
UNIVERSITY OF PIRAEUS

MASTER THESIS

FIDO2/WebAuthn implementation and
analysis in terms of PSD2

Author:
Athanasios Vasileios

GRAMMATOPOULOS

Supervisor:
Prof. Christos XENAKIS

A thesis submitted in fulfillment of the requirements
for the postgraduate programme of Digital Systems Security

in the

Systems Security Laboratory

Department of Digital Systems

February 22, 2022

https://www.unipi.gr
https://www.linkedin.com/in/gramthanos/
https://www.linkedin.com/in/gramthanos/
https://www.linkedin.com/in/christos-xenakis-1939b13/
https://ssl.ds.unipi.gr
https://www.ds.unipi.gr

iii

Declaration of Authorship
I, Athanasios Vasileios GRAMMATOPOULOS, declare that this thesis titled,

“FIDO2/WebAuthn implementation and analysis in terms of PSD2” and the work

presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a master degree

at this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

v

UNIVERSITY OF PIRAEUS

Abstract
Faculty Name

Department of Digital Systems

Digital Systems Security

FIDO2/WebAuthn implementation and analysis in terms of PSD2

by Athanasios Vasileios GRAMMATOPOULOS

FIDO is an alternative passoword-less authentication standard that can be used

to replace traditional username and password authentication mechanics. FIDO

leverage the use of public-private key cryptography in combination with the

possession of personal authenticator devices (e.g. a laptop, a smartphone or a

USB security key) to authenticate the user by requesting an additional verification

through a biometric scan (e.g. a fingerprint scan) or a knowledge element (e.g. a PIN

or an unlock Pattern). FIDO2 connects FIDO authenticators in the web environment,

through the usage of the WebAuthn specification and thus making it ideal for

providing strong client authentication (SCA) tomeeting the requirements of Payment

Services Directive (PSD2). In this work, wewill look into how FIDO2/WebAuthnworks,

how FIDO can cover the SCA requirements and that issues may one face when

doing so. Furthermore, FIDO2/WebAuthn solutions developed to enable the use of

FIDOand ensuring strong user authentication in various applicationwill be presented.

Το FIDO είναι ένα εναλλακτικό πρότυπο αυθεντικοποίησης χωρίς την χρήση

κωδικών το οποίο µπορεί να χρησιµοποιηθεί για να αντικαταστήσει τις

παραδοσιακές µεθόδους αυθεντικοποίησης οι οποίες βασίζονται στην χρήση

username και password. Το FIDO χρησιµοποιεί κρυπτογραφία δηµόσιου και

ιδιωτικού κλειδιού σε συνδυασµό µε την κατοχή προσωπικών συσκευών

αυθεντικοποίησης (π.χ. ένα laptop, ένα έξυπνο κινητό ή έναUSB κλειδί ασφαλείας)

για να αυθεντικοποιήσει τον χρήστη ζητώντας µια επιπλέων πιστοποίησή του

µέσω βιοµετρικών (π.χ. σάρωση δακτυλικού αποτυπώµατος) ή κάποιο γνωστικό

αντικείµενο (π.χ. ένα PIN ή ένα µοτίβο κλειδώµατος). Το FIDO2 συνδέει τις

FIDO συσκευές αυθεντικοποίησης στο περιβάλλον του διαδικτύου, µέσο της

χρήσης της προδιαγραφής WebAuthn, και µε αυτόν τον τρόπο το κάνει ιδανικό για

την παροχή strong client authentication (SCA) για να καλύψει τις απαιτήσεις του

Payment Services Directive (PSD2). Σε αυτήν την εργασία, κάνουµε µια ανασκόπηση

στον τρόπο λειτουργείας των FIDO2/WebAuthn, στον τρόπο µε τον οποίο το FIDO

µπορεί να καλύψει τις απαιτήσεις του SCA αλλά και τι προβλήµατα µπορεί

να αντιµετωπίσει κάποιος κατά την χρήση του για τον λόγω αυτόν. Επιπλέον,

παρουσιάζουµε FIDO2/WebAuthn λύσεις ανεπτυγµένες για την παροχή ισχυρής

αυθεντικοποίησης µέσο FIDO σε εφαρµογές κάτω από διάφορα περιβάλλοντα.

HTTPS://WWW.UNIPI.GR
http://faculty.university.com
https://www.ds.unipi.gr

vii

Acknowledgements
I would like to thank my supervisor, professor Christos Xenakis, for the guidance and

feedback he provided during my research. Furthermore, I would like to thank Ilias

Politis as well as the rest of my colleagues at Systems Security Laboratory (SSL) for

inspiring me, support me and providing me feedback. Lastly, I would like to thank my

family andmy friends for supportingme duringmy tight schedule (I owe you a couple

of beers).

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Introduction . 1

2 FIDO2 / WebAuthn 3
2.1 FIDO2 in web applications through WebAuthn 4

2.2 Authentication procedure . 4

2.3 Registration procedure . 6

2.4 Security Measures . 7

2.5 Types of authenticator devices . 9

2.6 Authenticator device attestation . 10

3 Payment Services Directive 2 11
3.1 The Directive (EU) 2015/2366 . 11

3.2 RTS on SCA Standards . 12

3.3 Opinion of the EBA on the elements of SCA 13

3.3.1 Inherence element . 13

3.3.2 Possession element . 14

3.3.3 Knowledge element . 15

3.4 FIDO Alliance review of RTS for SCA . 15

3.5 Identified Issues and Problems . 19

3.5.1 Certification of Relying Party FIDO services 19

3.5.2 Adoption and Compatibility . 20

3.5.3 Tolerance of Failed Authentications 20

3.5.4 Selecting Trusted Authenticator Devices 21

3.5.5 Availability Authenticator Devices 21

4 Implementations 23
4.1 StrongMonkey . 23

4.1.1 Introduction . 23

4.1.2 Implementation . 24

4.1.3 Usage . 26

4.1.4 DEMO Application . 33

4.1.5 Conclusions . 35

4.2 StrongBee . 38

4.2.1 Introduction . 38

4.2.2 Implementation . 39

4.2.3 Usage . 40

x

4.2.4 Conclusions . 46

4.3 FIDO2 authentication for OpenVPN . 46

4.3.1 Introduction . 47

4.3.2 Implementation . 48

4.3.3 Usage . 50

4.3.4 Conclusions . 51

5 Conclusion 55

A FIDO Metadata Filtering App 57

B StrongMonkey Implementation Code 61

C Configuring Keycloak for WebAuthn 75

D VPN Implementation Code 85

xi

List of Figures

1.1 FIDO offers strong security and ease of use. 2

2.1 FIDO client authentication using challenge-response and

public-private key cryptography. 3

2.2 The FIDO2 ecosystem and the technologies involved. 4

2.3 Step by step the FIDO2/WebAuthn authentication of a client. 5

2.4 Step by step the FIDO2/WebAuthn authentication of a client. 6

2.5 Android internal authenticator device asking user to touch fingerprint

sensor in order to sign server challenge. 7

2.6 Windows 11 using Windows Hello internal authenticator device asking

user to insert PIN in order to sign server challenge (registration

process at the left, authentication process at the right). 8

3.1 PSD2 and FIDO terminology during authentication. 16

4.1 StrongMonkey, a PHP SDK for interacting with FIDO2 Server API v3.0.0. 23

4.2 Overview connection flow using StrongMonkey. 24

4.3 Detailed FIDO2/WebAuthn authentication flow using StrongMonkey. . 25

4.4 StrongMonkey main functions flow. 25

4.5 The user has initially to use the traditional username & password login. 33

4.6 User registers aWindows Hello authenticator device on his/her account. 34

4.7 User manage the security keys registered on the account listed under

the Manage Keys page. 34

4.8 User uses WebAuthn sign in with the Windows Hello authenticator. . . 35

4.9 User use generates QR code to authenticate on PC using his/her

smartphone’s authenticator. 36

4.10 After scanning the QR code, user is asked to be authenticated in order

to allow another device to sign into his/her account. 36

4.11 User was successfully authenticated on smartphone and his/her PC

was signed in. 37

4.12 StrongBee, FIDO2/WebAuthn server in python. 38

4.13 Example usage of a VPN. 47

4.14 Traditional VPN authentication through username and password. . . . 48

4.15 Example usage of a VPN with FIDO2/WebAuthn. 48

4.16 VPN authentication through OIDC and FIDO2. 49

4.17 The user interface of the VPN client application. 50

4.18 The client launch a browser to authenticate the user through an OIDC

service. 51

4.19 KeyCloak configured to authenticate the user using FIDO2/WebAuthn. 52

4.20 The user authenticates using theWindowsHelloWebAuthn embedded

authenticator using a PIN. 53

4.21 The user connected to the VPN service after successful authentication. 53

xii

A.1 Found 11 certified FIDO2 authenticator devices protected by hardware

mechanics with fingerprint detection capabilities. 58

A.2 Found 4 certified FIDO2 authenticator devices protected by hardware

mechanics with face detection capabilities. 59

B.1 UML Class Diagram for the StrongMonkey PHP library 74

xiii

List of Tables

3.1 List of possible inherence elements provided by EBA. 14

3.2 List of possible possession elements provided by EBA. 15

3.3 List of possible knowledge elements provided by EBA. 16

3.4 Statistics of the authenticators under the FIDO Alliance metadata . . . 22

xv

List of Abbreviations

2FA Two-Factor Authentication

API Application Programming Interface
CTAP Client to Authenticator Protocols
ECB European Central Bank
FIDO Fast Identity Online

HMAC Hash-based Message Authentication Code
HOTP HMAC-based OOne-TTime PPasswords

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IdM Identity Management

JWT JSON Web Token
LGPL GNU Lesser General Public License
MFA Multi-Factor Authentication

NFC Near-field communication

OIDC OpenID Connect
OS Operating System
PoC Poof-of Concept
PSD2 Payment-Services Directive 2
PSP Payment-Services Providers
PSU Payment-Services User
QR Quick Response (code)

RP Relying Party
RTS Regulatory Technical Standards
SCA Strong Customer Authentication

SDK Software Development Kit
SMS Short Message Service
SSO Single Sign On

TEE Trusted Execution Environment

TOTP Time-based OOne-TTime PPasswords

USB Universal Serial Bus
VPN Virtual Private Network

WSGI Web Server Gateway Interface

1

Chapter 1

Introduction

1.1 Introduction

Authentication is the corner stone of all our digital services. Most of our systems

are services rely in some for of authentication in order to control the access rights of

each user into the system. The traditional mechanic for authenticating users is the

username and password, though this is not the only one in existence.

"Authentication is a way to ascertain that a user is who they claim to be."

—ENISA

Based on their characteristics, authentication method can be divided into 3 main

categories:

• Known secrets

– Secrets that the user knows by hart

– e.g. password, PIN

• Possession of secrets

– Usually authenticators or big hashes (too big to remember)

– e.g. serial number, unique token

• Unique characteristics

– biometrics for humans or unique attributes for machines

– e.g. fingerprint, IP address

During authentication, a system may perform more than one authentication

method (multi factor authentication) in order to ensure the user’s identity. The most

popular mechanic is the use of secrets.

Nowadays, passwords are becoming a problem, as their use inmany cases result

in various issues, in many cases sourced from the way users handle them:

• Lack of complexity & relative small size - If not enforced by the system, user

tend to use relative small passwords with a small complexity.

• Repeated use of the same passwords - Inmost cases since users havemultiple

accounts from various services, they reuse the same passwords.

• Easily stolen through phishing attacks - Phishing attacks can exploit relative

easily the human factor and steal a user’s credentials.

2 Chapter 1. Introduction

• Insecurely stored as plaintext - Many services don’t follow the best security

practices and store the password as it is inside their database, thus many

passwords are exposed due to data breaches.

Convenience

S
e

c
u

re

+

+

FIDO

Password

Password
& OTP

FIGURE 1.1: FIDO offers strong security and ease of use.

The FIDO is standardizing the authentication process, ensuring its security

and hiding all the security complexity from the end user while improving his/her

experience! FIDO is now supported by many modern devices. Nowadays, all

smartphone devices can be used as a FIDO authenticator (i.e. Android, iPhone),

all modern browsers support the WebAuthn specification (e.g. Chromium, Google

Chrome, Firefox, Edge, Safari) and both Windows and Mac-OS feature platform

authenticator solutions. Thus, even if one haven’t bought a security USB token, still

he/she can start using FIDO2/WebAuthn now.

A number of website adopted FIDO2/WebAuthn and their users can already start

using them. The majority of the services introduce it as an additional second factor

authentication (2FA)mechanic alongwith SMS and authenticator applications (usign

TOTP and HOTP through QR codes). We have to note thought that FIDO is phishing

resistant by design while the other mechanics are not.

3

Chapter 2

FIDO2 / WebAuthn

Authenticator

Challenge

Challenge signed

Interaction

server asks from
client to prove his
identityuser proves his

presence to his
authentication

authenticator
signs the
challenge

Verify response
using public key

FIGURE 2.1: FIDO client authentication using challenge-response and

public-private key cryptography.

FIDO defines a challenge-response scheme based on public key cryptography as

depicted in Figure 2.1. The relying party (RP) server prepares a challenge in the form

of a random value and forwards it to the client. The user, to prove its identity, must

sign the challenge with a private key (through his/her authenticator device) and send

the forwarded signature back to the server. The server will then need to verify the

authenticity of the given signature using the public key of the authenticator device

linked to the account the client is claiming to own. As one may notice, before the

execution of the mentioned challenge response scheme, the server needs to have

the authenticator device’s public key. This simple conception ensures the security of

the scheme, the compatibility, and ease of use of FIDO.

As shown in Figure 2.2, FIDO’s ecosystem exapands from hardware devices

(secure authenticator devices) to online services (FIDO servers and web

applications), embedding a wide range of technologies. Looking at the user’s

side, FIDO’s Client to Authenticator Protocols (CTAP), both the older CTAP1 (also

known as U2F) and the new CTAP2, define how devices can communicate with

FIDO compatible authenticators. FIDO Universal Authentication Framework (UAF)

describes how a FIDO UAF server should communicate with client devices (such

as a smartphone with a biometric sensor, such as a fingerprint sensor) to offer

password-less authentication using only the user’s biometrics. The more recent

FIDO2, improves upon the older Universal 2nd Factor (U2F) authentication, and

brings FIDO to the web environment and web services, through the WebAuthn

specification, the javascript API and server side WebAuthn libraries or servers.

4 Chapter 2. FIDO2 / WebAuthn

Web Browser
(WebAuthn API)

App Server
(with FIDO2 support)

Authenticator

CTAP1 (U2F)

CTAP2 USB / NFC / BLE

CTAP HTTPS

FIDO2

Platform API
FIDO Server

WebAuthn/FIDO2
Library

FIGURE 2.2: The FIDO2 ecosystem and the technologies involved.

2.1 FIDO2 in web applications through WebAuthn

Using the WebAuthn specification’s javascript API, web applications can request

from the client’s browser (WebAuthn client) and the underlying operating system

(OS) credentials creation (i.e., public key pair generation), as well as credentials

retrieval (i.e., proof of secret key possession). The credentials creation method,

which is accessible through the javascript window.navigator.credentials.create1

method and the public key options, defined at the WebAuthn specifications2,

allow the creation of asymmetric cryptography keys (e.g. ECDSA key-pairs).

These keys are bind to the caller web application’s domain (RP id) and a user

identifier (user handle) is linking the credentials with an account. Moreover,

through the corresponding credential get method, which is accessible through the

javascript window.navigator.credentials.get3 and its public key options, the web

applications can verify the client’s possession of previously created credentials

(key-pairs) by requesting the generation of a random challenge’s signature. Thus, the

identity of a user can be verified through a challenge-response scheme, as illustrated

in Figure 2.3.

2.2 Authentication procedure

A typical use case of FIDO2, using the previously mentioned javascript methods,

is an online password-less authentication. That is, the secure login of a user

into a website without the use of a secret password. Figure 2.4 presents the

authentication process as a diagram. To start the process, the user loads thewebsite

through aWebAuthn compatible browser (allmajor browsers are currently supporting

the WebAuthen specification) and selects to login password-less. The website’s

back-end generates a cryptographically secure and high entropy random challenge

(typically 128 bits or more, as suggested by the specification) and communicates

it with the client device (the user’s browser). The client is then able to invoke

the WebAuthn window.navigator.credentials.get javascript method to request

1https://developer.mozilla.org/en-US/docs/Web/API/CredentialsContainer/create
2https://w3c.github.io/webauthn/
3https://developer.mozilla.org/en-US/docs/Web/API/CredentialsContainer/get

https://developer.mozilla.org/en-US/docs/Web/API/CredentialsContainer/create
https://w3c.github.io/webauthn/
https://developer.mozilla.org/en-US/docs/Web/API/CredentialsContainer/get

2.2. Authentication procedure 5

Server (Relying Party)Client (OS)

Client (Browser)

Authenticator

(internal)

Authenticator (external)

Username

Public Key, Challenge

Challenge Response

Human

Interaction

Get PubKey for Username

Generate Challenge

Validate Response

C
h
a
lle

n
g
e
,

R
P

 i
d
,

K
e
y

1

2

3

4

C
h
a
lle

n
g
e
 R

e
s
p
o
n
s
e

5

5

FIDO Server
WebAuthn/FIDO2

Library

FIDO Alliance Metadata
Service

FIGURE 2.3: Step by step the FIDO2/WebAuthn authentication of a

client.

from an authenticator device to sign the challenge. The browser then sends the

challenge along with the website’s domain name (RP id) and some more data

(list of accepted credentials, list of excluded credentials, extensions etc.) to the

available authenticator devices for signing, assuming that on of those authenticators

possesses a key pair for the website in question (or one of the key pairs requested).

Depending on the systemand the support, the browsermay contact the authenticator

devices directly through the CTAP protocol 4 or call custom methods of OS specific

WebAuthn Client implementations (such as Android’s FIDO2 API 5). Figure 2.5 shows

how Android allows leverage’s the internal platform authenticator to sign challenges

and prove the user’s identity using biometrics (usually a fingerprint sensor), while

Figure 2.6 shows how Window Hello (on Windows 11) can sign challenges by asking

a PIN form the user to verify the action.

Eventually, the browser gets a response that then parses and forwards to the

corresponding javascript handler. The response includes the identifier of the key used

for generating the signature (credentials id), the actual signature, the data structure

used to generate the signature as reported by the authenticator, a user identifier

(user handle), a signature counter and several flags. Then the website’s front-end

forwards the response data to the RP’s back-end (the web application server) for

verification. Upon successful verification, the user is logged in and his session

(usually implemented using cookies) is updated.

The described use case assumes that the authenticator supports resident

keys (i.e., discoverable credentials) and can report back the user identifier (user

handle). To support older U2F authenticators, or to avoid storing information on

the authenticator device (leveraging key wrapping techniques), web pages may

store previously used account identifiers as cookies or at the local storage of the

browser and include them at the initial challenge creation request. This way the

web pages can provide the account’s identifier to the server enabling the latter to

return along with the challenge a list of credential IDs registered for this account.

4https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.
1-ps-20210615.html

5https://developers.google.com/identity/fido/android/native-apps

https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://developers.google.com/identity/fido/android/native-apps

6 Chapter 2. FIDO2 / WebAuthn

ServerClientAuthenticator

username

HTTPS TrafficCTAP Traffic

challenge, key id

challenge, rp id, key id

challenge response

challenge response

Accept or Reject

Generate
challenge
for user

Generate
response for
relay party

Validate
client

response

User interacts
with the

authenticator

FIGURE 2.4: Step by step the FIDO2/WebAuthn authentication of a

client.

This list of credentials could then be added on the invocation of the WebAuthn

window.navigator.credentials.get. A similar process can be used for second

factor authentication flows, as the user’s identifier should already be known through

the active session. This later method could also be used when there is a need to

re-authenticate an already authenticated user, commonly used to renew sessions of

returning users,by requesting a fingerprint or PIN authentication when relaunching a

mobile application (usually found on banking related applications).

A true password-less authentication without the need to provide any username or

password requires information to be stored on the authenticator device, which may

increase the cost of the authenticator, limit the maximum number of keys that can

be generated and need key management utilities to be able to remove stored keys

not needed any more. On the other hand, the password-less authentication, which

requires the knowledge of an account’s identifier (e.g., a username) does not share

such limitations, since the information can be wrapped securely and stored at the

RP’s server, through server-side credential storage modality.

2.3 Registration procedure

Prior to FIDO2’s authentication process, an authenticator device will have to be

registered with the RP server to the user’s account. During the registration process,

the client’s authenticator device generates a public-private key pair (based on the

supported algorithms by the RP server) and forward the public key along with a

credentials identifier value to the server. The server will save the credentials and

link them with the client’s account. Hence, in order to register an authenticator

device, the client should already be signed into the service, so that a session linked

to an account would already be set up and the user account is know. As an extra

security measure, the RP service may ask to re-authenticate the user to ensure

the action is not performed by an unauthorised user. The registration process

starts with a request for credentials creation by the client, asking the RP server to

2.4. Security Measures 7

FIGURE 2.5: Android internal authenticator device asking user to touch

fingerprint sensor in order to sign server challenge.

generate a challenge for this action. The server will return a cryptographically secure

random challenge and a user handle, linked to the user’s account, a list of supported

credentials algorithms (e.g., ECDSA, RSASSA-PSS and/or RSASSA-PKCS1-v1.5),

optionally a number of filtering criteria for the authenticator devices (e.g., external

authenticators, platform authenticators), optionally a list of identifiers for already

registered credentials (so that they can be excluded from the registration) as

well as the server’s preference for the authenticator’s attestation response (asking

the authenticator device to prove its identity). These parameters are used as

optionswhen calling the window.navigator.credentials.create javascriptmethod

to request the credentials creation from the authenicator device (as defined by

the WebAuthn specification). After the successfully handling of the credentials

creation procedure by the authenticator device, the browser will return the created

credentials to the appropriate javascript handler as defined by the method caller.

The response will include the generated credentials identifier, the generated public

key, the challenge generated by the server and optional attestation information for

the authenticator device (e.g., a device certificate). The received data will then

be forwarded to the RP server. The server will then have to validate the provided

information and then store at least the credentials identifier and the public key under

the account the challenge was generated.

2.4 Security Measures

The main feature of FIDO2/WebAuthn, that makes it standout from other

authentication methods, is its resistant to phishing and man-in-the-middle attacks.

By design WebAuthn clients do not allow cross domain credentials access unless,

they are created under the request came froma the target RP service. Thus fraudulent

websites or applications are not able to request authentication for another RP

website. This is achieved through the client’s (your web browser) validation of the

RP id of the request, which should be the domain name of the website. Authenticator

devices link the credentials with the RP id and the user account (through the user

handle) thus they will not return credentials sourced from other RP.

8 Chapter 2. FIDO2 / WebAuthn

FIGURE 2.6: Windows 11 using Windows Hello internal authenticator

device asking user to insert PIN in order to sign server challenge

(registration process at the left, authentication process at the right).

To ensure the integrity and the confidentiality of the processes described

above, web browsers expose the WebAuthn API only under secure context (web

pages loaded under HTTPS), with the exception of “localhost” origins that are

commonly used for development purposes. By requiring HTTPS, the browser can

assure the authenticity of the server (by validating the server’s certificate) and thus

mitigate man-in-the-middle attacks at the network traffic level. In simple terms,

to secure the schema, FIDO builds a trusted communication channel between

the RP and authenticator device. We also have to note that Google defined an

additional way to link Android applications with a domain name in order to authorize

applications claiming to be linked to such domains. This is done through the

/.well-known/assetlinks.json6 and also be used to validate that an application

should be given access to credentials storage for credentials under the claimed RP

id.

Form the RP’s side, in order to validate the correct execution of the authentication

process, the server has to verify a number of information returned on the response

apart from just the signature. In particular, the server has to:

• Check that the challenge returned match the one generated.

• Check if the origin of the response is the expected origins.

• Check if the Relay Party ID is the correct one.

• Check that the credentials identifier returned is already registered to the user

account linked to the user handle return. (For password-less authentications)

• Check that the credentials identifier returned is already registered to the user

account used to generate the challenge. (For second factor authentications)

6https://developers.google.com/digital-asset-links/v1/getting-started

https://developers.google.com/digital-asset-links/v1/getting-started

2.5. Types of authenticator devices 9

• Ensure not to accept expired challenges, since the challenges are generated for

use within a limited time frame.

• Save for each action save the signature counter for each credentials and ensure

that for every authentication procedure this number increases, in order to

protect users against cloned authenticator devices.

• Check that the all the flags returned by the authenticator are as expected (e.g.

check user verification flag).

• Check if the algorithm of the credentials generated is among the supported

signature algorithms provided by the server.

• Check the authenticator’s attestation data

– Ensure that the authenticator’s attestation is valid (e.g. by checking the

validity of the returned certificate).

– Ensure the authenticator’s AAGUID is inside the allow-list or is not inside

the block-list (if the RP has such a list of authenticators).

– Ensure that the authenticator is following the RP policy by checking the

FIDO metadata service (e.g. check if the authenticator is certified).

– Ensure that the authenticator is following the RP policy by checking the

FIDO metadata service (e.g. check if the authenticator is certified, check

if the authenticator features user identification through biometrics).

– Ensure that the authenticator is not revoked or outdated by checking the

FIDO metadata service.

Asmentioned on the list above, the RPmay request the authenticator’s attestation

data in order to assess the authenticator device information provided by the FIDO

metadata service. For instance, a RP server may try to identify whether an

authenticator device is among the devices approved by the service. TheRPcould also

save the authenticator device’s id so that it could check for revoked authenticators

from time to time.

2.5 Types of authenticator devices

FIDO authenticators can be categorized based on their type into two categories,

platform authenticators and cross-platform authenticators. Cross platform

authenticators are external devices that connect with the system through USB, NFC,

or Bluetooth (e.g., USB Keys or NFC Keys) and communicate through FIDO’s CTAP1

and CTAP2 protocols. On the other hand, platform authenticators are embedded into

the system (e.g., Android internal authenticator, Windows Hello authenticator) and

may communicate with applications directly through the underlined system’s calls

and libraries (e.g., Microsoft WebAuthN Win32 headers 7). Independent of the type

of an authenticator, the device should be able to protect the private keys so that they

cannot be extracted by an adversary that may have physical access to it.

Another practical characteristic that we can use to categorize the authenticator

devices is the available methods they support to verify the user presence. Although

the authenticator itself is a way the user to prove possession of the authenticator

7https://github.com/microsoft/webauthn

https://github.com/microsoft/webauthn

10 Chapter 2. FIDO2 / WebAuthn

it self, in many cases the authenticator will have to verify the user’s identity first

before executing an FIDO/WebAuthn operation. Many authenticators (usually mobile

or laptop devices) leverage access to bio-metrics sensors (e.g., fingerprint, face

recognition, iris scan) to securely verify the user. Other simpler (usually USB

cross-platform) authenticator devices features just a button, which the user press to

verify its presence. To mitigate the risk of unauthorized use of such a FIDO2 device,

an operation system may also ask the user for a PIN to authenticate him.

2.6 Authenticator device attestation

The WebAuthn requirement of a secure connection (through HTTPS) not only

protects the information exchanged between the client and the server but also

verifies the authenticity of the server (managed by the RP), through the trusted

certificate issued to the domain nameused by the service. In a similarway, depending

on the application needs of a WebAuthn deployment, the RP may want to verify

that the client’s authenticator device is compliant with its policies. For example, the

RP may have to verify before registering a new authenticator device, that this new

device has the appropriate security level required by the service’s security policy.

To achieve this, the RP server may request additional attestation information from

the authenticator device, during the registration phase, and assess them before

finalising the registration process. The returned attestation statement would ideally

prove the original identity of the authenticator device or verify the trustworthiness

of the device. Depending on the attestation conveyance method, the authenticator

may return its Authenticator Attestation GUID (AAGUID), exposing the authenticator’s

maker andmodel, as well as provide a way to verify its authenticity (e.g., by providing

a certificate). Furthermore, using an authenticator’s AAGUID, relying parties may

query the FIDO Alliance Metadata Service (MDS) 8, to get more information about

the authenticator device (e.g., authenticator security level, available user verification

methods and combinations) and verify any attestation certificate returned.

Nevertheless, such an attestation of the authenticator device may expose too

much information (e.g., Authenticator Model and Number), which may be used to

track a user between multiple services. For this reason, an attestation conveyance

preference can be defined, stating the RP’s preference to, no attestation (“none”),

anonymised attestation through a CA (“indirect”), or authenticator generated

attestation (“direct” or “enterprise”). Thus, authenticator devices respond with

different attestation responses based on the requested preference and their

supported attestations or ignore the suggested attestation opting for user privacy.

The RP from its side, may have to reject the authenticator registration if the needed

attestation statement returned is not supported or the given or retrieved information

does not satisfy its policies (e.g., due to failure of verifying any given certificate).

To allow the extension of the available attestation information, plug-able

Attestation Statement Formats are supported byWebAuthn. Due to the nature of this

scheme, the implementation of a RPmay not support all of the attestation statement

formats. The latest WebAuthn standard 9 describes the following attestation

statement formats: None, Packed, TPM, Android Key, Android SafetyNet, FIDO U2F

and Apple Anonymous. The corresponding Attestation Statement Format Identifier

values are listed and maintained in the appropriate registry by IANA 10.

8FIDO Alliance Metadata Service, https://fidoalliance.org/metadata/
9https://www.w3.org/TR/webauthn-2/

10https://www.iana.org/assignments/webauthn/webauthn.xhtml

https://fidoalliance.org/metadata/
https://www.w3.org/TR/webauthn-2/
https://www.iana.org/assignments/webauthn/webauthn.xhtml

11

Chapter 3

Payment Services Directive 2

This chapter will analyse the revised Payment Services Directive 2 (PSD2). Since we

are looking into the directive from the FIDO2/WebAuthn perspective, we will focus

on the sections related to the authentication of the user and how FIDO2 through

WebAuthn can cover the need for Strong Customer Authentication (SCA).

3.1 The Directive (EU) 2015/2366

On November 25 of 2015, the Revised Payment Services Directive1, also known as

PSD2, of European Parliament and of the Council, was released. The directive came

into force on January 16 of 2016 while its rules will take affect on January 13 of 2018,

giving enough time to the market to adapt. The revised directive replaced the PSD1 2

and amended 3 Directives3 and 1 Regulation4.

The PSD2 aims to regulate the payment transactions, focusing, among others,

into ensuring the protection of customers when using online payment services.

Many articles of the directive sets a number of requirements directly focusing on

strengthening the authentication of the users. In particular, as defined in Article 97

(named "Authentication"), a strong customer authentication (SCA)may be required to

authenticate when a) the user accesses an online account, b) initiates an electronic

payment transaction or c) carries out an action online which may have a risk of

payment fraud.

Specifically, the strong customer authentication (SCA) is defined by the PSD2 as:

"authentication based on the use of two or more elements categorised
as knowledge (something only the user knows), possession (something
only the user possesses) and inherence (something the user is) that are
independent, in that the breach of one does not compromise the reliability
of the others, and is designed in such a way as to protect the confidentiality
of the authentication data"

Based on the given definition, the directive defines strong customer

authentication as an authentication mechanic which relies on at-least two elements.

Those two authentication elements can be chosen from the following 3 categories

of elements:

1Payment services (PSD2) - Directive (EU) 2015/2366, https://ec.europa.eu/info/law/
payment-services-psd-2-directive-eu-2015-2366_en

2Payment services (PSD 1) - Directive 2007/64/EC https://ec.europa.eu/info/law/
payment-services-psd-1-directive-2007-64-ec_en

3Directives 2002/65/EC, 2009/110/EC and 2013/36/EU were amended by PSD2.
4Regulation (EU) No 1093/2010

https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://ec.europa.eu/info/law/payment-services-psd-1-directive-2007-64-ec_en
https://ec.europa.eu/info/law/payment-services-psd-1-directive-2007-64-ec_en

12 Chapter 3. Payment Services Directive 2

• knowledge, something only the user knows —A piece of secret information that

the users has to provide. Usually a password, a PIN or an answer to a security

question.

• possession, something only the user possesses —A proof of possession of an

items that the user has to provide. Usually a Smart Device like a smartphone, a

Smart Card or a USB Security Key.

• inherence, something the user is—A biometric proof that can physically identify

the user as an entity. Usually a fingerprint, face recognition or voice recognition.

We have to note here that the directive do not provide examples for each category

of authentication elements. The above given examples are our own interpretation

and were included for clarity.

The directive also defines other security-related requirements regarding

monitoring and logging the appropriate transaction related actions and protecting

transaction related data. Furthermore, transaction risk estimation functionalities to

assess transitions are defined so that additional measures can be taken for high risk

transactions. Lastly, the directive sets penalties for (article 97) for payment services

that failed to implement the directive.

To facilitate the smooth implementation of the directive, the directive itself took

advantage of the expertise and capabilities of the European Central Bank (ECB)

and tasked them to release guidelines and draft regulatory technical standards

(RTS) regarding the security of payment services, focusing particularly on the strong

customer authentication.

3.2 RTS on SCA Standards

The latest version of ECB’s Regulatory Technical Standards (RTS) on Strong

Customer Authentication (SCA) and common and secure communication (CSC) 5,

at the time of writing this thesis, was released on 23 February 2017. The RTS sets

a number of general provisions, security measures, recommendations and analyses

the exemptions from SCA.

The RTS were developed with 5 objectives in mind, defined by the PSD2:

• setting the appropriate level of security

• protecting the payment service user’s (PSU’s) funds and personal data

• ensuring fair competition between payment service providers (PSP)

• ensuring the neutrality of the technology and the business-model

• allowing the creation of new, inverted, user-friendly and accessible payment

systems

The RTS try to set general requirements focusing on the security and avoid

enforcing unnecessary requirements that may limit the development possibilities for

5Regulatory Technical Standards on strong customer authentication

and secure communication under PSD2, https://www.eba.europa.
eu/regulation-and-policy/payment-services-and-electronic-money/
regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2

https://www.eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money/regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2
https://www.eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money/regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2
https://www.eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money/regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2

3.3. Opinion of the EBA on the elements of SCA 13

payment services. For this reason, the standards do not set specific technological

requirements, thus technologies such as FIDO are not mentioned.

The main SCA security measures requirements of the RTS are:

• General authentication requirements (article 2) —General requirements mostly

focusing on the necessity of transaction monitoring mechanics, their analysis

criteria of the transaction and their risk based approach they should follow.

• Requirement for reviewing the securitymeasures (article 3)—Requirements over

the auditing of the security measures, the frequency and the scope of the

audit as well as the availability of the results in case they are requested by an

authority.

• Authentication code requirements (article 4) —Describes the requirements

for the secure generation of a unique authentication code per transaction

upon successful authentication. Furthermore it defines the needed security

measures to protect the services that generate the authentication codes.

• Dynamic linking requirements (article 5) —Defines the requirements to inform

the user of the transaction amount bind to the authentication code. Ensuring

the appropriate consent is given by the user and setting the appropriate

measures to ensure confidentiality, authenticity and integrity of the transaction

amount and information displayed to the user.

• Requirements of the elements (article 6, 7, 8 and 9) —Describing the

requirements for each type of authentication element (knowledge, possession,

devices and software linked to inherence elements) as well as requirements

independent to the authentication element.

3.3 Opinion of the EBA on the elements of SCA

Since the RTS are technology independent, questions has been raised during

the development, implementation, and adaption of the existing services to meet

compliance with the new directive. The EBA released on an opinion on the SCA

elements under PSD26 in order to share their view on the RTS and clarify which

authentication approaches are compliant with the SCA requirements and make

comments on the authentication elements.

3.3.1 Inherence element

Regarding inherence elements, EBA’s view is that they are "biological and behavioural

biometrics, relates to physical properties of body parts, physiological characteristics

and behavioural processes created by the body, and any combination of these".

Examples of inherence elements provided by the EBA include:

• retina scanning

• iris scanning

• fingerprint scanning

6https://www.eba.europa.eu/eba-publishes-an-opinion-on-the-elements-of-strong-customer-authentication-under-psd2

https://www.eba.europa.eu/eba-publishes-an-opinion-on-the-elements-of-strong-customer-authentication-under-psd2

14 Chapter 3. Payment Services Directive 2

• vein recognition

• face geometry

• hand geometry

• voice recognition

• keystroke dynamics

• the angle the user holds the device

• the user’s heart rate

Whether an inherence-based authenticator is compliant or not with the SCA is

determined by it implementation, as the element should have a very low probability

to falsely authenticate another user.

EBA provided an indicative list of compliant and non compliant inherence

elements as an example past of which is shown in Table 3.1.

TABLE 3.1: List of possible inherence elements provided by EBA.

Element is SCA compliant?
Fingerprint scanning yes

Voice recognition yes

Vein recognition yes

Hand geometry yes

Face geometry yes

Retina scanning yes

Iris scanning yes

Keystroke dynamics yes

Heart rate yes

Memorised swiping path no

3.3.2 Possession element

Regarding possession elements, EBA’s view is that they don’t have to be only physical

possession but also possession of something that is not physical such as an

application. In order to use a device as a possession element if a reliable method

could be used to confirm the possession and provide evidence. As described by

EBA, such evidence could be an OTP generated by the possession element device, a

text message or a push notification. Regarding possession elements with evidence

based on keys, in order to be conformant, there should be a binding process ensuring

that only this device is linked to the evidence. Furthermore, digital signatures, such

as a QR code of a card, could also be used as a possession element. Note that other

information printed on cards, such as security codes, are not acceptable evidence of

a possession element.

Once again, EBA provided an indicative list of compliant and non compliant

possession elements as an example past of which is shown in Table 3.2.

3.4. FIDO Alliance review of RTS for SCA 15

TABLE 3.2: List of possible possession elements provided by EBA.

Element is SCA compliant?
Possession of SIM card (SMS OTP as evidence) yes

Hardware or software token generator (OTP as evidence) yes

Hardware or software token (signature as evidence) yes

Card with QR code (scan QR as evidence) yes

App using security chip embedded into a device yes

Card (evidence through card reader) yes

Card (evidenced by dynamic security code) yes

App installed on the device no

Card (evidenced by printed card details) no

Card (evidenced by printed OTP) no

3.3.3 Knowledge element

Regarding knowledge elements, EBA’s points out the need to have mitigation

measures in place to block access to unauthorised parties as a result of the risk

of disclosing those knowledge elements to 3rd parties. Once again, EBA provided an

example list of knowledge elements:

• a password

• a PIN

• knowledge based response to challenges

• knowledge based response to questions

• a passphrase

• a memorised swiping path

Information printed on cards should not be considered a knowledge element. On

the other hand, security codes delivered to the user separately form the card, can be

used as knowledge elements. Furthermore, based on EBA’s opinion, a user ID, such

as a username or an email, is not to be considered as knowledge element. Tokens

such as OTPs can not be considered knowledge are they were not existed before the

authentication process began.

Yet again, EBA provided an indicative list of compliant and non compliant

knowledge elements as an example past of which is shown in Table 3.3.

3.4 FIDO Alliance review of RTS for SCA

As a result of the PSD2, onDecember 20 of 20218, FIDOAlliance released a document

providing a detained review of the Regulatory Technical Standards (RTS) for Strong

Customer Authentication (SCA)7. In this document FIDO Alliance describes how the

FIDO standard can cover these requirements and be compliant with the directive.

As shown in the Figure 3.1, FIDO can be used as as all types of authentication

elements. FIDO authenticators, depending on their supporting mechanics and their

7https://fidoalliance.org/how_fido_meets_the_rts_requirements/

https://fidoalliance.org/how_fido_meets_the_rts_requirements/

16 Chapter 3. Payment Services Directive 2

TABLE 3.3: List of possible knowledge elements provided by EBA.

Element is SCA compliant?
Password yes

PIN yes

Knowledge based challenge questions yes

Passphrase yes

Memorised swing path yes

Username no

Email address no

Card details printed on card no

OTP generated no

Printed list of OTPs no

Authenticator Relying Party
User action (PIN entry, Biometric entry)

PSD2: Element categorised as knowledge
FIDO: PIN

PSD2: Element categorised as inherence
FIDO: biometric verification

PSD2: Element categorised as possession
FIDO: Authenticator

PSD2: Personalised Security Credentia l
FIDO: Private Key

For remote payment
PSD2: Transaction amount and payee
FIDO: Challenge & Transaction text

For remote payment
PSD2: Authentication code with dynamic linking
FIDO: Signed Response

Challenge

Response

PSD2: PSU
FIDO: User

PSD2: ASPSP
FIDO: Replying Party

PSD2: -
FIDO: Public key

FIGURE 3.1: PSD2 and FIDO terminology during authentication.

implementation’s security can be used as authentication elements as shown in the

following list:

• inherence - Authenticator with biometric authentication capabilities.

• possession - The possession of the authenticator device itself.

• knowledge - Authenticator requesting a PIN from the user.

Apart from linking the terminology and presenting the basics of FIDO

authenticators, the document also describes how FIDO covers each of the

requirements set by the RTS. The following paragraphs will list in simplified terms

these requirements and how FIDO covers them based on FIDO Alliance’s analysis.

• Requirement to document, periodically test, evaluate and audit the
implementation (Article 3.1) - FIDO Alliance offers a FIDO security certification

program8 through which the security level of each authenticator could be

assessed.

• Requirement to authenticate based on two or more elements (Article 4.1) -

FIDO authentication by default acts as a possession element authentication.

For the second element, the authentication may use a password send

to the server (when used as second factor authentication) or through an

inherence (biometric) or knowledge (PIN) authentication locally verified by the

authenticator device.

8https://fidoalliance.org/certification/

https://fidoalliance.org/certification/

3.4. FIDO Alliance review of RTS for SCA 17

• Ensuring no information for the element can leak from the authenticator code
and a valid authenticator code can not be regenerated or forged (Article 4.2) -

By design in FIDO authentication, since it uses public-private key signatures for

the signing of the challenges, it is infeasible to leak information for the private

key.

• Ensuring that one can not identify the incorrect element after an
authentication failed, the number of consecutive failed authentication
attempts should not exceed 5 and the communication session of the
authentication data is protected (Article 4.3) - In FIDO, since the authenticator

device acts as a possession element and optionally in combination with

another authentication element, one can not identify the element that failed

the authentication. Furthermore, to ensure the limits for the consecutive failed

authentication attempts one has to check the authenticator metadata in the

FIDO Metadata Service. In addition, FIDO requires the communication with the

relying party to be protected with TLS.

• Requirement to make the user aware of the transaction amount, on which the
authenticator code should be based on and upon a change on the amount the
code should be invalidated (Article 5.1) - FIDO supports these requirements in

two ways. The message signed by the authenticator device may also include

the transaction amount, payee ID and other related data. Alternatively, the

FIDO also supports the "transaction confirmation" mechanic through which,

depending on the authenticator support, a message can be displayed to the

user for approval.

• Ensuring the confidentiality, authenticity and integrity for the amount of the
transaction and the information displayed to the payer during authentication
(Article 5.2) - The server may bind any transaction details to the server

generated challenge and validate them after receiving the authenticator

response. If a transaction confirmationmessage is given the authenticatormay

(depending on the support) display it to the user for confirmation.

• Requirement to mitigate the risk of uncovering a knowledge element to an
unauthorised party as well as ensuring that inherence elements has a very
low probability of false positive identification (Article 6/7/8) - Any knowledge

code or inherence factor are safely stored internally in the authenticator during

registration and verified again by the authenticator thus can not be leaked.

Criteria like "False Acceptance Rate", "False Rejection Rate" and "Presentation

Attack Detection" of an inherence authenticator are assessed by the FIDO

Biometric Certification9.

• Ensuring that the breach of one authentication element can not compromise
the other elements (Article 9) - Since FIDO authenticator devices are by

definition possession elements, we have two cases. Even if an adversary

steals an authenticator device this does not compromise the PIN or biometric

authentication needed. On the other hand, if an adversary steals an

authenticator’s PIN, he still needs access to also steal the authenticator device.

• Requirement for multi purpose devices where any strong customer
authentication element is used to be used with mitigation measures

9https://fidoalliance.org/certification/biometric-component-certification/

https://fidoalliance.org/certification/biometric-component-certification/

18 Chapter 3. Payment Services Directive 2

including separated secure execution environments, security mechanisms to
ensure that the software or device is not altered and if altered, measures to
mitigate consequences (Article 9.2 and 9.3) - The FIDO certification, ensures

the security of the authenticators and allows for 3 possible implementations

of authenticators. First, L1+ security certification is given to devices with pure

software implementations and hardened through security techniques. L2+

security certification is given to devices with Restricted Operating Environment

such as TEE. Lastly, L3 o L3+ security certification is given to implementations

with hardware components like Secure Elements.

• Requirement to mask upon display, and not to store in plain text personalised
security credentials, as well as to protect secret cryptographic material
from unauthorised discosure (Article 22.1 and 22.2) - FIDO authenticators’s

personalised credentials are key pairs, and the private key never leaves the

authenticator device. Furthermore, the FIDO certification program assess the

implementation and records the authenticator device’s certificate level at the

FIDO metadata service10.

• Requires the documentation of the process to manage cryptographic material
associated with the personalised security credentials (Article 22.3) - All

FIDO-related protocols and specifications are fully documented and available

online. Furthermore the FIDO metadata service provide additional information

on the authenticator devices.

• Ensure that personalised security credentials and the authentication codes
are processed and routed under secure environments and according strong
standards (Article 22.4) - Personalised security credentials are generated inside

the authenticator and are never disclosed. The generation and the protection

of the keys is verified by the FIDO certification program and the requirements

are based on recognised industry standards.

• Ensure the creation of personalised security credentials under a secure
environment and mitigate risks related to unauthorised use (Article 23) -

Personalised security credentials are generated inside the authenticator and

are never disclosed. The generation and the protection of the keys is verified

by the FIDO certification program. Without the knowledge of the PIN or the valid

identification of the user by the biometric authentication an unauthorised party

can not use the authenticator device.

• Ensure that the association of the user with the personalised security
credentials is performed under a secure environment and using SCA (Article

24.1 and 24.2) - After the payment service conduct a proper user identity

identification, the FIDO registration process can be conducted to generate a

random new key pair for the user and associating it to the payment service and

user identity. During this process the authenticator will verify the identity of the

user by a PIN or a biometric authentication.

• Ensure secure delivery mechanics for the delivery of the personalised
security credentials, ensuring the authenticity of the software and ensuring
the secure activation before use (Article 25.1 and 25.2) - During the FIDO

registration process, no private information is shared and after the process, the

10https://fidoalliance.org/metadata/

https://fidoalliance.org/metadata/

3.5. Identified Issues and Problems 19

authenticator is automatically enabled. The private key never leaves the device

and only requests from the relying party can be signed by it.

• Ensure that the reactivation of the personalised security credentials follows
the same secure procedures as their creation and delivery (Article 26) - Since

the relying party service has the public key of the created credentials, they can

flag themas activated of disable based on their own needs and policies, without

the need to exchange any information with the authenticator.

• Ensure that the appropriate procedures to destroy, deactivate or revoke
of personalised security credentials and related information as well as
the secure reuse is established, documented and implemented if the
authenticator devices can be reused (Article 27) - Since the relying party service

has the public key of the created credentials, they can flag them as activated of

disable based on their own needs and policies, without the need to exchange

any information with the authenticator. We have to note that the credentials are

randomly generated during the registration process.

3.5 Identified Issues and Problems

FIDO2 and its extension to web sites, WebAuthn, can provide a strong authentication

solution compatible with all the web, providing an solution to the password problem.

Even though theoretically FIDO alsomeets the requirements set by PSD2 and the RTS

for SCA, there are a number of practical issues that hold back its adoption by service

providers.

In this section we will analyse the problems we identified and try to propose

solutions where possible. Our focus will be on problems affecting both FIDO2 and

WebAuthn.

3.5.1 Certification of Relying Party FIDO services

The FIDO Alliance created a certification program for both FIDO servers and FIDO

authenticator devices. Although the certification program of the FIDO authenticators

focus on their security, this is not the case with the FIDO server as the focus

is on their compatibility. This means that payment service providers would have

to develop their own FIDO2/WebAuthn implementation and ensure it meets their

security requirements. This is not an easy task though as the community of

FIDO2/WebAuthn experts is not mature enough due to the recent standardisation

of WebAuthn.

Tomake things worst, the complexity of FIDO2 andWebAuthn, combinedwith the

lack of tools, makes the implementation testing difficult and inefficient. This may

deter many service providers from implementing FIDO2/WebAuthn due to the high

risk of bad implementing the protocol or configuring the service.

To this end, we worked on providing a novel tool, presented on Section ??, able
to aid penetration testers and auditors into assessing FIDO2/WebAuthn relying party

services, and also help developers learn how FIDO2 and WebAuthn works and debug

or test their implementations.

FIDO Alliance should also enhance their FIDO server certification program by

including an evaluation of the server’s security. Tools similar to the one we released

may aid in this process. As is the case with the authenticator devices certification

20 Chapter 3. Payment Services Directive 2

program, multiple security levels could be set for the server implementation, giving a

better understanding of their security capabilities.

3.5.2 Adoption and Compatibility

WebAuthn adoption by browsers and operating systems has increased the last years,

making the technology available to almost every user. All major operating systems,

for both desktop andmobile devices support FIDO and inmany case they also feature

an embedded FIDO authenticator device inside. Furthermore, the latest industry

trends which sets the existence of TMP chips on every computer as a requirement,

will further increase the availability of FIDOauthenticatorswith a strong security level.

Browser support is also here, with all major browser supporting WebAuthn.

Though, browsers implement WebAuthn consciously, to avoid introducing new

vulnerabilities, thus removing any part of the standard that may be used to

compromise the browser’s security or attack the user’s privacy. For this reason,

some FIDO features (such as the Transaction Message) although they were initially

included on the first version of WebAuthn, they were later removed as no one

implemented them (questioning their security).

These compatibility concerns may raise questions on whether an organisation

should invest on WebAuthn or wait first until the standard is mature enough. Maybe

this is ther reason why we don’t see service providers withWebAuthn support. On the

other hand, the current state of the compatibility shows that the support is already

here and thus maybe this is the time to start adopting WebAuthn.

3.5.3 Tolerance of Failed Authentications

One critical measure, especially important for authentication based on knowledge

element, to protect against attacks is the block (some times temporary) of the service

after a number of failed authentication attempts. From the FIDO authenticator

side, depending on its implementation, it may block or limit with timeouts the user

interaction attempts when the user fails to authenticate successfully. For example,

an authenticator may be blocked after the user entered 5 times a wrong PIN code. In

this way it makes it harder for someone to uncover the PIN using brute force. Though

we have to keep in mind that since such authenticator features are not mandatory,

and as such their implementation it’s up to their manufacturer.

In the same way, ideally, the relying party should also monitor and limit (if

needed) the actually WebAuthn authentication. Though, since FIDO is not an one

step verification process but a two step challenge response process, questions arise

on what is a failed authentication. Of course an invalid response by the client can

be flagged as a failed authentication, but what about an attempt where a challenge

was requested but no reply was send to the server? On top of that, the WebAuthn

process may take multiple seconds (even minutes) to be completed, as actions

have to be done by human users (e.g. wait for a user to find his/her USB security

key), thus making it important to link all info and timers with the challenge and the

authentication session.

3.5. Identified Issues and Problems 21

3.5.4 Selecting Trusted Authenticator Devices

As pointed out by FIDO Alliance review of the Regulatory Technical Standards

(RTS) for Strong Customer Authentication (SCA)11, not all authenticator devices are

compliant with the PSD2 requirements. For example, based on their implementation,

some authenticators may lack the appropriate security measures to protect the

private key (personalised security credentials), may have a higher that accepted rate

of false positive biometric identification or lack any block mechanics after a number

of failed attempts.

To ensure that their users are using only authenticator devices approved by the

relying party (in our case the service provider), there are 2 options. One may rely on

the information given by the FIDO Alliance metadata service12 and assess whether

the given authenticator device meets the payment service’s policy. Otherwise,

one would have to create a list of accepted devices, tested or provided by the

payment service itself, and accept only those for the authentication of the users.

Both methodologies are based on the attestation provided by the devices thus the

authenticity of the authenticator device is ensured.

3.5.5 Availability Authenticator Devices

Based on the security requirements set by PSD2 and the RTS, as also pointed out

by the FIDO Alliance review of the Regulatory Technical Standards (RTS) for Strong

Customer Authentication (SCA)13, the FIDO Alliance metadata service14 plays a vital

role into assessing whether an authneticator device meets the security requirements

set by PSD2 and the replying party’s security policy.

The FIDO Alliance metadata service lists detailed information for all the

authenticator register to it. The service can provide information regarding each

authenticator device capabilities aswell as certificates to verify the authenticity of the

generated credentials during registration. By using this information, service providers

can assess whether the credentials were generated by an authenticator device that

meets their criteria (security requirements) and can be trusted.

For this reason we looked into the authenticators listed under the FIDO Alliance

metadata service. Table 3.4 To filter the authenticators and count the available

authenticators, we developed a tool15 allowing though an easy to use user interface

to pick the filters of the user’s interest.

Based on the statistics we generated, one can see that there are limited

availability in available authenticators as the security requirements increase. Most

importantly, by looking at the certifications16 of the available authenticators, there

are only 5 L2 certified authenticators, while there is non L3 certified authenticator.

Similarly, regarding the security level of the available authenticators, there are 4

authenticators with 256-bit cryptographic strength, while there isn’t any authenticator

with a cryptographic strength of 512-bit. To make mater worst, if a payment service

provider wants to use a L2 certified authenticator as an possession and inherence

element, there is only on authenticator available under these criteria at the metadata

service.

11https://fidoalliance.org/how_fido_meets_the_rts_requirements/
12https://fidoalliance.org/metadata/
13https://fidoalliance.org/how_fido_meets_the_rts_requirements/
14https://fidoalliance.org/metadata/
15https://github.com/GramThanos/FIDO-Authenticator-Metadata-Filters
16https://fidoalliance.org/certification/authenticator-certification-levels/

https://fidoalliance.org/how_fido_meets_the_rts_requirements/
https://fidoalliance.org/metadata/
https://fidoalliance.org/how_fido_meets_the_rts_requirements/
https://fidoalliance.org/metadata/
https://github.com/GramThanos/FIDO-Authenticator-Metadata-Filters
https://fidoalliance.org/certification/authenticator-certification-levels/

22 Chapter 3. Payment Services Directive 2

TABLE 3.4: Statistics of the authenticators under the FIDO Alliance

metadata

Criteria Number
All authenticators 101

FIDO2 authenticators 49

U2F authenticators 35

UAF authenticators 17

L1 certified authenticators 54

L1+ certified authenticators 0

L2 certified authenticators 5

L2+ certified authenticators 0

L3 certified authenticators 0

L3+ certified authenticators 0

128-bit cryptographic strength authenticators 62

256-bit cryptographic strength authenticators 4

512-bit cryptographic strength authenticators 0

Inherence supporting authenticators 41

Knowledge supporting authenticators 32

L1/L2 Certified, FIDO2/U2F, inherence supporting,

hardware/tee protected authenticators 17

L1/L2 Certified, FIDO2/U2F, knowledge supporting,

hardware/tee protected authenticators 20

L2 Certified, FIDO2/U2F, inherence supporting authenticators 1

L2 Certified, FIDO2/U2F, knowledge supporting authenticators 1

To this end, even if FIDO can meet the requirements set by the PSD2, this does

not means that appropriate authenticator device exists. Based on our analysis of

the available authenticator devices on FIDO Alliance metadata service, there are not

much authenticator options if your security requirements are over the basic level. We

hope this to change in the future.

23

Chapter 4

Implementations

4.1 StrongMonkey

FIGURE 4.1: StrongMonkey, a PHP SDK for interacting with FIDO2

Server API v3.0.0.

This section looks into the StrongMonkey, an software development kit (SDK) we

developed to assist in the implementation of custom FIDO2/WebAuthn services. The

SDK is open-source released under the GNU LGPLv2.1 license and can be fund online

at GitHub1. StrongMonkey provides to developers libraries through which they can

interact with servers featuring the StrongKey’s FIDO2 Server API2.

4.1.1 Introduction

The authentication module is one of the most important parts of an application, as

thismodule is responsible formanaging the user access to the application’s services.

Developers have to possess knowledge on how to develop it securely using trusted

authentication mechanics. However, even the simplest authentication mechanics,

like the traditional username and password, are not so trivial to implement correctly

(e.g. using salting, using password hashing algorithms).

FIDO2/WebAuthn authentication is more complex. Developers tasked to

implement a WebAuthn authentication have to be familiar with the standard and

implement it correctly to reach conformance. Hence, depending on the size

of the project, it is easier, faster, cheaper and more secure to use an existing

FIDO2/WebAuthn server or library. For small single application projects, the use

of a WebAuthn library may the best option, while for bigger projects with multiple

1https://github.com/GramThanos/StrongMonkey
2https://demo4.strongkey.com/getstarted/#/openapi/fido

https://github.com/GramThanos/StrongMonkey
https://demo4.strongkey.com/getstarted/#/openapi/fido

24 Chapter 4. Implementations

application and bigger numbers of active users, the use of a specialised FIDO2 server

may be wiser.

StrongKey FIDO2 Server (SKFS) is an open source FIDO server. An application’s

back-end may contact the SKFS server through its REST (JSON) or SOAP (XML)

API. The server’s API allows an application to register new authenticator devices,

authenticate users using already registered devices, as well as manage the already

registered keys of a user. A description of the SKFS API is available on StrongKey’s

website3. The SKFS is free for use and the community edition of the server is

available on GitHub4 along with other proof-of-concept applications and utilities.

For the faster adoption of FIDO2 and WebAuthn, it is important to promote

open source implementation and allow developers to use the WebAuthn technology

seemingly with their application through an easy to implement way. For this reason

we developed StrongMonkey, an SDK that developers can use to connect their

application with an FIDO2 server that supports the SKFS API (e.g. StrongKey FIDO2

Server).

4.1.2 Implementation

Web
Browser

Web
Application

StrongMonkey

FIDO2
Server

User

FIGURE 4.2: Overview connection flow using StrongMonkey.

StrongMonkey SDK comes in the form of a library, that can be included in the

application code and convert the FIDO2 server’s API into function calls, as shown on

Figure 4.2, acting as a middle-ware to simplify the usage of the service. The SKD

handles all the authentication procedures between the application server and the

FIDO2 server as well as all the parsing needed to be done to pass the appropriate

parameters to the FIDO2 server. A detailed flow of the authentication process using

StrongKey is shown on Figure 4.3. The SDK is currently available in 2 languages,

Python and PHP, thus is compatible with most web applications.

StrongMonkey offers 8 methods corresponding to the 8 main functions of the

FIDO2 server:

• Preregister - Generate the request to be forwarded to the client for the

registration of a new authenticator device.

• Register - Forward the authenticator response to the server to register the

generated credentials.

• Preauthenticate - Generate the request to be forwarded to the client for the

authentication with an authenticator device.

• Authenticate - Forward the authenticator response to the server to validate the

challenge signature.

3https://demo4.strongkey.com/getstarted/#/openapi/fido
4https://github.com/StrongKey/fido2

https://demo4.strongkey.com/getstarted/#/openapi/fido
https://github.com/StrongKey/fido2

4.1. StrongMonkey 25

Server (Relying Party)Client (OS)

Client (Browser)

Authenticator

(internal)

Authenticator (external)

Username

Public Key, Challenge

Challenge Response

Human

Interaction

Get PubKey for Username

Generate Challenge

Validate Response

C
h
a
lle

n
g
e
,

R
P

 i
d
,

K
e
y

1

2

3

4

C
h

a
lle

n
g

e
 R

e
s
p

o
n

s
e

5

5

FIDO ServerStrongMonkey

FIDO Alliance Metadata
Service

FIGURE 4.3: Detailed FIDO2/WebAuthn authentication flow using

StrongMonkey.

• Update key info - Change the metadata saved for a particular authenticator

(credentials).

• Get key info - Load the metadata information for a particular authenticator

(credentials).

• Deregister - Remove a particular authenticator (credentials).

• Ping - Get the server information, used to test the connection with the server.

Each function formats the payload appropriate and calls the request function

providing the endpoint to call and the payload to send, as shown in Figure 4.4.

The request function will call prepare the request’s authentication, by attaching the

username and password or sign the request with HMAC, and create the request to

the FIDO2 server. After receiving the request, the data provided will be parsed and

returned to the application code.

Application

preregister()

register()

preauthenticate()

authenticate()

updatekeyinfo()

getkeysinfo()

deregister()

ping()

request()

generateHMAC()

parseResponse()

FIDO2
server

FIGURE 4.4: StrongMonkey main functions flow.

26 Chapter 4. Implementations

4.1.3 Usage

In this section we will explain briefly how developers may use the StrongMonkey SDK

to connect their application with a supported FIDO service. As an example, the PHP

version of the StrongMoneky will be used.

StrongMonkey Object

The developer has to first generate a StrongMonkey object specifying the FIDO2

server to connect to, the protocol to use as well as the authentication method and

the credentials to authenticate with the server with.

1 new StrongMonkey(
2 string $hostport,
3 integer $did,
4 string $protocol,
5 string $authtype,
6 string $keyid,
7 string $keysecret
8) : StrongMonkey

To initialise the object, the following 6 parameters specifying the connection with

the FIDO2 server has to be given:

• $hostport

– Host and port to access the FIDO SOAP and REST formats

* "http://<FQDN>:<non-ssl-portnumber>" or

* "https://<FQDN>:<ssl-portnumber>"

• $did

– Domain ID e.g. 1

• $protocol

– Web socket protocol; ’REST’ or ’SOAP’ (only REST is supported)

• $authtype

– Authorization type; ’HMAC’ or ’PASSWORD’

• $keyid

– PublicKey or Username (keys should be in hex)

• $keysecret

– SecretKey or Password (keys should be in hex)

The following code is an example of initialising the StongMonkey object using

HMAC authentication:

1 // Prepare Object
2 $monkey = new StrongMonkey(
3 ’https://strongkey.unipi.gr:8181’, // URL of your FIDO2 server
4 1, // Domain ID (usually 1)
5 ’REST’, // Protocol ti use (currently always REST)
6 ’HMAC’, // Authentication method to use

4.1. StrongMonkey 27

7 ’162a5684336fa6e7’, // Default key ID (for HMAC)
8 ’7edd81de1baab6ebcc76ebe3e38f41f4’ // Default secret key (for HMAC)
9);

The following code is an example of initialising the StongMonkey object using

PASSWORD authentication:

1 // Prepare Object
2 $monkey = new StrongMonkey(
3 ’https://strongkey.unipi.gr:8181’, // URL of your FIDO2 server
4 1, // Domain ID (usually 1)
5 ’REST’, // Protocol ti use (currently always REST)
6 ’PASSWORD’, // Authentication method to use
7 ’svcfidouser’, // Default username (for PASSWORD)
8 ’Abcd1234!’ // Default password (for PASSWORD)
9);

Preregister

To initialize a key registration challenge with the FIDO server, the preregister method

has to be called.

1 $monkey->preregister(
2 string $username[,
3 string $displayname = null[,
4 array|string $options=null[,
5 array|string $extensions=null
6]]]) : integer|array

The preregister, method takes as an input 1 required parameter and 3 optional:

• $username

– Username of the user

– Based on the WebAuthn standard:

* Human-palatable identifier for the user account, intended only for

display, helping distinguish form other user

* The relay party MAY let the user choose this value

* ex. john.smith@email.com (email) or +306901234567 (telephone)

• $displayname

– Display name for the user

– Based on the WebAuthn standard:

* Human-palatable name for the user account, intended only for display

* The relay party SHOULD let the user choose this value

* ex. J. Smith (full name)

• $options

– Object of options

– Options support depend on your FIDO2 server

• $extensions

– Object of extensions

28 Chapter 4. Implementations

– Extensions support depend on your FIDO2 server

The following code is an example call and the response is forwarded to the

front-end:

1 // Request to start a key registration
2 $response = $monkey->preregister($username);
3 // Check for errors
4 if ($monkey->getError($response)) {
5 die(’Failed to start pre-registeration with the FIDO2 server.’);
6 }
7 // Maybe save the challenge on the session so that you can match
8 // it when you receive the reply
9 $_SESSION[’challenge’] = $response->Response->challenge;

10 // Prepare object for WebAuthn
11 $webauthn = $response->Response;
12 // Set your Replay Party info
13 // Relaying Party ID, a valid domain string that identifies the
14 // WebAuthn Relying Party (It should be the webpage domain
15 // or a subset of the domain)
16 $webauthn->rp->id = strtok($_SERVER[’HTTP_HOST’], ’:’);
17 // Human-palatable identifier for the Relying Party,
18 // intended only for display
19 $webauthn->rp->name = ’StrongMonkey’;
20 // Reply as JSON (assuming that the JavaScript will
21 // handle the request through ajax)
22 http_response_code(200);
23 header(’Content-Type: application/json’);
24 exit(json_encode($webauthn));

Register

To send a register response to the FIDO server, the register method has to be called.

1 $monkey->register(
2 array|string $response[,
3 array|string $metadata=null
4]) : integer|array

The register, method takes as an input 1 required parameter and 1 optional:

• $response

– Response data from the authenticator

• $metadata

– Additional meta data

– Meta data needed depend on your FIDO2 server

– e.g. StrongKey FIDO2 Server requires an object as shown on the example

bellow

The following code is an example call:

1 // Assuming that the reply from the client is at the
2 // variable $authenticator_response
3 // Before forwarding the request to the server,
4 // you may want to check the challenge
5 $clientDataJSON = json_decode(base64_decode(

4.1. StrongMonkey 29

6 $authenticator_response[’response’][’clientDataJSON’]
7));
8 if (
9 !$clientDataJSON ||

10 $_SESSION[’challenge’] !== $clientDataJSON->challenge
11) {
12 die(’Authentication failed due to challenge mismatch.’);
13 }
14 // Request to register Key
15 $response = $monkey->register($authenticator_response, array(
16 ’version’ => ’1.0’,
17 ’create_location’ => ’webapp’,
18 ’username’ => $username,
19 ’origin’ => ’https://’ . $_SERVER[’HTTP_HOST’]
20));
21 // Check for errors
22 if ($monkey->getError($response)) {
23 die(’Failed to register key to the FIDO2 server.’);
24 }
25 // Print response message
26 die($response->Response);

Preauthenticate

To initialize a key authentication challenge with the FIDO server, the preauthenticate

method has to be called.

1 $monkey->preauthenticate(
2 string $username[,
3 array|string $options=null[,
4 array|string $extensions=null
5]]) : integer|array

The preauthenticate, method takes as an input 1 required parameter and 2

optional:

• $username

– Username of the user

• $options

– Object of options

– Options support depend on your FIDO2 server

• $extensions

– Object of extensions

– Extensions support depend on your FIDO2 server

The following code is an example call and the response is forwarded to the

front-end:

1 // Request to start an user authentication
2 $response = $monkey->preauthenticate($username);
3 // Check for errors
4 if ($monkey->getError($response)) {
5 die(’Failed to start pre-authenticate with the FIDO2 server.’);
6 }

30 Chapter 4. Implementations

7 // Maybe save the challenge on the session so
8 // that you can match it when you receive the reply
9 $_SESSION[’challenge’] = $response->Response->challenge;

10 // Prepare object for WebAuthn
11 $webauthn = $response->Response;
12 http_response_code(200);
13 header(’Content-Type: application/json’);
14 exit(json_encode($webauthn));

Authenticate

To send the authenticate response to the FIDO server, the authenticate method has

to be called.

1 $monkey->authenticate(
2 array|string $response[,
3 array|string $metadata=null
4]) : integer|array

The authenticate, method takes as an input 1 required parameter and 1 optional:

• $response

– Response data from the authenticator

• $metadata

– Additional meta data

– Meta data needed depend on your FIDO2 server

– e.g. StrongKey FIDO2 Server requires an object as shown on the example

bellow

The following code is an example call:

1 // Assuming that the reply from the client
2 // is at the variable $authenticator_response
3 // Before forwarding the request to the server,
4 // you may want to check the challenge
5 $clientDataJSON = json_decode(base64_decode(
6 $authenticator_response[’response’][’clientDataJSON’]
7));
8 if (
9 !$clientDataJSON ||

10 $_SESSION[’challenge’] !== $clientDataJSON->challenge
11) {
12 die(’Authentication failed due to challenge mismatch.’);
13 }
14 // Here you may also want to check if
15 // the username provided exists as a user
16 // Request to authenticate user
17 $response = $monkey->authenticate($authenticator_response, array(
18 ’version’ => ’1.0’,
19 ’last_used_location’ => ’webapp’,
20 ’username’ => $username,
21 ’origin’ => ’https://’ . $_SERVER[’HTTP_HOST’]
22));
23 // Check for errors
24 if ($monkey->getError($response)) {
25 die(’Failed to authenticate user with the FIDO2 server.’);

4.1. StrongMonkey 31

26 }
27 // Print response message
28 die($response->Response); // This will be blank

Update key info

To update key information, the updatekeyinfo method has to be called.

1 $monkey->updatekeyinfo(
2 string $status,
3 string $modify_location,
4 string $displayname,
5 string $keyid
6) : integer|array

The updatekeyinfo, method takes as an input 4 required parameter:

• $status

– The status of the key (Active, Inactive)

• $modify_location

– Modify location

• $displayname

– Display name of the key

• $keyid

– Id of the key to change

The following code is an example call:

1 // Request to update Key
2 $response = $monkey->updatekeyinfo(
3 ’Inactive’,
4 ’webapp’,
5 ’Text Display Name’,
6 $keyid
7);
8 // Check for errors
9 if ($monkey->getError($response)) {

10 die(’Failed to update key to the FIDO2 server.’);
11 }
12 // Print response message
13 $keys = $response->Response;

Get key info

To get user’s keys information from the FIDO server, the getkeysinfo method has to

be called.

1 $monkey->getkeysinfo(string $username) : integer|array

The getkeysinfo, method takes as an input 1 required parameter:

• $username

32 Chapter 4. Implementations

– Username of the user

The following code is an example call:

1 // Request to get Keys from user
2 $response = $monkey->getkeysinfo($username);
3 // Check for errors
4 if ($monkey->getError($response)) {
5 die(’Failed to get keys from the FIDO2 server.’);
6 }
7 // Retrieve keys from the response
8 $keys = $response->Response->keys;

Deregister

To delete user’s key information from the FIDO server, the deregister method has to

be called.

1 $monkey->deregister(string $keyid) : integer|array

The deregister, method takes as an input 1 required parameter:

• $keyid

– Id of the key to deregister

The following code is an example call:

1 // Request to delete key
2 $response = $monkey->deregister($keyid);
3 // Check for errors
4 if ($monkey->getError($response)) {
5 die(’Failed to deregister key on the FIDO2 server.’);
6 }
7 // Print response message
8 die($response->Response);

Ping

To send a ping to the FIDO server to check if up, the ping method has to be called.

1 $monkey->ping() : boolean|string

The ping, method doesn’t take any parameter. The following code is an example

call:

1 // Ping request
2 $response = $monkey->ping();
3 // Check for errors
4 if ($monkey->getError($response)) {
5 die(’Failed to ping FIDO2 server.’);
6 }
7 // Print response
8 die($response);

4.1. StrongMonkey 33

4.1.4 DEMO Application

Along with the StrongMonkey SDK, a DEMO web application5 was developed to

showcase how FIDO2/WebAuthn can be deployed. The application is based

on StrongMonkey and StrongKey FIDO2 Server to and allows users to create a

DEMO temporal account, register FIDO authenticator devices using WebAuthn and

experience password-less authentication with FIDO. Additional, an experimental

FIDO sign in with a QR code and a smartphone as an authenticator device was

implemented to show how the technology can be extended even further to provide

innovated solutions.

Use case example

After creating an account, a user is able to sign into the DEMO web application

using a traditional username and password, as shown in Figure 4.5. Right now there

are no FIDO authenticator devices registered on the account, and thus a password

authentication is the only option.

FIGURE 4.5: The user has initially to use the traditional username &

password login.

After the initial login, the user can visit his/her account "Manage Keys" settings

page to register authenticator devices and enable secure password-less login with

FIDO/WebAuthn. Figure 4.6 shows a user initialising the WebAuthn credentials

registration process by clicking the "Add Key". On this particular case, the user’s

computer featured a Windows 11 OS, and thus Windows Hello (which can be used

as a FIDO platform authenticator) handled the request. Since the user’s device didn’t

had a biometric sensor, the user had to authenticate using his Windows Hello PIN, to

allow the internal authenticator to generated the requested credentials and forward

them to the FIDO service. We have to note that the Windows Hello mechanics are

based on the TPM chip of the device and latest Windows 11 compatible computers

require by default a TPM chip to operate.

Through the "Manage Keys" page, a user is also able to remove a registered FIDO

device from his/her account. Just like on a laptop, a user can use the browser of

his/her smartphone to register its internal authenticator device (Android and iOS do

support their own internal FIDO authenticator devices). Figure 4.7 shows registered

keys of the user, one key from his/her Windows Hello authenticator and one key from

his/her Android smartphone device.

5https://github.com/GramThanos/StrongMonkey/tree/a17fc78ad4b5d445ca402c9c40eb1fd0ca980bcf/
php/demo-app

https://github.com/GramThanos/StrongMonkey/tree/a17fc78ad4b5d445ca402c9c40eb1fd0ca980bcf/php/demo-app
https://github.com/GramThanos/StrongMonkey/tree/a17fc78ad4b5d445ca402c9c40eb1fd0ca980bcf/php/demo-app

34 Chapter 4. Implementations

FIGURE 4.6: User registers a Windows Hello authenticator device on

his/her account.

FIGURE 4.7: User manage the security keys registered on the account

listed under the Manage Keys page.

After having registered an authenticator device on his/her account, the user is

now able to use FIDO login and sign in password-less. After providing the account

username and clicking the "Login with FIDO" button, the WebAuthn credentials

get process. Figure 4.8 shows the user using his/her device Windows Hello to

authenticate to the service. Optionally, through the user interface the user may

also select to use a Security Token (a FIDO compatible USB, Bluetooth or NFC

authenticator). Depending on the authenticator’s features, the user may use a PIN, a

button, or his biometrics (e.g. touch the fingerprint sensor) to approve the action.

As mentioned, earlier, an experimental QR code authentication flow was

developed and implemented on the DEMO application to showcase the possibilities

of the technology. The QR code authentication flow works similar as the normal

FIDO2/WebAuthn authentication flow, with the exception that the authentication

session between the server and the client is extended to a 3rd device that has

access to the authenticator device registered to the user account. Assuming that a

user initiates the FIDO QR code authentication flow on his/her laptop device, he can

scan the QR code, shown in Figure 4.9, with his/her smartphone device and open

the website on a mobile Web browser that supports WebAuthn. As presented on

Figure 4.10, for security reasons the user will then see the information of the client

device requesting permission to sign into his/her account.

4.1. StrongMonkey 35

FIGURE 4.8: User uses WebAuthn sign in with the Windows Hello

authenticator.

By selecting the "Authenticate" options, the normalWebAuthn authentication flow

will start and request authentication using the device’s internal authenticator device.

After successful authentication, as shown on Figure 4.10, the laptop device of the

user will be also authenticated and signed into the account.

4.1.5 Conclusions

To make the development of FIDO2/WebAuthn enabled secure authentication

services easier, developers need more libraries and servers. Furthermore, to make

the implementation easier tools and libraries are needed to handle the trivial but

complex procedures needed to connect with such services.

StrongMonkey is a step forward into simplifying the implementation of

FIDO2/WebAuthn into applications of all kinds. Our developed SDK provides

a middleware for both Python and PHP applications connecting them with the

StrongKey FIDO2 Server and other services featuring the same API. On top of that,

this allows an organisation to implement FIDO2/WebAuthn authentication across

multiple application and websites, linking them into a single FIDO2 authentication

server.

36 Chapter 4. Implementations

FIGURE 4.9: User use generates QR code to authenticate on PC using

his/her smartphone’s authenticator.

FIGURE 4.10: After scanning the QR code, user is asked to be

authenticated in order to allow another device to sign into his/her

account.

4.1. StrongMonkey 37

FIGURE 4.11: User was successfully authenticated on smartphone and

his/her PC was signed in.

38 Chapter 4. Implementations

4.2 StrongBee

FIGURE 4.12: StrongBee, FIDO2/WebAuthn server in python.

This section looks into the StrongBee, FIDO2/WebAuthn server in python, based

on Yubico’s FIDO 2.06 library and Flask7, we developed as an asset to enable the

implementation of FIDO2/WebAuthn services managed through a single server. The

server is open-source released under the GNU LGPLv2.1 license and can be fund

online at GitHub8. StrongBee supports the StrongKey’s FIDO2 Server API9 and thus

can be used as a light alternative to the popular StrongKey’s FIDO2 Server10.

4.2.1 Introduction

Implementing a password authentication securely does require a number of things

such as salting and hashing passwords but can be considered relative easy

when compared with FIDO2/WebAuthn authentication implementation. Indeed,

implementing FIDO2 and WebAuthn authentication requires deep knowledge of the

related specifications and knowledge over various different technologies often found

both on the front-end and on the back-end of a service. Hence, implementing a FIDO

authentication requires knowledge possessed by specialised experts.

Tomitigate the need of specialists on the area and alsominimise implementation

issues and vulnerabilities, libraries and specialised fully built servers can be used

instead or re-implementing everything fromscratch. As is the casewith cryptography,

also with FIDO2/WebAuthn authentication it easier and more efficient to use

WebAuthn libraries and ready to use FIDO2 servers.

One open source solution for implementing FIDO2 authentication is the

StrongKey FIDO2 Server (SKFS)11. SKFS is written in Java and by inspecting it code,

it is based in an server initially intended for FIDO U2F authentication. The server

also defines an API, through which application can connect and use the services

of the server. Additionally, it has many features making it ideal for deploying a

central single FIDO2 server system for managing the FIDO authentication across an

organisation’s users. On the other hand, one may go more technical and look into

6https://github.com/Yubico/python-fido2
7https://github.com/pallets/flask
8https://github.com/GramThanos/StrongBee
9https://demo4.strongkey.com/getstarted/#/openapi/fido

10https://github.com/StrongKey/fido2
11StrongKey FIDO2 Server. Open-source FIDO server, featuring the FIDO2 standard, https://github.

com/StrongKey/fido2

https://github.com/Yubico/python-fido2
https://github.com/pallets/flask
https://github.com/GramThanos/StrongBee
https://demo4.strongkey.com/getstarted/#/openapi/fido
https://github.com/StrongKey/fido2
https://github.com/StrongKey/fido2
https://github.com/StrongKey/fido2

4.2. StrongBee 39

Yubico’s FIDO 2.012 library which apart from themain functions developed to interact

with FIDO compatible authenticator device, it also supports a basic implementation

of a FIDO2/WebAuthn server.

By taking the best parts of both of these projects, we developed a new

FIDO2/WebAuthn server, named StrongBee, targeting smaller projects that want to

provide strong authentication solutions through FIDO2 andWebAuthn. Using the low

level FIDO server functionalities of Yubico’s FIDO 2.0 library and combining it with

StrongKey FIDO2Server’s API, we released amodern, lighter and easiest to use server,

featuring true password-less authentication (without the need to provide not even a

username).

4.2.2 Implementation

Our server implementation is based on Python13 and Flask14 making it easily

deplorable almost any device. The following list provides a brief description of each

file of the server code:

- strongbee - Server source code folder

↪→ api.py - API endpoints code

↪→ authen.py - Service authentication code

↪→ config.py - Configuration code

↪→ models.py - Database models code

↪→ server.py - Main server code

↪→ utilities.py - Helpful functions code

↪→ database.api.db - SQLite database with service credentials (configurable

path)

↪→ database.keys.db - SQLite database with users and authenticator

credentials (configurable path)

↪→ certificate.private.pem - Private SSL certificate for HTTPS (configurable

path)

↪→ certificate.public.pem - Public SSL certificate for HTTPS (configurable

path)

- tests - Service tests folder

↪→ StrongMonkey.py - StrongMonkey library to connect with the service

↪→ test-client.py - Fake web application client to test service

↪→ requirements.txt - Python packages required for the test code

↪→ run.py - Code to execute StrongBee server flask application

↪→ requirements.txt - Python packages required for the StrongBee server

The server implements the StrongKey FIDO2 API and expose the following

endpoints for authorised web applications to use to offer FIDO2/WebAuthn services:

12https://github.com/Yubico/python-fido2
13Python, https://www.python.org/
14Flask,https://flask.palletsprojects.com/

https://github.com/Yubico/python-fido2
https://www.python.org/
Flask, https://flask.palletsprojects.com/

40 Chapter 4. Implementations

• /sbfs/rest/ping - Endpoint to check if the server is running and check its status

• /sbfs/rest/preregister - Endpoint to generate options and challenged for

registering new credentials

• /sbfs/rest/register - Endpoint to send the authenticator’s reply generated based

on the preregister options and if valid register the generated credentials

• /sbfs/rest/preauthenticate - Endpoint to generate options and challenged for

authenticating a user using one of the credentials registered

• /sbfs/rest/authenticate - Endpoint to send the authenticator’s reply generated

based on the preauthenticate options and if valid authenticate the user

• /sbfs/rest/updatekeyinfo - Endpoint to update the metadata saved with

specific credentials

• /sbfs/rest/getkeysinfo - Endpoint to get the metadata saved with specific

credentials

• /sbfs/rest/deregister - Endpoint to remove specific registered credentials

For compatibility reasons the above mentioned endpoints are not only available

at /sbfs/rest/... but also also available under /skfs/rest/..., hence the server

may also be used as a replacement for the StrongKey FIDO2 Server.

4.2.3 Usage

Preparing your system

To execute StrongBee, your system has to have Python 3 and pip already installed

installed. You will also have to get the latest version of StrongBee from the GitHub

repository. You can download the repository in a zip15 or clone it using git by

running:

git clone https://github.com/GramThanos/StrongBee

After downloading the latest version (and extracting it if you got the zip file), you

will have to install all the required packages (e.g. flask, fido2). This can be done by

entering the StrongBee directory and using pip to install all the required packages

listed inside the requirements.txt by executing:

cd StrongBee
python3 -m pip install -r requirements.txt

All the dependencies will now be installed and now you will have to configure the

StrongBee server before running it.

15https://github.com/GramThanos/StrongBee/archive/refs/heads/main.zip

https://github.com/GramThanos/StrongBee/archive/refs/heads/main.zip

4.2. StrongBee 41

Configuring the server

Before launching your FIDO2 server, youwill have to change its configuration tomatch

your preferences. Thus, open the strongbee/config.pywith your favorite text editor

and change the parameters appropriately. Listing 4.1 shows the main parts of the

default configuration. One may change the host or the port number of the server as

well as disable the use of SSL (used for the HTTPS).

1 # Server Options
2 PORT = 8181
3 HOST = ’0.0.0.0’
4

5 # SSL
6 SSL = True
7 CERT_PUBLIC = os.path.join(BASEDIR, ’certificate.public.pem’)
8 CERT_PRIVATE = os.path.join(BASEDIR, ’certificate.private.pem’)
9

10 # SQL Alchemy
11 SQLALCHEMY_BINDS = {
12 ’keys’: ’sqlite:///’ + os.path.join(BASEDIR, ’database.keys.db’),
13 ’api’: ’sqlite:///’ + os.path.join(BASEDIR, ’database.api.db’),
14 ’cache’: ’sqlite:///:memory:’
15 }

LISTING 4.1: Server side authentication code in Python.

To use the service through an HTTPS, one may link the server with some valid

public and private certificate keys. Alternative for testing one may also generate

self-signed certificates using openssl and place them under the strongbee directory:

openssl req -x509 -newkey rsa:4096 -nodes\
-out certificate.public.pem -keyout certificate.private.pem -days 365

Execution

Running the StrongBee server is relative simple, as one can just execute the provided

run.py to run the flask server.

python3 run.sh

Unfortunately the web server inside Flask is not suggested for production. For

production it is suggested to you a Web Server Gateway Interface (WSGI) server. For

example, you may deploy StrongBee using gunicorn16 with the following command:

gunicorn --bind 0.0.0.0:8181 run:server --workers 2\
certfile=strongbee/certificate.public.pem–keyfile=strongbee/certificate.private.pem|

Examples

Let’s look into the requests created by the test-client.py and the responses

generated by the StrongBee server. Note that for the execution of the tests, the

soft-webauthn package17 is needed to simulate the authenticator responses. The

16https://gunicorn.org/
17https://pypi.org/project/soft-webauthn/

https://gunicorn.org/
 https://pypi.org/project/soft-webauthn/

42 Chapter 4. Implementations

tests also make use of the StrongMonkey SDK in python to contact the StrongBee

server.

For each test contacted by the test client script, we will show the request send by

the client (endpoint URL, headers, data and server response).

The first action done by the test client script is to test the ping endpoint, used to

get the server information and also check if ther server is running. The endpoint is

located at:

https://localhost:8181/sbfs/rest/ping

1 Accept: application/json
2 Content-Type: application/json
3 User-Agent: StrongMonkey-Agent/v0.0.4-beta.strongbee
4 strongbee-content-sha256:
5 Date: Mon, 21 Jan 2022 15:46:42 UTC
6 strongbee-api-version: SK3_0
7 Authorization: HMAC b55938050b05019a:0cfIT+TUjM55YqpQsElLSIcERuc9jnMzj5tb1VCkHUo=

LISTING 4.2: Headers send with the ping request.

1 {"svcinfo": {"did": "unipi.gr", "protocol": "FIDO2_0", "authtype": "HMAC"}}

LISTING 4.3: Data send with the ping request.

1 StrongBee, StrongBee FIDO2 Server v0.0.3-beta
2 Hostname: localhost:8181
3 Current time: Mon Mar 21 15:46:42 UTC 2022
4 Up since: Mon Mar 21 15:46:35 UTC 2022
5 FIDO Server Domain 3 is alive!

LISTING 4.4: Response returned to the ping request.

Then the test client script starts the registration by contacting the preregister

endpoint, used to get the a authenticator registration challenge from the server. The

endpoint is located at:

https://localhost:8181/sbfs/rest/preregister

1 Accept: application/json
2 Content-Type: application/json
3 User-Agent: StrongMonkey-Agent/v0.0.4-beta.strongbee
4 strongbee-content-sha256: GzOIPpYxaEkY2g/Tt1yN+6z+cjMTM4o0LIGPeChs30s=
5 Date: Mon, 21 Jan 2022 15:46:42 UTC
6 strongbee-api-version: SK3_0
7 Authorization: HMAC b55938050b05019a:RmJuPhiQ5LIRDl3EaONdyx0Zts7/7zgHNME7fUHuroE=

LISTING 4.5: Headers send with the preregister request.

1 {"svcinfo": {"did": "unipi.gr", "protocol": "FIDO2_0", "authtype": "HMAC"}, "payload"
↪→ : {"username": "gramthanos@gmail.com", "displayname": "gramthanos@gmail.com",
↪→ "options": "{}", "extensions": "{}"}}

LISTING 4.6: Data send with the preregister request.

1 {
2 "Response": {
3 "rp": {
4 "id": "unipi.gr",
5 "name": "unipi.gr"
6 },
7 "user": {
8 "id": "Z3JhbXRoYW5vc0BnbWFpbC5jb20",

4.2. StrongBee 43

9 "name": "gramthanos@gmail.com",
10 "displayName": "gramthanos@gmail.com"
11 },
12 "challenge": "S1aq3Fmz1qaxzL5rv0dMxlHgzLGjYVWlDezbAPbASEI",
13 "pubKeyCredParams": [
14 {"type": "public-key","alg": -7},
15 {"type": "public-key","alg": -8},
16 {"type": "public-key","alg": -37},
17 {"type": "public-key","alg": -257}
18],
19 "excludeCredentials": [],
20 "timeout": 60000
21 }
22 }

LISTING 4.7: Response returned to the preregister request.

The test client script used the provided parameters and challenge from the server

to generate new credentials and a valid authenticator response.

1 {
2 "id": "5A1IafTPRQuURIWGmDm_SwQcjjq_y7E3D9S4TzTRbiY",
3 "rawId": "5A1IafTPRQuURIWGmDm_SwQcjjq_y7E3D9S4TzTRbiY",
4 "response": {
5 "clientDataJSON": "

↪→ eyJ0eXBlIjogIndlYmF1dGhuLmNyZWF0ZSIsICJjaGFsbGVuZ2UiOiAiUzFhcTNGbXoxcWF4ekw1cnYwZE14bEhnekxHallWV2xEZXpiQVBiQVNFSSIsICJvcmlnaW4iOiAiaHR0cHM6Ly91bmlwaS5nciJ9
↪→ ",

6 "attestationObject": "
↪→ o2NmbXRkbm9uZWdhdHRTdG10oGhhdXRoRGF0YVikgh8LzXo6LfwnYQzR6rDVRNpPzX7RkQQxuk9PNiWa4qRBAAAAAAAAAAAAAAAAAAAAAAAAAAAAIOQNSGn0z0ULlESFhpg5v0sEHI46v8uxNw_UuE800W4mpQECAyYgASFYIIv71maTm4EOiVYnuLPqrJ_4v7a1MDQi61ueED2ApjqKIlggKUdAZ
↪→ -aJXyWq5GgItjSvvI94oR3KgbNrWdS3oWX2N-c"

7 },
8 "type": "public-key"
9 }

LISTING 4.8: Credentials creation, authenticator response generated

by test client.

Then the test client script returns the authenticator response to the server by

contacting the register endpoint. The endpoint is located at:

https://localhost:8181/sbfs/rest/register

1 Accept: application/json
2 Content-Type: application/json
3 User-Agent: StrongMonkey-Agent/v0.0.4-beta.strongbee
4 strongbee-content-sha256: KE/eiJeUs1wc35244DRdw51JckxB5Lk6VlCtmiyLoPc=
5 Date: Mon, 21 Jan 2022 15:46:42 UTC
6 strongbee-api-version: SK3_0
7 Authorization: HMAC b55938050b05019a:mesgnVGRMEaPEQG2M+TVx5yYBdhqnE1K92RTlfBa2NA=

LISTING 4.9: Headers send with the register request.

1 {"svcinfo": {"did": "unipi.gr", "protocol": "FIDO2_0", "authtype": "HMAC"}, "payload"
↪→ : {"response": "{\"id\": \"5A1IafTPRQuURIWGmDm_SwQcjjq_y7E3D9S4TzTRbiY\", \"
↪→ rawId\": \"5A1IafTPRQuURIWGmDm_SwQcjjq_y7E3D9S4TzTRbiY\", \"response\": {\"
↪→ clientDataJSON\": \"
↪→ eyJ0eXBlIjogIndlYmF1dGhuLmNyZWF0ZSIsICJjaGFsbGVuZ2UiOiAiUzFhcTNGbXoxcWF4ekw1cnYwZE14bEhnekxHallWV2xEZXpiQVBiQVNFSSIsICJvcmlnaW4iOiAiaHR0cHM6Ly91bmlwaS5nciJ9
↪→ \", \"attestationObject\": \"
↪→ o2NmbXRkbm9uZWdhdHRTdG10oGhhdXRoRGF0YVikgh8LzXo6LfwnYQzR6rDVRNpPzX7RkQQxuk9PNiWa4qRBAAAAAAAAAAAAAAAAAAAAAAAAAAAAIOQNSGn0z0ULlESFhpg5v0sEHI46v8uxNw_UuE800W4mpQECAyYgASFYIIv71maTm4EOiVYnuLPqrJ_4v7a1MDQi61ueED2ApjqKIlggKUdAZ
↪→ -aJXyWq5GgItjSvvI94oR3KgbNrWdS3oWX2N-c\"}, \"type\": \"public-key\"}", "
↪→ metadata": "{\"version\": \"1.0\", \"create_location\": \"testing\", \"
↪→ username\": \"gramthanos@gmail.com\", \"origin\": \"https://unipi.gr\"}"}}

LISTING 4.10: Data send with the register request.

44 Chapter 4. Implementations

1 {"Response": "Successfully processed registration response"}

LISTING 4.11: Response returned to the register request.

The next action for the test client, now that it possess valid credentials, is to test

the authentication, string by contacting the preauthenticate endpoint. The endpoint

is located at:

https://localhost:8181/sbfs/rest/preauthenticate

1 Accept: application/json
2 Content-Type: application/json
3 User-Agent: StrongMonkey-Agent/v0.0.4-beta.strongbee
4 strongbee-content-sha256: f4L+ea4Dpm/gGjNbUJ9N00OG+z1JfYNf+2COTYk/6rA=
5 Date: Mon, 21 Jan 2022 15:46:42 UTC
6 strongbee-api-version: SK3_0
7 Authorization: HMAC b55938050b05019a:y5vE/EPeEIxZPJd7g4w93Vkt3MLzAJyb6xtoDGvtxbk=

LISTING 4.12: Headers send with the preauthenticate request.

1 {"svcinfo": {"did": "unipi.gr", "protocol": "FIDO2_0", "authtype": "HMAC"}, "payload"
↪→ : {"username": "gramthanos@gmail.com", "options": "{}", "extensions": "{}"}}

LISTING 4.13: Data send with the preauthenticate request.

1 {
2 "Response": {
3 "challenge": "_duBFDoIn-GY9I8tkUa-OtyWe-KRbmLGjnaIljmTACc",
4 "rpId": "unipi.gr",
5 "allowCredentials": [{
6 "type": "public-key",
7 "id": "5A1IafTPRQuURIWGmDm_SwQcjjq_y7E3D9S4TzTRbiY"
8 }],
9 "timeout": 60000

10 }
11 }

LISTING 4.14: Response returned to the preauthenticate request.

The test client script used the provided challenge from the preauthenticate

endpoint to sign it and generate valid authenticator response.

1 {
2 ’id’: ’5A1IafTPRQuURIWGmDm_SwQcjjq_y7E3D9S4TzTRbiY’,
3 ’rawId’: ’5A1IafTPRQuURIWGmDm_SwQcjjq_y7E3D9S4TzTRbiY’,
4 ’response’: {
5 ’authenticatorData’: ’gh8LzXo6LfwnYQzR6rDVRNpPzX7RkQQxuk9PNiWa4qQBAAAAAQ’,
6 ’clientDataJSON’: ’

↪→ eyJ0eXBlIjogIndlYmF1dGhuLmdldCIsICJjaGFsbGVuZ2UiOiAiX2R1QkZEb0luLUdZOUk4dGtVYS1PdHlXZS1LUmJtTEdqbmFJbGptVEFDYyIsICJvcmlnaW4iOiAiaHR0cHM6Ly91bmlwaS5nciJ9
↪→ ’,

7 ’signature’: ’MEQCIGM49HHrIkBDVL-8
↪→ G4UEJIblJ40ce_4z61D1rIHHX8LSAiA7vRfwINaiBaPJ48bTgSyXDWy3y-
↪→ O6YVExAWPUOUik9A’,

8 ’userHandle’: ’Z3JhbXRoYW5vc0BnbWFpbC5jb20’
9 },

10 ’type’: ’public-key’
11 }

LISTING 4.15: Credentials get, authenticator response generated by

test client.

Now the test client has to send the generated response to the server through the

authenticate endpoint, in check the user’s identity. The endpoint is located at:

https://localhost:8181/sbfs/rest/authenticate

4.2. StrongBee 45

1 Accept: application/json
2 Content-Type: application/json
3 User-Agent: StrongMonkey-Agent/v0.0.4-beta.strongbee
4 strongbee-content-sha256: wz71VYcqw3ExpLzL/QfAoMs4vz6xoY9jRtOroHzfNWg=
5 Date: Mon, 21 Jan 2022 15:46:42 UTC
6 strongbee-api-version: SK3_0
7 Authorization: HMAC b55938050b05019a:MM1aayY8mRDRL+7RYhWSwRI6VaMgim6gzOkV84AL4eo=

LISTING 4.16: Headers send with the authenticate request.

1 {"svcinfo": {"did": "unipi.gr", "protocol": "FIDO2_0", "authtype": "HMAC"}, "payload"
↪→ : {"response": "{\"id\": \"5A1IafTPRQuURIWGmDm_SwQcjjq_y7E3D9S4TzTRbiY\", \"
↪→ rawId\": \"5A1IafTPRQuURIWGmDm_SwQcjjq_y7E3D9S4TzTRbiY\", \"response\": {\"
↪→ authenticatorData\": \"gh8LzXo6LfwnYQzR6rDVRNpPzX7RkQQxuk9PNiWa4qQBAAAAAQ\",
↪→ \"clientDataJSON\": \"
↪→ eyJ0eXBlIjogIndlYmF1dGhuLmdldCIsICJjaGFsbGVuZ2UiOiAiX2R1QkZEb0luLUdZOUk4dGtVYS1PdHlXZS1LUmJtTEdqbmFJbGptVEFDYyIsICJvcmlnaW4iOiAiaHR0cHM6Ly91bmlwaS5nciJ9
↪→ \", \"signature\": \"MEQCIGM49HHrIkBDVL-8
↪→ G4UEJIblJ40ce_4z61D1rIHHX8LSAiA7vRfwINaiBaPJ48bTgSyXDWy3y-O6YVExAWPUOUik9A\",
↪→ \"userHandle\": \"Z3JhbXRoYW5vc0BnbWFpbC5jb20\"}, \"type\": \"public-key\"}",
↪→ "metadata": "{\"version\": \"1.0\", \"last_used_location\": \"testing\", \"
↪→ username\": \"gramthanos@gmail.com\", \"origin\": \"https://unipi.gr\"}"}}

LISTING 4.17: Data send with the authenticate request.

1 {"Response": "Successfully authenticated key"}

LISTING 4.18: Response returned to the authenticate request.

The test client continues by testign the getkeysinfo endpoint, which returns the

credentials bind to a user account. The endpoint is located at:

https://localhost:8181/sbfs/rest/getkeysinfo

1 Accept: application/json
2 Content-Type: application/json
3 User-Agent: StrongMonkey-Agent/v0.0.4-beta.strongbee
4 strongbee-content-sha256: bGNXLnxROcNpSaTiqAh3kfyk0FKY0rPtfzANvuhv/IE=
5 Date: Mon, 21 Jan 2022 15:46:42 UTC
6 strongbee-api-version: SK3_0
7 Authorization: HMAC b55938050b05019a:UAe18/JGZlsvMJwZTMFXqigDgXkXaSiW9Wi0hfwadi8=

LISTING 4.19: Headers send with the getkeysinfo request.

1 {"svcinfo": {"did": "unipi.gr", "protocol": "FIDO2_0", "authtype": "HMAC"}, "payload"
↪→ : {"username": "gramthanos@gmail.com"}}

LISTING 4.20: Data send with the getkeysinfo request.

1 {
2 "Response": {
3 "keys": [{
4 "randomid": "5A1IafTPRQuURIWGmDm_SwQcjjq_y7E3D9S4TzTRbiY",
5 "randomid_ttl_seconds": "9999",
6 "fidoProtocol": "FIDO2_0",
7 "fidoVersion": "FIDO2_0",
8 "createLocation": "testing",
9 "createDate": "1647877602918",

10 "lastusedLocation": "testing",
11 "modifyDate": "1647877602918",
12 "status": "Active",
13 "displayName": "gramthanos@gmail.com"
14 }]

46 Chapter 4. Implementations

15 }
16 }

LISTING 4.21: Response returned to the getkeysinfo request.

Finally, the test client test the deregister endpoint, which removes credentials

from a user account, thus deregistering the linked authenticator device. The endpoint

is located at:

https://localhost:8181/sbfs/rest/deregister

1 Accept: application/json
2 Content-Type: application/json
3 User-Agent: StrongMonkey-Agent/v0.0.4-beta.strongbee
4 strongbee-content-sha256: qdi0Whdrq8X9NRVoJnNFcZ6qS7+zj+zFnwYGEfNSNNU=
5 Date: Mon, 21 Jan 2022 15:46:42 UTC
6 strongbee-api-version: SK3_0
7 Authorization: HMAC b55938050b05019a:cUSY274uTxDIcTWrvKqHslArzM4ot4RqzB4qVPi9eEs=

LISTING 4.22: Headers send with the deregister request.

1 {"svcinfo": {"did": "unipi.gr", "protocol": "FIDO2_0", "authtype": "HMAC"}, "payload"
↪→ : {"keyid": "5A1IafTPRQuURIWGmDm_SwQcjjq_y7E3D9S4TzTRbiY"}}

LISTING 4.23: Data send with the deregister request.

1 {
2 "Response": {
3 "randomid": "5A1IafTPRQuURIWGmDm_SwQcjjq_y7E3D9S4TzTRbiY",
4 "randomid_ttl_seconds": "9999",
5 "fidoProtocol": "FIDO2_0",
6 "fidoVersion": "FIDO2_0",
7 "createLocation": "testing",
8 "createDate": "1647877602918",
9 "lastusedLocation": "testing",

10 "modifyDate": "1647877602918",
11 "status": "Active",
12 "displayName": "gramthanos@gmail.com"
13 }
14 }

LISTING 4.24: Response returned to the deregister request.

4.2.4 Conclusions

Our implementation was found to be a light and easy to use fully featured

FIDO2/WebAuthn server, ideal for small projects. Since it is written in Python, based

on modern web technologies, we expect that more expect developers will be able to

use it. Furthermore, as the implementation is open sourced and publicly available in

GitHub, anyone from the community can further extend the server’s functionalities

and improve it.

4.3 FIDO2 authentication for OpenVPN

Implementing strong authentication methods should not be limited only within the

web environment. Thus, in this section, we will present how one can improve

both the security and the usability of a Virtual Private Network (VPN) service by

4.3. FIDO2 authentication for OpenVPN 47

allowing the users to authenticate through FIDO2/WebAuthn. Moreover, our solution

moved the client’s authentication to the web which opens up more possibilities for

user authentication. By doing that, apart from the usage of FIDO/WebAuthn, an

organisations would be able to leverage existing Single-Sign-On (SSO) services or

implement Multi Factor Authentication (MFA) with the VPN service.

4.3.1 Introduction

One of the most popular methods for establishing a secure and trusted

communication channel is the deployment of a VPN. As shown in Figure 4.13, by

setting up a remote access VPN, organisations can safely provide access to internal

services (located inside an organisation’s intranet) to employees working remotely,

as if they were located at the office. At the same time VPN protects the user’s

network traffic by encrypting it, thus its use is of high importance when the user is

accessing the internet from a public wireless network. To offer these services, VPN

solutions usually support multiple encryption algorithms to protect their traffic and

typical authentication mechanics for mutual authentication of both the server and

the client.

Untrusted Network

VPN
Client

User

VPN
Server

Corporate Network

Internal
Services

World Wide Web

FIGURE 4.13: Example usage of a VPN.

During the COVID-19 pandemic, VPN services played an important role, as they

allowed organisations to continue their operation by having employees working

remotely in a secure way. As suggested also by ENISA in its press release regarding

teleworking tips18, the use of VPN is recommended so as to protect the information

exchanged when working from home and over untrusted networks.

To access such a VPN service, the client has to authenticate herself/himself with

the server, so that only the authorised users can use the service. This is usually done

through a username and password or a password protected certificate. Furthermore,

the client has to authenticate the VPN server in order to mitigate man in the middle

attacks. This is also done using certificates. This user authentication should be

adequately secure in order to protect the services and data towhich the VPNprovides

access. Hence, a password authentication does not always meets the security

requirements needed. For this reason, the last years, second factor authentication

mechanics has started appearing on VPN servers, though sometimes in expense of

usability.

48 Chapter 4. Implementations

User VPN Client VPN Server

Username, Password
Username, Password

Success/Failure

VPN Setup

FIGURE 4.14: Traditional VPN authentication through username and

password.

4.3.2 Implementation

Traditionally, as shown on Figure 4.14, to authenticate with a VPN service, a client

has to send 2 values to the server, a username (to specify the account bind to the

user’s identity) and then send a secret password to prove its identity. We altered this

authenticationmechanic, andmixed it with the OpenID Connect (OIDC)19 flow (widely

used in web services) so that we can authenticate the user on the web and then share

his identity to the VPNserver. Furthermore, throughOIDC, as presented on Figure 4.15

we can deploy a WebAuthn password-less authentication and eliminate the need for

passwords or use it as a Two Factor Authentication (2FA) to strengthen security.

Untrusted Network

VPN
Client

User

VPN
Server

Corporate Network

Internal
Services

World Wide Web

IAM
Server

Authenticator

FIGURE 4.15: Example usage of a VPN with FIDO2/WebAuthn.

As shown on Figure 4.16, the user starts by launching the VPN client, inserting

the account username and clicking to authenticate. The VPN client then launches

a browser and redirects the user to the organisation’s identity management

service that supports OIDC and FIDO2/WebAuthn authentication. The user uses

a FIDO authenticator device to authenticate and then the service sends back the

authentication OIDC response back to the VPN client. The VPN client then forwards

the received information as a password to the VPN service. The VPN server

retrieves the OIDC response and contacts the OIDC SSO service endpoints to recover

the client’s identity and assess whether the authentication was successful. In

this authentication scenario, the VPN server is treated as a 3rd party application

registered to the OIDC service and the whole process is based on the OAuth 2.020

protocol for authentication.

18Tips for cybersecurity when working from home, https://www.enisa.europa.eu/
tips-for-cybersecurity-when-working-from-home

19https://openid.net/connect/
20https://oauth.net/2/

https://www.enisa.europa.eu/tips-for-cybersecurity-when-working-from-home
https://www.enisa.europa.eu/tips-for-cybersecurity-when-working-from-home
https://openid.net/connect/
https://oauth.net/2/

4.3. FIDO2 authentication for OpenVPN 49

User VPN Client VPN Server

Challenge

OIDC Auth Token

Success/Failure

VPN Setup

IAM Server

OIDC Auth Request

FIDO Server

Auth Request

Challenge

Authenticator

Signed Challenge

OIDC Auth Token

OIDC Auth Token

OIDC Identity

Signed Challenge

Success/Failure

Interact

FIGURE 4.16: VPN authentication through OIDC and FIDO2.

To create a proof-of-concept, we developed a VPN client desktop application

based on Electron interacting with an OpenVPN community edition21 client to set

up the service. Furthermore, for the backend, we used an OpenVPN server and a

custom authentication script was developed in python to complete the OIDC flow

and assess the authentication response by contacting the SSO service. As an

identity management service, the KeyCloak open source server was used, configured

for password-less authentication with FIDO2/WebAuthn. This implementation is

publicly available on GitHub22 as open source software. Additionally the solution can

be configured to work withmoremulti factor authenticationmechanics to strengthen

the security.

Our implementation can be divided into 2 parts, the server side extension of

the OpenVPN server with the use of an authentication Python script and the client

application. Appendix D lists the 2 most important codes of the implementation, the

server authentication Python code (Listing D.1) as well as the main client application

JavaScript code (Listing D.2). Their functionality will be explained briefly in the

following paragraphs.

The server side Python script is called by OpenVPN when the client sends the

authentication credentials, in the form of a username and a password. By configuring

such alternative authentication methods23, one can extend the functionalities of

OpenVPN and this is what we have done. The script takes from the environment the

password, expected to be a JSON code encoded in base64 and decodes it. Then it

retrieves the service id (e.g. keycloak-oidc) and the authentication code. Using these

info, the script contacts the service’s endpoint passing the given code and retrieving

the user’s identity information. The script could be further extended to checkwhether

the authenticated user has permissions to use the service.

The JavaScript script is part of the Electron application. The script is responsible

for handling both the UI (through interactions with the DOM) as well as the

interaction with the system’s OpenVPN client and the embedded browser (used to

communicate with the identity management server). The script will start by loading

the appropriate configuration files which they hold the endpoint information of the

identity management servers supported.

21https://openvpn.net/community/
22https://github.com/GramThanos/vpn-oidc
23https://openvpn.net/community-resources/using-alternative-authentication-methods/

https://openvpn.net/community/
https://github.com/GramThanos/vpn-oidc
https://openvpn.net/community-resources/using-alternative-authentication-methods/

50 Chapter 4. Implementations

Upon a user initiation of the authentication process, the script will create a

new embedded browser window and start the OIDC process. To retrieve the

authentication code, the return URL of the OIDC will be hijacked by the application.

Then the authentication code will be formatted along with the service id as JSON and

encoded to base64 which will be sent to the server as a password. As a username, a

random string in combination with the service id will be used. We have to note that

since we are using the password to pass the information, we may be limited by the

maximum password length supported by the server. In the future, we may improve

the packing of the information to ensure the limit is not reached.

4.3.3 Usage

After launching our VPN client application, shown on Figure 4.17, the user has

to select the appropriate authentication method of his/her preference. In our

implementation we added our custom Keycloak authentication service and 2

additional commercial SSO services (Google and Facebook).

FIGURE 4.17: The user interface of the VPN client application.

Following the selection of the authentication service (in our example usecase,

our custom KeyCloak service) a new web browser window will open, as shown in

Figure 4.18. Depending on the authentication flow of the server, the user will have to

provide the appropriate credentials to be authenticated. Our KeyCloak server was

configured to authenticate the user password-less through WebAuthn. Thus, the

service will ask the user to fill in the user’s username. In Figure 4.19 is shown how

the request from the server to authenticate the user using his/her FIDO security key.

4.3. FIDO2 authentication for OpenVPN 51

FIGURE 4.18: The client launch a browser to authenticate the user

through an OIDC service.

The user will then have to plug in his/her authenticator device, or use the

embedded one of their platform. Figure 4.20 shows the user providing a PIN to allow

Windows Hello authenticator device to sign the request, and which will be checked

by the server. Upon successful authentication the client will forward the returned

access token to the VPN server and after if valid, as shown on Figure 4.21, the user

will be connected to the VPN service.

Through the user interface the usermay close the connection and start a new one

on demand.

4.3.4 Conclusions

VPN services are nowadays essential, especially since they are an important

component to ensure the business continuity of organisations. By leveraging OIDC

our VPN authentication can authenticate users securely through SSO technologies,

without the need to create special VPN accounts. By enabling users to authenticate

using FIDO2/WebAuthn we improve even more the authentication mechanic by

increasing the security and user experience eliminating the need for passwords.

Due to security and usability concerns, it is expected that at the future similar

authentication flows will be included out of the box on most of the VPN solutions, as

it is a more secure, practical and user friendly approach to authenticate users. FIDO

authentication mechanics availability will increase as its specification is adopted by

more and more solutions.

Our implementation, could be further developed to improve its configuration,

graphical interface, installation process and cross platform support. One of themain

future steps of this work could be porting the application in other operating systems.

52 Chapter 4. Implementations

FIGURE 4.19: KeyCloak configured to authenticate the user using

FIDO2/WebAuthn.

In my opinion, targeting mobile platforms (i.e. Android, iOS) to enable the use of

bio-metric authentication on VPN is of high importance.

4.3. FIDO2 authentication for OpenVPN 53

FIGURE 4.20: The user authenticates using the Windows Hello

WebAuthn embedded authenticator using a PIN.

FIGURE 4.21: The user connected to the VPN service after successful

authentication.

55

Chapter 5

Conclusion

FIDO2 through WebAuthn brought secure password-less authentication on the web.

Through easy to use mechanics, users are now able to use secure public private key

cryptography to authenticate on the web. The technology was found to be quite

superior to that of username and password as it more secure and easier to use

especially when combined with biometric authentication.

One of the most important FIDO2/WebAuthn features is that it offers something

that other authentication mechanics are lacking, it is phishing resistant. This feature

makes it ideal for use when interacting with online payment services. This will

mitigate attacks exploiting the human factor such as phishing attacks, that is

currently one of the weak points on online banking services and PSD2 failed to

address.

On the other hand, as one can understand, FIDO2/WebAuthn’s complexity makes

it difficult to develop FIDO2 services without the use of a specialised FIDO2 server or

a FIDO2/WebAuthn library, and even with the use of 3rd party software to handle the

verification process, still, services may be left vulnerable due to faulty configuration

of the solution.

In this work, we showed how FIDO works internally and how FIDO2 through

WebAuthn is able to offer secure and easy to use authentication on the web.

Furthermore, we analysed the strong client authentication (SCA) requirements

introduced by the PSD2 and how FIDO covers these needs, but also what problems

may one face when trying to apply FIDO2/WebAuthn for SCA. Based on our analysis,

the FIDO2/WebAuthn is compiant with the PSD2 but only when used with compliant

authenticator devices, thus payment services should leverage the FIDO Alliance

Metadata Service in order to identify authenticator devices that meet their policy

requirements. Furthermore, in an effort to support the faster adoption of WebAuthn

(and thus FIDO2) we released a number of open source related solutions.

Our StrongMonkey SDK allows applications written in PHP or Python to connect

easily to FIDO2 servers supporting the StrongKey FIDO2 Server API. Additionally, we

also presented StrongBee, our own light implementation of the StrongKey FIDO2

Server API serving as an alternative FIDO2/WebAuthn solution for smaller projects or

for use on testing environments. Lastly, we presented a novel PoC implementation

of a VPN service secured through a FIDO2/WebAuthn authentication based on OIDC.

All the developed solutions were released as open source software on GitHub,

allowing anyone to further advance them. We hope the community to be benefit from

our implementations and leverage them to provide secure authentication mechanics

and services to the general public.

57

Appendix A

FIDO Metadata Filtering App

The FIDO Alliancemaintains ametadata services that includes a wide variety of FIDO

authenticator devices. The service lists for each authenticator information and their

characteristics. Such metadata are essential for authenticating an authenticator

device and building trust between the authenticator device and the relying party

service.

Themetadata service offers a JSONWeb Token (JWT) file with all the information

encoded and signed inside. In order to look into what authenticators are available

based on their characteristics, a simple web application able to filtered them was

developed. The source code of the application is available on GitHub1 while a live

version of the webpage is also hosted on GitHub2.

The application automatically loads the JWT file form provided from the FIDO

Alliance metadata service and decode it on the background. As presented in

Figure A.1 and Figure A.2, the user is able to select filters based on the authenticator’s

family protocol, latest status report (e.g. certification), cryptographic strength,

protection mechanics for the key generation and matching, as well as the available

user verification method.

The application automatically updates the results at the bottom as soon as

the user alters the filters. For each authenticator the authenticator’s AAGUID,

KeyIdentifiers or AAID is shown along with the authenticator’s description and any

given image (usually the logo of the manufacturer).

1https://github.com/GramThanos/FIDO-Authenticator-Metadata-Filters
2https://gramthanos.github.io/FIDO-Authenticator-Metadata-Filters/

https://github.com/GramThanos/FIDO-Authenticator-Metadata-Filters
https://gramthanos.github.io/FIDO-Authenticator-Metadata-Filters/

58 Appendix A. FIDO Metadata Filtering App

FIGURE A.1: Found 11 certified FIDO2 authenticator devices protected

by hardware mechanics with fingerprint detection capabilities.

Appendix A. FIDO Metadata Filtering App 59

FIGURE A.2: Found 4 certified FIDO2 authenticator devices protected

by hardware mechanics with face detection capabilities.

61

Appendix B

StrongMonkey Implementation
Code

In Section 4.1 we presented our StrongMonkey SDK that can be used to connect an

application with a FIDO2 server in order to support WebAuthn authentication easily.

As we mentioned the full code is publicly available at GitHub1.

In this section we will list the 2 libraries developed, the Python library’s code

(Listing B.1) as well as the Python PHP’s code (Listing B.2). Additionally, a UML

diagram for the StrongMonkey PHP library if provided in Figure B.1.

1 #!/usr/bin/python3
2 #
3 # StrongMonkey v0.0.4-beta
4 # Python SDK for interacting with FIDO2 Server API v3.0.0
5 # Copyright (c) 2020 Grammatopoulos Athanasios-Vasileios
6 #
7

8 import os
9 import json

10 import base64
11 import hmac
12 import hashlib
13 import datetime
14 import requests
15 import sys
16

17 STRONGMONKEY_VESION = ’v0.0.4-beta’;
18 STRONGMONKEY_DEBUG = False;
19 STRONGMONKEY_CONNECTTIMEOUT = 10;
20 STRONGMONKEY_TIMEOUT = 30;
21 STRONGMONKEY_USERAGENT = ’StrongMonkey-Agent’ + ’/’ + STRONGMONKEY_VESION;
22

23 class StrongMonkey:
24

25 # Static variables
26 api_protocol = ’FIDO2_0’;
27 api_version = ’SK3_0’;
28 api_url_base = ’/skfs/rest’;
29 version = STRONGMONKEY_VESION;
30 useragent = STRONGMONKEY_USERAGENT;
31

32 # ERRORS
33 PARSE_ERROR = 1001;
34 SUBMIT_ERROR = 1002;
35 AUTHENTICATION_FAILED = 1003;
36 RESOURCE_UNAVAILABLE = 1004;
37 UNEXPECTED_ERROR = 1005;

1https://github.com/GramThanos/StrongMonkey

https://github.com/GramThanos/StrongMonkey

62 Appendix B. StrongMonkey Implementation Code

38 UNUSED_ROUTES = 1006;
39 UNKNOWN_ERROR = 1007;
40

41 # Authorization Methods
42 AUTHORIZATION_HMAC = ’HMAC’;
43 AUTHORIZATION_PASSWORD = ’PASSWORD’;
44 # Protocol Methods
45 PROTOCOL_REST = ’REST’;
46

47

48 def __init__ (self, hostport, did, protocol, authtype, keyid, keysecret):
49 # TODO: Test inputs? No?
50 # Save information
51 self.hostport = hostport
52 self.did = did
53 self.protocol = protocol
54 self.authtype = authtype
55 self.keyid = keyid
56 self.keysecret = keysecret
57

58 # Check if not supported
59 if (authtype != StrongMonkey.AUTHORIZATION_HMAC and authtype != StrongMonkey.

↪→ AUTHORIZATION_PASSWORD):
60 print(’The provided authorization method is not supported’)
61 if (protocol != StrongMonkey.PROTOCOL_REST):
62 print(’The provided protocol is not supported’)
63

64 def preregister (self, username, displayname=None, options=None, extensions=None)
↪→ :

65 # Init parameters
66 if (displayname is None):
67 displayname = username
68 options = self.jsonStringPrepare(options, {})
69 extensions = self.jsonStringPrepare(extensions, {})
70

71 # Create data
72 payload = {
73 ’username’ : username,
74 ’displayname’ : displayname,
75 ’options’ : options,
76 ’extensions’ : extensions
77 };
78

79 # Make preregister request
80 return self.request(payload, ’/preregister’);
81

82 def register (self, response, metadata=None):
83 # Init empty parameters
84 response = self.jsonStringPrepare(response)
85 metadata = self.jsonStringPrepare(metadata, {})
86

87 # Create data
88 payload = {
89 ’response’ : response,
90 ’metadata’ : metadata
91 }
92

93 # Make register request
94 return self.request(payload, ’/register’)
95

96 def preauthenticate (self, username=None, options=None, extensions=None):
97 # Init empty parameters

Appendix B. StrongMonkey Implementation Code 63

98 options = self.jsonStringPrepare(options, {})
99 extensions = self.jsonStringPrepare(extensions, {})

100

101 # Create data
102 payload = {
103 ’username’ : username,
104 ’options’ : options,
105 ’extensions’ : extensions
106 }
107

108 # Make preauthenticate request
109 return self.request(payload, ’/preauthenticate’)
110

111 def authenticate (self, response, metadata=None):
112 # Init empty parameters
113 response = self.jsonStringPrepare(response)
114 metadata = self.jsonStringPrepare(metadata, {})
115

116 # Create data
117 payload = {
118 ’response’ : response,
119 ’metadata’ : metadata
120 }
121

122 # Make authenticate request
123 return self.request(payload, ’/authenticate’)
124

125 def updatekeyinfo (self, status, modify_location, displayname, keyid):
126 # Create data
127 payload = {
128 "status" : status,
129 "modify_location" : modify_location,
130 "displayname" : displayname,
131 "keyid" : keyid
132 }
133

134 # Make updatekeyinfo request
135 return self.request(payload, ’/updatekeyinfo’)
136

137 def getkeysinfo (self, username):
138 # Create data
139 payload = {
140 "username" : username
141 }
142

143 # Make getkeysinfo request
144 return self.request(payload, ’/getkeysinfo’)
145

146 def deregister (self, keyid):
147 # Create data
148 payload = {
149 "keyid" : keyid
150 }
151

152 # Make deregister request
153 return self.request(payload, ’/deregister’)
154

155 def ping (self):
156 # Make ping request
157 response = self.request(None, ’/ping’, False)
158 # If no error
159 if (response[’code’] == 200):

64 Appendix B. StrongMonkey Implementation Code

160 return response[’body’]
161

162 # Return error code
163 return self.parseResponse(response[’code’], response[’body’])
164

165 def request (self, payload, action_path, parse=True):
166 global STRONGMONKEY_DEBUG, STRONGMONKEY_CONNECTTIMEOUT, STRONGMONKEY_TIMEOUT
167 # Create data
168 body = {
169 "svcinfo" : {
170 "did" : self.did,
171 "protocol" : StrongMonkey.api_protocol,
172 "authtype" : self.authtype
173 }
174 }
175 # Prepare payload
176 if not (payload is None):
177 body[’payload’] = payload
178

179 # Generate path
180 path = StrongMonkey.api_url_base + action_path
181

182 # Prepare Request Headers
183 headers = {
184 ’Accept’: ’application/json’,
185 ’Content-Type’: ’application/json’,
186 ’User-Agent’: StrongMonkey.useragent
187 }
188

189 # HMAC
190 if (self.authtype == StrongMonkey.AUTHORIZATION_HMAC):
191 # Get date
192 date = datetime.datetime.now(datetime.timezone.utc).strftime("%a, %-d %b %

↪→ Y %H:%M:%S %Z")
193

194 # Prepare hashes
195 payload_hash = ’’
196 mimetype = ’’
197 if not (payload is None):
198 payload_string = json.dumps(body[’payload’],separators=(’,’, ’:’))
199 payload_hash = hashlib.sha256(payload_string.encode()).digest()
200 payload_hash = base64.b64encode(payload_hash).decode()
201 mimetype = ’application/json’
202

203 # Generate HMAC authentication
204 authentication_hash = self.generateHMAC(’POST’, payload_hash, mimetype,

↪→ date, path)
205

206 # Add authorization Headers
207 headers[’strongkey-content-sha256’] = payload_hash
208 headers[’Date’] = date
209 headers[’strongkey-api-version’] = StrongMonkey.api_version
210 headers[’Authorization’] = authentication_hash
211 # Credentials
212 else:
213 body[’svcinfo’][’svcusername’] = self.keyid
214 body[’svcinfo’][’svcpassword’] = self.keysecret
215

216 # Create request
217 reqOptions = {
218 ’url’ : self.hostport + path,
219 ’verify’ : True,

Appendix B. StrongMonkey Implementation Code 65

220 ’data’ : json.dumps(body),
221 ’headers’ : headers,
222 ’timeout’ : STRONGMONKEY_TIMEOUT
223 }
224 if (STRONGMONKEY_DEBUG):
225 requests.packages.urllib3.disable_warnings()
226 reqOptions[’verify’] = False
227 ch = requests.post(
228 reqOptions[’url’],
229 verify = reqOptions[’verify’],
230 data = reqOptions[’data’],
231 headers = reqOptions[’headers’],
232 timeout = reqOptions[’timeout’]
233)
234 response = ch.text
235 response_code = ch.status_code
236

237 if (parse):
238 return self.parseResponse(response_code, response)
239 else:
240 return {
241 ’code’ : response_code,
242 ’body’ : response
243 }
244

245 def parseResponse (self, code, response):
246 # 200: Success
247 if (code == 200):
248 try:
249 response = json.loads(response)
250 return response
251 except ValueError:
252 return StrongMonkey.PARSE_ERROR
253 # 400: There was an error in the submitted input.
254 if (code == 400):
255 return StrongMonkey.SUBMIT_ERROR;
256 # 401: The authentication failed.
257 if (code == 401):
258 return StrongMonkey.AUTHENTICATION_FAILED;
259 # 404: The requested resource is unavailable.
260 if (code == 404):
261 return StrongMonkey.RESOURCE_UNAVAILABLE
262 # 500: The server ran into an unexpected exception.
263 if (code == 500):
264 return StrongMonkey.UNEXPECTED_ERROR
265 # 501: Unused routes return a 501 exception with an error message.
266 if (code == 501):
267 return StrongMonkey.UNUSED_ROUTES
268 return StrongMonkey.UNKNOWN_ERROR
269

270 def getError (self, error):
271 # If not error
272 if (not isinstance(error, int)):
273 return False
274 # Resolve error code
275 if error == StrongMonkey.PARSE_ERROR:
276 return ’StrongMonkey: Response parse error.’
277 if error == StrongMonkey.SUBMIT_ERROR:
278 return ’StrongMonkey: There was an error in the submitted input.’
279 if error == StrongMonkey.AUTHENTICATION_FAILED:
280 return ’StrongMonkey: The authentication failed.’
281 if error == StrongMonkey.RESOURCE_UNAVAILABLE:

66 Appendix B. StrongMonkey Implementation Code

282 return ’StrongMonkey: The requested resource is unavailable.’
283 if error == StrongMonkey.UNEXPECTED_ERROR:
284 return ’StrongMonkey: The server ran into an unexpected exception.’
285 if error == StrongMonkey.UNKNOWN_ERROR:
286 return ’StrongMonkey: Unused routes return a 501 exception with an error

↪→ message.’
287 return ’StrongMonkey: Unknown error code.’
288

289 def generateHMAC (self, method, payload, mimetype, datestr, path):
290 # Assembly hash message
291 message = [
292 method,
293 payload,
294 mimetype,
295 datestr,
296 StrongMonkey.api_version,
297 path
298]
299 message = "\n".join(message)
300 # Generate HMAC
301 digest = hmac.new(bytes.fromhex(self.keysecret), msg = bytes(message , ’latin

↪→ -1’), digestmod = hashlib.sha256).digest()
302 # Return header
303 return ’HMAC ’ + self.keyid + ’:’ + base64.b64encode(digest).decode()
304

305 def jsonStringPrepare (self, vjson, ifnull=None):
306 if ((vjson is None) and not (ifnull is None)):
307 vjson = ifnull
308 if (isinstance(vjson, str)):
309 return vjson
310 return json.dumps(vjson)

LISTING B.1: StrongMonkey SDK library for Python applications.

1 <?php
2 /**
3 * StrongMonkey v0.0.4-beta
4 * PHP SDK for interacting with FIDO2 Server API v3.0.0
5 * Copyright (c) 2020 Grammatopoulos Athanasios-Vasileios
6 */
7

8 define(’STRONGMONKEY_VESION’, ’v0.0.4-beta’);
9 if (!defined(’STRONGMONKEY_DEBUG’)) define(’STRONGMONKEY_DEBUG’, false);

10 if (!defined(’STRONGMONKEY_CONNECTTIMEOUT’)) define(’STRONGMONKEY_CONNECTTIMEOUT’,
↪→ 10);

11 if (!defined(’STRONGMONKEY_TIMEOUT’)) define(’STRONGMONKEY_TIMEOUT’, 30);
12 if (!defined(’STRONGMONKEY_USERAGENT’)) define(’STRONGMONKEY_USERAGENT’, ’

↪→ StrongMonkey-Agent’ . ’/’ . STRONGMONKEY_VESION);
13

14 class StrongMonkey {
15

16 // Static variables
17 private static $api_protocol = ’FIDO2_0’;
18 private static $api_version = ’SK3_0’;
19 private static $api_url_base = ’/skfs/rest’;
20 private static $version = STRONGMONKEY_VESION;
21 private static $useragent = STRONGMONKEY_USERAGENT;
22

23 // ERRORS
24 private static $PARSE_ERROR = 1001;
25 private static $SUBMIT_ERROR = 1002;
26 private static $AUTHENTICATION_FAILED = 1003;

Appendix B. StrongMonkey Implementation Code 67

27 private static $RESOURCE_UNAVAILABLE = 1004;
28 private static $UNEXPECTED_ERROR = 1005;
29 private static $UNUSED_ROUTES = 1006;
30 private static $UNKNOWN_ERROR = 1007;
31

32 // Authorization Methods
33 private static $AUTHORIZATION_HMAC = ’HMAC’;
34 private static $AUTHORIZATION_PASSWORD = ’PASSWORD’;
35 // Protocol Methods
36 private static $PROTOCOL_REST = ’REST’;
37

38 // Private variables
39 private $hostport;
40 private $did;
41 private $wsprotocol;
42 private $authtype;
43 private $keyid;
44 private $keysecret;
45

46 /**
47 * Create a StrongMonkey object which can later be used to communicate with the

↪→ StrongKey FIDO2 Server
48 * @param string $hostport Host and port to access the FIDO SOAP and REST formats
49 * http://<FQDN>:<non-ssl-portnumber> or
50 * https://<FQDN>:<ssl-portnumber>
51 * @param integer $did Domain ID
52 * @param string $wsprotocol Web socket protocol; REST or SOAP
53 * @param string $authtype Authorization type; HMAC or PASSWORD
54 * @param string $id PublicKey or Username (Keys should be in hex)
55 * @param string $secret SecretKey or Password (Keys should be in hex)
56 */
57 function __construct ($hostport, $did, $protocol, $authtype, $keyid, $keysecret) {
58 // TODO: Test inputs? No?
59 // Save information
60 $this->hostport = $hostport;
61 $this->did = $did;
62 $this->protocol = $protocol;
63 $this->authtype = $authtype;
64 $this->keyid = $keyid;
65 $this->keysecret = $keysecret;
66

67 // Check if not supported
68 if ($authtype != StrongMonkey::$AUTHORIZATION_HMAC && $authtype != StrongMonkey::

↪→ $AUTHORIZATION_PASSWORD) {
69 die(’The provided authorization method is not supported’);
70 }
71 if ($protocol != StrongMonkey::$PROTOCOL_REST) {
72 die(’The provided protocol is not supported’);
73 }
74 }
75

76 /**
77 * Initialize a key registration challenge with the FIDO server
78 * @param string $username Username of the user
79 * @param string $displayname Display name for the user
80 * @param array|string $options Object of options
81 * @param array|string $extensions Object of extensions
82 * @return integer|array
83 */
84 public function preregister ($username, $displayname=null, $options=null,

↪→ $extensions=null) {
85 // Init parameters

68 Appendix B. StrongMonkey Implementation Code

86 if (is_null($displayname)) $displayname = $username;
87 $options = $this->jsonStringPrepare($options, new stdClass);
88 $extensions = $this->jsonStringPrepare($extensions, new stdClass);
89

90 // Create data
91 $payload = array(
92 ’username’ => $username,
93 ’displayname’ => $displayname,
94 ’options’ => $options,
95 ’extensions’ => $extensions
96);
97

98 // Make preregister request
99 return $this->request($payload, ’/preregister’);

100 }
101

102 /**
103 * Send register response to the FIDO server
104 * @param array|string $response Response data from the authenticator
105 * @param array|string $metadata Additional meta data
106 * @return integer|array
107 */
108 public function register ($response, $metadata=null) {
109 // Init empty parameters
110 $response = $this->jsonStringPrepare($response);
111 $metadata = $this->jsonStringPrepare($metadata, new stdClass);
112

113 // Create data
114 $payload = array(
115 ’response’ => $response,
116 ’metadata’ => $metadata
117);
118

119 // Make register request
120 return $this->request($payload, ’/register’);
121 }
122

123 /**
124 * Initialize a key authentication challenge with the FIDO server
125 * @param string $username Username of the user
126 * @param array|string $options Object of options
127 * @param array|string $extensions Object of extensions
128 * @return integer|array
129 */
130 public function preauthenticate ($username=null, $options=null, $extensions=null) {
131 // Init empty parameters
132 //if (is_null($username)) {
133 // if (is_null($options)) $options = array();
134 // $options[’Residentkey’] = ’req’;
135 //}
136 $options = $this->jsonStringPrepare($options, new stdClass);
137 $extensions = $this->jsonStringPrepare($extensions, new stdClass);
138

139 // Create data
140 $payload = array(
141 ’username’ => $username,
142 ’options’ => $options,
143 ’extensions’ => $extensions
144);
145

146 // Make preauthenticate request
147 return $this->request($payload, ’/preauthenticate’);

Appendix B. StrongMonkey Implementation Code 69

148 }
149

150 /**
151 * Send authenticate response to the FIDO server
152 * @param array|string $response Response data from the authenticator
153 * @param array|string $metadata Additional meta data
154 * @return integer|array
155 */
156 public function authenticate ($response, $metadata=null) {
157 // Init empty parameters
158 $response = $this->jsonStringPrepare($response);
159 $metadata = $this->jsonStringPrepare($metadata, new stdClass);
160

161 // Create data
162 $payload = array(
163 ’response’ => $response,
164 ’metadata’ => $metadata
165);
166

167 // Make authenticate request
168 return $this->request($payload, ’/authenticate’);
169 }
170

171 /**
172 * Update key information
173 * @param string $status The status of the key (Active, Inactive)
174 * @param string $modify_location Modify location
175 * @param string $displayname Display name of the key
176 * @param string $keyid Id of the key to change
177 * @return integer|array
178 */
179 public function updatekeyinfo ($status, $modify_location, $displayname, $keyid) {
180 // Create data
181 $payload = array(
182 "status" => $status,
183 "modify_location" => $modify_location,
184 "displayname" => $displayname,
185 "keyid" => $keyid
186);
187

188 // Make updatekeyinfo request
189 return $this->request($payload, ’/updatekeyinfo’);
190 }
191

192 /**
193 * Get user’s keys information from the FIDO server
194 * @param string $username Username of the user
195 * @return integer|array
196 */
197 public function getkeysinfo ($username) {
198 // Create data
199 $payload = array(
200 "username" => $username
201);
202

203 // Make getkeysinfo request
204 return $this->request($payload, ’/getkeysinfo’);
205 }
206

207 /**
208 * Delete user’s key information from the FIDO server
209 * @param string $keyid Id of the key to deregister

70 Appendix B. StrongMonkey Implementation Code

210 * @return integer|array
211 */
212 public function deregister ($keyid) {
213 // Create data
214 $payload = array(
215 "keyid" => $keyid
216);
217

218 // Make deregister request
219 return $this->request($payload, ’/deregister’);
220 }
221

222 /**
223 * Send a ping to the FIDO server
224 * @return boolean|string
225 */
226 public function ping () {
227 // Make ping request
228 $response = $this->request(null, ’/ping’, false);
229 // If no error
230 if ($response[’code’] === 200) {
231 return $response[’body’];
232 }
233 // Return error code
234 return $this->parseResponse($response[’code’], $response[’body’]);
235 }
236

237 /**
238 * Create a request to the FIDO server
239 * @param array $payload Payload to send
240 * @param string $action_path API path for the action
241 * @param boolean $parse Automatically parse response
242 * @return integer|array
243 */
244 public function request ($payload, $action_path, $parse=true) {
245 // Create data
246 $body = array(
247 "svcinfo" => array(
248 "did" => $this->did,
249 "protocol" => StrongMonkey::$api_protocol,
250 "authtype" => $this->authtype
251)
252);
253 // Prepare payload
254 if (!is_null($payload)) {
255 $body[’payload’] = $payload;
256 }
257

258 // Generate path
259 $path = StrongMonkey::$api_url_base . $action_path;
260

261 // Prepare Request Headers
262 $headers = array(
263 ’Accept: application/json’,
264 ’Content-Type: application/json’,
265 ’User-Agent: ’ . StrongMonkey::$useragent
266);
267

268 // HMAC
269 if ($this->authtype === StrongMonkey::$AUTHORIZATION_HMAC) {
270 // Get date
271 $date = date(’D, j M Y H:i:s e’);

Appendix B. StrongMonkey Implementation Code 71

272

273 // Prepare hashes
274 $payload_hash = ’’;
275 $mimetype = ’’;
276 if (!is_null($payload)) {
277 $payload_string = json_encode($body[’payload’], JSON_UNESCAPED_SLASHES);
278 $payload_hash = base64_encode(hex2bin(hash(’sha256’, $payload_string)));
279 $mimetype = ’application/json’;
280 }
281

282 // Generate HMAC authentication
283 $authentication_hash = $this->generateHMAC(’POST’, $payload_hash, $mimetype,

↪→ $date, $path);
284

285 // Add authorization Headers
286 $headers[] = ’strongkey-content-sha256: ’ . $payload_hash;
287 $headers[] = ’date: ’ . $date;
288 $headers[] = ’strongkey-api-version: ’ . StrongMonkey::$api_version;
289 $headers[] = ’Authorization: ’ . $authentication_hash;
290 }
291 // Credentials
292 else {
293 $body[’svcinfo’][’svcusername’] = $this->keyid;
294 $body[’svcinfo’][’svcpassword’] = $this->keysecret;
295 }
296

297 // Create request
298 $ch = curl_init();
299 curl_setopt($ch, CURLOPT_URL, $this->hostport . $path);
300 if (STRONGMONKEY_DEBUG) {
301 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);
302 curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 0);
303 } else {
304 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 1);
305 curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 2);
306 }
307 curl_setopt($ch, CURLOPT_POST, 1);
308 curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($body, JSON_UNESCAPED_SLASHES));
309 curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);
310 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
311 curl_setopt($ch, CURLOPT_CONNECTTIMEOUT, STRONGMONKEY_CONNECTTIMEOUT);
312 curl_setopt($ch, CURLOPT_TIMEOUT, STRONGMONKEY_TIMEOUT);
313 $response = curl_exec($ch);
314 $response_code = curl_getinfo($ch, CURLINFO_RESPONSE_CODE);
315 curl_close($ch);
316

317 if ($parse) {
318 return $this->parseResponse($response_code, $response);
319 }
320 else {
321 return array(
322 ’code’ => $response_code,
323 ’body’ => $response
324);
325 }
326 }
327

328 /**
329 * Parse response from the FIDO server
330 * @param integer $code HTTP code returned
331 * @param string $response Response body
332 * @return integer|array

72 Appendix B. StrongMonkey Implementation Code

333 */
334 private function parseResponse ($code, $response) {
335 // 200: Success
336 if ($code === 200) {
337 $response = json_decode($response);
338 if ($response) {
339 return $response;
340 }
341 return StrongMonkey::$PARSE_ERROR;
342 }
343 // 400: There was an error in the submitted input.
344 if ($code === 400) {
345 return StrongMonkey::$SUBMIT_ERROR;
346 }
347 // 401: The authentication failed.
348 if ($code === 401) {
349 return StrongMonkey::$AUTHENTICATION_FAILED;
350 }
351 // 404: The requested resource is unavailable.
352 if ($code === 404) {
353 return StrongMonkey::$RESOURCE_UNAVAILABLE;
354 }
355 // 500: The server ran into an unexpected exception.
356 if ($code === 500) {
357 return StrongMonkey::$UNEXPECTED_ERROR;
358 }
359 // 501: Unused routes return a 501 exception with an error message.
360 if ($code === 501) {
361 return StrongMonkey::$UNUSED_ROUTES;
362 }
363 return StrongMonkey::$UNKNOWN_ERROR;
364 }
365

366 /**
367 * Check and get error string if any
368 * @param mixed $error Response returned from an action
369 * @return boolean|string
370 */
371 public function getError ($error) {
372 // If not error
373 if (!is_numeric($error)) {
374 return false;
375 }
376 // Resolve error code
377 switch ($error) {
378 case StrongMonkey::$PARSE_ERROR:
379 return ’StrongMonkey: Response parse error.’;
380 case StrongMonkey::$SUBMIT_ERROR:
381 return ’StrongMonkey: There was an error in the submitted input.’;
382 case StrongMonkey::$AUTHENTICATION_FAILED:
383 return ’StrongMonkey: The authentication failed.’;
384 case StrongMonkey::$RESOURCE_UNAVAILABLE:
385 return ’StrongMonkey: The requested resource is unavailable.’;
386 case StrongMonkey::$UNEXPECTED_ERROR:
387 return ’StrongMonkey: The server ran into an unexpected exception.’;
388 case StrongMonkey::$UNKNOWN_ERROR:
389 return ’StrongMonkey: Unused routes return a 501 exception with an error

↪→ message.’;
390 default:
391 return ’StrongMonkey: Unknown error code.’;
392 }
393 }

Appendix B. StrongMonkey Implementation Code 73

394

395 /**
396 * Generate HMAC authentication header value
397 * @param string $method Request method to be used
398 * @param string $payload Payload Hash to be used
399 * @param string $mimetype Mime-type to be used
400 * @param string $datestr Date string to be used
401 * @param string $path Path to be used
402 * @return string
403 */
404 private function generateHMAC ($method, $payload, $mimetype, $datestr, $path) {
405 // Assembly hash message
406 $message = array(
407 $method,
408 $payload,
409 $mimetype,
410 $datestr,
411 StrongMonkey::$api_version,
412 $path
413);
414 // Generate HMAC
415 $digest = hash_hmac(’sha256’, implode("\n", $message), pack(’H*’, $this->

↪→ keysecret));
416 // Return header
417 return ’HMAC ’ . $this->keyid . ’:’ . base64_encode(pack(’H*’, $digest));
418 }
419

420 /**
421 * Convert JSON to string
422 * @param array|string $json JSON value to be converted
423 * @param array|string $ifnull Default falue if value is null
424 * @return string
425 */
426 private function jsonStringPrepare ($json, $ifnull=null) {
427 if ($json === null && $ifnull !== null) {
428 $json = $ifnull;
429 }
430 if (is_string($json)) {
431 return $json;
432 }
433 return json_encode($json, JSON_UNESCAPED_SLASHES);
434 }
435

436 }

LISTING B.2: StrongMonkey SDK library for PHP applications.

74 Appendix B. StrongMonkey Implementation Code

FIGURE B.1: UML Class Diagram for the StrongMonkey PHP library

StrongMonkey

-api_protocol:string

-api_version:string

-api_url_base:string

-version:string

-useragent:string

-hostport:string

-did:integer

-wsprotocol:string

-authtype:string

-keyid:string

-keysecret:string

+StrongMonkey (

hostport:string, did:integer, protocol:string,

authtype:string, keyid:string, keysecret:string

)

+preregister (

username:string, displayname:string|null,

options:array|string|null, extensions:array|string|null

):integer|array

+register (

response:array|string, metadata:array|string|null

):integer|array

+preauthenticate (

username:string|null, options:array|string|null, extensions:array|string|null

):integer|array

+authenticate (

response:array|string, metadata:array|string|null

):integer|array

+updatekeyinfo (

status:string, modify_location:string,

displayname:string, keyid:string

):integer|array

+getkeysinfo (username:string):integer|array

+deregister (keyid:string):integer|array

+ping():integer|string

+request (

payload:array, action_path:string, parse:boolean

):integer|array

-parseResponse (code:integer, response:string):integer|array

+getError (error:mixed):boolean|string

-generateHMAC (

method:string, payload:string,

mimetype:string, datestr:string, path:string

):string

-jsonStringPrepare (json:array|string, ifnull:array|string|null):string

75

Appendix C

Configuring Keycloak for WebAuthn

This section is a guide on how to configure FIDO2/WebAuthn on Keycloak1 IdM

server.To follow the guide you one will have to log into your Keycloak server as an

admin. The following configuration was performed on an Ubuntu 20.04.1 server

running Keycloak v12.0.4.

Create a new realm (Optional)

Fist, let’s create a new realm for our FIDO2/WebAuthn testing. Click the dropdown

next to the realm name (here “Master”) and click the “Add realm” button:

Fill in the realm name of preference (we inserted “FIDO2”) and then click the

“Create” button:

Note that users will now be able to login to the realm account though:

https://<domain>:<port>/auth/realms/<realm-name>/account

Thus in our example lab case:

https://keycloak.gramthanos.com:8443/auth/realms/FIDO2/account

Enable WebAuthn Registers

On your new realm, navigate to the “Authentication” menu on the sidebar.

1https://www.keycloak.org/

https://www.keycloak.org/

76 Appendix C. Configuring Keycloak for WebAuthn

Then select the “Required Actions” tab at the top. You will now be able to insert

2 WebAuthn related “Registers”.

Click the register button and insert the “WebAuthn Register” used to manage the

WebAuthn keys to be used as 2nd Factor Authenticators under the user’s “Personal

Info > Account Security > Signing In > Two-Factor Authentication” panel (when a user

logs in on the Keycloak realm panel).

Then, you can also add the “WebAuthn Register Passwordless” that is used to

manage WebAuthn keys for password-less authentication. These keys are listed

under another section on the user’s panel.

Appendix C. Configuring Keycloak for WebAuthn 77

The two WebAuthn Registers can now be seen in the list, and their “Enabled”

checkbox should be checked.

Create WebAuthn Authentication Flows

Now that we enabled WebAuthn registers we are able to create new Authentication

flows that also include authentication through WebAuthn. Go to the “Flows” tab and

click to clone the default “Browser” flow:

78 Appendix C. Configuring Keycloak for WebAuthn

Second Factor Authentication Flow (U2F)

In the image below you can see how we configured a traditional Username &

Password Authentication flow with an additional WebAuthn step serving as a 2nd

factor authentication.

Note that we set the “Optional 2nd Factor” flow to “CONDITIONAL” thus the 2nd

factor will only appear for users that have already registered a FIDO key for 2nd factor

authentication. Otherwise the authentication flowwill only be based on theUsername

& Password.

This flow uses the “WebAuthn Authenticator” linked to the “WebAuthn Register”

that we added in a previous section. The policy of this authenticator can be edited

under the “WebAuthn Policy” tab on Authentication.

Here is the login flow as the user experience it:

Appendix C. Configuring Keycloak for WebAuthn 79

The user will be able to register keys from their sign in options after they login on

the realm console:

In the image above you can see that we registered a Windows Hello using a PIN

as an authenticator device for this user.

Password-less Authentication only with username

In the image below you can see how we configured a traditional Username &

Password Authentication flowwith an alternative login option using an authenticator

device for password-less login (provided that the user has registered such an

authenticator key under password-less).

80 Appendix C. Configuring Keycloak for WebAuthn

Note that since we used the “Condition - User Configured” and we set the

“Passwordless Authen” flow to “ALTERNATIVE”, the option will only be available

if the user already registered a FIDO key for password-less login. Otherwise the

authentication flow will be based on the Username & Password.

This flow uses the “WebAuthn Passwordless Authenticator” linked to the

“WebAuthn Register Passwordless” that we added in a previous section. The policy

of this authenticator can be edited under the “WebAuthn Passwordless Policy” tab

on Authentication.

Here is the login flow as the user experience it:

Appendix C. Configuring Keycloak for WebAuthn 81

The user will be able to register keys from their sign in options after they login on

the realm console:

In the image above you can see that we registered an authenticator device under

password-less login.

Binding an Authentication flow

After creating the authentication flow, you will be able to set our authentication flow

of preference under the “Bindings” tab:

Keycloak provides two configuration options. The idea is that one (the less strict

one) can been used for second factor authentication and the other one (with stronger

security) to be used for password-less authentication.

82 Appendix C. Configuring Keycloak for WebAuthn

Configuring FIDO Policy

Keycloak provides two configuration options. The idea is that one (the less strict

one) can be used for second factor authentication and the other one (with stronger

security) to be used for password-less authentication.

Relying Party Name
The relying party name is used only to be displayed to humans. Depending on the

platform this name may appear on the UI of the authentication or registration.

Signature Algorithms
From the available signature algorithms only the 3 ECDSA-based are

recommended for use.

Code Name Number Description Recommended
ES256 -7 ECDSA w/ SHA-256 Yes

ES384 -35 ECDSA w/ SHA-384 Yes

ES512 -36 ECDSA w/ SHA-512 Yes

RS256 -257 RSASSA-PKCS1-v1_5 using SHA-256 No

RS384 -258 RSASSA-PKCS1-v1_5 using SHA-384 No

RS512 -259 RSASSA-PKCS1-v1_5 using SHA-512 No

RS1 -65535 RSASSA-PKCS1-v1_5 using SHA-1 Deprecated

More information about these specific algorithms as well as an up-to-date usage

recommendation can be found at IANA’s CBOR Object Signing and Encryption

(COSE)2 website.

2https://www.iana.org/assignments/cose/cose.xhtml

https://www.iana.org/assignments/cose/cose.xhtml

Appendix C. Configuring Keycloak for WebAuthn 83

Relying Party ID
The Relying Party ID should match the domain name of the website

or match a higher level domain. In our case, since our domain name

of the website is “keycloak.gramthanos.com” valid Relying Party ID are the

“keycloak.gramthanos.com” and “gramthanos.com”. Leaving the input blank, the

website’s domain name will be used.

Note that if the Relying Party ID changes, the already generated authenticators

should not work anymore as they are bound to that.

Attestation Conveyance Preference

Value Description
Blank value means do not set, which is the same as “none”

none No attestation is needed from the authenticator.

indirect Indirect attestation is requested.

direct Direct attestation is requested.

Authenticator Attachment
Value Description

Blank value means don’t filter authenticator.

platform Filter platform authenticators (e.g. Windows Hello).

cross-platform Filter cross-platform authenticators (e.g. External USB Authenticator).

Require Resident Key
This option requests the authenticator to create only resident keys. For now this

option seems not to have any effect from the server side. Normally, this option is

supposed to be used to login without providing a username which seems not to be

supported.

User Verification Requirement

Value Description
A blank value will be treated as "preferred".

required Requires the user to interact with the authenticator.

preferred The user interaction is preferred.

discouraged The authenticator is discouraged from asking the user to interact with it.

84 Appendix C. Configuring Keycloak for WebAuthn

Timeout
This option sets the timeout in seconds for the registration of an authenticator

device. In our tests this does not work for the authentication.

Avoid Same Authenticator Registration
This option will exclude already registered authenticators during the registration

process. We don’t see a reason for this not to be on.

Acceptable AAGUIDs
Essentially this is a white-list of the accepted authenticator devices. The AAGUID

values can be found on the webpage of the manufacturer or the authenticators

(e.g. YubiKey Hardware FIDO2 AAGUIDs3). Alternatively a tool has to be used to

check the AAGUID of an authenticator (e.g. using Yubico’s Python FIDO2 library and

get-info.py4).

The AAGUID the authenticator device reports is usually linked to the requested

attestation, thus if this is to be used, the Attestation Conveyance Preference should

be set to direct or maybe indirect depending on the authenticator. If for example

attestation “none” is used, the authenticatormay choose to send an all zeros AAGUID.

3https://support.yubico.com/hc/en-us/articles/360016648959-YubiKey-Hardware-FIDO2-AAGUIDs
4https://github.com/Yubico/python-fido2/tree/master/examples

https://support.yubico.com/hc/en-us/articles/360016648959-YubiKey-Hardware-FIDO2-AAGUIDs
https://github.com/Yubico/python-fido2/tree/master/examples

85

Appendix D

VPN Implementation Code

In Section 4.3 we presented our implementation of FIDO2 on OpenVPN. As we

mentioned the full code is publicly available at GitHub1. In this section we will list

the 2 most important parts of the implementation, the server authentication Python

code (Listing D.1) as well as the main client application JavaScript code (Listing D.2).

1 #!/usr/bin/env python3
2 import os
3 import sys
4 import json
5 import base64
6 import requests
7

8 ssl_verify = True
9

10 # This is only for development
11 #requests.packages.urllib3.disable_warnings()
12 #ssl_verify = False
13

14 authservices = {
15 "google-oidc" : {
16 "wellknown" : "https://accounts.google.com/.well-known/openid-configuration",
17 "clientid" : "<google-client-id>",
18 "secret" : "<google-secret>",
19 "redirect" : "https://vpnapp.electron.gramthanos.com/oidc"
20 },
21 "keycloak-oidc" : {
22 "wellknown" : "<keycloak-app-url>/.well-known/openid-configuration",
23 "clientid" : "<keycloak-client-id>",
24 "secret" : "<keycloak-secret>",
25 "redirect" : "https://vpnapp.electron.gramthanos.com/oidc"
26 }
27 };
28

29 # Parse authen info given
30 authentication = json.loads(base64.b64decode(os.getenv(’password’)).decode())
31

32 # Check if correct response
33 if not ’service’ in authentication.keys() or not ’code’ in authentication.keys():
34 sys.exit(1)
35 # Check if service in list of services
36 if not authentication[’service’] in authservices.keys():
37 sys.exit(1)
38

39 # Get service info
40 service = authservices[authentication[’service’]]
41

42 # Get configuration

1https://github.com/GramThanos/vpn-oidc

https://github.com/GramThanos/vpn-oidc

86 Appendix D. VPN Implementation Code

43 response = requests.get(service[’wellknown’], verify = ssl_verify);
44 # Check if request failed
45 if response.status_code != 200:
46 sys.exit(1)
47 # Parse data
48 discovery = response.json()
49 # Check if endpoints dont exists
50 if not ’token_endpoint’ in discovery.keys():
51 sys.exit(1)
52 if not ’userinfo_endpoint’ in discovery.keys():
53 sys.exit(1)
54

55 # Request data
56 response = requests.post(discovery[’token_endpoint’], data = {
57 ’code’: authentication[’code’],
58 ’client_id’ : service[’clientid’],
59 ’client_secret’ : service[’secret’],
60 ’redirect_uri’ : service[’redirect’],
61 ’grant_type’ : ’authorization_code’
62 }, verify = ssl_verify);
63 # Check if request failed
64 if response.status_code != 200:
65 sys.exit(1)
66 # Parse data
67 data = response.json()
68 # Check if endpoints dont exists
69 if not ’access_token’ in data.keys() or not ’id_token’ in data.keys():
70 sys.exit(1)
71

72 jwt = data[’id_token’].split(’.’)
73 info = json.loads(base64.b64decode(jwt[1] + ’=’ * (-len(jwt[1]) % 4)).decode())
74 print(’Welcome ’ + info[’email’] + ’ !’)
75 sys.exit(0)

LISTING D.1: Server side authentication code in Python.

1 // preload.js
2 const fs = require(’fs’);
3 const path = require(’path’);
4 const crypto = require(’crypto’);
5 const isDevelopment = false;
6 const axios = isDevelopment ?
7 require(’axios’).create({
8 httpsAgent: new require(’https’).Agent({rejectUnauthorized: false}),
9 adapter: require(’axios/lib/adapters/http’)

10 }) :
11 require(’axios’).create({
12 adapter: require(’axios/lib/adapters/http’)
13 });
14 const child_process = require(’child_process’);
15

16 const $app = {
17 connected : false,
18

19 configPath : path.join(__dirname, ’..’, ’config.json’),
20 openvpnPath : null,
21

22 // Load configuration file
23 loadConfig : function() {
24 // Default config
25 this.config = {authservices: []};
26

Appendix D. VPN Implementation Code 87

27 try {
28 // Load config file
29 let tmp = JSON.parse(fs.readFileSync(this.configPath, ’utf8’));
30 // Validate config
31 if (
32 !tmp.hasOwnProperty(’authservices’) ||
33 !(tmp.authservices instanceof Array)
34) {
35 throw(’Invalid config.’);
36 }
37 // Config loaded
38 this.config = tmp;
39 this.log(’Config loaded.’);
40 } catch (e) {
41 this.log(’Failed to loaded config:\n’ + e.toString());
42 }
43 },
44

45 // Display available authentication services
46 showAuthServices : function() {
47 // UI wrapper for services
48 const wrapper = document.getElementById(’connect-form’);
49

50 // If no services available
51 if (this.config.authservices.length == 0) {
52 let msg = document.createElement(’span’);
53 msg.textContent = ’No service found.’;
54 wrapper.appendChild(msg);
55 this.log(’No services available.’);
56 return;
57 }
58

59 let length = 0;
60 // Display each service on screen
61 this.config.authservices.forEach(auth => {
62 let button = document.createElement(’input’);
63 button.setAttribute(’type’, ’submit’);
64 button.setAttribute(’value’, auth.name);
65 button.setAttribute(’title’, auth.description);
66 button.className = ’btn btn-primary’;
67 button.dataset.authservice = (length + 1);
68 wrapper.appendChild(button);
69 length++;
70 });
71 this.log(length + ’ services available.’);
72 },
73

74 // Disable all authentication services buttons
75 disableAuthServices : function() {
76 [...document.getElementById(’connect-form’)
77 .getElementsByTagName(’input’)].forEach(input => {
78 input.setAttribute(’disabled’, ’disabled’);
79 });
80 },
81

82 // Enable all authentication services buttons
83 enableAuthServices : function() {
84 [...document.getElementById(’connect-form’)
85 .getElementsByTagName(’input’)].forEach(input => {
86 input.removeAttribute(’disabled’, ’disabled’);
87 });
88 },

88 Appendix D. VPN Implementation Code

89

90 // Change View
91 enableConnectedView : function() {
92 document.getElementById(’disconnected’).style.display = ’none’;
93 document.getElementById(’connected’).style.display = ’block’;
94 },
95 enableDisconnectedView : function() {
96 document.getElementById(’connected’).style.display = ’none’;
97 document.getElementById(’disconnected’).style.display = ’block’;
98 },
99

100 // Add authentication services buttons handlers
101 addAuthServicesEventListeners : function() {
102 // Handle form submit event
103 document.getElementById(’connect-form’)
104 .addEventListener(’submit’, (e) => {
105 e.preventDefault();
106

107 // Get authentication service to use
108 // (detect which button was pressed)
109 const authservice = this.config.authservices[Math.round(
110 parseInt(document.activeElement.dataset.authservice, 10)
111) - 1];
112 if (!authservice) return false;
113

114 // Disable authentication services buttons
115 this.disableAuthServices();
116 // Get authentication services information
117 this.getAuthServiceEndpoint(authservice)
118 .then((endpoint) => {
119 // Start authentication
120 this.launchAuthService(authservice, endpoint)
121 .then((authentucationResponse) => {
122 // Generate username and password
123 let username =
124 crypto.randomBytes(16).toString(’base64’) +
125 ’@’ + authservice.id; // Random Username
126 // Save auth response json as password
127 let password = Buffer.from(
128 JSON.stringify(authentucationResponse)
129).toString(’base64’);
130

131 // Connect on VPN
132 this.vpnConnect(authservice, username, password)
133 .catch((error) => {
134 this.enableAuthServices();
135 });
136 })
137 .catch((error) => {
138 reject(’Failed authenticate.’);
139 this.enableAuthServices();
140 });
141 })
142 .catch((error) => {
143 this.log(error);
144 this.enableAuthServices();
145 })
146

147 return false;
148 });
149

150 // Handle disconnect

Appendix D. VPN Implementation Code 89

151 document.getElementById(’disconnect-form’)
152 .addEventListener(’submit’, (e) => {
153 if (!this.openvpnProcess) {
154 this.openvpnProcess.kill(’SIGINT’);
155 }
156 this.killOpenVPNClients();
157 });
158 },
159

160 // Load authentication service endpoint
161 getAuthServiceEndpoint : function(authservice) {
162 // Load authentication service OIDC info
163 this.log(’Loading "’ +
164 authservice.name + ’" connection information...’);
165 return new Promise((resolve, reject) => {
166 axios({
167 method: ’get’,
168 url: authservice.wellknown,
169 responseType: ’json’
170 })
171 .then((response) => {
172 // Check for errors
173 if (
174 !response.data ||
175 !response.data.authorization_endpoint ||
176 !response.data.userinfo_endpoint
177) {
178 reject(’Failed to recover OIDC endpoints’);
179 return;
180 }
181 if (
182 !response.data.response_types_supported ||
183 !response.data.response_types_supported.includes(’code’)
184) {
185 reject(’OIDC configuration does not support code response type’);
186 return;
187 }
188 if (
189 !response.data.scopes_supported ||
190 !response.data.scopes_supported.includes(’openid’) ||
191 !response.data.scopes_supported.includes(’email’)
192) {
193 reject(’OIDC configuration does not support needed scopes’);
194 return;
195 }
196

197 resolve(response.data.authorization_endpoint);
198 })
199 .catch((error) => {
200 reject(’Failed to load OIDC configuration’);
201 });
202 });
203 },
204

205

206 launchAuthService : function(authservice, endpoint) {
207 this.log(’Starting authentication with "’ +
208 authservice.name + ’"...’);
209 return new Promise((resolve, reject) => {
210 let state = ’security_token’ + ’:’ +
211 crypto.randomBytes(64).toString(’base64’) + ’:’ +
212 authservice.redirect;

90 Appendix D. VPN Implementation Code

213 let nonce = crypto.randomBytes(64).toString(’base64’);
214

215 // Prepare URL
216 let serviceURL = new URL(endpoint);
217 serviceURL.searchParams.append(’client_id’, authservice.clientid);
218 serviceURL.searchParams.append(’response_type’, ’code’);
219 serviceURL.searchParams.append(’scope’, ’openid email’);
220 serviceURL.searchParams.append(’redirect_uri’, authservice.redirect);
221 serviceURL.searchParams.append(’state’, state);
222 serviceURL.searchParams.append(’nonce’, nonce);
223 serviceURL = serviceURL.toString();
224

225 // Open new window for authentication
226 const { remote } = require(’electron’);
227 const win = new remote.BrowserWindow({
228 title: ’Authenticate’,
229 show: false,
230 width: 800,
231 height: 600,
232 backgroundColor: ’#ccc’,
233 webPreferences: {
234 nodeIntegration: false,
235 enableRemoteModule: false,
236 sandbox: true
237 },
238 parent: remote.getCurrentWindow(),
239 modal: true
240 });
241 //win.setMenuBarVisibility(false);
242

243 win.once(’ready-to-show’, () => {
244 win.show();
245 });
246

247 win.once(’closed’, () => {
248 reject(’Authentication aborted.’);
249 });
250

251 win.loadURL(serviceURL);
252 const {session: {webRequest}} = win.webContents;
253

254 // Catch callback URL
255 webRequest.onBeforeRequest({
256 urls: [authservice.redirect + ’*’]
257 }, (details, callback) => {
258 let url = new URL(details.url);
259 // Validate response state
260 if (url.searchParams.get(’state’) !== state) {
261 reject(’Authentication failed, invalid response.’);
262 return;
263 }
264

265 // Prepare response
266 let response = {
267 service : authservice.id,
268 //session_state : url.searchParams.get(’session_state’),
269 code : url.searchParams.get(’code’)
270 };
271 win.close();
272

273 // Return authentication results
274 resolve(response);

Appendix D. VPN Implementation Code 91

275 });
276 });
277 },
278

279 findOpenvpn : function() {
280 // List of possible locations for openvpn
281 let possiblePaths = [
282 path.join(’C:/Program Files’, ’OpenVPN/bin’, ’openvpn.exe’),
283 path.join(’C:/Program Files (x86)’, ’OpenVPN/bin’, ’openvpn.exe’),
284];
285

286 // Check paths for openvpn
287 for (let path of possiblePaths) {
288 try {
289 if (fs.existsSync(path)) {
290 this.openvpnPath = path;
291 break;
292 }
293 } catch(err) {}
294 }
295

296 // If openvpn was found
297 if (this.openvpnPath) {
298 try {
299 // Try to load version
300 let version = child_process.execFileSync(
301 path.basename(this.openvpnPath),
302 [’--version’],
303 {cwd: path.dirname(this.openvpnPath)}
304).toString().trim();
305 version = version.match(/OpenVPN\s*(\d*\.*\d*\.*\d*\.*\d*)/i);
306 version = version[1] || ’Unknown’;
307 this.versionsInfo.push(’OpenVPN’ + ’ ’ + version);
308

309 this.log(’Found OpenVPN version ’ + version);
310 } catch (e) {
311 // Failed to load version
312 this.openvpnPath = null;
313 this.log(’No OpenVPN installation found.’);
314 }
315 }
316 },
317

318 vpnConnect : function(authservice, user, pass) {
319 return new Promise((resolve, reject) => {
320 // Run OpenVPN Client
321 this.runOpenVPNClient(authservice, (line, process) => {
322 // Handle output
323 if ((/Enter Auth Username:/i).test(line)) {
324 process.stdin.write(user);
325 return;
326 }
327 else if ((/Enter Auth Password:/i).test(line)) {
328 process.stdin.write(pass);
329 return;
330 }
331 else if ((/Initialization Sequence Completed/i).test(line)) {
332 this.enableConnectedView();
333 }
334

335 //2021-09-12 21:18:53
336 line = line.replace(

92 Appendix D. VPN Implementation Code

337 /^\s*\d\d\d\d-\d\d-\d\d\s*\d\d:\d\d:\d\d\s*/i, ’’);
338 this.log(’[OpenVPN] ’ + line);
339 })
340 .catch((error) => {
341 this.enableDisconnectedView();
342 reject();
343 });
344 });
345 },
346

347 runOpenVPNClient : function(authservice, handler) {
348 return new Promise((resolve, reject) => {
349 // Check if OpenVPN was found
350 if (!this.openvpnPath) {
351 reject(’OpenVPN was not found.’);
352 return;
353 }
354

355 this.killOpenVPNClients();
356

357 // Note
358 this.log(’Running OpenVPN Client.’);
359

360 // Create OpenVPN process
361 var child = child_process.spawn(path.basename(this.openvpnPath), [
362 ’--config’,
363 path.join(__dirname, ’..’, ’profiles’, authservice.profile)
364], {
365 encoding: ’utf8’,
366 shell: true,
367 cwd: path.dirname(this.openvpnPath)
368 });
369

370 // You can also use a variable
371 // to save the output for when the script closes later
372 child.on(’error’, (error) => {
373 console.log(’OpenVPN Client Error’, error.toString());
374 });
375

376 child.stdin.setEncoding(’utf8’);
377

378 child.stdout.setEncoding(’utf8’);
379 child.stdout.on(’data’, (data) => {
380 handler(data.toString(), child);
381 });
382

383 child.stderr.setEncoding(’utf8’);
384 child.stderr.on(’data’, (data) => {
385 handler(data.toString(), child);
386 });
387

388 child.on(’close’, (code) => {
389 // Here you can get the exit code of the script
390 //switch (code) {
391 // case 0:
392 // console.log(’Client Close’, ’Ended’);
393 // break;
394 //}
395 reject(code);
396 });
397

398 this.openvpnProcess = child;

Appendix D. VPN Implementation Code 93

399 });
400 },
401

402 killOpenVPNClients : function() {
403 try {
404 child_process.execFileSync(
405 ’taskkill.exe’,
406 [’/F’, ’/IM’, ’openvpn.exe’]
407);
408 } catch (e) {}
409 },
410

411 // Load node info
412 versionsInfo : [],
413 loadVersionsNode : function() {
414 const capitalize = (word) => {
415 return word[0].toUpperCase() + word.substring(1).toLowerCase();
416 }
417 // List versions
418 for (let dependency of [’chrome’, ’node’, ’electron’]) {
419 this.versionsInfo.push(
420 capitalize(dependency) + ’ ’ + process.versions[dependency]
421);
422 }
423 },
424

425 // Show versions on GUI
426 showVersions : function() {
427 // Clear placeholder
428 document.getElementById(’version’).textContent = ’’;
429 // List versions
430 for (let version of this.versionsInfo) {
431 document.getElementById(’version’).appendChild(
432 document.createTextNode(version)
433);
434 document.getElementById(’version’).appendChild(
435 document.createElement(’br’)
436);
437 }
438 },
439

440 // Log information function
441 log : function(data, date=true, newline=true) {
442 if (!this.logElement) {
443 this.logElement = document.getElementById(’log-textarea’);
444 }
445 this.logElement.value += (newline ? ’\n’ : ’’) +
446 (date ? ’[’ + new Date().toISOString() + ’] ’ : ’’) +
447 data;
448 }
449 };
450

451 // When DOM is ready
452 window.addEventListener(’DOMContentLoaded’, () => {
453 // Log app start
454 $app.log(’Client started.’, true, false);
455 // Load some version info
456 $app.loadVersionsNode();
457 // Find OpenVPN installation
458 $app.findOpenvpn();
459 // Load app configuration file
460 $app.loadConfig();

94 Appendix D. VPN Implementation Code

461 // Display available authentication services
462 $app.showAuthServices();
463 // Attach handlers
464 $app.addAuthServicesEventListeners();
465 // Show versions on GUI
466 $app.showVersions();
467 });

LISTING D.2: Client side application code in JavaScript

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Introduction

	FIDO2 / WebAuthn
	FIDO2 in web applications through WebAuthn
	Authentication procedure
	Registration procedure
	Security Measures
	Types of authenticator devices
	Authenticator device attestation

	Payment Services Directive 2
	The Directive (EU) 2015/2366
	RTS on SCA Standards
	Opinion of the EBA on the elements of SCA
	Inherence element
	Possession element
	Knowledge element

	FIDO Alliance review of RTS for SCA
	Identified Issues and Problems
	Certification of Relying Party FIDO services
	Adoption and Compatibility
	Tolerance of Failed Authentications
	Selecting Trusted Authenticator Devices
	Availability Authenticator Devices

	Implementations
	StrongMonkey
	Introduction
	Implementation
	Usage
	DEMO Application
	Conclusions

	StrongBee
	Introduction
	Implementation
	Usage
	Conclusions

	FIDO2 authentication for OpenVPN
	Introduction
	Implementation
	Usage
	Conclusions

	Conclusion
	FIDO Metadata Filtering App
	StrongMonkey Implementation Code
	Configuring Keycloak for WebAuthn
	VPN Implementation Code

