

UNIVERISTY OF PIRAEUS - DEPARTMENT OF INFORMATICS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ – ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

MSc «Informatics»

ΠΜΣ «Πληροφορική»

MSc Thesis

Μεταπτυχιακή Διατριβή

Thesis Title:

Τίτλος Διατριβής:

Creating an AI Agent with human-like behavior

using Maslow’s hierarchy of needs and Goal

Oriented Action Planning in Unity engine.

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,
χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και
την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό
το στόχο (GOAP) στη μηχανή της Unity.

Student’s name-surname:

Ονοματεπώνυμο φοιτητή:

Dimitrios Malliaris

Δημήτριος Μάλλιαρης

Father’s name:

Πατρώνυμο:

Vasileios

Βασίλειος

Student’s ID No:

Αριθμός Μητρώου:
ΜΠΠΛ19034

Supervisor:

Επιβλέπων:

Themistoklis Panagiotopoulos, Professor

Θεμιστοκλής Παναγιωτόπουλος, Καθηγητής

July 2022/ Ιούλιος 2022

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 2

3-Member Examination Committee

Τριμελής Εξεταστική Επιτροπή

Themistoklis

Panagiotopoulos

Professor

Θεμιστοκλής Παναγιωτόπουλος

Καθηγητής

Dionisios Sotiropoulos

Assistant Professor

Διονύσιος Σωτηρόπουλος

Επίκουρος Καθηγητής

Ioannis Tasoulas

Assistant Professor

Ιωάννης Τασούλας

Επίκουρος Καθηγητής

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 3

Acknowledgments/ Ευχαριστίες

Πρώτα από όλα, θα ήθελα να ευχαριστήσω τους γονείς μου, που με στήριξαν και συνεχίζουν
να με στηρίζουν σε κάθε μου βήμα, χωρίς τη βοήθεια των οποίων, δεν θα μπορούσα να
κυνηγήσω τα όνειρά μου. Επιπρόσθετα, θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή
για αυτή τη διπλωματική εργασία, Θεμιστοκλή Παναγιωτόπουλο, του οποίου η καθοδήγηση και
η βοήθεια ήταν υψίστης σημασίας κατά την εκτέλεση της παρούσας εργασίας. Τέλος, θα ήθελα
να ευχαριστήσω από καρδίας, τη συμφοιτήτρια μου, Μαρία Τράγα, της οποίας η υποστήριξη
και βοήθεια, έπαιξε αποφασιστικό ρόλο στο τελικό αποτέλεσμα αυτής της εργασίας.

First of all, I would like to thank my parents, who supported me and continue to support
me every step of the way, without whose help I could not pursue my dreams. In addition, I would
like to thank the supervising professor for this thesis, Themis Panayiotopoulos, whose guidance
and assistance was of the utmost importance in the execution of the present work. Finally, I
would like to thank from the bottom of my heart my fellow student, Maria Traga, whose support
and help played a decisive role in the final result of this work.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 4

Abstract

Η ανάγκη είναι κάτι που είναι απαραίτητο προκειμένου να ζήσει ένας οργανισμός μία υγιή ζωή.
Οι άνθρωποι, όντας τα πιο έξυπνα ζώα, σύμφωνα με τα ανθρώπινα πρότυπα, έχουν πολύ πιο
περίπλοκη ιεραρχία αναγκών από άλλα πλάσματα. Το 1943, ο Abraham Maslow πρότεινε την
«Ιεραρχία των αναγκών του Maslow» σε μια προσπάθεια να περιγράψει τι οδηγεί και παρακινεί
τους ανθρώπους. Αυτή η εργασία εστιάζει στην ιδέα μιας προσομοίωσης που εκτελείται στη
μηχανή της Unity, χρησιμοποιώντας πράκτορες τεχνητής νοημοσύνης που «σκέφτονται» και
«δρουν» με ανθρώπινο τρόπο. Αυτό επιτυγχάνεται χρησιμοποιώντας ένα σύστημα
Δράσης/Στόχου, ακολουθώντας τις αρχές της αρχιτεκτονικής “Δράσης με προσανατολισμό το
στόχο” ή GOAP. Η μετάβαση από τον θεωρητικό ορισμό κάθε ανάγκης στην ιεραρχία του
Maslow, σε μια πιο απτή αναπαράσταση, δηλαδή σε μια μορφή που μπορεί να γίνει κατανοητή
από έναν πράκτορα τεχνητής νοημοσύνης, είναι ένα πολύ δύσκολο επίτευγμα. Αυτό
αποδεικνύεται πρόβλημα, ειδικά καθώς ανεβαίνουμε στην ιεραρχία, διότι οι ανάγκες γίνονται
όλο και πιο αφηρημένες. Επομένως, σε αυτή την εργασία, η ιδέα της ανάγκης μεταγράφεται
στην πολύ πιο απλοϊκή ιδέα ενός Στόχου, που ικανοποιείται μέσω μιας σειράς Δράσεων.
Επιπλέον, λόγω των παραπάνω δυσκολιών, σε αυτή την εργασία, θα διερευνήσουμε μόνο
κάποιες από τις βιολογικές ανάγκες της ιεραρχίας του Maslow.

Λέξεις-κλειδιά: Τεχνιτή Νοημοσύνη, Έξυπνοι Πράκτορες, Ιεραρχία των αναγκών του Maslow,
Σχεδιασμός δράσης με προσανατολισμό το στόχο, Μηχανή Unity

 A need is something that is necessary for an organism to live a healthy life. Humans,
being the most intelligent animals, according to human standards, have a much more complex
hierarchy of needs than other creatures. In 1943, Abraham Maslow proposed “Maslow’s
hierarchy of needs” in an attempt to describe what drives and motivates us, human beings. This
project focuses on the idea of a simulation run on the Unity engine, using AI agents that “think”
and “act” in a human-like way, by use of an Action/Goal system, following the principles of the
“Goal Oriented Action Planning” or GOAP architecture. The transition from the theoretical
definition of each need in Maslow’s hierarchy, to a more tangible representation in a form that
can be understood by an AI agent is a very challenging task. This proves to be a problem,
especially as we move up the hierarchy because the needs become more and more abstract.
Therefore, the idea of need is transcribed to the much more simplistic idea of a Goal, that is
satisfied through a series of Actions. Additionally, due to the above difficulties, in this project,
we will explore only needs from the “physiological” level of Maslow’s hierarchy.

Keywords: Artificial Intelligence, Intelligent Agents, Maslow’s hierarchy of needs, Goal
Oriented Action Planning, Unity engine

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 5

Contents

Acknowledgments/ Ευχαριστίες .. 3

Abstract .. 4

List of Figures .. 6

List of Abbreviations .. 7

Introduction .. 8

Artificial Intelligence ... 8

A.I. in video games .. 9

Evolution of A.I. in video games .. 10

Navigation in 3D space .. 10

Architectures .. 11

(FSM) Finite State Machines ... 11

(MCTS)Monte Carlo Tree Search .. 11

(ML) Machine Learning .. 12

(GOAP) Goal Oriented Action Planning .. 13

Unity Engine .. 16

NavMesh Agent ... 16

MonoBehaviour .. 17

ScriptableObjects ... 19

Prefabs .. 19

Human Needs .. 19

Maslow’s Hierarchy of Needs .. 19

Hierarchy’s Structure ... 20

Deficiency VS Growth Needs .. 21

Conclusion ... 21

In-Game Representation ... 21

Rimworld .. 22

Project Setup ... 24

Prototyping ... 24

Creating the scripts - Implementation of GOAP inside Unity .. 26

Agent - Main Script .. 26

Controllers ... 30

Implementing Physiological Human Needs ... 33

From Needs to Goals... 34

Running the Simulation ... 37

Conclusion & Future Work ... 40

A Word from the Author ... 40

Bibliography & References .. 41

Appendix 1 - Keywords .. 42

Appendix 2 - System Specs .. 43

Appendix 3 - Further Information ... 44

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 6

List of Figures

Figure 1 Monte Carlo Tree Search steps. .. 12

Figure 2 Plan generation example in GOAP ... 14

Figure 3 GOAP actions example .. 15

Figure 4 Unity engine logo. .. 16

Figure 5 NavMeshAgent example scene. .. 16

Figure 6 Some of the most common lifecycle events in Unity scripts 17

Figure 7 The full lifecycle event list of Unity. ... 18

Figure 8 Maslow’s hierarchy of needs, represented as a pyramid of needs 20

Figure 9 Rimworld - Rimworld logo ... 22

Figure 10 Rimworld - Colonist's bio scene ... 23

Figure 11 Rimworld - Random generated world ... 23

Figure 12 Scene from the prototype that uses Finite State Machine for logic 24

Figure 13 The script that controls the prototype’s Agent. .. 25

Figure 14 Screenshot of the prototype’s scene while running. .. 26

Figure 15 GOAP - Agent class script. .. 27

Figure 16 GOAP - Agent class script - Update function. ... 27

Figure 17 GOAP - Planner class script. ... 28

Figure 18 GOAP - Goal class script. .. 28

Figure 19 GOAP - Action class script. ... 29

Figure 20 GOAP - Navigation controller script ... 30

Figure 21 GOAP - State controller script. ... 31

Figure 22 GOAP - Goal controller script. .. 32

Figure 23 GOAP - Goal controller script 2. .. 32

Figure 24 GOAP - Action controller script. ... 33

Figure 25 GOAP - Action controller script 2. .. 33

Figure 26 GOAP - Action controller script 3. .. 33

Figure 27 GOAP - Hunger - Goals’ ScriptableObject ... 34

Figure 28 GOAP - Thirst - Goals’ ScriptableObject .. 35

Figure 29 GOAP - Sleep - Goals’ ScriptableObject .. 35

Figure 30 GOAP - Recreation - Goals’ ScriptableObject ... 36

Figure 31 GOAP - Simulation at runtime example. .. 37

Figure 32 GOAP - Simulation at runtime example 2. ... 37

Figure 33 GOAP - Simulation at runtime example 3. ... 38

Figure 34 GOAP - Simulation at runtime example 4. ... 38

Figure 35 GOAP - Simulation at runtime example 5. ... 39

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 7

List of Abbreviations

2D Two-dimensional

3D Three-dimensional

AI Artificial intelligence

API Application programming interface

CPU Central processing unit

DOTA Defense of the ancients

FSA Finite state automata

FSM Finite state machine

GOAP Goal oriented action planning

GPU Graphics processing unit

LSTM Long short-term memory

MCTS Monte Carlo tree search

ML Machine learning

MOBA Multiplayer online battle arena

NPC Non-player character

OS Operating system

STRIPS Stanford Research Institute Problem Solver

UI User interface

VR Virtual reality

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 8

Introduction

Artificial Intelligence

Artificial intelligence (AI) is the ability of a digital computer or computer-controlled robot to
perform tasks commonly associated with intelligent beings. The term is frequently applied to
the project of developing systems endowed with the intellectual processes characteristic of
humans, such as the ability to reason, discover meaning, generalize, or learn from past
experience.

Artificial intelligence is a crossroads between multiple sciences such as computer
science, psychology, philosophy, neurology, linguistics and engineering, with the aim of
synthesizing intelligent behavior, with elements of reasoning, learning and adaptation to the
environment, while usually applied in specially designed machines or computers. It is divided
into symbolic artificial intelligence, which attempts to simulate human intelligence
algorithmically using high-level symbols and logical rules, and sub-symbolic artificial
intelligence, which attempts to reproduce human intelligence using elementary numerical
models that synthesize inductively intelligent behaviors with the successive self-organization of
simpler structural components ("behavioral artificial intelligence"), simulate real biological
processes such as the evolution of species and the function of , or are the application of
statistical methodologies to ΑΙ problems.

Artificial intelligence (AI) is intelligence demonstrated by machines, as opposed to the
natural intelligence displayed by animals including humans. Leading AI textbooks define the
field as the study of "intelligent agents": any system that perceives its environment and takes
actions that maximize its chance of achieving its goals.

An agent is just something that acts (agent comes from the Latin agere, to do). But
computer agents are expected to have other attributes that distinguish them from mere
"programs," such as operating under autonomous control, perceiving their environment,
persisting over a prolonged time period, adapting to change, and being capable of taking on
another's goals. [Artificial Intelligence A Modern Approach Second Edition Stuart J. Russell and
Peter Norvig, 2003]

We can define AI as the study of agents that receive percepts from the environment and
perform actions. Each such agent implements a function that maps percept sequences to
actions. In general, an AI system can be described as:

• “A system that thinks like humans”,

• “A system that acts like humans”,

• “A system that thinks rationally” or

• “A system that acts rationally”.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 9

A.I. in video games

In video games, artificial intelligence (AI) is used to generate responsive, adaptive or
intelligent behaviors primarily in non-player characters (NPCs) similar to human-like
intelligence. Artificial intelligence has been an integral part of video games since their
inception in the 1950s. [Grant, Eugene F.; Lardner, Rex (2 August 1952). "The Talk of the
Town – It". The New Yorker]

AI in video games is a distinct subfield and differs from academic AI. It serves to
improve the game-player experience rather than machine learning or decision making. During
the golden age of arcade video games the idea of AI opponents was largely popularized in
the form of graduated difficulty levels, distinct movement patterns, and in-game events
dependent on the player's input. Modern games often implement existing techniques such as
pathfinding and decision trees to guide the actions of NPCs. AI is often used in mechanisms
which are not immediately visible to the user, such as data mining and procedural-content
generation. [Yannakakis, Geogios N (2012). "Game AI revisited"]

However, "game AI" does not, in general, as might be thought and sometimes is
depicted to be the case, mean a realization of an artificial person corresponding to an NPC, in
the manner of say, the Turing test or an artificial general intelligence. The term "game AI" is
used to refer to a broad set of algorithms that also include techniques from control theory,
robotics, computer graphics and computer science in general, and so video game AI may
often not constitute "true AI" in that such techniques do not necessarily facilitate computer
learning or other standard criteria, only constituting "automated computation" or a
predetermined and limited set of responses to a predetermined and limited set of inputs.

AI in gaming refers to responsive and adaptive video game experiences. These AI-
powered interactive experiences are usually generated via non-player characters, or NPCs,
that act intelligently or creatively, as if controlled by a human game-player. AI is the engine
that determines an NPC’s behavior in the game world.

AI in gaming is all about enhancing a player’s experience. It is especially important as
developers deliver gaming experiences to different devices. No longer is gaming simply a
choice between console or desktop computer. Rather, players expect immersive game
experiences on a vast array of mobile and wearable devices, from smartphones to VR
headsets, and more. AI enables developers to deliver console-like experiences across device
types.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 10

Evolution of A.I. in video games

The origins of Artificial Intelligence in video games go back to before industry itself became a
staple of popular culture worldwide. One of the best known precedents for using this technology
in a game dates back to the 1950s, with computer chess titles developed based on the MiniMax
algorithm. This software was able to analyze the position of the tracks on the dashboard to
select the best possible movement. Beginning in the 1970s, with video games revolutionizing
the market and the entertainment experience of users, Artificial Intelligence began to play a key
role in conceiving and developing the titles of major brands.

In 1972 Pong, your opponent was already able to move based on the movement of the
ball you hit to return the bump, while the Space Invaders gave clear clues as to how the enemies
evolved and became smarter, challenging players. spending hours in the arcade trying to get
through each of the levels.

For his part, in the eighties Pac-Man took another step, as it was the first video game
to feature a path search system for enemies, who could more easily decipher the path the
player took under certain conditions. In the same years, Donkey Kong boasted how far Artificial
Intelligence had advanced, with a level of difficulty that pushed gamers of the time to the limit.
However, Artificial Intelligence was still precarious enough to realize that the machine was not
able to learn from its mistakes, nor to adapt to the player's behavior, so the latter had to decipher
certain patterns to overcome the most demanding challenges.

Navigation in 3D space

Pathfinding is another common use for AI and is widely seen in real-time strategy games.
Pathfinding is the method for determining how to get a NPC from one point on a map to another,
taking into consideration the terrain, obstacles and possibly "fog of war". [Yannakakis, G. N.
(2012, May). Game AI revisited]

Commercial videogames often use fast and simple "grid-based pathfinding", wherein
the terrain is mapped onto a rigid grid of uniform squares and a pathfinding algorithm such as
A* or IDA* is applied to the grid. [Abd Algfoor, Zeyad; Sunar, Mohd Shahrizal; Kolivand,
Hoshang (2015). "A Comprehensive Study on Pathfinding Techniques for Robotics and Video
Games''. 2015][Yap, Peter. "Grid-based path-finding." In Conference of the Canadian Society
for Computational Studies of Intelligence, pp. 44-55. Springer, Berlin, Heidelberg, 2002][
Sturtevant, N. R. (June 2012). "Benchmarks for Grid-Based Pathfinding''. IEEE Transactions
on Computational Intelligence and AI in Games]

Instead of just a rigid grid, some games use irregular polygons and assemble a
navigation mesh out of the areas of the map that NPCs can walk to. [Abd Algfoor, Zeyad; Sunar,
Mohd Shahrizal; Kolivand, Hoshang (2015). "A Comprehensive Study on Pathfinding
Techniques for Robotics and Video Games''. 2015][Goodwin, S. D., Menon, S., & Price, R. G.
(2006). Pathfinding in open terrain.]

As a third method, it is sometimes convenient for developers to manually select
"waypoints" that NPCs should use to navigate; the cost is that such waypoints can create
unnatural-looking movement. In addition, waypoints tend to perform worse than navigation
meshes in complex environments.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 11

Architectures

(FSM) Finite State Machines

A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite
automaton, or simply a state machine, is a mathematical model of computation. It is an abstract
machine that can be in exactly one of a finite number of states at any given time. The FSM can
change from one state to another in response to some inputs; the change from one state to
another is called a transition. [Wang, Jiacun (2019). Formal Methods in Computer Science.
CRC Press. p. 34.]

An FSM is defined by a list of its states, its initial state, and the inputs that trigger each
transition. Finite-state machines are of two types—deterministic finite-state machines and non-
deterministic finite-state machines. ["Finite State Machines – Brilliant Math & Science Wiki".
brilliant.org. Retrieved 2018-04-14.] A deterministic finite-state machine can be constructed
equivalent to any non-deterministic one.

The FSM algorithm was introduced to video game design in the 1990s. In an FSM, a
designer generalizes all possible situations that an AI could encounter, and then programs a
specific reaction for each situation. Basically, a FSM AI would promptly react to the human
player’s action with its pre-programmed behavior. An obvious drawback of FSM design is its
predictability. All NPCs’ behaviors are pre-programmed, so after playing an FSM-based game
a few times, a player may lose interest.

(MCTS)Monte Carlo Tree Search

In computer science, Monte Carlo tree search (MCTS) is a heuristic search algorithm for some
kinds of decision processes, most notably those employed in software that plays board games.
In that context MCTS is used to solve the game tree.

MCTS was combined with neural networks in 2016 for computer Go. It has been used
in other board games like chess and shogi, games with incomplete information such as bridge
and poker, as well as in turn-based-strategy video games (such as Total War: Rome II ‘s
implementation in the high level campaign AI).

The focus of MCTS is on the analysis of the most promising moves, expanding the
search tree based on random sampling of the search space. The application of Monte Carlo
tree search in games is based on many playouts, also called roll-outs. In each playout, the
game is played out to the very end by selecting moves at random. The final game result of each
playout is then used to weight the nodes in the game tree so that better nodes are more likely
to be chosen in future playouts.

The most basic way to use playouts is to apply the same number of playouts after each
legal move of the current player, then choose the move which led to the most
victories.[Brügmann, Bernd (1993). Monte Carlo Go] The efficiency of this method—called Pure
Monte Carlo Game Search—often increases with time as more playouts are assigned to the
moves that have frequently resulted in the current player's victory according to previous
playouts. Each round of Monte Carlo tree search consists of four steps: [G.M.J.B. Chaslot;
M.H.M. Winands; J.W.H.M. Uiterwijk; H.J. van den Herik; B. Bouzy (2008). "Progressive
Strategies for Monte-Carlo Tree Search"]

• Selection: Start from root R and select successive child nodes until a leaf node L is
reached. The root is the current game state and a leaf is any node that has a potential
child from which no simulation (playout) has yet been initiated. The section below says
more about a way of biasing choice of child nodes that lets the game tree expand
towards the most promising moves, which is the essence of Monte Carlo tree search.

• Expansion: Unless L ends the game decisively (e.g. win/loss/draw) for either player,
create one (or more) child nodes and choose node C from one of them. Child nodes
are any valid moves from the game position defined by L.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 12

• Simulation: Complete one random playout from node C. This step is sometimes also
called playout or rollout. A playout may be as simple as choosing uniform random
moves until the game is decided (for example in chess, the game is won, lost, or
drawn).

• Backpropagation: Use the result of the playout to update information in the nodes on
the path from C to R.

Figure 1 Monte Carlo Tree Search steps.

(ML) Machine Learning

Although AI designers worked very hard to make NPCs look intelligent, these characters lacked
one very important trait: the ability to learn. In most video games, NPCs’ behavior patterns are
programmed and they are incapable of learning anything from players, e.g. they don’t evolve
based on human players’ input.

Machine learning agents have been used to take the place of a human player rather
than function as NPCs, which are deliberately added into video games as part of designed
gameplay. Deep learning agents have achieved impressive results when used in competition
with both humans and other artificial intelligence agents. [Silver, David; Hubert, Thomas;
Schrittwieser, Julian; Antonoglou, Ioannis; Lai, Matthew; Guez, Arthur; Lanctot, Marc; Sifre,
Laurent; Kumaran, Dharshan (2018-12-06). "A general reinforcement learning algorithm that
masters chess, shogi, and Go through self]

In general, there is a variety of Machine Learning techniques that have been used for
training ML agents. These techniques include but are not limited to: Deep learning,
Convolutional neural networks, Recurrent neural networks, Long short-term memory,
Reinforcement learning and Neuroevolution.

(OpenAI Five) DOTA2

Dota 2 is a multiplayer online battle arena (MOBA) game. Like other complex games, traditional
AI agents have not been able to compete on the same level as professional human players.
The only widely published information on AI agents attempted on Dota 2 is OpenAI's deep
learning Five agent.

OpenAI Five utilized separate LSTM networks to learn each hero. It was trained using
a reinforcement learning technique known as Proximal Policy Learning running on a system
containing 256 GPUs and 128,000 CPU cores. Five trained for months, accumulating 180 years
of game experience each day, before facing off with professional players. It was eventually able
to beat the 2018 Dota 2 esports champion team in a 2019 series of games. [OpenAI Five] [Dota
2 with Large Scale Deep Reinforcement Learning, OpenAI, March 10, 2021]

The Drawbacks

Machine learning agents are often not covered in many game design courses. Previous use of
machine learning agents in games may not have been very practical, as even the 2015 version

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 13

of AlphaGo took hundreds of CPUs and GPUs to train to a strong level. [Silver, David; Hubert,
Thomas; Schrittwieser, Julian; Antonoglou, Ioannis; Lai, Matthew; Guez, Arthur; Lanctot, Marc;
Sifre, Laurent; Kumaran, Dharshan (2018-12-06). "A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play"] This potentially limits the creation of highly
effective deep learning agents to large corporations or extremely wealthy individuals. The
extensive training time of neural network based approaches can also take weeks on these
powerful machines.["AlphaStar: Mastering the Real-Time Strategy Game StarCraft II".
DeepMind. Retrieved 2019-06-04]

The problem of effectively training artificial neural networks based models extends
beyond powerful hardware environments; finding a good way to represent data and learn
meaningful things from it is also often a difficult problem. Artificial neural networks models often
overfit to very specific data and perform poorly in more generalized cases. AlphaStar shows
this weakness, despite being able to beat professional players, it is only able to do so on a
single map when playing a mirror protoss matchup. OpenAI Five also shows this weakness, it
was only able to beat professional players when facing a very limited hero pool out of the entire
game.[Dota 2 with Large Scale Deep Reinforcement Learning, OpenAI, March 10, 2021] This
example shows how difficult it can be to train a deep learning agent to perform in more
generalized situations.

Machine learning agents have shown great success in a variety of different games.
However, agents that are too competent also risk making games too difficult for new or casual
players. Research has shown that challenges that are too far above a player's skill level will
ruin lower player enjoyment.[Sweetser, Penelope; Wyeth, Peta (2005-07-01). "GameFlow".
Computers in Entertainment 3 (3): 3] These highly trained agents are likely only desirable
against very skilled human players who have many hours of experience in a given game. Given
these factors, highly effective deep learning agents are likely only a desired choice in games
that have a large competitive scene, where they can function as an alternative practice option
to a skilled human player.

(GOAP) Goal Oriented Action Planning

Goal-Oriented Action Planning refers to a simplified STRIPS-like planning architecture
specifically designed for real-time control of autonomous character behavior in games.

GOAP is an artificial intelligence system for autonomous agents that allows them to
dynamically plan a sequence of actions to satisfy a set goal. The sequence of actions selected
by the agent is contingent on both the current state of the agent and the current state of the
world, hence despite two agents being assigned the same goal; both agents could select a
completely different sequence of actions.

Before we can discuss the benefits of GOAP, we first need to define some terminology.
An agent uses a planner to formulate a sequence of actions that will satisfy some goal. We
need to define what we mean by the terms goal, action, plan, and formulate.

Goal

A goal is any condition that an agent wants to satisfy. An agent may have any number of goals.
At any instant, one goal is active, controlling the character’s behavior. A goal knows how to
calculate its current relevance, and knows when it has been satisfied.

Plan

The plan is simply the name for a sequence of actions. A plan that satisfies a goal refers to the
valid sequence of actions that will take a character from some starting state to some state that
satisfies the goal.

Action

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 14

An action is a single step within a plan that makes a character do something. The duration of
an action may be short or infinitely long. Each action knows when it is valid to run, and what it
will do to the game world. In other words, an action knows its preconditions and effects.
Preconditions and effects provide a mechanism for chaining actions into a valid sequence. For
example, the RelaxSitting action has a precondition for the agent to be sitting. Consequently,
the SitDown action followed by RelaxSitting action is a valid sequence of actions. Each action
may have any number of preconditions and effects.

Plan Generation

A character generates a plan in real-time by supplying some goal to satisfy a system called a
planner. The planner searches the space of actions for a sequence that will take the character
from his starting state to his goal state. This process is referred to as formulating a plan. If the
planner is successful, it returns a plan for the character to follow to direct his behavior. The
character follows this plan to completion, invalidation, or until another goal becomes more
relevant. If another goal activates, or the plan in-progress becomes invalid for any reason, the
character aborts the current plan and formulates a new one.

Figure 2 Plan generation example in GOAP

The above figure depicts an abstract illustration of the planning process. The rectangles
represent the start and goal states, and each circle represents an action. The goal in this figure
is for the agent to eat. The planner needs to find a sequence of actions for the agent that will
take the world from a state in which the agent is hungry to a state in which the agent’s hunger
is satisfied.

In a sense, the above process is pathfinding. The planner needs to find a path through
the space of actions that will take the agent from his starting state to some goal state. Each
action is a step on that path that changes the state of the world in some way. Preconditions of
the actions determine when it is valid to move from one action to the next.

In many cases, more than one valid plan exists. The planner only needs to find one of
them. Similar to navigational pathfinding, the planner’s search algorithm can be provided with
hints to guide the search. For example, costs can be associated with actions, leading the

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 15

planner to find the least costly sequence of actions, rather than any arbitrary sequence.
[Applying Goal-Oriented Action Planning to Games, Jeff Orkin – Monolith Productions,
http://www.jorkin.com]

Advantages

A GOAP system does not replace the need for a finite-state machine (FSM), but greatly
simplifies the required FSM. A plan is a sequence of actions, where each action represents a
state transition. By separating the state transition logic from the states themselves, the
underlying FSM can be much simpler.

There are benefits at both development and runtime. Characters in the game can
exhibit more varied, complex, and interesting behaviors using GOAP. The code behind the
behaviors is more structured, re-usable, and maintainable. GOAP offers a much more elegant
structure that better accommodates change. The addition of design requirements is handled by
adding actions, and preconditions to related actions. This is more intuitive, and touches less
code than revisiting every goal. Furthermore, GOAP provides the guarantee of valid plans.
Hand-coded embedded plans can contain mistakes. A developer might code a sequence of
actions that cannot follow each other. For example, a character might be instructed to fire a
weapon, without ever being told to first draw a weapon. This situation cannot arise in a plan
dynamically generated through a GOAP system, because the preconditions on the actions
prevent the planner from formulating an invalid plan.

The structure imposed by GOAP is ideal for creating a variety of agent types who
exhibit different behaviors, and even share behaviors across multiple projects. The planner is
provided with a pool of actions from which to search for a plan. This pool does not necessarily
have to be the complete pool of all existing actions. Different agent types may use subsets of
the complete pool, leading to a variety of behaviors. [Applying Goal-Oriented Action Planning
to Games, Jeff Orkin – Monolith Productions, http://www.jorkin.com]

World Representation

In order to search the space of actions, the planner needs to represent the state of the world in
some way that lets it easily apply the preconditions and effects of actions, and recognize when
it has reached the goal state. One compact way to represent the state of the world is with a list
of KeyValue Pairs. Consequently, each action must contain a KeyValue List for its preconditions
and one for its Effects as seen below: [Applying Goal-Oriented Action Planning to Games, Jeff
Orkin – Monolith Productions, http://www.jorkin.com]

Figure 3 GOAP actions example

http://www.jorkin.com/

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 16

Unity Engine

Unity is a cross-platform game engine developed by Unity Technologies, first announced and
released in June 2005 at Apple Inc.'s Worldwide Developers Conference as a Mac OS X-
exclusive game engine. The engine has since been gradually extended to support a variety of
desktop, mobile, console and virtual reality platforms.

Figure 4 Unity engine logo.

The engine can be used to create three-dimensional (3D) and two-dimensional (2D)
games, as well as interactive simulations and other experiences. The engine has been adopted
by industries outside video gaming, such as film, automotive, architecture, engineering,
construction, and the United States Armed Forces.

NavMesh Agent

Unity offers its own navigation tool through the use of the NavMesh Agent. The NavMesh Agent
is a component that helps you to create characters which avoid each other while moving
towards their goal. Agents reason about the game world using the NavMesh and they know
how to avoid each other as well as other moving obstacles. Pathfinding and spatial reasoning
are handled using the scripting API of the NavMesh Agent. [Unity Docs]

Figure 5 NavMeshAgent example scene.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 17

MonoBehaviour

MonoBehaviour is the base class from which every Unity script derives. When you use C#, you
must explicitly derive from MonoBehaviour. Running a Unity script executes a number of event
functions in a predetermined order. These event functions are called in a sequence called script
lifecycle. The event functions that are more heavily used by developers and are referenced in
this project, are the Awake(), Start(), Update(), FixedUpdate() methods. [Unity Docs]

Figure 6 Some of the most common lifecycle events in Unity scripts

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 18

Figure 7 The full lifecycle event list of Unity.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 19

ScriptableObjects

A ScriptableObject is a data container that you can use to save large amounts of data,
independent of class instances. One of the main use cases for ScriptableObjects is to reduce
your Project’s memory usage by avoiding copies of values. This is useful if your Project has a
Prefab that stores unchanging data in attached MonoBehaviour scripts. [Unity Docs]

Every time you instantiate that Prefab, it will get its own copy of that data. Instead of
using the method, and storing duplicated data, you can use a ScriptableObject to store the data
and then access it by reference from all of the Prefabs. This means that there is one copy of
the data in memory. [Unity Docs]

Just like MonoBehaviours, ScriptableObjects derive from the base Unity object but,
unlike MonoBehaviours, you can not attach a ScriptableObject to a GameObject. Instead, you
need to save them as Assets in your Project. [Unity Docs]

Prefabs

Unity’s Prefab system allows you to create, configure, and store a GameObject complete with
all its components, property values, and child GameObjects as a reusable Asset. The Prefab
Asset acts as a template from which you can create new Prefab instances in the Scene. [Unity
Docs]

When you want to reuse a GameObject configured in a particular way – like a non-
player character (NPC), prop or piece of scenery – in multiple places in your Scene, or across
multiple Scenes in your Project, you should convert it to a Prefab. This is better than simply
copying and pasting the GameObject, because the Prefab system allows you to automatically
keep all the copies in sync. [Unity Docs]

Any edits that you make to a Prefab Asset are automatically reflected in the instances
of that Prefab, allowing you to easily make broad changes across your whole Project without
having to repeatedly make the same edit to every copy of the Asset. [Unity Docs]

Human Needs

A need is something that is necessary for an organism to live a healthy life. Needs are
distinguished from wants. In the case of a need, a deficiency causes a clear adverse outcome:
a dysfunction or death. In other words, a need is something required for a safe, stable and
healthy life (e.g. air, water, food, land, shelter) while a want is a desire, wish or aspiration. When
needs or wants are backed by purchasing power, they have the potential to become economic
demands.

Basic needs such as air, water, food and protection from environmental dangers are
necessary for an organism to live. In addition to basic needs, humans also have needs of a
social or societal nature such as the human need to socialize or belong to a family unit or group.
Needs can be objective and physical, such as the need for food, or physical and subjective,
such as the need for self-esteem.

Needs and wants are a matter of interest in, and form a common substrate for, the
fields of philosophy, biology, psychology, social science, economics, marketing and politics.

Maslow’s Hierarchy of Needs

To most psychologists, need is a psychological feature that arouses an organism to action
toward a goal, giving purpose and direction to behavior.

Maslow's Hierarchy of Needs The most widely known academic model of needs was
proposed by psychologist, Abraham Maslow, in 1943. His theory proposed that people have a
hierarchy of psychological needs, which range from basic physiological or lower order through
to the higher order needs such as self-actualization. People tend to spend most of their

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 20

resources (time, energy and finances) attempting to satisfy their basic physiological needs,
before the higher order needs of belonging, esteem and self-actualization become meaningful.
Maslow's approach is a generalized model for understanding human motivations in a wide
variety of contexts, but must be adapted for specific contexts. The theory was further developed
by over a course of almost thirty years into a broader theory on human behavior (Maslow,
1970), however the basic principles of the theory remained the same. [Nikos Avradinis*, Themis
Panayiotopoulos and George Anastassakis, 2013 “Behavior believability in virtual worlds:
agents acting when they need to”]

Figure 8 Maslow’s hierarchy of needs, represented as a pyramid of needs

Hierarchy’s Structure

Physiological

As mentioned before and as it showed in the last figure, at the lowest level of Maslow’s
hierarchy of needs lie one’s physiological or biological needs. These correspond to basic needs
such as hunger, thirst, need for air, sleep, sex etc. When these needs are not satisfied, they
may result in emotional and physical discomfort and even threaten one’s survival.

Safety

Right above physiological needs, lies the need for Safety, which includes physical safety,
occupation and financial security.

Love & Belonging

Love and belonging needs refer to social needs such as belonging to a group, having friends,
family and a partner.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 21

Esteem

Esteem needs have both a social and a self-centered character. They concern self-esteem,
which is related to knowledge, competence and mastery, as well as confidence which sources
from others’ respect, general attitude and appreciation towards the individual.

Self-Actualization

At the top of the pyramid is Self-Actualization needs. These needs are more abstract and are
generally defined as the realization of one’s full capacity and potential.

According to Maslow’s theory, the hierarchy is characterized by three basic principles
[Reeve J (2010) Understanding Motivation and Emotion. John Wiley & Sons, Hoboken, NJ]:

1. Needs are arranged according to their urgency and their intensity. Lower-level needs
are felt stronger and more urgently than higher level ones.

2. Lower-level needs appear earlier in human development.
3. Needs are satisfied sequentially, one level at a time, in bottom to top order; higher level

needs are not activated before lower-level needs are satisfied (a concept known as
fulfillment progression).

Deficiency VS Growth Needs

Needs can also be distinguished into two categories, deficiency and growth needs [Reeve J
(2010) Understanding Motivation and Emotion. John Wiley & Sons, Hoboken, NJ].

Deficiency needs indicate the lack of a basic resource, or an experience. They are like internal
resources that have to be replenished regularly. Failing to satisfy a deficiency need puts one in
a state of deprivation, which can threaten one’s physiological or emotional state of well-being.

Growth needs differ to deficiency needs, in that they do not arise because of a
deprivation experience, but rather from an innate drive to evolve and develop oneself. Growth
needs emerge only when all deficiency needs have been satisfied, and a need to fulfill personal
potential emerges.

Deficiency needs produce simpler and more stereotypical behaviors that are responses
to an intense and urgent internal stimulus and aim towards satiation. Growth needs, on the
other hand, are less urgent and intense but more elaborate, they can produce diverse behaviors
consisting of potentially long sequences of actions and are constructive in nature. We could
characterize deficiency needs as reactive and growth needs as generative. [Nikos Avradinis*,
Themis Panayiotopoulos and George Anastassakis, 2013 “Behavior believability in virtual
worlds: agents acting when they need to”]

Conclusion

In conclusion, Maslow's hierarchy of needs is used to study how humans intrinsically partake
in behavioral motivation. Maslow used the terms "physiological," "safety," "belonging and love,"
"social needs" or "esteem," and "self-actualization" to describe the pattern through which
human motivations generally move. This means that in order for motivation to arise at the next
stage, each stage must be satisfied within the individual themselves. Additionally, this hierarchy
is a main base in knowing how effort and motivation are correlated when discussing human
behavior. Each of these individual levels contains a certain amount of internal sensation that
must be met in order for an individual to complete their hierarchy. The goal in Maslow's
hierarchy is to attain the fifth level or stage: self-actualization.

In-Game Representation

Representing Maslow’s hierarchy of needs in a simulation using an AI agent is by no means an
easy feat. First of all, we must find a way to transition from the theoretical definition of each

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 22

need to a more tangible representation in a form that can be understood by an AI agent. This
proves to be a problem as we move up Maslow’s hierarchy because the needs become more
and more abstract. The simplest way to do that, would be to create “Goals” that represent each
need and a set of actions for the satisfaction of each goal. For that reason, the Goal Oriented
Action Planning system was chosen for this project. As for the simulation’s environment, the
Unity engine is a very suitable platform as it provides a series of tools and components for
making a highly representative simulation.

Rimworld

RimWorld is a sci-fi colony sim driven by an intelligent AI storyteller. Generates stories by
simulating psychology, ecology, gunplay, melee combat, climate, biomes, diplomacy,
interpersonal relationships, art, medicine, trade, and more. This title deserves to be mentioned
as it proved to be a great reference and inspiration for this work. Rimworld was created by a
single developer named Tynan Sylvester who founded Ludeon Studios. Furthermore Rimworld
was created with the Unity engine.

Figure 9 Rimworld - Rimworld logo

The player has to manage the colonists' moods, needs, individual wounds, and
illnesses. Colonists create structures, weapons, and apparel from metal, wood, stone, cloth, or
futuristic materials. The player has to watch out for pirate raiders, hostile tribes, rampaging
animals, giant tunneling insects and ancient killing machines. It is also possible to tame and
train pets, productive farm animals, and deadly attack beasts. Colonists develop relationships
with family members, lovers, and spouses. A new world is generated each time a new game is
started. The game includes a variety of biomes like the desert, jungle, tundra, and more. Each
colonist has his own unique backstories, traits, and skills that directly impact his behavior. In
other words, colonists’ needs and motivation defer. Colonists also have passion levels for each
type of work. The colonist overview screen can be seen in the next figure.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 23

Figure 10 Rimworld - Colonist's bio scene

Worlds in RimWorld are generated from either random or user-provided seeds that
allow for a completely new experience every time. Each world is uniquely filled with multiple
biomes that change what the world looks like and how it behaves. For example, some biomes
feature a large number of mountains, while others are full of grasslands.

There are options for configuring the overall planet temperature and overall rainfall,
with the result of changing them being true to what would happen in real life. Time zones are
also modelled as the world actually physically exists and is fully interactive. Temperatures in
regards to proximity from the equator are also correct; with hotter biomes being more central
and colder biomes being closer to the poles. The seasonal differences are also less pronounced
near the equator, with there being a permanent summer in it.

Figure 11 Rimworld - Random generated world

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 24

Project Setup

The programming language used for all the scripts of this simulation is C# and the simulation
will be running inside the Unity engine.

First of all, the simulation’s requirements must be understood in order to construct the Unity
Project. The AI agent:

• must be able to navigate in 3D space,

• must be able to interact with its environment,

• must be animated for a better representation of each performed action,

• must “remember” its own as well as the world’s states and react when they are altered,

• must know all available Actions,

• must be aware of its Goals,

• must be able to orchestrate a Plan depending on the current Goal and available Actions

• must have a way to execute Actions in sequence and

• must have a way to determine if it is alive.

Prototyping

To better understand how to translate Maslow’s Hierarchy of Needs into code, a prototype was
created.

Figure 12 Scene from the prototype that uses Finite State Machine for logic

This prototype used a finite state machine as the core of its logic. The state machine
possessed a stack in which needs were pushed as they were triggered when their priority
reached a threshold. The Agent then proceeded to execute the action corresponding to the
need at the top of the stack. When the action was successfully executed, the need is popped
from the stack and the next need comes to the top. If no need is present in the stack, the Agent
performs the idle Action which checks all needs ordered by their priority in Maslow’s Hierarchy.
In this project the Agent is represented by a script called FSMActor.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 25

Figure 13 The script that controls the prototype’s Agent.

Actions here are represented by simple Methods that when executed remove the
corresponding need from the stack when the conditions are met.

In this prototype, the idea of the Agent needing to build a house to sleep in, is also
explored. When the Agent has no unsatisfied physiological need and there is no available built
house, it prioritizes building the house. For the sake of simplicity, it can be assumed that this
need could be the product of the safety needs described by Maslow and as such has a lower
priority than physiological needs and alas it is examined last by the Agent.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 26

Figure 14 Screenshot of the prototype’s scene while running.

When the Agent completes the construction of his house it then prefers to sleep in it
when the need to sleep arises.

The implementation of an FSM provides a very simple, yet powerful way to represent
Maslow’s needs in the form of a simulation. A major drawback of this approach is that there is
not much room for variation in the way that the Agent acts. Furthermore, the code needed for
the representation of more of Maslow’s needs will be very repetitive, unmaintainable and overall
dense in a sense of readability. The GOAP architecture provides a much more efficient way of
managing the Agent’s Needs and Goals, in a more dynamic manner.

Creating the scripts - Implementation of GOAP inside Unity

In order to create an AI Agent that qualifies to all previously mentioned requirements, a series
of system and controller scripts must be created. Initially, an Action and Goal base class were
created as seen below.

Agent - Main Script

The Agent’s main script is the script that stores a lot of information about the Agent. It stores its
Goals, available Actions, actionqueue as well as all the controllers’ instances. It also handles
the Agent’s death but more importantly, it provides a way for the Goals to affect the active
Action and vice versa. It also facilitates an instance of the Planner script.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 27

Figure 15 GOAP - Agent class script.

On each update the Agent scripts checks if the current action queue is invalid or
completed and must be discarded and planned anew or just be planned if it was not initialized.
This way the Agent “thinks” on every frame of the simulation. The update method can be seen
below:

Figure 16 GOAP - Agent class script - Update function.

Planner

The Planner class is responsible for the “thinking” part of the AI Agent. By consuming the
Agent’s current States, available Actions and desired Goal as input, it constructs a series of

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 28

Actions which result in a change of States that satisfies the Goal. In simpler terms, the Planner
creates a graph consisting of nodes derived from the available Actions and runs a search
algorithm against it to find the most effective path.

Figure 17 GOAP - Planner class script.

Goals

Goal classes inherit from the same base class named GoalBase. The GoalBase class contains
all basic information for each goal such as its priority, thresholds and how it
increases/decreases over time and also whether the deficiency of the Goal should damage the
agent’s health. An overview of the class structure can be seen in the figure below:

Figure 18 GOAP - Goal class script.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 29

Goal State

The States that satisfy each goal differ and may be more than one. For that reason these States
are stored in a list as sub goals.

Priority

Each Goal’s priority is calculated based on the previous priority’s value. Also, it cannot exceed
the MaxPriority variable set to each Goal.

Actions

All Actions inherit from the same class, the ActionBase. This class contains all the information
(parameters & instruction) for the execution of an Action. The ActionBase class can be seen in
the figure below along with its Methods and their summary:

Figure 19 GOAP - Action class script.

Conditions & Effects

The preconditions and effects of each action are stored inside arrays as States. These arrays
are kept public in order for the Planner to have access to that info.

Parameters

The ActionParameters class contains information about the Action, for example, its cost,
duration, animation, action range and information about the target of the action. Similarly, the

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 30

NavigationParameters class contains parameters used for the Agent’s Navigation such as
navigation speed, navigation cost etc.

Cost

The cost is calculated using the GetCost() method. This method returns the sum of the base
cost when added to the navigational cost which is calculated taking into account the distance
from the Agent's position to the target GameObject. Obviously, the navigational cost amounts
to zero if the target is the Agent itself or there is no target for the Action.

Controllers

Almost all changes that occur to the Agent’s GameObject are handled by a group of controller
scripts. These scripts inherit from the MonoBehaviour, allowing them to be attached to the
Agent. These controllers’ operation is tied to the Agent’s main script from which they access
information about the Agent’s state. It is important to state that some of these controllers rely
on one another for their operation. For example, the action controller needs the navigation
controller to know when the Agent has reached its destination.

Navigation Controller

The navigation controller is responsible for handling the Agent’s navigation in the 3D space.
This script communicates with Unity’s NavMeshAgent and in order to steer and guide the
Agent’s GameObject. The controller uses an enum to describe its state. If the navigation is in
a pending, successful or failure state.

Figure 20 GOAP - Navigation controller script

Animation Controller

The animation controller is the script that manages the animation that is currently “played” by
the Agent’s model. It is instructed by the action controller when, for how long and what
animation it should be “playing”.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 31

State Controller

The state controller is a helper script that is used to handle the Agent’s current States. In the
next figure the definition of the State class can also be seen as it is closely tied to this controller.
This controller is able to store new States and modify or remove existing ones.

Figure 21 GOAP - State controller script.

Goal Controller

The goal controller is the script that is responsible for handling the Agent’s Goals. Every fixed
update, it updates each Goal’s priority and decides if a new Goal should be activated instead
of the one currently active. Additionally, it refreshes the UI to represent the altered data, as well
as interacts with the Agent’s health based on the Goals’ settings.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 32

Figure 22 GOAP - Goal controller script.

This controller also utilizes one helper class called GoalState which describes each
Goal’s state and helps transfer that info to the UI. Furthermore, the controller’s status is
described to other components by the use of an enum called GoalStatus. These can be seen
in the next figure.

Figure 23 GOAP - Goal controller script 2.

Action Controller

The action controller is the controller responsible for the execution of an Agent’s Action. It
describes the state of an Action by the use of an enum called ActionStatus as seen below:

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 33

Figure 24 GOAP - Action controller script.

This controller reads the currently active Action and acts according to its parameters.
It sets the Agent’s target, the Agent’s destination through the navigation controller, activates an
animation sequence through the animation controller and lastly calls the Action’s methods.

Figure 25 GOAP - Action controller script 2.

Figure 26 GOAP - Action controller script 3.

By the above figures we can understand the importance and the complexity of this controller. It
is the script that ensures that an Action is handled properly and without errors.

Implementing Physiological Human Needs

For this demonstration, from Maslow’s hierarchy of needs, only some of the physiological needs
were chosen to be recreated. This does not mean that it is impossible to convert all of Maslow’s

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 34

needs to Goal scripts but rather that it is not required as this project is just an example used to
prove that it can be done.

From Needs to Goals

The needs demonstrated in this example are thirst, hunger, sleep and recreation. The need for
recreation is just used to describe the general mental health of the Agent just for the sake of
this example. The needs are shown in the figures below, represented as Goal objects. The
class used to create these is TimeBasedGoal which is an extension to the GoalBase that
implements a time related priority increase.

Figure 27 GOAP - Hunger - Goals’ ScriptableObject

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 35

Figure 28 GOAP - Thirst - Goals’ ScriptableObject

Figure 29 GOAP - Sleep - Goals’ ScriptableObject

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 36

Figure 30 GOAP - Recreation - Goals’ ScriptableObject

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 37

Running the Simulation

In order to run the simulation, a scene was created. It was then filled with GameObjects like
trees, rocks, a patch of water, a house, a campfire and some bushes with fruits. The white
figure that the camera focuses on is the Agent’s GameObject. In the UI we can examine the
Agent’s needs, its current action and its current health factor which is a factor whose value
determines if the Agent should lose or gain health.

Figure 31 GOAP - Simulation at runtime example.

Figure 32 GOAP - Simulation at runtime example 2.

When there is a deficiency in more than two physiological needs the Agent takes
damage until his health reaches zero and then perishes. The bars representing the Agent’s
needs display a lower and upper threshold. The upper threshold serves no practical purpose in
this example. The lower threshold represents an Agent’s need’s critical level and when reached,
the Agent will prioritize doing the corresponding actions to satisfy the need. In other words, the
Agent will set the satisfaction of that need as his active Goal.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 38

Figure 33 GOAP - Simulation at runtime example 3.

When there is no other need that requires the Agent’s attention, the Agent is set to by
default “relax” by the campfire. This can be replaced by any action and especially if all of
Maslow’s needs are implemented, the Agent will most likely be busy most of the time doing
something.

Figure 34 GOAP - Simulation at runtime example 4.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 39

Figure 35 GOAP - Simulation at runtime example 5.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 40

Conclusion & Future Work

Through the course of this project, there are a plethora of conclusions that become apparent.
To begin with, Goal Oriented Action Planning is a very effective tool when creating dynamic AI
Agents. There are multiple possibilities as to how this project could be further expanded. For
example, the idea of implementing more needs from Maslow’s hierarchy, along with a much
wider variety of available Actions for the Agent to choose from, should be explored as it could
provide better human-like behavior and some interesting conclusions might emerge. Also, an
emotion system that would simulate human feelings and consequently affect the Agents’
behavior could be implemented. Furthermore, the Agents could be equipped with an awareness
system that would allow them to simulate the human senses. Lastly, a major addition would be
to have more than one Agents in the same simulation, that would interact with one another in
many possible ways (e.g. social, combat). In summary, this work’s goal is to provide a base for
later projects to build upon and expand, as there is a lot of work involved into creating it and
could prove useful for later endeavors on the subject.

A Word from the Author

As a personal experience, in the process of developing this project I was able to acquire
valuable knowledge concerning the C# programming language, Unity engine, the process of
creating an intelligent Agent and Artificial Intelligence in general. I believe that this experience
will prove most valuable in my later career in the field of Information Technology and I hope
that my work will be able to inspire and help other students as they progress their studies.
Thank you for taking the time to read my work.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 41

Bibliography & References

1. Abd Algfoor, Zeyad; Sunar, Mohd Shahrizal; Kolivand, Hoshang (2015). "A
Comprehensive Study on Pathfinding Techniques for Robotics and Video Games". 2015

2. AlphaStar: Mastering the Real-Time Strategy Game StarCraft II. DeepMind. Retrieved
2019-06-04

3. Applying Goal-Oriented Action Planning to Games, Jeff Orkin – Monolith Productions,
http://www.jorkin.com

4. Artificial Intelligence A Modern Approach Second Edition Stuart J. Russell and Peter
Norvig, 2003

5. Brügmann, Bernd (1993). Monte Carlo Go

6. Finite State Machines – Brilliant Math & Science Wiki. brilliant.org. Retrieved 2018-04-
14.

7. G.M.J.B. Chaslot; M.H.M. Winands; J.W.H.M. Uiterwijk; H.J. van den Herik; B. Bouzy
(2008). "Progressive Strategies for Monte-Carlo Tree Search"

8. Goodwin, S. D., Menon, S., & Price, R. G. (2006). Pathfinding in open terrain.

9. https://alumni.media.mit.edu/~jorkin/goap.html

10. https://docs.Unity.com

11. https://en.wikipedia.org/

12. https://gamedevelopment.tutsplus.com/tutorials/goal-oriented-action-planning-for-a-
smarter-ai--cms-20793

13. https://learn.unity.com/project/goal-driven-behavior

14 Nikos Avradinis*, Themis Panayiotopoulos and George Anastassakis, 2013 “Behavior
believability in virtual worlds: agents acting when they need to”

15. Nikos Avradinis*, Themis Panayiotopoulos and George Anastassakis, 2013 “Modelling
basic needs as agent motivations”

16 OpenAI, Dota 2 with Large Scale Deep Reinforcement Learning, March 10, 2021

17. Reeve J (2010) Understanding Motivation and Emotion. John Wiley & Sons,Hoboken, NJ

18. Silver, David; Hubert, Thomas; Schrittwieser, Julian; Antonoglou, Ioannis; Lai, Matthew;
Guez, Arthur; Lanctot, Marc; Sifre, Laurent; Kumaran, Dharshan (2018-12-06). "A general
reinforcement learning algorithm that masters chess, shogi, and Go through self

19. Silver, David; Hubert, Thomas; Schrittwieser, Julian; Antonoglou, Ioannis; Lai, Matthew;
Guez, Arthur; Lanctot, Marc; Sifre, Laurent; Kumaran, Dharshan (2018-12-06). "A general
reinforcement learning algorithm that masters chess, shogi, and Go through self-play"

20. Sturtevant, N. R. (June 2012). "Benchmarks for Grid-Based Pathfinding''. IEEE
Transactions on Computational Intelligence and AI in Games

21. Sweetser, Penelope; Wyeth, Peta (2005-07-01). "GameFlow". Computers in
Entertainment

22. Wang, Jiacun (2019). Formal Methods in Computer Science. CRC Press. p. 34.

23. Yannakakis, G. N. (2012, May). Game AI revisited

24 Yap, Peter. "Grid-based path-finding." In Conference of the Canadian Society for
Computational Studies of Intelligence, pp. 44-55. Springer, Berlin, Heidelberg, 2002

http://www.jorkin.com/
https://alumni.media.mit.edu/~jorkin/goap.html
https://docs.unity3d.com/
https://en.wikipedia.org/
https://gamedevelopment.tutsplus.com/tutorials/goal-oriented-action-planning-for-a-smarter-ai--cms-20793
https://gamedevelopment.tutsplus.com/tutorials/goal-oriented-action-planning-for-a-smarter-ai--cms-20793
https://learn.unity.com/project/goal-driven-behaviour

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 42

Appendix 1 - Keywords

Action Action in this context, refers to the ScriptableObject that contains all
the information needed for the Agent to perform an action.

ActionBase Refers to the base class that all Action scripts inherit from. It is used
to represent the Agent’s Actions.

Agent / AI Agent Agent in this context refers to the AI Agent, be it a GOAP Agent or
an FSM Agent.

Goal Goal in this context refers to the ScriptableObject that represents a
need from Maslow’s pyramid that also holds the end state that the
Agent is trying to achieve. The end state may be comprised by many
States or just one.

GoalBase Refers to the base class that all Goal scripts inherit from. It is used
to represent the Agent’s needs in the form of Goals.

Planner Planner in this context refers to the script that calculates the best
course of action for an Agent to achieve his Goal.

State State in this context refers to the Key Value pairs used for describing
the states of an Agent (e.g. Key: “HasEaten” Value: 1)

TimeGoalBase Refers to the class that inherits from the Goal Base class and can
adjust how quickly the Goal’s priority increases based on the
simulation’s time of day.

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 43

Appendix 2 - System Specs

The project was created and executed on a system with the below specs:

OS Windows 10 Pro

CPU AMD’s RX5500XT

GPU Intel’s i5 10400f

RAM 16Gb

PSU Corsair’s TX550M

MONITOR Dell S2721HN

MSc Thesis Dimitrios Malliaris

Δημιουργία ενός Πράκτορα ΤΝ με ανθρώπινη συμπεριφορά,

χρήσημοποιώντας την ιεραρχία των αναγκών του Maslow και

την αρχιτεκτονική σχεδιασμού δράσης με προσανατολισμό το

στόχο (GOAP) στη μηχανή της Unity. 44

Appendix 3 - Further Information

All of the non-referenced material written in this work, comes from either notes and
presentations of Dr Panayiotopoulos’s (Thesis supervisor) classes’ material or the author’s
ideas.

• Most assets used in the project were created by the author using Blender version 3.

• Credits for the Icons used in the project’s UI go to Icons8’s Pichon (Microsoft Store
App).

• The version of Unity used for the creation of the project was Unity 2020.3.2f1 Personal.

