them are providing content for

mobile and specifically Android training.

Some of the platforms one could find online that provide Android security training content

are the following:

e Hack The Box
o Hack The Box is a massive, online cybersecurity training platform, allowing
individuals, companies, universities and all kinds of organizations around the
world to level up their hacking skills. HTB recently included Intro to Android
Exploitation Track.
e Try Hack Me
o TryHackMe is a free online platform for learning cyber security, using hands-
on exercises and labs, all through a browser. Android Mobile Application
Penetration Testing section is included.
e Hackerl01:
o Hacker101 is a free class for web security. However, they also have included
Mobile Hacking Content.

17

https://www.hackthebox.com/
https://tryhackme.com/
https://www.hacker101.com/

e DIVA Android:
o DIVA (Damn insecure and vulnerable App) is an App intentionally designed

to be insecure. The aim of the App is to teach developers/QA/security
professionals, flaws that are generally present in the Apps due poor or insecure
coding practices.
e Udemy:
o Udemy is an online learning and teaching marketplace with over 183000
courses and 40 million students. Mobile Application Security and Penetration
Testing is a course that teaches security issues in mobile applications &
devices, and penetration testing. Udemy also provides a certificate of
completion.
e Cybrary:
o Cybrary is a Cyberecurity training online platform that among other, it
provides the Mobile App Security course that teaches app security testing.
Cybrary also provides a certificate of completion.

Some of these are platforms that apart from theoretical content also offer hands on

experience.

CTF Events & Types

Another, and kind of different way to provide training in the cyber security field, is through
Capture The Flag (CTF) events.

CTFs in computer security is an exercise in which "flags" are secretly hidden in purposefully-
vulnerable programs or websites. Competitors steal flags either from other competitors
(attack/defense-style CTFs) or from the organizers (jeopardy-style challenges). Competitions

exist both online and in-person, and can be advanced or entry-level [8].

CTFs are of different types and consists of different categories. Let’s see some of the basic

types of a CTF event

18

https://github.com/payatu/diva-android
https://www.udemy.com/
https://www.cybrary.it/

Jeopardy

In a Jeopardy contest, the participants are individuals or teams who are called upon to solve a
series of challenges that are usually in different categories to cover as much as possible the

research field of Information Security in a limited or not timeframe.

In addition, Jeopardy contests give participants the opportunity to focus on challenges of their
choice where they are more familiar with that specific field or think that it’s more

entertaining.

Each player or team, by the time they solve a challenge, they submit the flag on a scoring
board provided by the organizers and acquire the corresponding points for resolve it. Winner

is the one who accrues most points.

Contests of this type are the most common as they have a low degree of complexity, require
less preparation and configuration than other types. They also require simpler software and
hardware infrastructure, can be monitored and rated more easily, and allow a large number of

groups or individuals to participate.

Attack Defense

In an Attack — Defense scenario, players are divided into groups. Each team is given by the
organizers one or more servers with weaknesses and hidden flags. Its role is to effectively

defend its systems and to identify and patch on time the weaknesses that exist in the system
in order to repel the attacks of the opposing groups aimed at obtaining the flags. The team’s

primary responsibility is to take on a defensive role, also known as the blue teaming.

The team also has an aggressive role, known as red teaming, that is to attack the systems of

the rival teams in order to violate their servers and to intercept the flags.
This type of contests are more demanding for the organizers. They have greater complexity

than Jeopardy, higher infrastructure requirements, more difficult configuration and more

complex assessment so that is why they are usually organized locally rather than online.

19

King of The Hill

In the King of the Hill category there are multiple vulnerable Servers ready to get exploited

that do not belong to any group.

The teams are called upon to break vulnerable servers and if they do, the first team is
rewarded with the original conquering points to acquire the server. They are then asked to
defend this site from rival teams by patching the vulnerabilities. The team that manages to

break into the server and then maintain access to it is rewarded with the most points.

Linear

Linear contests, a not-so-common type of contest, are based on challenges that need to be
solved in a linear order. Typically, the challenges are narrative and present a story with

multiple challenges that need to be solved mandatory in a specific order.

Such competitions are usually organized by companies aimed at finding competent

employees who wish to prove their abilities

Mixed

The Mixed category may include features from Jeopardy and Attack — Defense competitions
where participants are asked to solve a set of predefined challenges from the organizers but at

the same time to have an aggressive and defensive role on opposing teams [9].

CTF Categories

As we said earlier, CTF events also have categories. Some examples of categories are:

e Cryptography

e Stenography

e Binary Exploitation
e Web Exploitation

e Forensics

20

e Reverse Engineering
e Programming

e Packet Analysis

e Miscellaneous

e Mobile

e Hardware

e Blockchain

In addition, each category has a difficulty rating so that the contest is eligible for participants

with different backgrounds.

A CTF-like laboratory is the project that we are describing in the current paper. This CTF-
like laboratory will consist only of Mobile challenges divided in subcategories, while it will

follow the Jeopardy contest standards.

Some Examples of such CTFs are the qualifying rounds of the known DEFCON CTF as well
as the NYU Polytechnic Institutes Cyber Security Awareness (CSAW). Another big CTF
event created for universities, is Hack The Box’s UNI CTF.

Another thing that is worth to mention, is CTFTime. It is a website that contains all the
details of an upcoming online CTF event, while it provides team ranking according to their

overall CTF score.

Writeups

When a team or an individual has successfully completed a challenge, they are usually tasked
to create the writeup as well. Writeups are something like the walkthrough of the challenge,
but at the same time they have to be precise and detailed as an assessment report. Writeups

are essentially explaining how the flag was actually captured.
Writeups also can be used from beginners, so they can easily start their journey in the

offensive cyber security field, since many of the enthusiasts are struggling to find a starting

point.

21

https://ctftime.org/

Both individuals and companies can benefit from participating in such competitions, as
individuals can learn new things in an entertaining and fun way, and enterprise teams can

keep up with the latest security trends and continue to improve their skills.

22

Assessment Techniques

There are many techniques one could use in order to test Android applications. In this

documentation we will examine applications using both static and dynamic analysis methods.

Reverse engineering, traffic analysis, or even basic enumeration of an apk file and its
installation directory, could lead to potential data exposure that in turn can be crucial for the

intended function of the application itself.

The assessment methodology that is followed in order to solve the challenges of the Android

Security Training Lab, is structured like this.

e Information Gathering
e Reversing

e Static Analysis

e Dynamic Analysis

e Report

In this section we are going to discuss, some of the most common methods that are used in

Android application security assessments.

Enumerating the Local Storage

Enumeration is a process that one could start with when assessing Android applications. It is
a process that can reveal clues that are necessary in order to further continue assessing the
app. This stage needs only a few tools to be used, but it also needs to have a deep knowledge

and good understanding of the Android and applications structure.

Important directories

On an Android device, there are several directories that are important to us while conducting

an assessment. The directories that are listed below are some of the most important ones [10].

23

e /data/data: This directory contains all the applications that are installed by the user.

e /data/user/0: This directory contains data that only the app can access.

e /data/app: This directory stores the APKs of the applications that are installed by the
user.

e /system/app: This directory contains the pre-installed applications of the device.

e /system/bin: This directory contains binary files.

e /data/local/tmp: This is a world writable directory.

e /data/system: This directory contains system configuration files.

e /etc/apns-conf.xml: This file contains the default Access Point Name (APN)
configurations. APN is used in order for the device to connect with our current
carrier’s network.

e /data/misc/wifi: This directory contains WiFi configuration files.

e /data/misc/user/O/cacerts-added: User certificate store. This directory stores
certificates added by the user.

e /etc/security/cacerts/: System certificate store. Permission to non-root users is not
permitted.

e /sdcard: This directory contains a symbolic link of the directories DCIM, Downloads,

Music, Pictures, etc.

Installation directory

In order to enumerate the file structure of an installed application, we need to have access to a
real or emulated device. This could be achieved by using the Android Debug Bridge (ADB).
ADB is a command-line tool that lets you communicate directly with the device. Using ADB,
we can install and debug applications, while the Unix shell that is provided can be used to run
commands on the device. A more in-depth description about ADB will be provided in the

next chapter of this documentation.

Installed applications in Android are stored in the /data/data/ directory. There, are stored all
the files that are necessary for the app to work. This directory is private and cannot be
accessed by other apps or by non-root users. Android Debug Bridge (ADB) allows as to read
the content of this directory, since it provides access through a Unix shell on the device as

root.

24

Having access to this directory we are allowed to search the app for common mistakes and
bad practices that programmers do. Such mistakes include leaving unencrypted information
inside databases or other files and structures that are used from the app to save data.

Assuming that the installed application with the package name com.example.myapp, is
using an unencrypted database named myappdb.db3, to keep its users login credentials. This
database will be stored under /data/data/com.example.myapp/databases/myappdb.db3.
Having access via adb, we can fetch the content of the database’s columns, using the pre-

installed mysqlite3 client.

sglite3 /data/data/com.example.myapp/databases/myappdb.db3

sglite> .tables

sqlite> select * from Passwords;

generic_x86_64:/ # sqlite3
/data/data/com.example.myapp/databases/myappdb.db3
SQLite version 3.9.2 2017-07-21 07:45:23

Enter ".help" for usage hints.

sqlite> .tables

Passwords

sqlite> select * from Passwords;

® | MyPasswordl23

Figure 2 SQL.ite3

Another example of searching for exposed sensitive data in the application’s installation
directory, is when the app is using unencrypted key-value pairs in SharedPreferences xml

files. These files are used by the app to save small collections of key-value pairs in xml files.
Assuming that we have the same app install in an Android device as in the previous example,

only this time the app stores its data in the preferences.xml file. Then the SharedPreferences

file could be read by someone by accessing the directory

25

/data/data/com.example.myapp/shared_prefs/ and listing the content of the

preferences.xml file.

cat /data/data/com.example.myapp/shared_prefs/preferences.xml

generic_x86_64:/ # cat /data/data/com.example.myapp/shared_prefs
/preferences.xml

<?xml version='1.0'

encoding='utf-a'

standalone="yes'

7>

<map>

<string name="password">MyPasswordl23</string>

</map>

Figure 3 Shared Prefs

Extracting Readable Files from the APK

As we will explain later on the next chapters, an APK (Android Packages) file is an app
created for Android. They are saved in a compressed .ZIP format and can be opened by any

Zip decompression tool.

Android packages contain all the necessary files for a single Android program. Below is a list

of the most prominent files and folders [11]:

e META-INF/: Contains the manifest file, signature, and a list of resources in archive
e lib/: Native libraries that run on specific device architectures (armeabi-v7a, x86, etc.)
e res/: Resources, such as images, that were not compiled into resources.arsc

e assets/: Raw resource files that developers bundle with the app

e AndroidManifest.xml: Describes the name, version, and contents of the APK file

e classes.dex: The compiled Java classes to be run on the device (.DEX file)

e resources.arsc: The compiled resources, such as strings, used by the app ((ARSC file)

26

Some of these files will be examined while performing other assessing methods on next
chapters, like reverse engineering. AndroidManifest.xml is a file that is definitely worth to
check.

Every app project must have an AndroidManifest.xml file (with precisely that name) at the
root of the project source set. The manifest file describes essential information about the app

to the Android build tools, the Android operating system, and Google Play [12].

e The components of the app, which include all activities, services, broadcast receivers,

and content providers

e The permissions that the app needs in order to access protected parts of the system or

other apps

e The hardware and software features the app requires, which affects which devices can

install the app from Google Play

Bad security practices are often implemented in AndroidManifest.xml and thus, this is one

of the first things pentesters are usually check when assessing an Android app.

Unzipping an apk file to read the AndroidManifest.xml file is not enough, as the file is
encoded. Tools like Apktool can decode this file and make it human readable. This is how a

decoded AndroidManifest.xml file looks like.

cat AndroidManifest.xml

<?xml version="1.0" encoding="utf-8" standalone="no"?><manifest
xmlns:android="http://schemas.android.com/apk/res/android"
android: compileSdkVersion="31" android: compileSdkVersionCodename="12"

package="com.example.enumeration@l" platformBuildVersionCode="31"
platformBuildVersionName="12">
<uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

Figure 4 AndroidManifest.xml

27

https://ibotpeaches.github.io/Apktool/

All three of the examples will be further analysed and explained in more depth in the next

chapters.

Performing Static and Dynamic Analysis

Reverse-engineering is the act of dismantling an object to see how it works. Among other
reasons, reverse-engineering can be used to do a security analysis [13]. Reverse engineering

can be done statically, and dynamically.

Static Analysis

Static Analysis is the automated analysis of source code without executing the application.

Static Analysis is often used to detect [14]:

e Security vulnerabilities.
e Performance issues.
e Non-compliance with standards.

e Use of out of date programming constructs.

In Android applications we can do this kind of analysis with the help of some tools. As we
discussed on a previous chapter, an apk file contains a .dex file which is actually the

executable file that contains all the .class files of the application.

In order to able to read the source code of an application, we essentially need to decompile
the .class files that are included in the .dex file. To do this, first we are going to use a tool that

converts the .dex file into .class files, and zipped them in a .jar file. This tool is called

dex2jar.

Once we have this files converted and zipped in a .jar file, we can go on and load it on
another tool called JADX. This tool is responsible for decompiling the .class files and make
the source code readable for humans. The image bellow shows the decompiled

MainActivity.java file.

28

https://github.com/pxb1988/dex2jar
https://github.com/skylot/jadx

File View MNavigation Tools Help
=& B2 = Q
ReverseBl-dexZ2jar.jar
Source code
android.support .v4
androidx
com
exanple, reversedl
& App
© AppDatabase
€ AppDatabase_Impl
& BuildConfig
CredentialsDao
& CredentialsDao_Impl
& InsertActivity
& ListAdapter

& LoginActivity
& MainActivity
€, ManageActivity
&R
&, Repository
€ SiteCredentials
google
io.reactivex
kotlin
kotlinx.coroutines
org
Resources
[Summary

£, MainActivity
package com.example.reverse0l;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {
TextView txvl;

public void oncCreate(Bundle
onCreate(bundle);
setContentView(R. layout.activity_main);
this.txvl = (Textview) findviewById(R.id.editTextPassword);
[{Button) findviewById(R.id.btrLogin)).setonClickListener(new view.onClickListener(
public void onclick(View view) {
Intent intent = new Intent(MainActivity.this, LoginActivity.class);
| intent.putExtra(®pass®, MainActivity.this.txvl.getText().toString())
MainActivity.this.startActivity(intent);
¥

Figure 5 JADX

This was a method that allows us to only read the source code of the application. There are

other tools that not only allows to decompile and read the code, but also change the code and

recompile the application, creating this way a new apk file ready to run. This tool is Apktool.

As we can see the source code is not that human readable, since it is shown in smali and not

in a Java-like pseudocode as we saw in JADX. More about the assembly language smali is

going to be discussed in the Challenges Walkthrough chapter.

Below is an image showing a snippet of smali code opened with vim editor.

Figure 6 APKTool smali code

29

apktool

Dynamic Analysis

When the analysis is performed while the software is running, then it is known as Dynamic
Analysis. Dynamic analysis methods can be used to identify security vulnerabilities as well,

apart from debugging the applications.

Frida is a dynamic code instrumentation toolkit. It lets you inject scripts into the application

and inspect and change running processes.

Frida is used to bypass many of the techniques developers use to secure the apps. Some
examples include bypassing the login screen to authenticate without a password, or disabling
SSL pinning to allow hackers to see all the network traffic between the app and the backend

servers [15].

Also one can use Frida to bypass root checks or hooking native functions and their return
values. Below is an image showing Frida capturing the return value of the function

NewStringUTF, from the shared library libreverse04.so.

Spawned " com.example.reverse04 . Resuming main thread!

[Android Emulator 5554::com.example.reverse@4]-> [...] Loading library :
/data/app/com.example.reverse04-8Jb7i1kTbGOCIKRbt-
leoLg==/11b/x86_64/1libreversed4.so

[+] Loaded

[...] Hooking : libreverse@4.so ->
Java_com_example_reverse®4_MainActivity_stringFromJNI at 0x7d1393012bb0
[+] Hooked successfully, JIJNIEnv base adress :0x7d13eaddb6b0®

[+] Entered : NewStringUTF

env->NewStringUTF("UNIPI{n0thlng_3sc4p3s_frld4}")

[-] Detaching all interceptors

Figure 7 Firda Native Function Hooking

All the above cases and tools will be further analysed and explained in more depth in the next
chapters.

30

https://frida.re/docs/android/

Extracting an APK File

Having the application installed in a device, allows us to experiment and see how it works.

However, in order to further examine the application, having the APK file is necessary.

Some apps come pre-installed on Android devices, while other apps can be downloaded from
Google Play. Apps downloaded from Google Play are automatically installed on your device,

while those downloaded from other sources must be installed manually.

Download APK Online

Typically, users never see APK files because Android handles app installation in the
background via Google Play or another app distribution platform. However, many websites

offer direct APK file downloads for Android users who want to install apps manually.

Some of the websites that one can download APK files are:

e APKCombo

e Uptodown
e APKPure

e APKMirror

Extracting the APK using Third-Party Tools

APK files can also be extracted from the device. Third-Party tools can be installed in Android
devices in order to extract the APK files of an already installed application. APK Export is
an application that automatically exports the APK file of another application directly from the

Google Play store.

31

https://apkcombo.com/
https://en.uptodown.com/android
https://m.apkpure.com/
https://www.apkmirror.com/

APK Export (Backup & Share)

Area 51bis Tools Rk ok 4043 8

€ Everyone

«* googld

. Google Account Manager

B Google App

& APK Export

APl Demes
|‘0 PR

I API Demos
LW o

qgwertyuiop

|G APK Export I © APKExport
Z g @ Google Now Launcher G P.0f
A, Basic Daydreams 5 . { Basic Daydres
: Google Play services |
w Browser ; i e Browser
Calcuistor ¢
o T Calculator

Calendar

' Calendar

asdfgh | k|

+ Calendar Stor

$ z xc v bnm€@& 3
-

Figure 8 APK Extractor Third Party Tool

Once we have it installed, we can navigate through a screen that lists all the apps we have
already installed from Google Play Store and choose the one we want to export the APK file.

The exported file then, is stored locally in the device.

Extracting the APK from the Device

If an application is already installed in the device, the APK file is stored in the directory
/data/app/<package name>-1/base.apk. For example, if the package name is
com.example.myapp, the full path of the APK should be /data/app/com.example.myapp-
1/base.apk.

We notice that the package name is followed by a number. In some android versions this is a
sequence number, and in other versions it is a random string. Reading the content of the
directory /data/app/ is not permitted for non-root users and thus, it is difficult to guess the
full package name of the app. To get the package name we can type the following command,

since the app name is usually a part of the package name [16].

32

adb shell pm list packages | grep myapp

adb shell pm list packages | grep myapp
package:com.example.myapp

Figure 9 ADB grep app name

We notice the output of the above command contains the package name
(com.example.myapp) of the app. Once we get the package name, we type the following
command to get the full path of the APK file.

adb shell pm path com.example.myapp

adb shell pm path com.example.myapp
package:/data/app/com.example.myapp-1/base.apk

Figure 10 ADB pm path

Finally, we can retrieve the base.apk file, by typing the following command.

adb pull /data/app/com.example.myapp-1/base.apk

33

adb pull /data/app/com.example.myapp-1/base.apk

/data/app/com.example.myapp-1/base.apk: 1 file pulled, 0 skipped
112.4 MB/S (1833082 bytes in 0.016s)

Figure 11 ADB pull apk

Capturing HTTP Requests

Often applications leak sensitive information in their network data, so finding it is one of the
most crucial tasks of a penetration tester. The Insecure Communication, or Insufficient

Transport Layer Protection, is the third biggest risk in mobile devices according to OWASP

Mobile Top10 [17].

That could mean that users that are connected to a public network and they are using an
application that submits their login credentials via HTTP to a server, sniffing attacks can

successfully intercept their username and password.

Traffic Analysis is a Adynamic Analysis method. We could say that there are two types of
Traffic Analysis. Passive and Active Analysis. In Passive Analysis we first capture all the

network packets, and then we analyze them using a network analyzer, such as Wireshark.
In Active Analysis we actively intercept all the network traffic using a proxy server, and we
read or modify the data on the fly. In the scenarios we are going to examine in the next

chapters, we will be using only Active Traffic Analysis.

The tool that is going to be used for this type of attack is Burp Suite. More about this tool will
been explained in the Challenges Walkthroughs chapter.

The image below shows an intercepted HTTP request using Burp, where the password

parameter is captured in plaintext.

34

https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-top-10/
https://www.wireshark.org/
https://portswigger.net/burp

Dashboard Target Proxy

Intercept HTTP history WebSockets history Options

/ Request to http://10.10.10.10:8080

Forward Drop Intercept is on Action Open Browser
Pretty m Hex Nl =

1 POST /login.php HTTP/1.1

2 User—-Agent: Mozilla/5.@

3 Accept-Language: en-US,en;q=0.5

4 Content-Type: application/x-www-form-urlencoded
5 Host: 10.10.106.10:8080

6 Connection: close

7 Accept-Encoding: gzip, deflate

8 Content-Length: 38

9

10 pass=UNIPI{pl@lnt3xt_1nt3rc3ptlon_0-1}

Figure 12 Burp Suit get request interception

Rooting the Device and Acquiring a Disk Image

With Android devices, it’s possible to make a copy of the disk image in order to further
examine it using tools like Autopsy. Autopsy is an open-source digital forensics platform that
works well on Windows. This tool can help you retrieve deleted files and images from the
disk, read databases, EXIF data, SMS and phone call logs, read the history of a web browser,

and much else [18].

Rooting the device

In order to acquire an Android disk image, the device must be rooted. Rooting Android
devices can be done in many ways. Having access to the device through the ADB terminal as
user root, is not the same as having the device rooted. Rooting an Android Studio Virtual
Device can be done by following the instructions provided in this GitHub project. This
rooting technique has been tested in an AVD Nexus 5X. The following image shows the

results of the application RootChecker, after successfully rooting the device [19].

35

https://www.autopsy.com/
https://github.com/0xFireball/root_avd
https://root-checker.en.uptodown.com/android

&

Root Checker Basic

VERIFY ROOT UPGRADES RANKINGS ROOT BASICS

Congratulations! Root access is
properly installed on this device!
Device: Android SDK built for x86_64

Android Version: 7.1.1
Date and Time: 9/22/21 217 PM

Advanced Root Checker

Adds: Customized assistance about the most
V important aspects of root status.

UPGRADE
Advanced Root Checker @
Root Account Status
UPGRADE
Advanced Root Checker Q)
Superuser Aop Status
¢ rds B gle

Send feedback U

Figure 13 Root Checker app

Acquiring the disk image

Once the device is rooted, the disk image can be acquired by using the dd Unix utility and the
BusyBox application. BusyBox is a software suite that provides several Unix utilities in a
single executable file [20], and can be installed via ADB on a rooted device.

Assuming we have the device rooted and BusyBox is installed. Then, we need to find the

partition that is mounted on the /data directory. The mounted partitions on an Android device

can be listed like this.

adb shell mount

36

https://m.apkpure.com/busybox/stericson.busybox

generic_x86_64:/ # mount

rootfs on / type rootfs (ro,seclabel,relatime)

tmpfs on /dev type tmpfs (rw,seclabel,nosuid,relatime,mode=755)
devpts on /dev/pts type devpts (rw,seclabel,relatime,mode=600)
proc on /proc type proc (rw,relatime,gid=3009,hidepid=2)

sysfs on /sys type sysfs (rw,seclabel,relatime)

selinuxfs on /sys/fs/selinux type selinuxfs (rw,relatime)

none on /dev/cpuctl type cgroup (rw,relatime,cpu)

/dev/block/vda on /system type ext4
(ro,seclabel,relatime,data=ordered)

/dev/block/vdb on /cache type ext4
(rw,seclabel,nosuid,nodev,noatime,errors=panic,data=ordered)

tmpfs on /storage type tmpfs (rw,seclabel,relatime,mode=755,9g1d=1000)
/dev/block/dm-0 on /data type ext4
(rw,seclabel,nosuid,nodev,noatime,errors=panic,data=ordered)

<SNIP>

Figure 14 List Mounted Drivers

Device drivers appear in the file system like normal files. The dd command-line utility is
capable of backing up the boot sector of a hard drive [21]. Once we have found the right
partition, we can use dd to acquire the disk image, and nc from the BusyBox app in order to

send the disk image directly to our host machine.

adb shell "dd if=/dev/block/dm-0 | busybox nc -1 -p 8888" &

Back to our host machine, we forward the traffic on port 8888 using ADB, and then we start a

listener.

adb forward tcp:8888 tcp:8888

nc 127.0.0.1 8888 > disk.dd

37

~# adb shell "dd if=/dev/block/dm-0 | busybox nc -1 -p 8888" &
[1] 5769

adb forward tcp: 8888 tcp: 8888 && nc 127.0.0.1 8888 > disk.dd
1638400+0 records in

1638400+0 records out

838860800 bvtes transferred in 27.893 secs (30074240 bytes/sec)
[1] + 5769 done

~# adb shell "dd if=/dev/block/dm-0@ | busybox nc -1 -p 8888"

~# 1s -1

total 1639384

-rW-r--r--

1 bertolis staff 838860800 Sep 16 16:10 disk.dd

Figure 15 Disk Image Acquisition

Once this is done, we can start Autopsy and follow the onscreen steps that provides, and

import the exported disk image. The image below shows the main window of Autopsy while

analysing an Android disk image.

M forensics01 - Autopsy 4.19.1

Case

+- @ Data Sources
—--|®| File views

4.
+ y Deleted Files
-~ MB File Size
=B Data Artifacts

@ Communication Accounts (1)

£

5

View Tools Window Help

J —
Add Data Source E Images,Videos wCDmmunicaﬁons Q Geolocation Timeline H Discovery Generate Report

Q Listing

Data Sources
Table Thumbnail

File Types
MName

Iﬁ Forensics01.dd_1 Host

Installed Programs (5)
Messages (8)

-{/> Metadata (2)
—q Analysis Results

~ Keyword Hits (70)

- |=gl 03 Accounts

+ @ Tags

Reports

Figure 16 Autopsy Home Screen

38

'61' Close Case

Setting up the Environment

The environment that is going to be set up in this section, are tools and operating systems that
are going to help us on assessing 10 Android challenges that I have already created. These are
challenges of different subcategories, such as Enumeration, Reverse Engineering, Traffic

Analysis and Forensics challenges.

These challenges are vulnerable applications, or applications that are developed

implementing bad practices, resulting the lack of protection of their sensitive data.

The challenges were created using Android Studio IDE.

Android Emulator

Android application security assessment requires an Android device, in order to install, run
and examine the application. In this documentation we are going to use an emulated device,
but a real device can be used as well. The processes we will follow, will be the same for both

alternatives.
There are several free emulators for Android on the internet. Some of them are:

e BlueStacks
o Is known by many users to be the most comprehensive Android app player in
the market. It is running on both Windows and Mac, and comes with a tone of
features like Keymapping Tool, Instance Manager and Eco Mode, to improve
the gamer’s experience. It’s also the safest emulator out there, with certified
GDPR compliance.
e | DPlayer
o Is a lightweight Android emulator focusing on gaming performance. Including
good keyboard mapping controls, multi-instance, macros, high FPS, and
graphical support.
e Android Studio

39

https://www.bluestacks.com/
https://www.ldplayer.net/
https://developer.android.com/studio/run/emulator

o Is the default development console for Android Studio IDE. It comes with a
bunch of tools to help developers make apps and games specifically for
Android. The setup is rather complicated so it won’t appeal to everyone, but it
is by far the fastest and most feature-rich option on this list.
e Bliss OS
o Itworks as an Android emulator for PC via a virtual machine. However, it can
also just flat run on your computer through a USB stick. As a VM install, the
process is easy, but tedious if you’ve never made your own virtual machine
before. The USB installation method is even more complicated, but it lets your
computer actually run Android natively from boot.
e Gameloop
o Isan Android emulator for gamers. This one is not good for productivity or
developmental testing. However, this is a fairly decent gaming emulator that
performs well with FPS games.
e Genymotion
o This Android emulator is mostly for developers. You can configure the
emulator for a variety of devices with various versions of Android to help suit
your needs. It’s not great for consumer uses. Its most useful feature is its
availability on both your desktop computer and the cloud.
e MeMU
o Is another excellent Android emulator that seems to do quite well with gamers,

although it’s usable as a productivity tool too. One of its biggest features is

support for both AMD and Intel chipsets.

These were some of the best Android Emulators according to the Android Authority’s latest

publication [22].

Another Android Emulator that is worth to mention, is Corellium. Corellium is a paid
emulator that provides online (cloud-based) virtualized iOS and Android devices. What is
interesting about Corellium emulators, is the Arm-based virtualization that makes these
virtual devices perform with native-like fidelity and speed, while also providing advanced

capabilities that can’t be replicated on a physical device [23].

40

https://blissos.org/
https://blissos.org/
https://www.gameloop.com/
https://www.genymotion.com/
https://www.memuplay.com/
https://www.androidauthority.com/best-android-emulators-for-pc-655308/
https://www.corellium.com/

Kernel exploitation is related to the CPU architecture, and most of the emulators virtualize a
non-ARM CPU architecture like an x86 one. This makes it impossible for a pentester to work
on a potential new kernel exploitation technique using a mobile emulator. Corellium seems to

give the solution to this problem.

In this documentation we are going to use the emulator that Android Studio provides, since it
includes many developer tools, offers a variety of devices and versions, and it is performing

faster than the other free emulators.

Installing Android Studio on Linux is really easy. All we have to do is unzip it and run the
file “studio.sh” inside the “bin/” directory. In order to install Android Studio on Windows or
MacOS, all we have to do is click on the executable and follow the setup wizard. The process
is pretty much the same for both the operating systems. After the installation has completed,

we just need to wait for some components to be downloaded.

W Android Studio Setup Wizard - O st

0 Downloading Components

Figure 17 Android Studio Downloading Components

41

Once this is finished, click on Finish and in the next window click on New Project. Then
select Empty Activity and click Next.

Welcome to Android Studio

Figure 18 Android Studio New Project

Finally on the next screen, click finish to complete the process. Once the Android Studio
start, we click on the drop-down menu on the top right of the window, and select AVD

Manager.

B

I Project

Figure 19 Android Studio AVD Manager

42

An Android Virtual Device (AVD) is a configuration that defines the characteristics of an

Android phone that you want to simulate in the Android Emulator. The Device Manager is an

interface you can launch from Android Studio that helps you create and manage AVDs [24].

On the AVD Manager window, click on the green "play" button to start the emulator.

Your Virtual Devices

Android Studio

Figure 20 Android Studio Start Device

Once the device is started, it should look like this.

Figure 21 AVD Emulator

43

https://developer.android.com/studio/run/managing-avds

The Android Emulator is set up and ready for testing applications.

Android Debug Bridge

In order to be able to communicate with the emulated device we set up in the previous

section, we will be using ADB (Android Debug Bridge). Android Debug Bridge (ADB) is a

versatile command-line tool that lets you communicate with a device. The adb command
facilitates a variety of device actions, such as installing and debugging apps, and it provides
access to a Unix shell that you can use to run a variety of commands on a device. Itis a

client-server program that includes three components:

¢ A client, which sends commands. The client runs on your development machine. You
can invoke a client from a command-line terminal by issuing an adb command.

e A daemon (adbd), which runs commands on a device. The daemon runs as a
background process on each device.

e A server, which manages communication between the client and the daemon. The

server runs as a background process on your development machine.

When you start an adb client, the client first checks whether there is an adb server process
already running. If there isn't, it starts the server process. When the server starts, it is waiting
for commands sent from the adb client. The server then sets up connections to all running
devices. It locates emulators by scanning a range of default ports that are used by the

emulators. Where the server finds an adb daemon (adbd), it sets up a connection to that port
[25].

To install ADB on a Debian-based Linux we type the following.

sudo apt install adb

44

https://developer.android.com/studio/command-line/adb

L N
sudo apt install adb

<SNIP>

Setting up android-libadb (1:8.1.0+r23-5ubuntu2) ...
Setting up adb (1:8.1.0+4r23-5ubuntu2) ...

Processing triggers for man-db (2.9.1-1) ...
Processing triggers for libc-bin (2.31-Oubuntu9.2) ...

Figure 22 ADB Installation

In order to connect to the device via ADB, we need to enable adb debugging through the
device’s Developer options. We also need to connect the device to the same network with
the host machine, so it can be found by the adb server which in turn, will establish the

connections automatically.

Android Studio’s virtual devices have already this option enabled, while they ensure that the
device will be reachable from the adb server. That means that once the virtual device is
started, the connection between the adb server and the device will be established

automatically.

When a real device is used, first we have to connect to the same network. That can be
achieved by opening the menu and navigate to the Settings -> Network & internet -> Wi-Fi
screen, and select the network which your host machine is already connected to. Then click

Connect.

The second thing we need to do, is to enable the adb debugging mode. To do so, we navigate
to Settings -> About device, then we scroll down and tap 7 times on Build number, until we
get the message “You are now a developer!”. Then we navigate to Settings -> System ->
Advanced -> Developer options, we scroll until we find and toggle on the USB debugging

option.

45

€4 @12:45

Developer options

On

Debugging

USB debugging ®

Debug mode when USB is connected

Bug report shortcut

Show a button in the power menu for taking a bug
report

Figure 23 Enable USB Debagging

Once we are all set, we can check if the device is connected by issuing the following

command.

adb devices
List of devices attached
emulator-5554 device

Figure 24 ADB List Emulators

We can see that the device with the name emulator-5554, is connected to the adb server.

Here are some useful adb commands [26].

46

e adb help: Llist all commands

e adb devices: Lists connected devices

e adb root: Restarts adbd with root permissions

e adb kill-server: Kills the adb server

e adb install <apk>: Install app

e adb push <local> <remote>: Copy file/dir to device
e adb pull <remote> <local>: Copy file/dir from device

e adb logcat [options] [filter] [filter]: View device log

Operating Systems and Tools

The main Operating System that will be used for conducting the assessment, is Parrot OS

Security Edition. Parrot is a GNU/Linux distribution based on Debian and designed with

Security and Privacy in mind. It includes a full portable laboratory for all kinds of cyber

security operations, from pentesting to digital forensics and reverse engineering [27].

This is a lightweight operating system that contains many pre-installed security tools, that
will help on conducting the Android application assessment. This OS will be used to assess

most of the categories of the Android Security Lab.

Microsoft Windows will be also used in order to solve the challenges of the Forensics
category. Microsoft Windows can be also downloaded for free, from Microsoft’s official

website.

Installation

Parrot OS is free and can be downloaded from their official website, allowing us to choose

between the two different desktop environment, Mate and KDE.

Parrot OS can be easily installed on our physical or virtual machine, simply by following the

officials installation guide that is provided on the website.

Microsoft also provide guides to follow, in order to install Windows on our machine.

47

https://parrotsec.org/
https://www.microsoft.com/en-us/software-download/windows10ISO
https://parrotsec.org/security-edition/
https://parrotsec.org/docs/installation.html
https://www.microsoft.com/en-us/software-download/windows10

Preparation

Regarding the security assessment part, some of the tools are already installed, and some

others needs to be installed via the Apt package manager or downloaded from the internet.

Lab

e CTFd: Will allow us to host the challenges, and give access to the players

e Docker Engine: Will allow us to deploy the CTFd platform

e Docker Compose: Will allow us to configure in a single file all the services that CTFd

is using, and start them all together using a single command

Assessment

e Android Studio: Will allows us to set up an Android virtual devise

e ADB: Will allow us to communicate with the Android virtual device

e sqlite3 client: Will allow us to enumerate the application’s database

e Apktool: Will allow us to decompile, edit and recompile the APK files

e dex2jar: Will allow us to convert the apk to jar files, in order to import them in JADX
e JADX: Will allow us to decompile and read the source code of the apk files

e Ghidra: Will allow us to decompile and read the source code of the C++ files

e Frida: Will allow us to perform dynamic analysis and hook functions
e Burp Suite: Will allow us to intercept HTTP requests
e Autopsy: Will allow us to perform disk forensics

48

https://en.wikipedia.org/wiki/APT_(software)
https://ctfd.io/
https://www.docker.com/
https://docs.docker.com/compose/
https://developer.android.com/studio
https://developer.android.com/studio/command-line/adb
https://sqlite.org/cli.html
https://ibotpeaches.github.io/Apktool/
https://github.com/pxb1988/dex2jar
https://github.com/skylot/jadx
https://ghidra-sre.org/
https://frida.re/
https://portswigger.net/burp
https://www.autopsy.com/

Setting up the CTF Platform

In order to provide the training content (challenges) in an efficient way, the CTFd platform is
going to be used. CTFd is a Capture The Flag (CTF) framework designed for ease of use for
both administrators and users. CTFd is an open source project, written in the simple Flask

framework, and it's easy to customize with plugins and themes [28].

CTFd provides many features. Some of them are:
e Create your own challenges, categories, hints, and flags from the Admin Interface
e Individual and Team based competitions
e Scoreboard with automatic tie resolution
e Scoregraphs comparing the top 10 teams and team progress graphs
e Markdown content management system
e SMTP + Mailgun email support
o Email confirmation support
o Forgot password support
e Automatic competition starting and ending
e Team management, hiding, and banning

e Customize everything using the plugin and theme interfaces

CTFd can be set up in any operating system through pip (package manager for python), or
docker. In this documentation, we are going to install CTFd through docker, as it allows us

to experiment more and faster.

The operating system that will be used, is the Debian based Parrot Linux distribution. In
order to host this platform, the only program that needs to be installed, is docker. Docker is a

set of platform as a service (PaaS) products that use OS-level virtualization to deliver

software in packages called containers [29]. A container is a standard unit of software that
packages up code and all its dependencies, so the application runs quickly and reliably from

one computing environment to another [30].

49

https://ctfd.io/
https://github.com/CTFd/CTFd
https://pypi.org/project/pip/
https://www.docker.com/
https://parrotsec.org/
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/OS-level_virtualization

Installation

Docker engine can be easily install using the apt package manager. From the terminal, we

execute the following command.

sudo apt install docker.io

sudo apt install docker.io
Reading package lists... Done
Building dependency tree

Reading state information... Done

<SNIP>

Created symlink /etc/systemd/system/sockets.target.wants/docker.socket -
/lib/systemd/system/docker.socket.

Processing triggers for man-db (2.9.1-1) ...

Figure 25 Docker Engin Installation

Once docker is installed, we also need to install docker-compose. Compose is a tool for

defining and running multi-container Docker applications. With Compose, you use a YAML
file to configure your application’s services. Then, with a single command, you create and

start all the services from your configuration [31].

This tool allows us to configure all the different services that CTFd needs to run, in one file.
Then we can start them by executing one command. Let’s install docker-compose using the

following commands.

sudo curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

50

https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

sudo curl -L
"https://github.com/docker/compose/releases/download/1.29.2/docker-
compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

% Total % Received % Xferd Average Speed Time Time Time
Current

Dload Upload Total Spent Left

Speed
100 664 100 664 7460 0 —-i-=i1-- —=i--i-= —=i--:i--
7460
100 12.1M 100 12.1M 0 11.7M 0 0:00:01 0:00:01 --:--:--
22.2M

Figure 26 Docker Compose Installation

Then, we give the binary we just downloaded execution permissions, and create a symbolic
link.

sudo chmod +x /usr/local/bin/docker-compose
sudo In -s /usr/local/bin/docker-compose /usr/bin/docker-compose

docker-compose --version

docker-compose --version
docker-compose version 1.29.2, build 5beceadc

Figure 27 Docker Compose Version

Now that all the prerequisites are installed, let’s clone the CTFd project from their GitHub

repository.

git clone https://github.com/CTFd/CTFd

51

00

git clone https://github.com/CTFd/CTFd

Cloning into 'CTFd'...

remote: Enumerating objects: 14119, done.

remote: Counting objects: 100% (1193/1193), done.

remote: Compressing objects: 100% (734/734), done.

remote: Total 14119 (delta 690), reused 826 (delta 432), pack-reused
12926

Receiving objects: 100% (14119/14119), 25.81 MiB | 10.33 MiB/s, done.
Resolving deltas: 100% (8754/8754), done.

Figure 28 Cloning CTFd Platform

Once it’s cloned, we start all the services by executing the following command.

cd CTFd

sudo docker-compose up -d

sudo docker-compose up -d
Creating network "ctfd_internal" with the default driver
Creating network "ctfd_default" with the default driver

Pulling db (mariadb:10.4.12)...

<SNIP>
Status: Downloaded newer image for nginx:1.17
Pulling cache (redis:4)...

<SNIP>

Status: Downloaded newer image for redis:4
Creating ctfd_cache_1 ... done

Creating ctfd_db_1 ... done

Creating ctfd_ctfd_1 ... done

Creating ctfd_nginx_1 ... done

Figure 29 Starting CTFd Services

Since it is the first time we run this command, the docker images for each service that is used,

must be downloaded first. A docker image is comparable to a snapshot in virtual machine

52

(VM) environments, and it contains application code, libraries, tools, dependencies and other

files needed to make an application run [32].

As we can see on the image above, docker downloaded various images, such as mariadb,
nginx and redis. Executing the following command, we can get information about the

running containers.

docker ps -a

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

b2ad33d6be84 nginx:1.17 "nginx -g 'daemon of.." 8 minutes ago
Up 8 minutes 0.0.0.0:80->80/tcp, :::80->80/tcp

ctfd_nginx_1

c8f2f6e92941 ctfd_ctfd "/opt/CTFd/docker-en.." 8 minutes ago
Up 8 minutes 0.0.0.0:8000->8000/tcp, :::8000->8000/tcp ctfd_ctfd_1

0bfb62740219 mariadb:10.4.12 "docker-entrypoint.s.." 8 minutes ago
Up 8 minutes ctfd_db_1

3866f55a497b redis:4 "docker-entrypoint.s.." 8 minutes ago
Up 8 minutes

ctfd_cache_1

Figure 30 Docker Listing Services

As we can see, the ctfd service runs locally on port 8000. Let’s open a web browser and try
to reach the URL http://127.0.0.1:8000.

53

Setup

Mode Administration Style Date & Time Integrations

Event Name

The name of your CTF event/workshop

Event Description

Description for the CTF

Figure 31 CTFd Suet Up Page

There are several steps one can follow in order to set up and customize the CTF event
according to their needs. For the purpose of this documentation, | have already configured

and customize the web app to look like an Android Security Lab.

Android Security Lab

A Lab that allows students to practice their
skills on common Android security issues.

Figure 32 Android Security Training Lab Home Page

54

This is the home page of the Android Security Lab, after creating an admin account and
login. Let’s see now how we can upload and setup the challenges that | have already created
locally. All the challenges that are going to be uploaded to this platform, are static. In other
words, there will be a downloadable file for the player to download and examine locally.

However, CTFd supports plugins for hosting dynamic challenges, such as ctfd-naumachia-

plugin. Naumachia is a multi-tenant network sandbox for security challenges [33], and the

whole project can be found here.

Back to our instance, from the top menu bar, we click on the Admin Panel tab.

CTFd Statistics Notifications Pages Users Challenges Submissions * Config

A new CTFd version is available!

Statistics

Figure 33 CTFd Admin Panel

We can see that a new menu bar is now available, providing more configuration options.

Let’s navigate to the Challenges tab and start adding challenges.

Challenges @

Name o Search for matching challenge _

ID% Name % Category 5 Value Types State &

Figure 34 CTFd Challenges

Clicking on the plus symbol near the tittle Challenges, we are transferred to the web page

from which we can start adding information regarding the challenge. Such information is the

55

https://github.com/nategraf/ctfd-naumachia-plugin
https://github.com/nategraf/ctfd-naumachia-plugin
https://github.com/nategraf/Naumachia

type of the challenge, the tittle, category, description and points to award the player on

solving the challenge.

Challenge Types

© standard

dynamic

Name:

Reverse01
Category:
The categor

Reverse

Message:
Use this to give a brief introduction to your challenge

BIH =i 0l ©60

A friend of mine is about to release a password manager app on the mobile store. He asked me to check if | can somehow find a way to
login to the app unexpectedly. Can you help me test this app before he uploads it?

Value:

200

<>

Figure 35 CTFd Create New Challenge

Once we click on Create button, a window pops up asking to fill in some more options about

the challenge, like the flag, the downloadable file, and the state of the challenge.

Options x
Flag:
Static flag for your challenge

UNIPKHdOnt_fOrg3t_t0_3ncrypt} Case Sensitive s
Files:
Files distributed along with your challenge

Choose Files Enumeration02.apk.zip
Attach multiple files using Control+Click or Cmd+Click
State
Should the challenge be visible to users

Visible E

Figure 36 CTFd Challenges Properties

56

We can follow the same procedure for all of our challenges. Once we are done, we can click
on the CTFd tab on the top left of the menu bar in order to switch from admin to user mode.
Then, we navigate to the Challenges tab and check if all challenges are visible. The page
should look like this.

Challenges

Reverse
Reverse01 Reverse02 Reverse03 Reverse04
200 200 400 500
Enumeration

Enumeration01 Enumeration02 Enumeration03
200 200 200

Traffic Analysis

TrafficAnalysis01

200

Forensics

Forensics01 Forensics02
200 200

Figure 37 CTFd Download Challenges

We have successfully completed setting up the CTFd platform.

57

Challenges Walkthroughs

As discussed in a previous chapter, when someone solves a CTF challenge, a well-
documented writeup must be provided as well. Apart from that, when the creator of the

challenge is releasing one, the official writeup must be provided as well.

An official challenge writeup, or walkthrough, should describe in detail all the technologies

and methods that are encountered when someone is resolving them.
The following are the official walkthroughs of the Android Security Training Lab project that

were developed for the purposes of this paper. By following these walkthroughs, someone

should be able to successfully complete this security training lab.

58

Enumeration

In this type of challenges, the player must collect information about the application. Then,
they must reverse engineer it and try to find bad security practices. A flag, a specific
predefined word of the format UNIPI{sOm3_r4ndOm_t3xt!}, will be indicating this bad

practice or the results of it.

Enumeration01

Objective

The objective of this scenario is to show the basics on reverse engineering an apk file, and
enumerate the common directories and files that contain critical information, like the
Manifest.xml file.

Description

An intern mobile developer created a password manager application. Although he is
confident about the functionality of the application, he has some concerns regarding the
security part. Can you help him assess this Android app, and spot any bad practises?
Difficulty: Easy

Flag: UNIPI{th3_e4sy w4y sucks}

Release: 1e55ac4e97ee7445aa4aec6b403f10eal60727177318d82990708b7be0c6fe32

Challenge

Start the Android Emulator that we have already set up in the previous chapter, and make

sure that the emulator is attached to the ADB, by executing the following command.

59

adb devices

List of devices attached
emulator-5554 device

Figure 38 Enumeration01 ADB List Devices

Once we have confirmed the above step, unzip the Enumeration01.apk.zip file and install

the extracted file Enumeration01.apk on the device, by issuing the following commands.

unzip Enumeration0l1.apk.zip

adb install Enumeration01.apk

unzip Enumeration@l.apk.zip
Archive: Enumeration@l.apk.zip
inflating: Enumeration@l.apk

adb install Enumeration@l.apk
Performing Streamed Install
Success

Figure 39 Enumeration01 Unzip APK

Then, we can find the installed application in the device’s menu, and tap on to start it.

60

Password Manager

Please enter your master
password to login to the app

LOGIN

Figure 40 Enumeration01 App

This is a password manager application. As the description implies, we are tasked to spot bad
practises in this application. Let's start by decompiling the apk file. To do this, we will use the
tool called Apktool. Apktool, is a tool for reverse engineering 3rd party, closed, binary
Android apps. It can decode resources to nearly original form and rebuild them after making

some modifications [34].

By decompiling the apk file, apart from the source code, we will have access to other

configuration files as well. To download it, run the following command.

waget https://bitbucket.org/iBotPeaches/apktool/downloads/apktool 2.6.0.jar

61

https://ibotpeaches.github.io/Apktool/

Resolving bbuseruploads.s3.amazonaws.com
(bbuseruploads.s3.amazonaws.com)... 54.231.129.145

Connecting to bbuseruploads.s3.amazonaws.com
(bbuseruploads.s3.amazonaws.com) |54.231.129.145|:443... connected.
HTTP request sent, awaiting response... 200 OK

Length: 19964258 (19M) [application/x-java-archive]
Saving to: ‘apktool_2.6.0.jar’

apkt 2.6.0.jar

1,42MB/s in 30s

Figure 41 Enumeration01 Download APKTool

Then, issue the following command to decompile the apk file.

java -jar apktool_2.5.0.jar d Enumeration01.apk

java -jar apktool_2.5.0.jar d Enumeration@1.apk
I: Using Apktool 2.5.0 on Enumeration@l.apk
I: Loading resource table...
I: Decoding AndroidManifest.xml with resources...
I: Loading resource table from file:
/home/bertolis/.local/share/apktool/framework/1.apk
I: Regular manifest package...

: Decoding file-resources...

: Decoding values */* XMLs...

Baksmaling classes.dex...

: Copying assets and libs...

: Copying unknown files...

: Copying original files...

Figure 42 Enumeration01 Decompiling APK

In case that Java is not installed, the following message will be displayed.

62

java -jar apktool_2.6.0.jar Enumeration@l.apk

Command 'java' not found, but can be installed with:

apt install openjdk-11-jre-headless # version 11.0.13+8-0ubuntul~20.04,

or
apt install default-jre # version 2:1.11-72

apt install openjdk-13-jre-headless # version 13.0.7+5-Qubuntul~20.04
apt install openjdk-16-jre-headless # version 16.0.1+9-1~20.04

apt install openjdk-17-jre-headless # version 17.0.1+12-1~20.04

apt install openjdk-8-jre-headless # version 8u312-b07-0Qubuntul~20.04

Figure 43 Enumeration01 APKTool Error

In order to install Java, issue the following command.

sudo apt install default-jdk

Once the decompilation is successful, the directory Enumeration01 will be created. Listing

the content of this directory, reveals the following file structure.

1s -1 Enumeration01

total 8

-rw-r--r-- 1 bertolis bertolis :33 AndroidManifest.xml
-rw-r--r-- bertolis bertolis - apktool.yml

drwxr-xr-x bertolis bertolis 2 kotlin
drwxr-xr-x bertolis bertolis : original
drwxr-xr-x bertolis bertolis - res
drwxr-xr-x bertolis bertolis - smali
drwxr-xr-x bertolis bertolis - unknown

Figure 44 Enumeration01 List Directory

63

Among other files and directories, the file AndroidManifest.xml has been extracted. The
manifest file describes essential information about your app to the Android build tools, the

Android operating system, and Google Play.

Among many other things as discussed in the Assessment Techniques chapter, the manifest
file is required to declare the permissions that the app needs in order to access protected parts
of the system or other apps. It also declares any permissions that other apps must have if they

want to access the content of this app.

Let's go on and read the content of this file.

cat AndroidManifest.xml

cat AndroidManifest.xml

<?xml version="1.0" encoding="utf-8" standalone="no"?><manifest
xmlns:android="http://schemas.android.com/apk/res/android"
android:compileSdkVersion="31" android:compileSdkVersionCodename="12"
package="com.example.enumeration@l" platformBuildVersionCode="31"

platformBuildVersionName="12">
<uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE
UNIPI{th3_edsy wdy sucks}"/>
<SNIP>

Figure 45 Enumeration01 Flag

Among other things, we can see that the WRITE_EXTERNAL_STORAGE permissions
have been given to this app. Assuming that an app targets API level 25 or lower, and it lists
both READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE in its
manifest. Then, if the app requests READ _EXTERNAL_STORAGE and the user grants it,
the system also grants WRITE_EXTERNAL_STORAGE at the same time, because it

belongs to the same STORAGE permission group and is also registered in the manifest [35].

64

This is a bad practice because the app can grant privileges to write in the external storage,
without the user’s permission. The flag is also revealed at the same configuration line,
indicating the implementation of the bad practice.

Flag: UNIPI{th3 e4sy w4y sucks}

Mitigations

According to this article, the best practice is to explicitly request every permission whenever
it's needed.

65

https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05h-testing-platform-interaction

Enumeration02

Objective

The objective of this scenario is to show the basics on enumerating the installation directory
of an installed application. More specifically it shows how sensitive information can be
retrieved from a database, if the data are not encrypted.

Description

A big mobile app development company has recently released a beta version of their new
password manager application, and is looking for a team to conduct a security assessment.
Their main concern is not to leak user's personal information. Can you ensure that this won't
happen?

Difficulty: Easy

Flag: UNIPI{dOnt_fOrg3t_t0_3ncrypt}

Release: abe49elfac61e952f606853bba5569a9d0ec2ab185f670a8147¢c5679ae3197bb

Challenge

Start the Android Emulator that we have already set up in the previous chapter, and make

sure that the emulator is attached to the ADB, by executing the following command.

66

adb devices
List of devices attached
emulator-5554 device

Figure 46 Enumeration02 ADB List Devices

Once we have confirmed the above step, unzip the Enumeration02.apk.zip file and install

the extracted file Enumeration02.apk on the device, by issuing the following commands.

unzip Enumeration02.apk.zip

adb install Enumeration02.apk

unzip Enumeration02.apk.zip
Archive: Enumeration02.apk.zip
inflating: Enumeration@l.apk

adb install Enumeration02.apk
Performing Streamed Install
Success

Figure 47 Enumeration02 Unzip APK

Then, we can find the installed application in the device’s menu, and tap on to start it.

67

Password Manager

Please enter your master
password to login to the app

LOGIN

Figure 48 Enumeration02 App

This is a password manager application. As the description implies, we are tasked to conduct

a security assessment on this app, and make sure that sensitive data is not leaked.

Since we have the app installed, let’s take a look at the file structure of the application’s
installation directory. Using the following commands, we can get a shell connection on the
emulated device. Switching adbd to root mode, allows us to access the directory /data/data,

which contains the installation directories of the installed applications.

adb root

adb shell

68

adb root
restarting adbd as root

generic_x86_64:/ # whoami
root

Figure 49 Enumeration02 ADB root

Once we have a shell connection on the device, and since the name of the app is

Enumeration02, we can execute the following command to find the home directory of the

app.

Is -1 /data/data | grep enumeration02

generic_x86_64:/ # 1s -1 /data/data | grep enumeration02

5 u0_al97 ud_ala7 4096 2022-02-19 13:51
com.example.enumeration02

Figure 50 Enumeration02 grep App Name

Now that we know the name of the application’s home directory, we can issue the following

command to list its content.

Is -1 /data/data/com.example.enumeration02

69

generic_x86_64:/ # 1s -1 /data/data/com.example.enumeration02

total 24

drwxrws--x 2 u®_al97 u@_al97_cache 4096 2022-02-19 13:32 cache
drwxrws--x 2 u®_al97 u®_al97 cache 4096 2022-02-19 13:32 code_cache
drwxrwx--x 2 u@_al97 u@_al97 4096 2022-02-19 13:51 databases

Figure 51 Enumeration02 Listing App Installation Directory

Along with the cache and code_cache directories, database directory is also revealed.

Listing the contents of this directory reveals the database appDatabase.

Is -1 /data/data/com.example.enumeration02/databases

generic_x86_64:/ # 1s -1 /data/data/com.example.enumeration®2/databases

total 96

-rw-rw---- 1 u@_al97 u0_al97 4096 2022-02-19 13:51 appDatabase
1 u®_al97 ub_al97 32768 2022-02-19 13:51 appDatabase-shm
1 u@_al97 u0_al97 45352 2022-02-19 13:51 appDatabase-wal

Figure 52 Enumeration02 Database

Let's use the pre-installed sqlite3 client on the emulated device, to read the content of the

database. Using the following command, we can execute sql commands interactively.

sglite3 /data/data/com.example.enumeration02/databases/appDatabase

70

sqlite3 /data/data/com.example.enumeration®2/databases/appDatabase

SQLite version 3.22.0 2018-12-19 01:30:22
Enter ".help" for usage hints.
sqlite>

Figure 53 Enumeration02 SQL.ite3

While the sqlite> sign is displayed, we can interactively execute sql commands to the
databases. Let’s list the tables.

sglite> .tables

sqlite> .tables
SiteCredentials android_metadata room_master_table

Figure 54 Enumeration02 Tables

Among some default tables, SiteCredentials is listed as well. Executing the following query,

we can list the columns of this table, along with their data.

sglite> select * from SiteCredentials

sglite> select * from SiteCredentials;

1|http://passmanager.com|John|UNIPI{dOnt_fOrg3t_t0_3ncrypt}

Figure 55 Enumeration02 Flag

71

The username and password for the website http://passmanager.com that are stored in this

password manager app, are not encrypted and anyone with access to this application can see
them.

Flag: UNIPI{dOnt_fOrg3t_t0_3ncrypt}

Mitigations

Data that is stored inside the database, must be encrypted.

72

Enumeration03

Objective

The objective of this scenario is to show the basics on enumerating the installation directory
of an installed application. More specifically, it shows how one can read files that store
sensitive information.

Description

A student has been assigned to create a password manager app for his project. The instruction
of the project emphasised that the user data should be secured and inaccessible to third party
users. Can you assess this app and help this student get a good score?

Difficulty: Easy

Flag: UNIPI{dOnt_fOrg3t_t0_3ncrypt_vOlum3_twO0}

Release: 7c05ff01615eb9461368508550179300ae908e3a93b348edf9ee884eb63bf101

Challenge

Start the Android Emulator that we have already set up in the previous chapter, and make

sure that the emulator is attached to the ADB, by executing the following command.

73

adb devices
List of devices attached
emulator-5554 device

Figure 56 Enumeration03 List Devices

Once we have confirmed the above step, unzip the Enumeration03.apk.zip file and install

the extracted file Enumeration03.apk on the device, by issuing the following commands.

unzip Enumeration03.apk.zip

adb install Enumeration03.apk

unzip Enumeration02.apk.zip
Archive: Enumeration@3.apk.zip
inflating: Enumeration@l.apk

adb install Enumeration03.apk
Performing Streamed Install
Success

Figure 57 Enumeration03 Unzip APK

Then, we can find the installed application in the device’s menu, and tap on to start it.

74

Password Manager

Please enter your master
password to login to the app

LOGIN

Figure 58 Enumeration03 App

This is a password manager application. As the description implies, our main concern is to
check if the user data that is stored in this application is secured and not accessible from third

party users.

Since the app is installed, we can start enumerating the file structure of the application’s
installation directory. Use the following commands to get a shell connection on the emulated
device. Then, switching adbd to root mode to allow access to the directory /data/data, which

contains the installation directories of the installed applications.

adb root

adb shell

75

adb root
restarting adbd as root

generic_x86_64:/ # whoamti
root

Figure 59 Enumeration03 ADB root

Once we have a shell connection on the device, and since the name of the app is

Enumeration03, we can execute the following command to find the home directory of the

app.

Is -1 /data/data | grep enumeration03

generic_x86_64:/ # 1ls -1 /data/data | grep enumeration@3

5 u@_al9s ud_alos 4096 2022-02-19 15:46
com.example.enumeration®3

Figure 60 Enumeration03 grep App

Now that we know the name of the application’s home directory, we can issue the following

command to list its content.

Is -1 /data/data/com.example.enumeration03

76

generic_x86_64:/ # 1ls -1 /data/data/com.example.enumeration03

total 24

drwxrws--x 2 u®_al98 u@_al98 cache 4096 2022-02-19 15:46 cache
drwxrws--x 2 u®_al98 u®_al98 cache 4096 2022-02-19 15:46 code_cache
drwxrwx--x 2 u®_al98 u®_al98 4096 2022-02-19 15:46 shared_prefs

Figure 61 Enumeration03 shared_prefs Directory

Along with the cache and code_cache directories, shared_prefs directory is also revealed. In
Android, SharedPreferences are APIs that are used to save a relatively small collection of
key-value pairs [36]. Such values are stored in XML files. Listing the contents of the

directory shared_prefs, reveals the file Credentials.xml.

Is -1 /data/data/com.example.enumeration03/shared_prefs/

generic_x86_64:/ # 1ls -1
/data/data/com.example.enumeration@3/shared_prefs/

total 8
-rw-rw---- 1 u@_al98 u0®_al98 183 2022-02-19 15:46 Credentials.xml

Figure 62 Enumeration03 SharedPreferences.xml

Let's read the content of this file, by executing the following command.

cat /data/data/com.example.enumeration03/shared_prefs/Credentials.xml

77

generic_x86_64:/ # cat
/data/data/com.example.enumeration®3/shared_prefs/Credentials.xml

<?xml version='1l.0"' encoding='utf-8' standalone='yes' ?>

<map>

<string name="uname">John</string>

<string name="pass">UNIPI{dOnt_fOrg3t_t0_3ncrypt_vOlum3_tw0}
</string>
</map>

Figure 63 Enumeration03 Flag

The key-value pair uname/pass is revealed in plaintext.

Flag: UNIPI{dOnt_fOrg3t_t0_3ncrypt_vOlum3_tw0}

Mitigations

According to the official Android documentation, shared preferences should be edited by

calling the edit() method of the EncryptedSharedPreferences object, instead of the
SharedPreferences object, so the data can be encrypted [37].

78

https://developer.android.com/reference/androidx/security/crypto/EncryptedSharedPreferences

Reverse

In this type of challenges, the player should reverse engineer that application, and perform
static and dynamic analysis in order to find bad security practices. A flag, a specific
predefined word of the format UNIPI{sOm3_r4ndOm_t3xt!'}, will be indicating this bad

practice or the results of it.

Reverse01

Objective

The objective of this scenario is to learn how to reverse engineer an apk file, read the source

code, and eventually extract sensitive information like passwords.

Description

A friend of mine is about to release a password manager app on the mobile store. He asked
me to check if I can somehow find a way to login to the app unexpectedly. Can you help me
test this app before he uploads it?

Difficulty: Easy

Flag: UNIPI{dOnt_fOrg3t_my p4sswOrd!}

Release: 3c5697ee5dea835db31aad463422ef100ada47042e054aef79567048724275d5

Challenge

Start the Android Emulator that we have already set up in the previous chapter, and make

sure that the emulator is attached to the ADB, by executing the following command.

79

adb devices
List of devices attached
emulator-5554 device

Figure 64 Reverse01 ADB List Devices

Once we have confirmed the above step, unzip the Reverse01.apk.zip file and install the

extracted file Reverse0l.apk on the device, by issuing the following commands.

unzip ReverseOl.apk.zip

adb install Reverse0l.apk

unzip Reverse0l.apk.zip
Archive: Reverse0l.apk.zip
inflating: Reverse0l.apk

adb install Reverse@l.apk
Performing Streamed Install
Success

Figure 65 Reverse01 Unzip APK

Then, we can find the installed application in the device’s menu and tap on to start it.

80

Password Manager

Please enter your master
password to login to the app

LOGIN

Figure 66 Reverse01 App

This is a password manager application. As the description implies, we are tasked to find a
way, different than the one expected, and login to this application. Let’s reverse the apk file

and take a look at the source code. To do this, first we need to understand what an apk file is.

APK (Android Package) is the file format that Android uses to distribute and install apps. It is
an archive file that contains multiple files along with their metadata [38]. Using a file
archiver like the cli tool unzip on Linux operating systems, we can decompress the APK file,
and get the files that are included. By decompressing the Reverse0Ol.apk file, we get the

following output.

unzip Reverse0l.apk

Is -l

81

unzip Reverse0l.apk
Archive: Reverse@l.apk
inflating: META-INF/com/android/build/gradle/app-metadata.properties
inflating: res/zl.xml
inflating: res/yP.xml
extracting: res/9X.9.png
<SNIP>

1s -1
total 14568
-rw-r--r--
-rw-r--r--
drwxr-xr-x
-rw-r--r--
-IrW-rw-rw-
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
-rw-r--r--

bertolis bertolis 3896 AndroidManifest.xml
bertolis bertolis 1719 DebugProbesKt.bin
bertolis bertolis 3598 META-INF

bertolis bertolis 4916773 Reverse01.apk
bertolis bertolis 9294592 classes.dex
bertolis bertolis 148 kotlin

bertolis bertolis 58 1ib

bertolis bertolis 6412 res

bertolis bertolis 690868 resources.arsc

[QT O T U O T

Figure 67 Decompress APK File

One of the files that are included inside an APK file, is the one with the .dex extension. In our
case, the file classes.dex has been revealed. DEX files (Dalvik Executable), are used to hold
a set of class definitions and their associated adjunct data [39]. It essentially contains code
that is executed by the Android Runtime (ART).

Now that we have an idea of what the APK file is, we can use the tool dex2jar. This tool will
extract the .class files from the classes.dex file, and zip it as a jar file. A JAR (Java ARchive)
file is a package file format typically used to aggregate many Java class files and associated
metadata and resources (text, images, etc.) into one file for distribution [40]. Let’s go ahead

and issue the following command to convert the files.

sudo apt install dex2jar

d2j-dex2jar Reverse0l.apk

Is -l

82

https://source.android.com/devices/tech/dalvik
https://github.com/pxb1988/dex2jar

d2j-dex2jar Reverse@l.apk
dex2jar Reverse@l.apk -> ./Reverse@l-dex2jar.jar

ls -1

total 32536

-rw-r--r-- 1 bertolis bertolis 9092171 Feb 21 13:37 Reverse@l-
dex2jar.jar

-rw-r--r-- 1 bertolis bertolis 4916773 Feb 20 17:06 Reverse0l.apk

Figure 68 Reverse01 DEX2JAR

As we can see, the Reverse0l1-dex2jar.jar file is created. Now, let’s use JADX to read the
source code. This tool is a Dex to Java decompiler, that producing Java source code from

Android Dex and Apk files [41]. Using this tool, we can import the Reverse01-dex2jar.jar
file we just created and read the Java source code of the application. To install and start the
tool, we execute the following commands, and once it’s started, we locate and import the

Reverse01-dex2jar.jar file.

sudo apt install jadx

jdax-gui

Look In: Desktop v B KR

il Reverse0l-dex2jar.jar

ReverseQl.apk

File Name: ReverseQl-dex2jar.jar

Files of Type: | Supportedfiles: (jadx, apk, dex, jar, class, smali, zip, aar, arsc, aab) ~

Openfile Cancel

Figure 69 Reverse01 JADX

83

https://github.com/skylot/jadx

On the left side of the window, we can see a file structure similar to that in the Android
Studio IDE. Navigating to Source_code -> com -> example.reverse01, we can spot and read
the content on the MainActivity file.

File View Navigation Tools Help

& B2 TR Q « 1% 8| -

ReverseBl-dex2jar.jar €, MainActivity
Source code

android.support .vé package com.example.reverse0l;

androidx import android.content.Intent;
com 4 impert android.os.Bundle;
example, reversedl S dimport android.view.View;
& App & import android.widget.Button;
® AppDatabase import android.widget.TextView;

& AppDatabase_Impl 5 import androidx.appcompat.app.AppCompatActivity;

% BulldCanflg /* loaded from: Reverse@l- dex2jar.jar: com/ example/reverseGl/MainActivi ty. class *
® CredentialsDao 11 public class MainActivity extends AppCompatActivity {

&, CredentialsDao_Impl TextView txvl;

€ InsertActivity 3
€, ListAdapter

(’Lm?lnAcFlYltY public void onCreate

& MainActivity onCreate(bundle) ;

€, ManageActivity 1 setContentView(R. layout.activity_main);

&R 1 this.txvl = (TextView) findviewById(R.id.editTextPassword);

€, Repository
€, SiteCredentials

({Button) findviewById(R.id.btnLogin
/ android, view.Vi 0

tonClickListener (new view.onclickListener()
public void oncli

cListener

9"“915. Intent intent = new Intent(MainActivity.this, LoginActivity.class);
io.reactivex | intent.putExtral("pass®, MainActivity.this.txvl.getText().toStringl));
kotlin MainActivity.this.startActivitylintent);
kotlinx.coroutines 1
org 1)

Resources }
[Summary

Figure 70 Reverse01 MainActivity

Reading the source code, we notice that the value of edit text editTextPassword is stored
into a variable called txv1. Then, when the LoginActivity is called, this variable is passed as
the value of the parameter pass. That means that the user’s input, which is probably the
password, is passed and processed in the LoginActivity. Let’s navigate to this activity and

read its content.

£, MainActivity £, LoginActivity

—

package com.example.reverse0l;

import android.content.Intent;

import android.os.Bundle;

import android.widget.Toast;

import androidx.appcompat.app.AppCompatActivity;

[I PV N]

8 /* loaded from: Reverse@l-dex2jar.jar:com/example/reverse@l/LoginActivity.class */
o public class LoginActivity extends AppCompatActivity {
10 /* JADX INFO: Access modifiers changed from: protected */

11 ride // androidx.fragment.app.FragmentActivity, androidx.activity.ComponentActivity,
12 public void onCreate(Bundle bundle) {

13 onCreate (bundle) ;

14 setContentView(R.layout.activity_main);

15 if (getIntent().getStringExtra("pass").equals("d251dc23942e81bSdef8chb63f48949e1")) {
16 startActivity(new Intent(this, ManageActivity.class]);

17 return;

18 ¥

19 Toast.makeText(this, "Wrong password!", 1).show();

startActivity(new Intent(this, MainActivity.class));

Figure 71 Reverse01 LoginActivity

84

Reading the source code of the file, we notice that password entered by the user, is being
compared with the string d261dc23942e81b5dcf8ch63f48949¢e1, which is probably the login
password. Let’s go back to the application and try to login using this password.

UNIPH{dOnt_fOrg3t_my_p4sswOrd!'} +

Figure 72 Reverse01 Flag

This is successful.
Flag: UNIPI{dOnt_fOrg3t_my p4sswOrd!}
Mitigations

In order to prevent the source code from such techniques, obfuscation methods can be used.
Android official documentation provides an option while building your application, that
among others, it allows us to obfuscate the source code, which results in changing and

shorten the name of classes and members [42].

In order to enable this feature, we set the value minifyEnabled to true, inside the
build.gradle file. The content of the file should look like this.

buildTypes {
release {
minifyEnabled

proguardFiles getDefaultProguardFile(

Figure 73 Reverse01 Mitigation

85

https://developer.android.com/studio/build/shrink-code

Reverse02

Objective

The objective of this scenario is to learn how to decompile, change the source code, and
recompile an APK file, in order to bypass the login mechanism without knowing the
password.

Description

The security company | have applied for, has put me through a test. | need to bypass the login

screen of this app. Can you help me?

Difficulty: Easy

Flag: UNIPI{I0Oc@!_|0gin_v@I1d@tiOn_suck5}

Release: 22059585251514e50d61870ce684dc7c02c48278949741271f8c4fdd3cc282be

Challenge

Start the Android Emulator that we have already set up in the previous chapter, and make

sure that the emulator is attached to the ADB, by executing the following command.

adb devices
List of devices attached
emulator-5554 device

Figure 74 Reverse02 ABD List Devices

86

Once we have confirmed the above step, unzip the Reverse02.apk.zip file and install the

extracted file Reverse02.apk on the device, by issuing the following commands.

unzip Reverse02.apk.zip

adb install Reverse02.apk

unzip Reverse02.apk.zip
Archive: Reverse02.apk.zip
inflating: Reverse02.apk

adb install Reverse02.apk
Performing Streamed Install
Success

Figure 75 Reverse02 Unzip APK

Then, we can find the installed application in the device’s menu and tap on to start it.

Password Manager

’lease enter your maste
yassword to login to the app

LOGIN

Figure 76 Reverse02 App

87

This is a password manager application. As the description implies, we are tasked to bypass

the login screen of this application. Let’s reverse the APK file and take a look at the source

code.

Reversing the file using DEX2JAR and JADX like in the Reverse01 challenge, doesn’t

work. The string that is possibly going to be compared with the password entered by the user,

isn’t in plaintext. Instead, it is returned by a function called stringFromJNI().

File View Navigation Tools Help
B B © Q
Reverse02.apk
Source code
a
€ a
Db
ad
al
a2
android.support.vd
androidx
b
b@
bl
b2
c
c®
cl
c2
com
example.reversed2
& App
© AppDatabase
€, AppDatabase_Impl

- - B

ca < a . MainActivity €. App

1 package com.example.reverse0z;

import android.content.Intent;
4 import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;
import d.h;

ded from: ¢

1 Loade om: lasses.dex
12 public class MainActivity extends h {

2d from: o ollision with root package name *

« renamed fr eas
public TextView f238%0;

loaded from: classes.dex */

public class = implements view.OnClickListener {
public al) {
}

! i r android.view. View, OnClickListener
public void onClick(View view) {

| if (MainActivity.this.f23890.getText().toString().equals(MainActivity.this.stringFromINI())

MainActivity.this.startActivity(new Intent(MainActivity.this, ManageActivity.class));

€ InsertActivity return;
€ MainActivity : .
& ManageActivity Toast.makeText(MainActivity.this, "Wrong password!", 1).show();
&R - }
google.android.material
d 32 static {
de .loadLibrary("reversen2");
d1 4 }

Figure 77 Reverse02 MainActivity

The source code also seems to be obfuscated, as we noticed that many methods and classes

names are changed to random characters.

We can further examine this APK file by using the same tool we used on the Enumeration01

challenge, Apktool. This tool, not only will extract configuration files from the .apk file, but

it will convert a .dex file into a .smali file.
As we said earlier in the Reverse01 challenge, a DEX file (Dalvik Executable), is a file that

contain the compiled Java code (Java classes) and can be interpreted by the Dalvik Virtual

Machine. On the other hand, Smali is the assembly language used by the Android Dalvik

88

https://ibotpeaches.github.io/Apktool/

Virtual Machine [43]. Apktool, allows us to edit the converted Smali files, recompile them

and then create a new APK file.

Let’s start by downloading the Apktool.

waget https://bitbucket.org/iBotPeaches/apktool/downloads/apktool_2.6.0.jar

Resolving bbuseruploads.s3.amazonaws.com
(bbuseruploads.s3.amazonaws.com)... 54.231.129.145

Connecting to bbuseruploads.s3.amazonaws.com
(bbuseruploads.s3.amazonaws.com) |54.231.129.145|:443... connected.
HTTP request sent, awaiting response... 200 0K

Length: 19964258 (19M) [application/x-java-archive]

Saving to: ‘apktool_2.6.0.jar’

apktool_2.6.0.jar

1,42MB/s in 30s

Figure 78 Reverse02 Download APKTool

Then, go ahead and decompile the APK file.

java -jar apktool_2.5.0.jar d Reverse02.apk

89

java -jar apktool apktool_2.5.0.jar d Reverse02.apk
I: Using Apktool 2.5.0 on Reverse02.apk

I: Loading resource table...

I: Decoding AndroidManifest.xml with resources...
I: Loading resource table from file:
/home/bertolis/.local/share/apktool/framework/1.apk

I: Regular manifest package...
: Decoding file-resources...
: Decoding values */* XMLs...
: Baksmaling classes.dex...

: Copying assets and Llibs...
: Copying unknown files...
: Copying original files...

Figure 79 Reverse02 APKTool Decompile

Listing the content of the extracted directory, we can see that the following file structure.

Is -1 Reverse02

000

ls -1 Reverse02
total 8

-rw-r--r--
-rw-r--r--

bertolis bertolis : AndroidManifest.xml
bertolis bertolis S apktool.yml
bertolis bertolis : kotlin

bertolis bertolis : 1ib

bertolis bertolis - original

bertolis bertolis z res

bertolis bertolis - smalti

bertolis bertolis 3 unknown

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

L S S S =

Figure 80 Reverse02 Listing Decompressed APK

We notice that the directory smali has been created. Listing the directory

smali/com/example/reverse02/, reveals the following .smali files.

90

Is -1 Reverse02/smali/com/example/reverse02/

ls -1 Reverse@2/smali/com/example/reverse@2/

total 76

-rw-r--r-- 1 bertolis bertolis 21309 Feb 21 . App.smali
-rw-r--r-- 1 bertolis bertolis 292 Feb 21 . AppDatabase.smali
-rw-r--r-- 1 bertolis bertolis 13652 Feb 21

'AppDatabase_Impl$a.smali’

-rw-r--r-- 1 bertolis bertolis 4744 Feb 21

AppDatabase_Impl.smali

-rw-r--r-- 1 bertolis bertolis 3324 Feb 21 : InsertActivity.smali
-rw-r--r-- 1 bertolis bertolis 2639 Feb 21 ; ‘MainActivity$a.smali’
-rw-r--r-- 1 bertolis bertolis 1545 Feb 21 : MainActivity.smali
-rw-r--r-- 1 bertolis bertolis 1457 Feb 21

'ManageActivity$a.smali’

-rw-r--r-- 1 bertolis bertolis 4662 Feb 21 : ManageActivity.smali

Figure 81 Reverse02 Smali Files

Let’s open the MainActivity$a.smali, and try to locate the if() statement that we found

earlier while enumerating with JADX.

vim Reverse02/smali/com/example/reverse02/MainActivity\$a.smali

ct pl, pl,

virtual {pl}, Land

Figure 82 Reverse02 Smali Code

91

Searching for the word “if”, we are transferred to this snippet of code. By reading it, we can
realize that this is the same if() statement with the one we found while enumerating the
source code with JADX. Its seems that the string of the TextView is getting compared with
the value that is returned from the stringFromJNI() function. Let’s go ahead and delete this
line. By doing this, the user’s input validation won’t work, and we will jump directly to the
code that is executed inside the if() statement. Once, we have the line deleted. We run the

following to recompile the files.

java -jar apktool_2.5.0.jar b Reverse02

java -jar apktool_2.6.0.jar b Reverse02

: Using Apktool 2.6.0

Checking whether sources has changed...
Checking whether resources has changed...
Building resources...

Copying libs... (/lib)

Copying libs... (/kotlin)

Building apk file...

Copying unknown files/dir...

Built apk...

I

i
g
105
1L
1R
17
g
108

Figure 83 Reverse02 APKTool Recompile

Once it’s finished, we can find the new APK file in the following directory.

Is -1 Reverse02/dist/

92

ls -1 Reverse@2/dist/
total 2480
-rw-r--r-- 1 bertolis bertolis 2539008 Feb 22 02:03 Reverse02.apk

Figure 84 Reverse02 New APK

What is left, is to sign the recompiled Reverse02.apk file using a self-signed certificate. To

create a self-signed certificate, we are going to use keytool.

keytool -genkey -keystore john.keystore -validity 1000 -alias john

XX

keytool -genkey -keystore john.keystore -validity 1000 -alias john
Enter keystore password:
Re-enter new password:

<SNIP>

What is your first and last name?
[Unknown]: john doe

What is the name of your organizational unit?
[Unknown] :

What is the name of your organization?
[Unknown] :

What is the name of your City or Locality?
[Unknown] :

What is the name of your State or Province?
[Unknown] :

What is the two-letter country code for this unit?
[Unknown] :

Is CN=john doe, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown

correct?
[no]: Yes

Generating 2,048 bit DSA key pair and self-signed certificate
(SHA256withDSA) with a validity of 1,000 days

for: CN=john doe, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown,
C=Unknown

Figure 85 Reverse02 Signing Certificate

93

Once the key is created, issue the following command to sign the APK file, using the

password we entered during creating the certificate.

apksigner sign --ks john.keystore Reverse02/dist/Reverse02.apk

apksigner sign --ks john.keystore Reverse(2/dist/Reverse02.apk
Keystore password for signer #1:

Figure 86 Reverse02 Signing The New APK

Now the APK is ready to be installed. Before installing the new APK file, make sure to delete

the one that is already installed.

236 6 @

X Remove

Figure 87 Reverse02 Uninstalling Old App

Then, we run the following to install the app.

adb install Reverse02/dist/Reverse02.apk

94

adb install Reverse02/dist/Reverse02.APK

Performing Streamed Install
Success

Figure 88 Reverse02 Installing New App

Finally, we locate and tap the app on the device to start. Once it starts, we click on the

LOGIN button without entering any password, since we have removed the if() statement that
validates the password.

Password Manager

Figure 89 Reverse02 Flag

The login screen has been bypassed successfully.

Flag: UNIPI{lIOc@I_I0gin_v@Illd@tiOn_suck5}

95

Mitigations

Remote or encrypted authentication is resistant on such attacks, because there is no

hardcoded password in plaintext in the app. As the App security best practices section in the

Android official documentation suggests, enforcing secure communication improves app's
stability and protects the data that are sent and received [44]. Combining these two practices

strengthens the prevention of this kind of attacks.

96

https://developer.android.com/topic/security/best-practices

Reverse03

Objective

The objective of this scenario is to learn how to reverse engineer an apk file, and search the

source code in depth, in order to find sensitive information like passwords.

Description

| forgot the password | use to login to my mail account. Fortunately, I use the same password

in my password manager app. Let's check if | can reverse the source code and get it.

Difficulty: Medium

Flag: UNIPI{n4tlv3 c0d3_1s nOt 3nOugh}

Release: dda0a4f41dbch2a705e66be72583b0bd9f69f6fc375b59bbd87f64h662c54409

Challenge

Start the Android Emulator that we have already set up in the previous chapter, and make

sure that the emulator is attached to the ADB, by executing the following command.

adb devices
List of devices attached
emulator-5554 device

Figure 90 Reverse03 ADB Listing Devices

97

Once we have confirmed the above step, unzip the Reverse03.apk.zip file and install the

extracted file Reverse03.apk on the device, by issuing the following commands.

unzip Reverse03.apk.zip

adb install Reverse03.apk

unzip Reverse@3.apk.zip
Archive: Reverse@3.apk.zip
inflating: Reverse03.apk

adb install Reverse03.apk
Performing Streamed Install
Success

Figure 91 Reverse03 Unzip APK

Then, we can find the installed application in the device’s menu and tap on to start it.

Password Manager

*lease enter your maste
yassword to login to the app

LOGIN

Figure 92 Reverse03 App

98

This is a password manager application. As the description implies, we are tasked to reverse

the app and find the potential hardcode login password. Let’s reverse the APK file and take a

look at the source code.

Reversing the file using DEX2JAR and JADX like in the Reverse01 challenge, gives us a

first glance of the source code. The string that is possibly compared with the password that is

entered by the user, isn’t in plaintext. Instead, it is returned by a function called

stringFromJNI ().

File View Navigation Tools Help
& B = Q & 2
Source code

android.support.v4

androidx

b

b@

bl

b2

c

cO

cl

c2

com
example,reverse3
& App
© AppDatabase
€, AppDatabase_Impl
€, InsertActivity
€ MainActivity

6 a
s T23890 T
mi...} 1

m, onCreate(Bundle)
m stringFromINI()
€, ManageActivity

18 B F

€, MainActivity

1 package com.example.reverse03;

import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

S

import android.widget.TextView;
import android.widget.Toast;
) import d.h;

loaded from: classes.de

f* lo e :C ex /
public class MainActivity extends h {

: /* renamed from: o reason: collision with root
public Textview f23890;

package name */

/* loaded from: classes.dex *
public class a implements View.OnClickListener {

public al) {

22 @override // android.view.View.OnClickiistener
public void onClick(vView view) {
if (MainActivity.this.f23890.getText().toString().equals(MainActivity.this.stringFromINI())) {
25 MainActivity.this.startActivity(new Intent(MainActivity.this, ManageActivity.class));
return;
}
28 Toast.makeText(MainActivity.this, “Wrong password!", 1).show();

Figure 93 Reverse03 MainActivity

The source code also seems to be obfuscated as we noticed that many methods and classes

names are changed to random characters. Searching online the stringFromJNI() function,

reveals the following results.

99

stringFromJNI

] Imag
About 41,500 results (0.«

https://developer.android.com » ndk » samples » sampl... $
Sample: hellc—jni - NDK - Android DEVE|UF1E!FS

. external fun stringFromJNI(): String ... This name refers to a Java function
called stringFromJNI() , which resides in ...
Android.mk - Java-side Implementation

Figure 94 Reverse03 Google Search JNI

According to the Android official documentation, this is a function that is used when we

create C/C++ application using the NDK. The NDK (Native Development Kit) is a set of
tools that allows you to use C and C++ code with Android, and provides platform libraries
you can use to manage native activities and access physical device components, such as
sensors and touch input [45].

According to the documentation we saw earlier, the full name of the built library (the file that

is created in C/C++) is libhello-jni.so, once the build system adds the lib prefix and the .so

extension. Let’s decompile Reverse0l.apk using Apktool and search for a .so file.

waget https://bitbucket.org/iBotPeaches/apktool/downloads/apktool_2.6.0.jar

100

https://developer.android.com/ndk/samples/sample_hellojni

Resolving bbuseruploads.s3.amazonaws.com
(bbuseruploads.s3.amazonaws.com)... 54.231.129.145

Connecting to bbuseruploads.s3.amazonaws.com
(bbuseruploads.s3.amazonaws.com) |54.231.129.145|:443... connected.
HTTP request sent, awaiting response... 200 0K

Length: 19964258 (19M) [application/x-java-archive]
Saving to: ‘apktool_2.6.0.jar’

apktool_2.6.0.jar

1,42MB/s in 30s

Figure 95 Reverse03 APKTool Download

Once its downloaded, we execute the following command.

java -jar apktool_2.5.0.jar d Reverse03.apk

java -jar apktool_2.6.0.jar d Reverse03.apk

I: Using Apktool 2.6.0 on Reverse03.apk
I: Loading resource table...
I: Decoding AndroidManifest.xml with resources...
I: Loading resource table from file:
/home/bertolis/.local/share/apktool/framework/1.apk
I: Regular manifest package...

: Decoding file-resources...

: Decoding values */* XMLs...

: Baksmaling classes.dex...

: Copying assets and libs...

: Copying unknown files...

: Copying original files...

Figure 96 Reverse03 Decompile APK

Enumeration of the Reverse03/1ib/x86_64/, reveals the file libreverse03.so.

101

1ls -1 Reverse03/11b/x86_64/

total 224
-rw-r--r-- 1 bertolis bertolis 227656 Feb 22 15:59 libreverse03.so

Figure 97 Reverse03 Share Library

Reading the content of this file is not possible because it is compiled.

o0
cat Reverse03/1ib/x86_64/1ibreverse03.so

90'!9 OOUHUXBY""V0V"V1dr21e7075529GNU<@ |

9=~ PWOHOLOD/EQ+ OOV OOOHP W k ~ @
PO 1SON®

0999V ! "

V00900006009

QOT ©L(BPO

QOIONS

©'OONrSOre"59t;PuAOP>0Q . ©

p+@yQ0y (@

P®!?709097" 9keqO V@

7 tOOON(}pO €] OONON(© sOVOIVVPsSOVVOKOVPXVOr<On®

Figure 98 Reverse03 Shared Object Content

An SO file is a shared library used by programs installed on Linux and Android. Developers
often build SO files using the "gcc™ C/C++ compiler included in the GNU Compiler
Collection (GCC) [46]. Let’s try to decompile the file libreverseo3.so using Ghidra.

Ghidra is a software reverse engineering (SRE) framework that includes a suite of full-
featured high-end software analysis tools that, enable users to analyze compiled code. It also

supports a wide variety of processor instruction sets and executable formats [47].

In order to install Ghidra we type the following.

102

https://ghidra-sre.org/

sudo apt install ghidra

sudo apt install ghidra

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
<SNIP=>

Figure 99 Reverse03 Ghidra Installation

Next, we start ghidra from the terminal, and create a new project.

Edit Project Tools Help

MNew Project... Ctrl+MN

Open Project... Ctrl+ 0O
Reopen >
Close Project Ctrl+wW
Save Project Ctrl+5S

Delete Project...

Archive Current Project...
Restore Project...

Configure...
Install Extensions...

Import File...

Batch Import...

Open File System... Ctrl+1
Exit Ghidra Ctrl+Q

Figure 100 Reverse03 Ghidra New Project

103

On the pop-up window, we click next. Then we create the project directory and click
finished.

o Select Project Type @ 4 select Project Location (1]

Project Diractory. /home/bertolis/Documents/Ghidra
Pl aRd Bt Project Name: | Reverse03|

() Shared Project

| Mext >> | nish | Cancel | | =<Back | | Next=>> { Einish ll Lancel |

Figure 101 Reverse03 Ghidra Project Properties

Finally, we select the project we just created and click on the small green dragon icon to enter

the CodeBrowser mode.

File Edit Project Tools Help

LR EE R RIR

Tool Chest

Y

Active Project: Reverse03

¥ Reverse03s

Figure 102 Reverse03 Start Project

Once we have entered the CodeBrowser mode, press “i”” to import new file. Then, we
navigate to the path where the libreverse03.so file is located, we select it and click the

“Select File To Import” button.

104

&= =) [/home/bertolis/Desktop/Reverse03/lib/x86_64 12 =

@ [libreverse03.s0

P

My Computer

&

Desktop

L
=]
i)

Recent

File name: libreverse03.s0

Type: [AII Files (*.#)

| select File To Import | | Cancel |

Figure 103 Reverse03 Load File

Next, we click OK on the next window, leaving the selected values.

Format: lExecutabIe and Linking Format (ELF)

Destination Folder: Reverse03:/

P
Language: x86:LE:64:default:gee |

Program Mame: libreverse03.s0

Options... |

[0K] l Cancel J

Figure 104 Reverse03 Ghidara File Properties

105

On the next pop-up window, we click Analyze.

le Type: shared ohject

é libreverse03.s0 has not been analyzed. Would you like to analyze it now?

abl [Yes | | no |
abls add
file:///home/bertolis/Desktop/Reverse03/11b/xB6 64/ 11breversed3

LN S (A + i

Figure 105 Reverse03 Ghidra Analyze

Once again, on the Analyze Options window, we click on the Analyze button.

Analyzers Description

Enabled |Analyzer MName

Aggressive Instruction Finder (Protot...
Apply Data Archives
ASCIl Strings

A
~

Call Convention Identification { Options
v

Call-Fixup Installer

Condense Filler Bytes (Prototype)
Create Address Tables

Data Reference

Decompiler Parameter ID
Decompiler Switch Analysis

JEFOEEEED

[Select All J l Deselect All J [Restore Defaults J

[Analyze] [Cancel J

Figure 106 Reverse03 Ghidra Analazy Options

Finally, click OK on the Summary window.

106

Additional Information

[1ibm.so]
[1Tibdl.so]
[libc.so]

-> not found
-> not found
->= not found

[libreverseG3.so] Resolve 34 external symbols
Unresolved external symbols which remain: 34

Loading /home/bertolis/Desktop/Reversed3/1ib/x86 64/1ibreverse03. so
[libleg.so] -= not found

Figure 107 Reverse03 Ghidra Summary

Once we are done with the import process, the CodeBrowser window should look like this.

File Edit Analysis Mavigation Search Select Tools Window Help

B ==

hrim Trees

FHEE LIDULFRYB-

#libreverse03.so X

s0

@l oo | VEIODGLOBS HEds | @

WO F B @ E-x

v (7 libreverse03.s0 A
.bss] oy 7 T
-data /7 segment_1.1 -
-got.pit // Loadable seqment [0x0 - 0x33b7f] (disabled execute bit))
.got // ram: 00100000-001001FF
.dynamic 17
fini_array assume DF = 0x0 (Default)
data.relro B 0100000 7f 45 4c Elf64_Ehdr
.eh_frame_hdr ;f gg gé
-eh_frame 00100060 7F db 7Fh e ident magi...
-rodata 00100001 45 4c 46 ds “ELF* e_ident_nagi.
.gec_except_table 00100004 02 db 2h e_ident_class
.text .| 00100005 01 db 1h e_ident_data
—[O e J— 00100006 01 db 1h e_ident_vers
00106007 00 00 00 60 00 db[9] e_ident_pad
00 00 00 00
- Symbol Tree Bl P X 00100010 03 00 dw sh e type
» [l Imports 00100012 3e 00 dw 3Eh e_machine
» B Exports 00100014 01 00 0O 0O ddw 1h e_version
00100018 00 00 00 00 60 dg Gh e_entry
» [Functions 00 00 00
» [Labels 00100020 40 00 00 00 00 dg E1f84_Phdr_ARRAY_00100... e_phoff
» £ classes 00 00 6o
» =0 Namespaces — 00100028 48 72 03 00 80 dg ELf64_Shdr_ARRAY__elfS... e_shoff
00 00 00
00106030 00 00 00 00 ddw Gh e_flags
00100034 40 00 dw 4ch e_ehsize
00100036 38 00 dw 3sh e_phentsize
00100038 03 00 dw gh e_phnum
00100033 40 00 dw 48h e_shentsize
0010603c 1c 00 dw 1ch e_shnum
0010003e 1b 00 dw 1Bh e_shstrndx
Filter: =)
ELf84_Phdr_ARRAY_00100040 KREF[2]: 00100020(*), BOLO
57 Data Type Manager - X 96100840 05 00 00 ELf64_Ph... PT_PHDR - Prog
00 04 00
== - NR 00 00 40 ...
I
75 Data Types // .note.android.ident
» @ BuiltinTypes // SHT_NOTE [0x200 - 0x297] e
» [@libreversen3.so o /7 ram: ON100200- (61 06267 P -

» i generic_clib_64

Figure 108 Reverse03 CodeBrowser

On the left side menu, under the Functions tab, we can see the function

java.com.example.reverse03_MainActivity_stringFromJNI. Double click on it and

navigate on the right section of the window. This section contains the pseudo code of this

function. And we can try to read it.

107

ompile: Java_com_example_reverse03_MainActivity stringFrom]il - (libreversed

286 | basic_string.conflict local_ 28 [16]:
287 | void *local_18;

288 | long local_10;
2]
0| local 10 = *#(long *) (1n_FS_OFFSET + 0x28);
291 | basic_string=decliype(nullptr)=
292 ((basic_string=char,std--__ndkl--char_traits<char=,std--__ndkl--allocator=char== *)
293 local_28,"U");
284 | basic_string=<decltype(nullptr)=
295 ((basic_string=char,std-- ndkl--char traits<char=,std-- ndkl--allocator=char== #)
296 local_40,"N");

FJ

basic_string=decltype(nullptr)=(&local_S8,"I");
basic_string=decltype (nullptr)=(&local_ 0,"P")
basic_string=decltype(nullptr)=(&local_gs,"I"
basic_string=decltype(nullptr)={&local_ad,"{"
'qn

FJ
0 00 =l

H
H
H
H

[]

basic_stringedecltype(nullptr)={&local _b&,"n’
basic_string=decltype (nullptr)=(&local_do,’
basic_string<decltype(nullptr)=(&local_eg,"t"
basic_string=decltype (nullptr)=(&local_100,"1
basic_string=decltype(nullptr)=(&local_118,"v
basic_string=decltype(nullptr}={&local 130,"3
7| basic_string=decltype(nullptr)=(&local 145,
5| basic_string=decltype(nullptr)=({&local_1&0
basic_string=decltype (nullptr)={&local_ l,m,
basic_string=decltype(nullptr)=(&local_1%0,"
basic_string=decltype(nullptr)=(&local_las,"
basic_string=decltype (nullptr)={&local 1cO, "_"
basic_string=decltype(nullptr)={&local_1ds,’
basic_string<decltype(nullptr)=(&local_1f0,’ s
basic_string=decltype(nullptr)=(&local_208,"_
basic_string=decltype(nullptr)=(&local_z2z0o,"n'
7| basic_string=decltype(nullptr)=(&local_ 238,"0"
8 basic_stringﬂdecltype(nullptr)b(&local_250,"t
basic_stringedecltype(nullptr)=(&local_ 2&2,"_
basic_string=decltype(nullptr)=(&local_2&0, 3"
basic_string=decltype (nullptr)=(&local_ ZJF, n"
0
u

N I) R S O

(.\.'Iﬂ_-Gll"3|

= o
|_|
M e i it i i M i i i i et ettt et et st e m

S [L R S TR |

[l o}

basic_string=decltype(nullptr)=(&local_Zbo,"
basic_stringedecltype(nullptr)=(&local_ZcE, "u"
basic_string=decltype (nullptr)={&local Ze0, "g")
basic_string=decltype(nullptr)={&Lo qu_zf— "h")i
basic_string=decltype(nullptr)=(&local_310,"}");

operator+<char,std--__ndkl--char_traits<char=,std--__ndkl--allocator<char==

((__ndkl *)local_6e0,local_28,local_40);

LN P L) R

(SN
MMMMMMROMMREREFRRRFRRSSFA D000 0 0000000000

WL L) L)L) L L L) L) L)L) L L)L) L) L)L) WL LWL W W W W WL Wk

oo o=l

Figure 109 Reverse03 Flag

After scrolling a little bit down reveals the characters of the potential password that is
returned. Let’s check if this is the string that is returned from this function, and thus, the login
password. To do so, we start the app on the device, then type the password that we just found
and press LOGIN.

108

Password Manager Password Manager

Please enter your maste
1ssword to login to the app

UNIPI{n4t1v3_c0d3_1s_n0t_3n0ugh}f

LOGIN

Figure 110 Reverse03 Login Screen

This is successful. We have found the hardcoded password.

Flag: UNIPI{n4tlv3 c0d3 1s nOt 3nOugh}

Mitigations

Hiding hard coded strings inside native code, is not the best security practice as we can see.

Similarly to the Reverse02 challenge, using encrypted or remote authentication and enforcing

secure communication, prevents issues like the one described above.

109

Reverse04

Objective

The objective of this scenario is to learn how to perform dynamic code instrumentation using

the Frida framework.

Description

A colleague of mine forgot his master password of his password manager app, and lost access
to valuable data. | already performed static analysis by reversing the APK file in order to get
the password, but it seems that it is well hidden. If only there was another way to get the
password.

Difficulty: Hard

Flag: UNIPI{nOthlng_3sc4p3s_frid4}

Release: 8a100979c0e87f814d84d702caccac899853e99ec15f576be33a57b5d88ed1ca

Challenge

Start the Android Emulator that we have already set up in the previous chapter, and make

sure that the emulator is attached to the ADB, by executing the following command.

110

adb devices
List of devices attached
emulator-5554 device

Figure 111 Reverse04 ADB List Devices

Once we have confirmed the above step, unzip the Reverse04.apk.zip file and install the

extracted file Reverse04.apk on the device, by issuing the following commands.

unzip Reverse04.apk.zip

adb install Reverse04.apk

unzip Reverse04.apk.zip
Archive: Reverse@4.apk.zip
inflating: Reverse03.apk

adb install Reverse@4.apk
Performing Streamed Install
Success

Figure 112 Reverse04 Unzip APK

Then, we can find the installed application in the device’s menu and tap on to start it.

111

Password Manager

’lease enter your maste
1issword to login to the app

LOGIN

Figure 113 Reverse04 App

This is a password manager application. As the description implies, we are tasked to restore
the password that is stored in the app’s source code. We also know that static analysis by
reversing the APK file has been performed. Let’s try to examine the application by
performing dynamic analysis techniques. But first, we will need to examine the APK

statically and gather some information about the app.

Using the JADX tool, as we have already described in the Reverse01 challenge, we can read

the some of the source code of the app. First, we convert the APK into a JAR file.

d2j-dex2jar Reverse04.apk

d2j-dex2jar Reverse@4.apk
dex2jar Reverse04.apk -> ./Reverse@4-dex2jar.jar

Figure 114 Reverse04 DEX2JAR

112

Then, we open it with JADX, we load the JAR file, and we navigate to the MainActivity.

@verride f/ android.view.View.0OnClicklListener
public void onClick(view view) {
if (MainaActivity.this.f23890.getText().toString().equals(MainActivity.this.stringFrominI())) {
MainActivity.this.startActivity(new Intent(MainActivity.this, ManageActivity.class));
return;
¥
Toast.makeText(MainActivity.this, "wrong password!", 1).show(];
1
¥

Figure 115 Reverse04 JADX

We can see, there is an if() statement that compares the user’s input with the value that is
returned from the function stringFromJNI(). The message “Wrong password!” is also

displayed, ensuring that this is a password validation statement.

As we saw in the Reverse03 challenge while searching online the official Android

documentation, this is a function that is used when we create C/C++ application using the

NDK (Native Development Kit). These C/C++ files can be shared libraries that are used from

the app. When the system builds the library, it adds the prefix lib and the extension .so.

Further enumeration with Apktool, as we saw in the Reverse02 challenge, we can extract

some files from the APK.

waget https://bitbucket.org/iBotPeaches/apktool/downloads/apktool_2.6.0.jar

113

https://developer.android.com/ndk/samples/sample_hellojni

Resolving bbuseruploads.s3.amazonaws.com
(bbuseruploads.s3.amazonaws.com)... 54.231.129.145

Connecting to bbuseruploads.s3.amazonaws.com
(bbuseruploads.s3.amazonaws.com) |54.231.129.145|:443... connected.
HTTP request sent, awaiting response... 200 0K

Length: 19964258 (19M) [application/x-java-archive]
Saving to: ‘apktool_2.6.0.jar’

apktool_2.6.0.jar

1,42MB/s in 30s

Figure 116 Reverse04 Download APKTool

Once it’s downloaded, we run the following command to extract the files.

java -jar apktool_2.5.0.jar d Reverse04.apk

java -jar apktool_2.6.0.jar d Reverse04.apk
I: Using Apktool 2.6.0 on Reverse04.apk
I: Loading resource table...
I: Decoding AndroidManifest.xml with resources...
I: Loading resource table from file:
/home/bertolis/.local/share/apktool/framework/1.apk
I: Regular manifest package...

: Decoding file-resources...

: Decoding values */* XMLs...

: Baksmaling classes.dex...

: Copying assets and libs...

: Copying unknown files...

: Copying original files...

Figure 117 Reverse04 APKTool Decompile

Enumerating the extracted files reveals the shared library file
Reverse04/1ib/x86_64/libreverse04.lib. As we saw earlier in the Reverse03 challenge, .so

files are shared libraries used by programs installed on Linux and Android, and are written in

114

C/C++. Since stringFromJNI() is a function used from shared library files (.so), and the
user’s input is compared with the value that is returned from the stringFromJNI() function,
it is very likely for the shared library libreverse04.so to be used by this app to fetch the

password.

Before we start the dynamic analysis, there is one more thing we need not find. That is the
full name of the function stringFromJNI() that is declared in the C++ file. Since we have
already decompiled the APK file, we can find this information inside the
Reverse04/lib/x86_64/libreverse04.so file. Although this file is still compiled, the strings are

readable. We open the file using vim and search for “stringFromJNI”.

vim Reverse04/lib/x86_64/libreverse04.so

Reverse04/1ib/x86 64/libreversed4.so 13,1027-1783

Figure 118 Reverse04 Shared Object Content

As we can see, the full name of the function is

Java_com_example_reverse04 MainActivity stringFromJNI.

Now that have some information about the app, let’s try to hook the value returned by the

function at run time. For this, we are going to use Frida.
Frida is a dynamic code instrumentation toolKkit. It lets you inject snippets of JavaScript or

your own library into native apps, at runtime [48]. Essentially, apps can run through Frida by

running the Frida server on the device. Then then we can install Frida tools on our host and

115

https://frida.re/
https://github.com/frida/frida/releases

execute commands and scripts. Note that the version of Frida server should be the same

version with the Frida tools.

Running Frida server on the device can be achieved as following. First, we download the

server for android locally.

waget https://github.com/frida/frida/releases/download/15.1.1/frida-server-15.1.1-android-
x86_64.xz

@
wget https://github.com/frida/frida/releases/download/15.1.1/frida-
server-15.1.1-android-x86_64.xz
frida-server-15.1.1-android-x86_64 100%
4,61MB/s in 7,2s

2022-02-28 17:29:17 (3,86 MB/s) - ‘frida-server-15.1.1-android-
x86_64.xz’' saved [29195764/29195764]

Figure 119 Reverse04 Download Frida Server

Once it’s downloaded, we can use the following command to decompress it.

xz -d -v frida-server-15.1.1-android-x86_64.xz

xz -d -v frida-server-15.1.1-android-x86_64.xz
frida-server-15.1.1-android-x86_64.xz (1/1)
100 % 27.8 MiB / 93.2 MiB = 0.299

Figure 120 Reverse04 Decompress Frida Server

116

Then, we must push the extracted file into the Android device. Let’s use the world writable

directory /data/local/tmp/ and save it as frida-server.

adb push frida/frida-server-15.1.1-android-x86_64 /data/local/tmp/frida-server

adb push frida-server-15.1.1-android-x86_64 /data/local/tmp/frida-server

frida-server-15.1.1-android-x86_64: 1 file pushed, 0@ skipped. 134.8 MB/s
(97751960 bytes in 0.692s)

Figure 121 Reverse04 ADB push frida server

Frida server is successfully transferred on the device. Now we need to install Frida tools. On

our host machine, we execute the following command.

pip install frida-tools

frida --version

pip install frida-tools
Collecting frida-tools

Downloading frida-tools-10.5.4.tar.gz (44 kB)

| RN | 44 kB 5.3 MB/s

<SNIP>
Successfully installed frida-15.1.1 frida-tools-10.5.4 prompt-toolkit-
3.0.28 pygments-2.11.2 wcwidth-0.2.5

<SNIP>
root@ubuntu:~# frida --version
15.1.17

Figure 122 Reverse04 Install Frida Tools

117

Now that both Frida server and Frida tools are installed, we can go on and search online for
scripts that allows function hooking. Since we assume that the password might be the value

that is returned from the stringFromJNI() function, let’s form our search like this.

jni frida hook

https://github.com : Areizen » JNI-Frida-Hook
Areizen/JNI-Frida-Hook - GitHub

Script to quickly hook natives call to JNI in Android - GitHub - Areizen/JNI-Frida-Hook: Script
to quickly hook natives call to JNI in Android.

Figure 123 Reverse04 JNI Frida Hook

Searching online for jni frida hook reveals this GitHub repository. As we said earlier, using

Frida tools we can execute scripts written in Javascript, while the application is running. This
repository provides a script that allows us to have an overview of JNI (Java Native Interface)
called by a function, and hook them [49]. Let’s clone this repository, by issuing the following

command.

git clone https://github.com/Areizen/IJNI-Frida-Hook.git

git clone https://github.com/Areizen/INI-Frida-Hook.git
Cloning into 'JINI-Frida-Hook'...
remote: Enumerating objects: 30, done.

remote: Counting objects: 100% (9/9), done.

remote: Compressing objects: 100% (7/7), done.

remote: Total 30 (delta 2), reused 9 (delta 2), pack-reused 21
Receiving objects: 100% (30/30), 9.53 KiB | 3.18 MiB/s, done.

Resolving deltas: 100% (7/7), done.

test ls -1 INI-Frida-Hook

total 16

-rw-r--r-- 1 bertolis staff 1412 Feb 23 13:56 README.md
-rw-r--r-- 1 bertolis staff 3092 Feb 23 13:56 agent.js
drwxr-xr-x 3 bertolis staff 96 Feb 23 13:56 utils

Figure 124 Reverse04 Git Clone Hooking Script

118

https://github.com/Areizen/JNI-Frida-Hook

As the instructions indicate, we need to change the following.

Usage

Fill library name and function name in agent.js

library_name

function_name L

Figure 125 Reverse04 Hooking Script Variables

In our case, the library name is libreverse04.so, and the function name is
Java_com_example_reverse04 MainActivity stringFromJNI. Once we have changed

them, the agent.js script should look like this.

4P agentjs
const jni = {("./futils/jni_struct.js")
library_name = "lib

function_name = " examp ty_stringFromINI" // ex: JNI_OnLoad
library_loaded = @

Figure 126 Reverse04 Script Library and Function Names

The value FindClass in the following snippet of code, will hook all the functions of the JNI.

(inienv_addr,"FindClass"},{

(args[1]) + "\")")

Figure 127 Reverse04 Script Find Functions

Next, we save and compile the agent.js file, using the following command.

npm install frida-compile

119

https://github.com/Areizen/JNI-Frida-Hook#usage

npm install frida-compile
npm WARN deprecated querystring@®.2.0: The querystring API is considered

Legacy. new code should use the URLSearchParams API instead.

added 255 packages, and audited 256 packages in 6s
<SNIP>

Figure 128 Reverse04 Install Frida Compile

node node_modules/.bin/frida-compile agent.js -0 _agent.js

The file _agent.js is now created. Before we run the script, we need to find the package name

of the app. From the emulated device, spot the app and tap on it to start. Then type the
following on the terminal.

adb shell ps | grep reverse04

adb shell ps | grep reverse@4

ud_a209 16360 1747 4923632 112956 SyS_epoll_watt
com.example.reverse@4

Figure 129 Reverse04 Get Package Name

The package name of the app is com.example.reverse04. Now that we have everything we

need to run the script, we can start the Frida server that we pushed earlier into the devices.

adb shell chmod 755 /data/local/tmp/frida-server

adb shell /data/local/tmp/frida-server &

120

adb shell /data/local/tmp/frida-server &
[1] 60481

Figure 130 Reverse04 Start Frida Server

Finally, we execute the script to hook the JNI functions. The following command will start
the app from within the Frida server that we pushed into the device earlier, and then try to
hook the JNI function at run time. First, we close the app from the device. Then we issue the

following command.

frida -U -f com.example.reverse04 -l _agent.js --no-paus

(N N

frida -U -f com.example.reverse@4 -1 _agent.js --no-paus

/ﬁ:~_| Frida 15.1.1 - A world-class dynamic instrumentation
toolkit

IRCEIN

> | Commands:

/5| help -> Displays the help system
S object? -> Display information about 'object'’
exit/quit -> Exit

More info at https://frida.re/docs/home/
Spawned "com.example.reverse04 . Resuming main thread!
[Android Emulator 5554::com.example.reverse04]-> [...] Loading library :
/data/app/com.example.reverse04-8Jb7ikTbGOCIKRbt-
leoLg==/11b/x86_64/1ibreversed4. so
[+] Loaded
[...] Hooking : libreverse04.so ->
Java_com_example_reverse04_MainActivity_stringFromJNI at 0x7d1396ad4bb0
[Android Emulator 5554::com.example.reverse®4]->

Figure 131 Reverse04 Frida Hook Native Functions

121

We notice that the app on the devices has started. Let’s tap the LOGIN button and check the

results.

[Android Emulator 5554::com.example.reverse@4]-> [+] Hooked

successfully, IJNIEnv base adress :0x7dl3eaddb6b0
[+] Entered : NewStringUTF
[-] Detaching all interceptors

Figure 132 Reverse04 Hooked Functions

The function NewStringUTF has been successfully hooked. Let’s try to hook the return
value of this function. To do so, we have to change the findClass instruction, with the
function name NewStringUTF inside the agent.js file. The agent.js file should look like
this.

(jni. (jnienv_addr, "NewStringUTF"},{
unction{args}{
{"env—>=NewStringUTF(y"" 4 - {args[1]1) + "\")")

Figure 133 Reverse04 Script Function Name

Once that is done, we save and compile the file once again.

node node_modules/.bin/frida-compile agent.js -0 _agent.js

Once the agent.js file is created, we close the app from the device and run the following

command once again.

adb shell /data/local/tmp/frida-server &

frida -U -f com.example.reverse04 -l _agent.js --no-paus

122

Once the app starts, we click the LOGIN button. Looking at the results, we can see that the

return value of the function NewStringUTF has been successfully hooked.

Spawned " com.example.reverse@4 . Resuming main thread!

[Android Emulator 5554::com.example.reverse@4]-> [...] Loading library :
/data/app/com.example.reverse04-8Jb7i1kTbGOCIKRbt-
leoLg==/11b/x86_64/1libreversed4.so

[+] Loaded

[...] Hooking : libreverse@4.so ->
Java_com_example_reverse®4_MainActivity_stringFromJNI at 0x7d1393012bb0

[+] Hooked successfully, JIJNIEnv base adress :0x7d13eaddb6b0®
[+] Entered : NewStringUTF

env->NewStringUTF("UNIPI{n0thlng_3sc4p3s_frld4}")
[-] Detaching all interceptors

Figure 134 Reverse04 Flag

Flag: UNIPI{nOth1ng_3sc4p3s_frid4}
Mitigations

Hardcoded passwords should not be used as a practice when creating an app. Using encrypted
or remote authentication and enforcing secure communication, as the official android

documentation suggests, prevents issues like the one described above.

123

https://developer.android.com/topic/security/best-practices

Traffic Analysis

In this type of challenges, the player should perform traffic analysis in order to find bad
security practices. A flag, a specific predefined word of the format
UNIPI{sOm3_r4ndOm_t3xt!'}, will be indicating this bad practice or the results of it.

TrafficAnalysisO1

Objective

The objective of this scenario is to learn how to set up a proxy server using Burp Suite on an

Android emulator, and capture HTTP requests that the application sends to a remote server.
Description

My father started using a password manager. Unfortunately, he forgot his master password.
Fortunately, he can still login to the app because the password is stored. | have figured out
that the login authentication is done remotely. If only there was a way to capture the
password.

Difficulty: Easy

Flag: UNIPI{pl@1nt3xt_1nt3rc3ptlon_0-1}

Release: cff6028033d716617f9ea87ae638025fd3105cae9f7c3feb41429050b5a80e59

Challenge

Start the Android Emulator that we have already set up in the previous chapter, and make

sure that the emulator is attached to the ADB, by executing the following command.

124

adb devices
List of devices attached
emulator-5554 device

Figure 135 TrafficAnalysis ADB List Devices

Once we have confirmed the above step, unzip the TrafficAnalysisOl.apk.zip file and install

the extracted file TrafficAnalysisOl.apk on the device, by issuing the following commands.

unzip TrafficAnalysisOl1.apk.zip
adb install TrafficAnalysisO1.apk

unzip TrafficAnalysis0l.apk.zip
Archive: TrafficAnalysis@l.apk.zip
inflating: TrafficAnalysis0l.apk

adb install TrafficAnalysis@l.apk
Performing Streamed Install
Success

Figure 136 TrafficAnalysis Unzip APK

Then, we can find the installed application in the device’s menu, and tap on to start it.

125

Password Manager

Please enter your master

password to login to the app

LOGIN

Figure 137 TrafficAnalysis App

This is a password manager application. As the description implies, we are tasked to restore
the master password, that is saved in the login form. Given the category and the hint from the
description, that authentication is done remotely, it would be wise to try to intercept the
potential HTTP request using Burp Suite.

Burp Suite is an integrated platform/graphical tool for performing security testing of web
applications [50], and it is pre-installed in Parrot Linux. Alternatively, we can download it

directly from the official website.

Let’s configure our Android emulator to use Burp’s proxy server. The first thing we need to

know is the IP address of the host. To find it, type the following.

126

https://portswigger.net/burp
https://portswigger.net/burp/releases/professional-community-2022-1-1?requestededition=community

ifconfig

<SNIP>
eth®: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 192.168.1.6 netmask 255.255.255.0 broadcast
192.168.125.255

inet6 fdl5:4ba5:5a2b:1008:dd1:b187:6263:b315 prefixlen 64

scopeid Ox@<global>
inet6 fe80::8c95:b856:cce3:ala7 prefixlen 64 scopeid
0x20<1link>
ether 00:0c:29:25:de:f3 txqueuelen 1000 (Ethernet)
RX packets 86902 bytes 112948150 (107.7 MiB)
RX errors @ dropped 0 overruns @ frame 0
TX packets 21504 bytes 2143917 (2.0 MiB)

TX errors @ dropped ©@ overruns 0 carrier @ collisions 0
<SNIP>

Figure 138 TrafficAnalysis Get Local IP

The IP address of the host is 192.168.1.8. Now we can go on and start Burp, and navigate to
the Proxy Listeners dialog box, under Proxy -> Options tab. Then, select the entry with the
interface 127.0.0.1:8080, and click on Edit.

Burp Suite Community Edition v2021.12.1 - Temporary Project

Sequencer Decoder Comparer Logger Extender Proje
Dashboard Target Proxy
Intercept HTTP histary WebSockets history Options

@

I{:C:)} Burp Proxy uses listeners to receive incoming HTTP requests from your browser. You will need to cor

Add Running Interface Invisible Redirect Ci
Edit 127.0.0.1:8080 Sep o
Remove

Each installation of Burp generates its own CA certificate that Proxy listeners can use when negotiati
tools or another installation of Burp.

Import / export CA certificate Regenerate CA certificate

Figure 139 TrafficAnalysis Burp Proxy Tab

127

Once we are inside the Edit window, change the Bind to port option to 8090 instead of
8080, and set the Bind to address to Specific address. Then from the drop down menu,
select the IP address 192.168.1.8.

(] [] Edit proxy listener

Binding Request handling Certificate TLS Protocols HTTP
® These settings control how Burp binds the proxy listener.
Bind to port: 8090

Bind to address: O Loopback only

All interfaces

Specific address: = 127.0.0.1 v

127.0.0.1
192.168.1.8
192.168.125.1

Figure 140 TrafficAnalysis Burp Binding IP

Finally, we click OK, and then we make sure that the Intercept is on button is toggled on,

under the Proxy -> Intercept tab.

[] [] Burp Suite Community Edition v2021
Sequencer Decoder Comparer Logger Exti
Dashboard Target Proxy

Intercept HTTP history WebSockets history Options

Forward Drop Intercept is on Action

Figure 141 TrafficAnalysis Burp Intercept On

Once we are done, we can go on and configure the Android emulator to use the proxy server
we just set up on Burp. First, we click on the three dots on the lower right of the device’s

vertical menu.

128

Figure 142 TrafficAnalysis Emulator Settings

Once that is clicked, the Extended Controls panel should pop up. From the vertical menu on
the left of the window, select Settings and then click on the tab Proxy. Then uncheck the box
that says Use Android Studio HTTP proxy settings and check the Manual proxy
configuration box. Finally, set the values 192.168.1.8 and 8090 in the Host name and Port
number fields accordingly, a click on the Apply button.

129

General Proxy Advanced

D Usa Android Studio HTTP proxy settings
O No proxy
@ Manual proxy configuration

Host name Port number

192.168.1.8 B090

'

D Proxy authentication
Login Password

username XXX

Proxy status

Success

Figure 143 TrafficAnalysis Emulator Proxy Tab

If everything goes well, the Proxy status should set to Success. Now that everything is set up
properly, start the application, make sure that the saved password is in the field, and click
LOGIN.

Finally, if we look at the Proxy -> Intercept tab on Burp, we will see the intercepted POST

request and the password in plain text, passed on the parameter pass.

Dashboard Target Proxy

Intercept HTTP history WebSockets history Options

/ Request to http://10.10.10.10:8080

Forward Drop Action Open Browser
Pretty m Hex i =

1 POST /login.php HTTP/1.1

2 User-Agent: Mozilla/5.@

3 Accept-Language: en-US,en;g=0.5

4 Content-Type: application/x-www—form—-urlencoded
5 Host: 10.10.10.10:8080

6 Connection: close

7 Accept-Encoding: gzip, deflate

8 Content-Length: 38

9

10 pass=UNIPI{pl@lnt3xt_1nt3rc3ptlon_0-1}

Figure 144 TrafficAnalysis Flag

130

Flag: UNIPI{pl@1nt3xt_1nt3rc3ptlon_0-1}
Mitigations
In order to mitigate issues like this, Secure Sockets Layer (SSL) can be used. Implementing

SSL connection in Android applications can be done in various ways, as we can see in the

official Android documentation [51].

131

https://developer.android.com/training/articles/security-config

Forensics

In this type of challenges, the player should load the disk image into forensics tool, and
perform forensics analysis in order to find the data that are specified in the challenge’s
description. A flag, a specific predefined word of the format UNIPI{sOm3_r4ndOm_t3xt!'},

will be indicating that these data have been found.

Forensics01

Objective

The objective of this scenario is to learn how to analyse an Android disk image, and extract

text messages and data from databases, using Autopsy.

Description

We have managed to acquire the disk image of the suspect’s Android phone. We have the

suspicion that classified information is stored inside an application. Can you help us get this

information?

Difficulty: Easy

Flag: UNIPI{1_thOught 1t w4s s4f3}

Release: 473ed1d9cc629e1a4567a38e2114efaed5e970551a58ccd887486a6e9a0ledcc

Challenge

As the description implies, we are tasked to extract classified information that was stored

inside an application, installed in the suspect’s phone.

132

In order to analyse the disk image, we have to download Autopsy. Autopsy is an open-source

digital forensics platform [52]. Once we have downloaded and installed Autopsy in our

Windows machine, we open it and click on New Case.

Welcome X
MNew Case
.................. k. :"
Open Recent Case
2
Open Case
L
Autopsy”
OPEN | EXTENSIBLE | FAST Close

Figure 145 Forensics01 Start Autopsy

On the next two windows, we fill in the case name and the case number accordingly.

X M Mew Case Information

3 New Case Information

Steps Case Steps Optional
1 Case Information

2 Optional Information

1. Case Information
2. Optional Information Case Name:

Forensics01

Base Drectory: C:\Users bertols\Desktop|
CaseType: (@) Single-User e

Case data wil be storedn the folowing drectory: Hame:
C:\sers bertols\Deskiop Forensics01

Phane:
Emal:

Notes:

Organization

Organization analysis & being done for: NotSpecfied | Manage Orgarizstions

Next > Cancel <Back ext = | [Finsh Cancel

Figure 146 Forensics01 Case Name and Number
On the Select Host and Select Data Source Type windows, we leave the default values and

click Next.

133

https://www.autopsy.com/

% | M Add Data Source *
Steps. Sebect Host Steps. Select Data Source Type
1. Select Host L Selectbost
2 Saect Data Surce Type Hosts are used 1o crganize dta sources and ather data, 2 select Data Source Type:
5. Select Data Saur . 3 Source Dk image or Wil
Configure ngs ® 3 st —
5. Add Data Saur s Al x

= | Local ik

= | Loges Fles

= Unalocsted Space Inage Fie

f= | Autopsy Logial Imager Resuts

fs | XRY Text Bxport

[] = o | [o=

Figure 147 Forensics01 Host and Source Type

Then, on the Select Data Source window we click the Browse button on the right, we select
the Forensics01.dd file, and we click Next.

M Add Data Seurce X
Steps Select Data Source
1. SelectHost Path:
2. Select Data Source Type
3. Select Data Source C:\Users\bertolis\Desktop'Forensicsi1.dd
4. Configure Ingest
5. Add Data Source [1gnere erphan files in FAT file systems
Time zone: | (GMT+2:00) EET ~
Sector size: | Auto Detect e
Hash Values {optional):
MD5:
SHA-1:
SHA-256:
MOTE: These values will not be validated when the data source is added.
< Back Mext = Finish Cancel Help

Figure 148 Forensics01 Import File

Finally, we click Next once again on the Configure Ingest window, and then Finished.

134

M Add Data Source
Add Dot Source

"Dista Source axkded (no-critcel ervors encauntered). Cick belaw to view the log

Viewleg

Fie Type IdentiScation
Extersion Mematch Detector

Extracts recent user actiity, such as Web browsing, recenty us.

[(rext> | [. Bk | [TEiZ] Awh Cancel

Figure 149 Forensics01 Configute Ingest

Once the loading bar on the bottom right is fully loaded, the window should be looking like
this.

M forensics01 - Autopsy 4.18.1
Case View Tools Window Help

—
Add Data Source ﬁlmages,ﬁ-‘ideos "HCommunicat’ons 9 Geolocation :ﬁ.'ﬁmeline i’i Discovery [, Generate Report @,Close Case

ﬁ Listing
Data Sources
| Table Thumbnail
Bl @ File Views
[File Types
By Deleted Files Name

(- MB File Size
=B Data Artifacts
[}--@ Communication Accounts (1)
- % Installed Programs (5)
- @™ Messages (8)
{3 Metadata (2)
[—jq Analysis Results
B G Keyword Hits (70)
L"i 05 Accounts
B-{& Tags

Reports

ﬁ Forensics01.dd_1 Host

Figure 150 Forensics01 Autopsy Home Screen

Under Communications -> Browse tab, we can see the phone number 6505551212. By
selecting this number, we can then navigate to the messages tab on the right section of the
window, and read the messages. Reading the conversation, we concluded that the one person

keeps his credentials inside a password manager app.

135

M. Communications Visualization - Editor — [m] X
Communications Visualization X hili=}
<< |=I Browse [Visualize Summary Messages Calllogs Contacts Media Attachments
T Filters & Popl S Y R Device Type = Items Showing Messages for Thread: [see, = Threads
efres
g — & 0fbcs0e-bfc0-493f-bd40-4bfe Forensicsil . dd Device &
[Account Types: 5| 6505551212 Forensicst.dd Phone 5 . From To Date Subject At
#6505... 0fob... 0
& Device
#0fobe... 0
k] [E Phone
! I I
#ofobc... 0
#6505... 0fdb... 0
From: 6505551212 2022-02-04 23:30:47 EET
Ta: 0f0bc90e-bfcd-493f-bd40-4bfedcda76fa Incoming
CC:
Uncheck All Check Al Subject:
Eo Text Accounts
evices:
Original Text
Farensics1.dd

Cool, just be careful not ta leak your credentials.

Figure 151 Forensics01 Communications Window

Let’s search the local storage for installed password manager applications. On the folding

menu on the left, under the Data Sources -> Forensics01.dd_1 Host -> Forensics01.dd ->

data -> com.example.passwordmanager -> databasesForensics01.dd, we can see a file

called appDatabase.

M Forensics01 - Autopsy 4.19.1
Case View Took Window Help

Add Data Source ‘Imsoﬂs)\hﬂgus) Commurications 9 Geclocation Eden! &} Discovery [Generate Report g Close Case

€ Lsting
Q img_Forensics0 1 mple
Table Thumbnail

4 com.androd. proxyhander (4) A
L com androd.server telecom ()
4[4l com,androd.settings (4)
)\ com.androd.sharedstoragebackup (4)
i1}l com.android.shel {4)
a1 (4l com,androd. smoketest (4)
AL com.android smoketest tests (4)
- Ul com,android. statementservice (4)
i1 ()l com android. storagemanager (<)
-1l com.androd.system (4)
4[4} com.android.vending (4)
3! com.android,vendialogs (4)
4 | com.android.walpaper ivepiceer (4)
#1-[J} com.androd. walpsperbacup (4)
1- (1 com android. widgetpreview (4)
F- 4 com breel geswalpapers (4)
d- ()l com.example, androd,apis (4)
@[} com.example. androxd ivecubes (4)
4l ()l com.example.android.softkeyboard (4)
17} com.example.passwordmanager (5)
@ [l cache (4)
A code_cache () <
L databases (5)

Hame:

J [current folder]

L [parent foider]
[B T F
¥, appOatabace shm o 2
¥ aooDatabase-wal 0

s € ©

Modfied Tme

Access Tme

- a x
'ﬂ © ~ Keyword Lists Qp Keyword Search
5 Results
Save Table as CSV
Created Tme Size FagsiMeta) Known Loc

Unalocated Unalocated

Figure 152 Forensics01 App Database

To save the file to our host machine, we right click on it, and then we click Extract File(s).

136

Mame

[current folder]
[parent folder]
appDatabase

¥ appDatabase-shm
% appDatabase-wal

C 0 Modified Time
2022-02-04 23:534:47 EET
2022-02-04 233143 EET

Properties
View in New Window
Open in External Viewer Ctrl+E

View File in Timeline...

Extract File(s)
Export Selected Rows to C5V

Add File Tag

Remove File Tag

Add/Edit Central Repository Comment

Add File to Hash Set

Change Time

2022-02-04 23:534:47 EET

2022-02-04 2315143 EET
f22-02-04 23:34:47 EET
lez-02-04 233447 EET
D22-02-04 23:34:47 EET

Figure 153 Forensics01 Extract Database

Access Time

20Z2-02-04 23:51:43 EET
2022-02-04 231531135 EET
2022-02-04 23:31:43 EET
2022-02-04 23:51:43 EET
2022-02-04 23:31:43 EET

We save the extracted file in the Desktop folder, and then transfer it to our local Parrot Linux

OS, in order to read it using an sqlite3 client. Once we have it locally, we issue the following

command to get into the sqlite interactive mode.

sglite3 appDatabase

sqlite3 appDatabase

SQLite version 3.36.0 2021-06-18 18:58:49

Enter ".help" for usage hints.

sqlite>

Figure 154 Forensics01 Open Database

Let’s now list the tables of the database, by executing the following command.

sglite> .tables

137

sqlite> .tables
SiteCredentials android_metadata room_master_table

Figure 155 Forensics01 Get Tables

Finally, lets run the following query to get the data from the columns of this table.

sglite> select * from SiteCredentials;

sqlite> select * from SiteCredentials;
https://secret-site.com|john42|UNIPI{1_thQught 1t wds_s4f3}

Figure 156 Forensics01 Flag

The credentials for the website https://secret-site.com are revealed.

Flag: UNIPI{1_thOught 1t w4s s4f3}

138

Forensics02

Objective

The objective of this scenario is to learn how to analyse an Android disk image, in order to

read the web browsing data and restore deleted files, using Autopsy.

Description

We believe that suspicious files were downloaded from the deep web on the suspects mobile

phone. After successfully acquiring the Android disk image from his phone, we searched for

these files but they might have been already deleted. Can you help us restore them?

Difficulty: Easy

Flag: UNIPI{1 thOught 1t w4s_ d3I3t3d!!'}

Release: da00c728ef40190883bb0a99cafdad37bf7b53b9e855¢c1b8cc9f2dd6f06ch20d

Challenge

As the description implies, we are tasked to restore potentially deleted files from the

suspect’s Android phone.

In order to analyse the disk image, we have to download Autopsy, as we did on the previous

challenge. Once everything is ready, we open it and click on New Case.

139

https://www.autopsy.com/

Welcome o

. New Case

.................. k. :".-
Open Recent Case
£
Open Case
£
Autopsy®
OPEN | EXTENSIBLE | FAST Cloze

Figure 157 Forensics02 Start Autopsy

On the next two windows, we fill in the case name and the case number accordingly. Next, on
the Select Host and Select Data Source Type windows, we leave the default values and
click Next. On the Select Data Source window we click the Browse button on the right, we
select the Forensics02.dd file, and we click Next. Finally, we click Next once again on the
Configure Ingest window, and then Finished. Once the loading bar on the bottom right is

fully loaded, the window should be looking like this.

M Forensics02 - Autopsy 4.19.1

Case View Tools Window Help

—
Add Data Source ﬁImagesNideos mCommunicah’ons 9 Geolocation ;—_. Timeline ({I Discovery Generate Report @Close Case
Q Listing

Data Sources

E Data Sources Table | Thumbrail

E-/®| File Views

[File Types

[#-y Deleted Files

[MB File Size

=B Data Artifacts

- % Installed Programs (4)
£/ Metadata (2)

Iﬂ Web Accounts (2)

- @ Web Cookies (78)

- & Web History (50)
[—jq Analysis Results

= Extension Mismatch Detected (8)
f- “A Keyword Hits (74)
I,'J! 05 Accounts

(@ Tags

» Reports

MName

ﬁ Forensics02,dd_1 Host

Figure 158 Forensics02 Home Screen

140

Enumeration of the Web History tab on the left side folding menu, reveals the website
http://custom-repository:8080/flag.zip. It seems that the user has downloaded the file
flag.zip from the website http://custom-repository:8080.

& Q Listing

'eb History
[=) E.Iaiav.Sources Table Thumbnail
®| File Views

_‘ File Types
¥ Deleted Files SourceFle 5 C O URL
[MB File Size @ rswry El
5B Data Artifacts

Date Accessed
FILLPIS Wit LU LN =) UL SIS e g el SU0E2-U2-U s 1200 %90 CC

= History 9 htkps: fhwvaw, etoro, comyapp)sy-iframe 2022-02-07 15:34:48 EET
Installed Programs (4
o N @ = History 4 htkps: fitr. snapchat, comfomfi?pid=2b300842-74be-4272-8,,, 2022-02-07 15:34:48 EET
/7 Metadata (2)
£ web Accounts (2) Z History 4 hiktps: fitr . snapchat. comfp 2022-02-07 15:34:45 EET

$ vt T

~ & Web History (50) = History

https: fibooking, comfindes. html?aid=1759515&)abel=mdot 2022-02-07 15:38:59 EET

9

2-Q Analysis Results = History 9 https: v booking comfindex. hml?aid=17595158dabel,., | 2022-02-07 15:38:59 EET

=" Extension Mismatch Detected (8) =
. Keyword Hits (74) 2 History 9 https: flaccount. booking. comfoauthzfauthorize w2 Pdient _i... 2022-02-07 15:38:59 EET
..... [Egl 05 Accounts 2 History 9 https: {{secure. booking, com/flogin,htmizstabe=UrcCRTMAQD., . 2022-02-07 15:38:59 EET
i-[@ Tags Z History 9 htkps: f v, booking, com/general en-us html?label=mdat; ... 2022-02-07 15:38:59 EET
""" & Reports = History 9 htkps: fhwvaws, booking, com/cityfnoftrondheim.en-us html?ai, ., 2022-02-07 15:39:10 EET
= History 9 https: fiaccount. booking. comfoauthzfauthorizev2Pdient _j... 2022-02-07 15:39:10 EET
Z History 9 https: fisecure. booking, com/flogin. html?op=oauth_returnal,., 2022-02-07 15:39:10 EET
Z History 9 htkps: f i, booking, com/general en-us html?iframe=1;si... 2022-02-07 15:39:10 EET

Figure 159 Forensics02 Web History

Searching common directories like Downloads and Documents won't reveal this file.
However, enumeration of the Deleted Files reveals the file flag.zip. Under the Data Sources
-> File Views -> File Types -> By Extension -> Archives, we can spot the file

10212240 flag.zip. We right click on it and select Extract File(s).

~ Q Listing

Wrchives
E E.‘atav.Scurces Table Thumbnail
—I-|®| File Views

Figure 160 Forensics02 Extract Deleted File

141

- & File Types
.By Extension Mame 3 C (o] Modified Time Change Time
L Images(8) W uanTTan.ys P LLUU LU LU LU UL LU0
‘W videos (0) ¥’ 05644880z 2 0O00-00-00 00:00:00 0000-00-00 00:00:00
K Audo) v f0567104.92 2 0000-00-00 00:00:00 0000-00-00 00:00:00
- Archives (75)
L Datsbases (77) W f0567136.02 2 0000-00-00 00:00:00 0000-00-00 00:00:00
Documents W f0567176.2 2 DOO0-00-00 00:00:00 0000-00-00 00:00:00
. Executable w f0567192.02 2 0000-00-00 00:00:00 0000-00-00 00:00:00
© By MIVETyp= ' f0568120.92 2 0000-00-00 00:00:00 0000-00-00 00:00:00
iy Deleted Fles)
- MB Fie Size . system_app_strictmode @1643979092133. txt.gz 19 20220207 15:32:96 EET 2022-02-07 15:32:56 EET
B Data Artifacts " 10212240 _flag.zip - 000-00-00 00;00:00
-5 Installed Programs (4) y_ system_app_strictmode @1643379083683. txt. gz SEEITS 022-02-07 15:32:55 EET
<> Metadata (2) y. system_app_strictmode @ 1643379410928, txt.0z Vs AL sy 022-02-07 15:33:26 EET
E Web Accounts (2) X
@ Web Cookies () y 1582435991586.jar View in New Window 022-02-07 15:34:11 EET
E Web History (50) % system_app_strictmode @1643979396829. txt.qz Open in External Viewer Ctrl+E 022-02-07 15:32:55 EET
= q Analysis Results % system_app_strictmode @ 1643981204253, txt.qz View File in Timeline... 022-02-07 15:32:56 EET
Extension Mismatch Detected (8) <
L Keyword Hits (74) Extract File(s)
Byl 05 Accounts Hex Text File Metadata Export Selected Rows to C5V ons Other Occurrences

We save it on the Desktop, and then we right click on it and select Extract All.

212240

) Share with Skype

Extract All...

T-Zip

Pin to Start

Secan with Microsoft Defender...
Share

Open with...

Give access to

Restore previous versions

Send to

Cut
Copy

Create shortcut
Delete

Rename

Properties

Figure 161 Forensics02 Decompress Extracted File

Once that’s done, we double click on the extracted file in order to read the content.

E| flag - Motepad

File Edit Format WView Help
UNIPI{1_ th@ught 1t wds_d313t3d!!!}

Figure 162 Forensics02 Flag

Flag: UNIPI{1_thOught_1t_wds_d3I3t3d!!1}

142

Conclusion

As we realise, smartphones these years are used massively to serve various of our daily
purposes and thus, sensitive personal and corporate information is stored in these devices.
This is the main reason that application security assessment teams must continuously train to
stay up to date with the latest security trends, while at the same time individuals should have

a good knowledge of what to pay attentions to, and use the application carefully.

In this thesis we discussed about the methodologies that one must follow in order to conduct
application security assessment. We also analysed in depth some of the most common
penetration testing techniques, while we got a good understanding of the purposes of each

assessment technique.

It is now clear that in order to be able to conduct an application security assessment, first we
have to understand some basic things about the Android OS and how it works, as well as to

understand the application’s structure.

Reading this thesis, we also learned how to set up and deploy a security training lab, based on
the CTF approach, while we got an idea of how CTF events are contributing to the training in
general, by providing a complete hands-on training experience in compare to the theoretical

content that is provided by other online platforms.

By reading this thesis and finishing the Lab, one will be able to understand the need for cyber
security training, the structure of an android phone and android apps, how to assess android
applications, how to use tools to analyze the apps and automate the assessment procedures,
how to do Android forensics, and how to create detailed writeups when completing a CTF

security challenge.

In conclude, this project apart from raising the awareness of the mobile security, it also gives
the learner a complete, methodical hands-on approach on how to start the Android security
application assessment, while it can also keep up enterprise teams with the latest mobile

security trend.

143

References

1.

10.

“Mobile Operating System Market Share Worldwide," [Online]. Available:
https://gs.statcounter.com/os-market-share/mobile/worldwide. [Accessed 2022].

“Check Point's Mobile Security Report 2021," [Online]. Available:
https://blog.checkpoint.com/2021/04/12/check-points-mobile-security-report-2021-
almost-every-organization-experienced-a-mobile-related-attack-in-2020/. [Accessed
2022].

“Application Fundamentals," [Online]. Available:

https://developer.android.com/guide/components/fundamentals. [Accessed 2022].

“Dalvik (software)," [Online]. Available:
https://en.wikipedia.org/wiki/Dalvik_(software). [Accessed 2022].

“Application Fundamentals," [Online]. Available:

https://developer.android.com/guide/components/fundamentals. [Accessed 2022].

“.APK File Extension," [Online]. Available: https://fileinfo.com/extension/apk.
[Accessed 2022].

“.DEX File Extension," [Online]. Available: https://fileinfo.com/extension/dex.
[Accessed 2022].

“Capture the flag (cybersecurity),” [Online]. Available:
https://en.wikipedia.org/wiki/Capture_the_flag_(cybersecurity). [Accessed 2022].

“CTF Categories," [Online]. Available: https://emaragkos.gr/ctfs/ctf-categories/.
[Accessed 2022].

“Important Directories,” [Online]. Available:

https://www.hackthebox.com/blog/intro-to-mobile-pentesting#important_directories.
[Accessed 2022].

144

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

“.APK File Extension,” [Online]. Available: https://fileinfo.com/extension/apk.
[Accessed 2022].

"App Manifest Overview," [Online]. Available:

https://developer.android.com/guide/topics/manifest/manifest-intro. [Accessed 2022].

“Reverse-Engineering,” [Online]. Available:
https://searchsoftwarequality.techtarget.com/definition/reverse-engineering.
[Accessed 2022].

“What is Static Analysis?," [Online]. Available:

https://www.securecodewarrior.com/blog/what-is-static-analysis. [Accessed 2022].

“Getting started with Frida on Android Apps," [Online]. Available:
https://payatu.com/blog/amit/Getting%20_started_with_Frida. [Accessed 2022].

“Extracting the APK from the Device," [Online]. Available:
https://www.hackthebox.com/blog/intro-to-mobile-

pentesting#extracting_the apk from_the device. [Accessed 2022].

“OWASP Mobile Top 10," [Online]. Available:
https://apprize.best/security/pentesting/6.html. [Accessed 2022].

“What is Autopsy," [Online]. Available: https://www.hackthebox.com/blog/intro-to-

mobile-pentesting#forensics. [Accessed 2022].

“Rooting an Android Device," [Online]. Available: “BusyBox," [Online]. Available:
https://busybox.net. [Accessed 2022].. [Accessed 2022].

“BusyBox," [Online]. Available: https://busybox.net. [Accessed 2022].

“dd (Unix) Utility," [Online]. Available: https://en.wikipedia.org/wiki/Dd_(Unix).
[Accessed 2022

145

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

"15 best Android emulators for PC and Mac of 2022," [Online]. Available:
https://www.androidauthority.com/best-android-emulators-for-pc-655308/. [Accessed
2022].

“Corellium," [Online]. Available: https://www.corellium.com. [Accessed 2022].

“Create and manage virtual devices,” [Online]. Available:

https://developer.android.com/studio/run/managing-avds. [Accessed 2022].

“Android Debug Bridge (adb)," [Online]. Available:
https://developer.android.com/studio/command-line/adb. [Accessed 2022].

“Most Complete ADB Cheat Sheet,” [Online]. Available:

https://www.automatetheplanet.com/adb-cheat-sheet/. [Accessed 2022].

"Parrot OS," [Online]. Available: https://parrotsec.org. [Accessed 2022].

"Why CTFd?,” [Online]. Available: https://ctfd.io/about/. [Accessed 2022].

"Docker (software),” [Online]. Available:
https://en.wikipedia.org/wiki/Docker_(software). [Accessed 2022].

"Docker Container,” [Online]. Available: https://www.docker.com/resources/what-

container. [Accessed 2022].

“Overview of Docker Compose," [Online]. Available:

https://docs.docker.com/compose/. [Accessed 2022].

“Docker image," [Online]. Available:

https://searchitoperations.techtarget.com/definition/Docker-image. [Accessed 2022].

“Naumachia," [Online]. Available: https://github.com/nategraf/Naumachia. [Accessed
2022].

146

34. "Apktool," [Online]. Available: https://ibotpeaches.github.io/Apktool/. [Accessed
2022].

35. "Write Permissions,” [Online]. Available: https://mobile-security.gitbook.io/mobile-
security-testing-guide/android-testing-guide/Ox05h-testing-platform-interaction.
[Accessed 2022].

36. "Shared Preferences," [Online]. Available:
https://developer.android.com/training/data-storage/shared-preferences. [Accessed
2022].

37. "Encrypted Shared Preferences,” [Online]. Available:
https://developer.android.com/reference/androidx/security/crypto/EncryptedSharedPre

ferences. [Accessed 2022].

38. "What Is an APK File,” [Online]. Available: https://www.makeuseof.com/tag/what-is-
apk-file/. [Accessed 2022].

39. "Dalvik Executable format,” [Online]. Available:

https://source.android.com/devices/tech/dalvik/dex-format.html. [Accessed 2022].

40. "JAR (file format),” [Online]. Available:
https://en.wikipedia.org/wiki/JAR_(file_format). [Accessed 2022].

41. "JADX," [Online]. Available: https://github.com/skylot/jadx. [Accessed 2022].

42. "Shrink, obfuscate, and optimize your app,” [Online]. Available:

https://developer.android.com/studio/build/shrink-code. [Accessed 2022].

43. “.SMALI File Extension,"” [Online]. Available: https://fileinfo.com/extension/smali.
[Accessed 2022].

147

44. ¢

45.

46.

47.

48.

49.

50.

51.

52.

‘App security best practices," [Online]. Available:
https://developer.android.com/topic/security/best-practices. [Accessed 2022].

“Get started with the NDK," [Online]. Available:
https://developer.android.com/ndk/guides. [Accessed 2022].

“.SO File Extension," [Online]. Available: https://fileinfo.com/extension/so.

[Accessed 2022].

“Ghidra Software Reverse Engineering Framework," [Online]. Available:

https://github.com/NationalSecurityAgency/ghidra. [Accessed 2022].

“Frida, Dynamic instrumentation toolkit,” [Online]. Available: https://frida.re.
[Accessed 2022].

“JNI Frida Hook," [Online]. Available: https://github.com/Areizen/JNI-Frida-Hook.
[Accessed 2022].

"Burp Suite,” [Online]. Available: https://www.pluralsight.com/paths/web-security-
testing-with-burp-suite. [Accessed 2022].

"Android Network Security Configuration,” [Online]. Available:
https://developer.android.com/training/articles/security-config. [Accessed 2022].

"Autopsy,” [Online]. Available: https://www.autopsy.com. [Accessed 2022].

148

	Abstract
	Introduction
	Android Operating System & Applications
	Android OS
	Android Apps

	About Training Labs & CTFs
	Online Training Platforms
	CTF Events & Types
	Jeopardy
	Attack Defense
	King of The Hill
	Linear
	Mixed
	CTF Categories
	Writeups

	Assessment Techniques
	Enumerating the Local Storage
	Important directories
	Installation directory
	Extracting Readable Files from the APK

	Performing Static and Dynamic Analysis
	Static Analysis
	Dynamic Analysis
	Extracting an APK File

	Capturing HTTP Requests
	Rooting the Device and Acquiring a Disk Image
	Rooting the device
	Acquiring the disk image

	Setting up the Environment
	Android Emulator
	Android Debug Bridge
	Operating Systems and Tools
	Installation
	Preparation

	Setting up the CTF Platform
	Installation

	Challenges Walkthroughs
	Enumeration
	Enumeration01
	Enumeration02
	Enumeration03

	Reverse
	Reverse01
	Reverse02
	Reverse03
	Reverse04

	Traffic Analysis
	TrafficAnalysis01

	Forensics
	Forensics01
	Forensics02

	Conclusion
	References

