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Abstract 

Cellular networks are one of the most impactful technologies of today’s ICT industry. 

They provide wireless access to internet and services with very high availability and 

effectiveness. The evolution of this technology comes with the maturity of the 3GPP-

based network and their upcoming releases that promise to deliver even higher quality 

of service, additional capabilities, and solutions to previous drawbacks. To achieve this, 

vendors of these technologies must analyze the complexity of these networks and their 

different deployment options and provide intelligent management software. Variations 

of cellular networks can be found in literature as Heterogeneous Cellular Networks 

(HetNets) or Ultra-Dense networks which are improved design flavors of the same 

system with increased complexity and configurations. The added capabilities of these 

networks must be used as a toolbox to improve various operational aspects of the 

networks such as energy efficiency, network performance and system fault prevention. 

The scope of this Doctorate Thesis is to analyze different approaches of optimizing 

HetNets in order to suggest plausible suggestions for extensions that will optimize all 

high-level objectives. Static management and configuration will be used in conjunction 

with knowledge-building to improve the energy efficiency of key simulation scenarios 

of 3GPP networks. Dynamic Resource allocation schemes will be used as a real time 

management algorithm to improve quality of service in a micro-scale. Predictive 

models based on acquired historical data will be used to predict network operational 

KPIs, evaluate the probability of network congestion and identification of unknown 

network element groups based on their behavior. These generated insights will help 

the infrastructure providers to impose countermeasures to prevent quality 

deterioration and enforce the technological standards. They will also lead to the 

reduction of the OPEX and the energy footprint of the system making technology 

investments sustainable and profitable for network operators. The framework for 

developing and testing these algorithms is a custom-designed software platform for 

HetNet simulations and algorithm experimentation. This system is designed according 

to standards and specifications in order to provide realistic results that will establish 

the suggested algorithms as strong candidates to be included in future 3GPP-based 

wireless networks. 

 

 



 

 12 

Keywords: 3GPP, HetNet, Ultra-Dense Networks, Optimization, Management 

Knowledge-Building, High-Level Objectives, Energy Efficiency, EMF reduction, Quality 

of Service, Fault Prevention, KPI Forecasting, Network Element Clustering 

 

 

  



 

 13 

Περίληψη 

Τα κυψελωτά δίκτυα κινητών επικοινωνιών είναι μία από τις τεχνολογίες με την 

μεγαλύτερη επίδραση στην σημερινή βιομηχανία των τεχνολογιών επικοινωνιών και 

πληροφορικής. Παρέχουν ασύρματη πρόσβαση στο διαδίκτυο αλλά και μια πληθώρα 

άλλων υπηρεσιών με πάρα πολύ υψηλή διαθεσιμότητα και αποτελεσματικότητα. Η 

εξέλιξη αυτής της τεχνολογίας έρχεται με την ωρίμανση των δικτύων προδιαγραφών 

3GPP, η πρόοδος των οποίων υπόσχεται να παρέχει ακόμα υψηλότερη ποιότητα 

υπηρεσιών, περισσότερες δυνατότητες αλλά και λύσεις σε προβλήματα των 

παλαιότερων γενεών. Για την επίτευξη αυτών των στόχων, οι κατασκευαστές αυτής 

της τεχνολογίας πρέπει να αναλύσουν προσεκτικά την πολυπλοκότητα αυτών των 

δικτύων αλλά και των δυνατοτήτων εγκατάστασης τους και να παρέχουν ευφυές 

λογισμικό διαχείρισης τους. Διαφοροποιήσεις σε κυψελωτά δίκτυα τύπου 3GPP όπως 

τα ετερογενή κυψελωτά δίκτυα αλλά και τα «υπερ-πυκνά» δίκτυα είναι εξελίξεις αυτών 

των δικτύων με αυξημένη πολυπλοκότητα και δυνατότητες που βρίσκεται στη 

βιβλιογραφία. Μέσω αυτών των δυνατοτήτων μπορούμε να βελτιώσουμε τους 

διάφορους λειτουργικούς στόχους της υποδομής όπως ενεργειακή αποδοτικότητα, 

δικτυακές επιδόσεις και αποφυγή σφαλμάτων. Αυτή η διδακτορική διατριβή έχει ως 

σκοπό να αναλύσει διαφορετικές προσεγγίσεις βελτιστοποίησης ετερογενών δικτύων 

καταλήγοντας έτσι σε προτάσεις για επέκταση τους επηρεάζοντας όσο το δυνατών 

περισσότερους στόχους-κλειδιά. Στατική διαχείριση και ρύθμιση σε συνδυασμό με 

συλλογή γνώσης θα χρησιμοποιηθεί για την βελτίωση ενεργειακή επίδοσης σεναρίων-

κλειδιών για την 4η γενιάς κινητής τηλεφωνίας. Αλγόριθμοι δυναμικού διαμοιρασμού 

πόρων θα χρησιμοποιηθούν σαν μία μέθοδος διαχείρισης πραγματικού χρόνου με 

σκοπό την βελτίωση ποιότητας υπηρεσιών σε μικρό-κλίμακα. Τέλος, μοντέλα 

μηχανικής μάθησης θα εκπαιδευτούν σε ιστορικά δεδομένα με σκοπό την πρόβλεψη 

των λειτουργικών δεικτών του δικτύου, εκτίμηση της πιθανότητας δικτυακής 

υπερφόρτωσης και αναγνώριση άγνωστων ομάδων δικτυακών στοιχείων βασισμένα 

στην συμπεριφορά τους. Αυτές οι προβλέψεις θα βοηθήσουν την διαχείριση της 

υποδομής στην ενεργοποίηση αντίμετρων για την αποφυγή της υποβάθμισης της 

ποιότητας υπηρεσιών αλλά και την επικράτηση των προδιαγραφών της τεχνολογίας. 

Αυτές θα οδηγήσουν επίσης στην ελάττωση του OPEX αλλά και του ενεργειακού 

αποτυπώματος του συστήματος οδηγώντας έτσι σε βιώσιμες και επιτυχημένες 

επενδύσεις για τους παρόχους. Το πλαίσιο ανάπτυξης για αυτούς τους αλγορίθμους 

είναι ένα αυτοσχέδιο πρωτότυπο προσομοιωτή ετερογενών δικτύων και πλατφόρμα 



 

 14 

εκτέλεσης πειραματικών αλγορίθμων. Αυτό το σύστημα σχεδιάστηκε με βάση τις 

πρότυπες προδιαγραφές προσομοίωσης τέτοιων συστημάτων και τα ρεαλιστικά 

δεδομένα που θα εξαχθούν από αυτό θα βοηθήσουν στην υπεράσπιση της 

αποτελεσματικότητας των προτεινόμενων αλγορίθμων για την ένταξη τους στην 

τεχνολογία κυψελωτών επικοινωνιών 3GPP. 

 

 

Λέξεις-Κλειδιά: 3GPP , Ετερογενή Κυψελωτά Δίκτυα, «υπερ-πυκνά» δίκτυα, 

βελτιστοποίηση, συλλογή γνώσης, υψηλοί στόχοι-κλειδιά, ενεργειακή αποδοτικότητα, 

μείωση ΗΜ ρίπων, ποιότητα υπηρεσιών, αποφυγή σφαλμάτων, πρόβλεψη μετρικών, 

ομαδοποίηση δικτυακών στοιχείων 
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Πρόλογος 

Μία διδακτορική διατριβή μπορεί να τη φανταστεί κανείς ως το λεπτομερές ημερολόγιο 

ενός ακαδημαϊκού ταξιδιού στον αχανή και γεμάτο δέος κόσμο της επιστημονικής 

έρευνας. Η ολοκλήρωση ενός τέτοιου ταξιδιού είναι μία απόδειξη ότι έχεις μετατραπεί 

σε ένα εξελιγμένο άτομο, πλούσιο με νεοφυή εργαλεία και γνώση που σου επιτρέπουν 

να κάνεις ένα βήμα μπροστά και να φέρεις την αλλαγή σε μία μοντέρνα κοινωνία. 

Στις απαρχές αυτής της έρευνας, ο στόχος μας ήταν η κατανόηση των σημερινών 

τεχνολογικών επιτευγμάτων των μοντέρνων συστημάτων κινητής τηλεφωνίας της 

3GPP. Μέσω αυτού μπορέσαμε να εντοπίσουμε προβληματικές καταστάσεις οι οποίες 

θα χρήζουν νέες προσεγγίσεις και αλγορίθμους για την αντιμετώπιση τους. Αυτό μας 

οδήγησε στο συμπέρασμα ότι είναι απαραίτητο να αναπτυχθεί ένα κατάλληλο εργαλείο 

προσομοίωσης το οποίο θα χρησιμοποιούταν για να δοκιμαστούν οι νέες προσεγγίσεις 

και να συγκριθούν με τις υπάρχουσες λύσεις , επιβεβαιώνοντας την βελτίωση που 

μπορούν να επιφέρουν. Η διαδικασία της κατασκευής αυτού του λογισμικού ήταν 

μακριά και δύσκολη και απαίτησε την συνολική συνεισφορά συναδέλφων, ξένων 

οργανισμών / ιδρυμάτων αλλά και μελέτη της βιβλιογραφίας. Στο τέλος ο κόπος 

απέδωσε καρπούς, καθώς μας έδωσε το κατάλληλο εργαλείο τεχνολογικής αιχμής το 

οποίο θα χρησιμοποιούταν ως η βάση για την ανάπτυξη όλων των αλγορίθμων. Τα 

επόμενα βήματα που ακολούθησαν ήταν να προτείνουμε μία διαφορετική τεχνική λύση 

για κάθε έναν από τους κύριους άξονες διαχείρισης τέτοιων υποδομών , ονομαστικά 

την ενεργειακή αποδοτικότητα, την ποιότητα υπηρεσιών και την σταθερότητα του 

δικτύου. Τα προβλήματα που πηγάζουν από τις διαφορετικές αυτές ενότητες, χρήζουν 

διαφορετικής προσέγγισης επίλυσης τους κάτι το οποίο αποδεικνύει ότι για να 

οδηγηθούμε στη νέα τεχνολογική γενιά θα πρέπει να «αγκαλιάσουμε» όσο το δυνατόν 

περισσότερο ριζοσπαστικές και σύνθετες τεχνολογίες. 

Αυτό το ταξίδι δε θα μπορούσε ποτέ να έχει ολοκληρωθεί χωρίς τους συνάδελφους 

ακαδημαϊκούς του Πανεπιστημίου Πειραιώς. Πρωτίστως θα ήθελα να ευχαριστήσω 

προσωπικά τον καθηγητή και μέντορα μου Παναγιώτη Δεμέστιχα, καθώς και τα 

υπόλοιπα μέλη της τριμελής μου καθηγητές Αθανάσιο Κανάτα και Άγγελο Ρούσκα. Η 

συνεισφορά, καθοδήγηση και υποστήριξη τους ήταν μία σημαντική βοήθεια στην 

ολοκλήρωση αυτής της διατριβής. Τα μέλη του εργαστηρίου Τηλεπικοινωνιών, Δικτύων 

και Υπηρεσιών Δρ. Κωνσταντίνος Τσαγκάρης, Ανδρέας Γεωργακόπουλος, Γιούλη 

Κρητικού, Δημήτρης Καρβουνάς, Δημήτρης Κελαηδόνης, Αιμιλία Μπαντούνα έπαιξαν 

σημαντικό ρόλο στην έρευνα μου, παρέχοντας μου συνεισφορά, ευφυείς παραπομπές 
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και συνεχή έμπνευση. Οι συνάδελφοι και Υποψήφιοι διδάκτορες Ιωάννης Μπελικαίδης 
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Thesis Timeline 

The initial planning for this research project was included in the doctorate proposal 

and it included 4 yearly stages that would result in the final doctorate thesis document. 

It is of key importance that research follows accurate scientific steps in order to 

understand a problem statement, study the existing status of the scientific community, 

implement the SOTA, design an improvement and implement it in order to extract 

feedback on the benefits it can bring.  

 

Figure 1 - Timeline of the doctorate thesis 

In the 1st year we focused our research in the next generation of cellular networks, 

analyzing the modern literature, 3GPP and 5GPPP standards and reference scenarios. 

This included the technological features of cellular technologies and their key 

differences with other wireless network communications such as the 802.11 standard. 

We identified the design principles behind the modern deployment versions of such 

networks from homogeneous placements of GSM network to HetNet and Ultra-Dense 

networks. Our Participation in Green-Touch consortium, conferences and publications 

allowed us to formulate the requirements for an accurate simulation environment that 

would work as the testbed for all our future optimization attempts. We also studied 

the S.O.T.A in other simulation environments such as Omnet++, NS2 , NS3 and OpNet 

in order to finalize the design process of the software. 3GPP reports contained crucial 

key scenarios of the LTE standard that we used as baseline to design our future 

optimization / improvements. We also identified the KPIs for the various management 

high level objectives to include them in the calculations. 

The development of the simulation software was finalized in the 2nd year while 

simultaneously we focused on our 1st important optimization use case, energy 

efficiency in LTE HetNets. In order to achieve a sustainable energy consumption status 
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for the reference scenarios, we used cross-operator infrastructure sharing (leveraging 

the stochastic nature of the traffic demand) and supplemented the quality of service 

gap by introducing strategically planned Pico cells in traffic hotspots. The simulation 

software was then used to validate the results and it resulted into the first journal 

publication on IEEE vehicular technologies magazine. The way forward led into 

research for application of other types of algorithms that are more data-driven and 

more flexible than network redesign. Machine learning is a promising field for network 

optimization and rich literature can be found on different directions. This literature was 

split into 3 different subcategories, semi-supervised classification, clustering and 

forecasting. The last 2 were pushed to be studied in the final (4) year of the thesis 

while the 1st was the next item to be included in the study. 

In the 3rd year of this doctorate thesis, we moved further into additional HetNet 

optimization scenarios for various important situations that are foreseen as 

problematic. We studied the literature for the best approach on tackling the quality of 

service optimization problem in dense urban deployments by the means of applying 

intelligent dynamic resource allocation in the radio link control module of LTE. 

Appropriate simulation scenarios were selected to showcase the importance of real 

time management by the means of SON functions is crucial for the runtime of HetNet 

infrastructure. Also, we visited different approaches such as class-based resource 

allocation and policy enforcement. The simulation results showed promising benefits 

in the selected scenarios, and this resulted in our 2nd journal publication is spring 

wireless communication journal. We also studied a different use case in which network 

was being congested due to a change in the underlying state of the active user 

equipment terminal devices. Predictive modeling that used semi-supervised learning 

and Self-Organizing maps was used to identify the congestion and appropriate counter 

measures in the handover algorithm were activated in order to optimize the network 

performance. The analysis of the outcome was split into two parts: a) a performance 

analysis on the machine learning model fit, that would encourage us to include is as a 

component for the optimization and b) the network KPI improvement due to the 

application of the predictive countermeasures. The results of the ensemble scheme 

were a dramatic prevention of the network congestion for various network load 

conditions and situations. 

In the 4th and final year, we focused on the rest of the machine learning predictive 

models to identify novel use cases for their application. Literature for unsupervised 
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learning and dimensionality reduction techniques was studied in order to solve the 

management complexity of Ultra-Dense networks. In detail, we used applied clustering 

to identify network elements that belong to the same behavioral categories. Elements 

that serve the same amount of traffic get grouped together and can then be effectively 

managed. The same methodology was used in a different scenario in which different 

classes of users were identified and grouped together, in order to apply different radio 

resource allocation schemes. In both cases the various clustering algorithms showed 

promising accuracy in the identification of the hidden groups. The second half of the 

final year was dedicated to network KPI forecasting algorithms. The importance of KPI 

forecasting lies in the value of the incident prevention. A timely prediction of 

congestion or a high throughput spike can be used in conjunction with 

countermeasures to provide network robustness and stability. A large set of forecasting 

models were benchmarked on measured network KPIs produced by the simulator for 

key scenarios to test the limitations of their forecasts. The results show us that 

forecasting is a useful tool for short-to-mid-term predictions and can also be a robust 

tool for the future of cellular networks.  
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Chapter 1 – 3GPP Cellular Networks of 4th and 5th 

generation 

1.1 Introduction 

In this introductory chapter, we will analyze the characteristics that differentiate 

cellular networks of the 4th / 5th generation from their predecessor (2G/3G) in terms 

of architecture[1], technologies and management methodologies. In detail, we will 

focus on a) the usage of heterogeneous network coverage elements that consist a 

type of network sometimes referred to as HetNet, b) The density and geospatial 

diversity of the placement for such network elements that lead to a new definition of 

mobile networks, Ultra-Dense Networks, c) The usage of multiple simultaneous carrier 

frequency groups in bands that are not traditionally used for mobile 

telecommunications such as microwave and mm-wave bands in order to deliver higher 

capacity and meet the user demand. Finally, we will analyze the necessity and difficulty 

of intelligent management for these systems which will be the centerpiece of this 

doctorate thesis 

1.2 Heterogeneous Cellular Networks (HetNets) 

Heterogeneous cellular networks[2][3][4] are up and coming network architectures 

for the cellular network providers and have dominated the architectural models in the 

last decade, beginning with the release 8 of the LTE (4G network). In contrast with 

the homogeneous cellular networks (which consist of the repetitive placement of 

homogeneous network elements with respect to the coverage area, capacity 

specifications and capabilities), HetNet architecture is utilizing radio coverage elements 

of different specifications and capabilities in terms of transmit power, antenna type 

and functionalities (coverage capabilities, inter-communication with other elements, 

backhauling capabilities etc.) creating a more capable and also a more complex access 

network that is better suited for the present environments. 
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Figure 2 - Example Heterogeneous Cellular Network (HetNet) [1] 

The benefits of this architecture aim at the geospatial imbalance between different 

urban areas (city areas, rural areas or industrial areas) in terms of traffics demands 

and/or human density which is a paradigm shift in relation to the older planning 

principles. It also benefits from the city layout and the impact that it has on the radio 

transmission environment (reflections, delay diversity, absorption and shadowing). For 

the design of such networks, detailed population density maps are utilized as the 

majority of commercial cellular modems are currently handheld devices such as 

smartphones, tablets and other 4G/5G devices. The antenna systems of a 

heterogeneous cellular network are mainly categorized by the size of their radio 

coverage (effective coverage as it results from the accompanying antenna it has). The 

most commonly seen HetNet elements are: a) Macro Cell (eNodeB , coverage of 250 

to 1500m), b) Micro cell (250 to 100 m) , c) Pico cell (100 to 50 m) , Femto cell (<25m 

mostly indoor elements), Wi-Fi Access Points ( <25m) and also Remote Radio Heads 

(RRH) which vary in coverage and are mostly used as repeaters / relays for a long 

range macro eNodeB transmission (i.e. it does not include its own Layer 2 and onwards 

network stack so it is referred to as a passive network element) 

1.3 Ultra-Dense Networks 

The term “Ultra-Dense networks” is mentioned in modern literature as 

telecommunication networks of the 4th cellular generation which consist of multiple 

overlapping layers of radio coverage technologies. These layers can consist of network 
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elements with a) different radio specifications (e.g. transmit power, carrier frequency, 

bandwidth), b) non-symmetrically placed radio elements, c) different element 

categories (e.g. Macro / Pico / Femto cells) and d) multiple simultaneous generations 

of radio technologies (e.g. combination of 2G, 3G ,4G along with Wi-Fi access points 

controlled by operators). This architecture is also contradicting the traditional 

symmetrical and homogeneous design of the previous generations which started with 

GSM and was followed by the UMTS network. 

 

Figure 3 - Example of UltraDense Networks (UDN) [5][6] 

Utilizing the methodology of multiple division of a coverage area to smaller and denser 

network elements, the network designers can achieve higher spatial performance in 

indices such as geospatial spectral density (Mbps / square meter) and average spatial 

interference or SINR. However, ultra-dense deployments are shown that can lead to 

various management problems and require advanced management algorithms and 

methodologies for their smooth operation. 

1.4 Higher Frequency Cellular Networks 

Historically[7][8], cellular networks utilize the initial 2nd and 3rd generation allocated 

radio frequency bands (800Mhz, 900Mhz, 1800 Mhz, 2100 Ghz etc.) which are each 

correlated to a different generation of networks. This results in a dedicated bandwidth 

for the service of the specified quality of service level that each technology promises. 

The increasing required capacity however that arrives with next generation of #GPP 

technologies require expansion on additional bands that lie above the 2.4Ghz band 

towards micro-wave and mm wave bands that were previously used for wireless 

backhauling and satellite links. In addition, carrier aggregation techniques allow for 

multiple carrier frequency combination that results in an even higher effective 

bandwidth for the base-band unit and consequently for the data link layer. These new 

frequencies (central frequencies of 6-13, 15-42, 80,100,150 Ghz) have their own 
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shortcomings and challenges in order to be used as an access network frequency. 

Pathloss factors increase with the increase of frequency which causes problems in the 

propagation and refraction (which is an important principle for access networks as line 

of sight is almost always unavailable). However, they provide a very large and 

relatively “clean” bandwidth (in the order of Ghz) and the technological advancements 

now allow us to utilize them as well provided intelligent radio link control schemes are 

active. Ultimately this will lead to a tremendous increase in the networks capacity and 

capabilities that will lay strong foundation for the future evolution. 

 

Figure 4 - New Access Frequency Bands (MicroWave and mmWave+) [7] 

 

1.5 High Level Objectives, KPIs and hierarchical Cellular 

Network management 

Management of complex intelligent network infrastructures[1][2][9] is a complex and 

divisible optimization problem which can be approached with different ways such as a 

top down approach (i.e. from a higher level of perspective, from network goals to 

element goals) or a bottom up approach (i.e. focusing on micro-optimization in a local 

level which in turn result into system-wide problem solving). In reality, mix of the two 

strategies are utilized which results into a hybrid solution for the best results. In 

following chapters, we analyze the term “infrastructure management” into its 

respective subcomponents and the means to achieve it along with the types of results 

it can derive. A complex telecommunication system can function in various operational 

modes by focusing the management and configuration capabilities towards a specific 
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central KPI “axis”. This axis is the central policy that will dictate the operation of the 

system and can sometimes be referred to as High Level Objective (HLO). The axes can 

have conflicting and reciprocated components therefore the optimization of their sub-

objectives can result into the deterioration of the other. In literature this is referred to 

as a “tradeoff” (i.e. two different aspects of the system are trading their states from 

effective to ineffective) and every management action must be analyzed for its 

tradeoffs into different KPI axes. Our approach for the different HLOs of the 

telecommunication infrastructure and HetNets is split into the following, conflicting 

HLOs: A) Efficient Resource Utilization, B) Subscriber quality of service / quality of 

experience, C) Energy Efficiency / Power consumption of infrastructure. The contextual 

separation between these 3 HLOs is clear, however they cannot be satisfied 

simultaneously due to their correlation. 

 

Figure 5 - Network Management HLO correlation analysis 

For application purposes in real telecommunication environments, the selection of the 

proper high-level policy is a crucial and demanding decision that must take into 

consideration various factors (financial, technological, geographical etc.). In addition, 

the complexity of the correlations between the HLOs require a proper sub-objective 

analysis and planning in order to achieve the wanted goals. The sub-objectives are 

being generated following a tree-like dependency structure that follows the network 

hierarchy from the system-wide KPIs to the element-wide KPIs. In addition, hierarchy 

can be applied in the temporal scope of any management action which separates long-

term and short-term lifecycles to observe the impact of any action. 
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Table 1 - Different Contextual hierarchies in system management 

 

The tree-like architecture introduces additional complexity in the infrastructure 

management algorithms (and schemes) but helps increase the precision and level of 

detail for different management solutions. This information increases the effectiveness 

of the operations and helps us predetermine the impact that it will have on the system. 

Additional diagram analysis can also give us a general “picture” of how the optimization 

/ management methodology affects a telecommunication system (and its respective 

KPIs as a whole). Such algorithms can lead to relevant knowledge extraction from 

various control loops which can then be added in existing management schemes to 

fine-tune them with the new state of the system. 

 

Figure 6 - Knowledge-building during Intelligent Management 

1.6 HetNet Management Schemes 

In this chapter we are enumerating in a short description all the general categories of 

infrastructure management schemes for HetNets. As in all dynamic information 
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systems that operate in real time, HetNets can be influenced by a large variety of 

problems in different operational stages. These stages begin from their initial setup / 

design phase and can continue along the operational function up until the termination 

phase. For every stage with different characteristics, different problem-solving 

methodology can be selected that will be more tailored to the nature of the problem. 

1.6.1 Static Management and HetNet Design 

In this static management category of telecommunication infrastructures, we can 

group all the actions that revolve around the placement / positioning and 

parameterization of the various network elements in the designated area. This, as the 

name of the scheme implies, occurs in a predetermined, manual or static’ way based 

on calculations that have occurred and estimations of the operational environment. 

Initial design of a system is always a very detailed and complex decision point for such 

systems as it is further analyzed into multi-variable sub-problems that co-depend 

simultaneously. A lot of mathematical and mechanical modeling can be found in the 

literature for cellular network design based on optimization of various aspects 

(coverage, energy consumption, quality of service etc.). The mathematical models that 

are used in this stage vary from estimates to very detailed simulation models of the 

real environment in order to provide the algorithm with the best possible inputs and 

lead to the best results. In practice however, it is observed that these models are both 

the strengths and the weaknesses of static management scheme. While the simulation 

and calculation models provide a form of “concentrated knowledge” that is close to 

accurately predict the parameters of the system’s environment, they suffer from the 

vulnerabilities and error of all the statistical estimation methods. Applied statistics can 

often miss out on “outlier” data points and lead to “average” estimations which, in 

great number of observations are accurate, but fail to accommodate for micro-

management and more detailed phenomena. The impact that these statistical errors 

have on the output of the static management scheme can be very high resulting in 

serious KPI decline. Therefore, some problems are bound to have better suited solution 

schemes. Designers of HetNet infrastructures frequently use these models to acquire 

predictions results of new technologies based on trained models that used data from 

previous generations. These models cannot always be used in this generalized manner 

leading to mistakes in the calculations. Different technologies hide implicit differences 

that are very hard to quantify and include them as parametrization in models, 

especially when moving from one telecommunication generation to another. Design 
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and static management cannot always accommodate for the geospatial evolution of 

urban environments in civilian areas. Urban evolution and population evolution models 

can be used but this will demand continuous re-parametrization of network elements 

to respond to the demands of the increase or decrease in telecom traffic (e.g. caused 

by the addition of a single train station in an area). Regardless of all the drawbacks 

mentioned, static models and planning cannot in any case be called obsolete as it can 

be used as a solid basis for optimized telecom infrastructures with some extensions 

and adjustments. 

1.6.2 Dynamic Management with control loops and SON Functions 

Dynamic management of HetNet is a real time operation that uses the predefined 

configuration points of the network as provided by the vendor of telecom equipment 

and infrastructure. In many references (either in literature or commercial software 

products) they can be referred to as SON functions, functions for the self-organization 

of networks. These functions are management control loops that are the first step 

towards AI-based models in commercial telecommunication networks. In principle 

SON-enabled systems have platforms that allow software to be plugged, installed or 

uninstalled and then activated when certain criteria are met to perform dynamic 

management. Different states of the network elements lead to different operational 

policies that ultimately impact the element KPIs. Many categories of such SON 

algorithms are currently used commercially and operating on cellular networks 

worldwide. In addition, the academic literature has numerous publications for SON 

functions because of the important paradigm shift from the previous, static 

management schemes. These management functions have many advantages versus 

the volatility of the ever-changing context of the network. With proper programming 

implementations, SON algorithms can solve a large variety of network problems in an 

automated manner. This automation leads to important benefits and improvements 

over the operator’s KPIs and, ultimately, the OPEX of the telecommunication system. 

The negative drawbacks of SON functions are largely related with the additional 

complexity that is being introduced to the infrastructure to be able to execute such 

control loops. This can include increased signaling between network elements (i.e. 

more resources used and worse QoS) and increased complexity on the network 

operational environment that can result in reduced understanding of the causes 

between various incidents or network behavior. This further results into a decline in 

the prediction capability of future behavior of the system which can result into chaotic 
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states. Another drawback of the SON functions that can be found in the public 

literature is their scope of application (with respect to the entirety of the cellular 

network). SON functions are sometimes designed to be applied locally or in a telecom 

site that includes 3-8 cells (radio units) performing an algorithm (e.g. dynamic power 

control) which uses as input information and measurements that are related only to 

the selected subset of (3-8) elements. This can often lead to an environment of 

competitive optimization which can lead to both successful (in cases of e.g. distributed 

Load-balancing SON) or to failed (in cases of handover optimization) applications. 

Centralized, global-scope SONs are shown to tackle this problem by taking in 

consideration all the relevant elements of the network but are very complex and 

require a very large amount of signaling between the managed nodes that leave a 

significant footprint on the network operation. Centralized SON’s great workload can 

sometimes lead to requirements of dedicated computation hardware that is required 

for solving the management problem. The effectiveness of SON functions, regardless 

of the drawbacks, is gaining more and more ground in HetNet environments for their 

innovational perspective on the problems that rise. 

1.6.3 Management with Knowledge-based predictive models 

As mentioned in the previous chapter, static management schemes of HetNets can use 

internal mathematical and/or computational models that are generated by statistical 

studies on historical data and also natural electromagnetic transmission phenomena 

during the operation of the network. Analyzing this approach led us into the conclusion 

that these models need to be continuously re-calibrated or updated in order to adapt 

to the rapid changes that can occur during the system operation. To meet this 

requirement, we need to implement machine learning methodologies to improve the 

complexity and accuracy of the models. Machine learning is a new methodology of 

solving complex problems that derives from a “data-driven” philosophy. In simple 

terms, machine learning is the parametrization of a mathematical model as an 

optimization problem of the prediction error calculated on historical data. These models 

aim on predicting and calculating the circumstances / future states that will come and 

apply tailored methodologies to avoid unwanted events or exploit them to the system’s 

benefit. The advantages of these methods are based on the advantages of both 

management schemes (dynamic and static management) as they minimize the 

negative aspects of each schemes while maintaining all the benefits. The negative 

aspect of machine learning is the internal process of learning itself. This procedure is 
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an internal optimization problem that comes in addition to the other problems that are 

part of the system. The complexity of solving this problem and the accuracy of the 

solution is mostly based on acquiring a large amount of historical data that are enough 

to lead to the best parameters of the model. However, since data can be found in 

abundance for various problems, academic literature is booming with references to 

machine learning-based solutions of various systems including HetNets. This research 

will ultimately lead to a stable, industrialized and accurate model-building machine 

learning implementation for commercial environments. 

1.7 Conclusion 

Having enumerated the various methodologies for management of heterogeneous 

cellular networks (i.e. static management and planning, dynamic management and 

SON functions and also management by utilizing machine learning and knowledge 

building), it is clear that not one single management scheme can be used to cover all 

aspects of the system. This leads to the necessity of constructing an experiment 

software platform that will perform simulations, apply tests and algorithm 

methodologies and evaluate the KPI results for various management schemes. The 

outputs of this system will lead to a high-level policy of which types of problems are 

best solved with which algorithms and methodologies. The synthesis of all these 

solutions will be the total output of this doctorate thesis and will lead to the best 

possible operation of HetNet systems. Future systems will provide interfaces for such 

intricate management schemes and it will be possible to apply them in real 

environments and therefore benefit from the improvements that will be brought. 
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Chapter 2 - Simulation and Algorithm Application 

Platform 

2.1 Introduction 

For this doctorate thesis, it is necessary to develop appropriate simulation software 

with the capabilities of performing the operation of an actual HetNet infrastructure, 

applying various methods and policies for operating in an optimized manner and 

gathering measurements to evaluate the results. In order to achieve the level of 

calculation realism required, appropriate literature was studied and incorporated into 

the design analysis and implementation of this software. A software simulator is a 

large study item for various fields and this chapter will be dedicated to analyzing the 

various modular aspects of the tool. The simulator developed is designed to perform 

realistic network operation for HetNet radio and network components “serving” in 

addition to the user equipment terminals that are the “clients” of the network. The 

serving elements as mentioned in previous chapters are comprised of sub-components 

of the various OSI layers, mapped to their corresponding implementation from the 

3GPP standards. The types of nodes that are being used as components for simulations 

are sector antenna multi-sized 3-node cells called eNodeB and also smallest range 

components called Micro or Pico cells with various ranges of circular coverage. The 

software implementation for these components includes the physical layer calculation 

for link budget for each link, the data link layer namely the RRC (Radio Resource 

Control) and RLC (Radio Link Control) units which involves dynamic modulation and 

coding schemes and handover operations. The environment of a simulation plays a 

key role into scenarios that provide useful insights for the various studies. For this 

reason, the software includes a lot of radio environment aspects and geospatial or 

mobility capabilities. The most important aspects that affect the operation of a HetNet 

are: 

• Topology, geography, and the position of the stationary elements of the 

simulation. 

• Mobility and the relative position of the user equipment devices that affect the 

line of sight and shadowing of the link 

• The telecommunication channel with its various properties (radio frequency, 

bandwidth and all the positive and negative aspects of noise and interference) 
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• The generated traffic model that emulates the user equipment device usage with 

different traffic patterns for different services 

The studied bibliography, standards and white paper were selected to provide the best 

accuracy to all these aspects of the simulation software. In addition, new models were 

designed and implemented to provide further extension to the existing public 

literature. 

2.2 Software Specifications 

The simulation / validation software created is based on thorough state-of-the-art 

research[1][2] of other network simulators that are used for publications and 

standardization studies. The specifications for these simulators are aligned with large 

standardization organisms for wireless technologies and cellular communications such 

as the IETF, 3GPP[3] (4th generation cellular communications), ITU[4][5] (worldwide 

radio channel regulation) and 5GPPP[6][7] (5th generation cellular communications). 

The software is designed to provide a main operation mode which follows a strictly 

linear flow diagram. This flow diagram includes the following steps: a) parameter 

initialization for the simulation scenario, b) topology initialization for the user 

equipment devices and network components, c) simulation execution runtime (with 

rich graphical user interface that provides interaction capabilities and d) measurement 

of various important KPIs and generation of reports for the results. Multithreaded 

techniques are utilized to provide rich visualization of the operation of the network and 

the underlying playground. In addition, real time analytics in the form of time series, 

probability density function plots and rasterized colored heat-maps can be enabled to 

measure different aspects of the system. 

 

Figure 7 - Flow diagram of the simulator 
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2.3 Functional Modules of the Simulator 

The HetNet system level simulator is a modular piece of software which is based on 

connected software components that exchange synchronous message containing the 

multi-layer information. The summary of all the modules combined form the realistic 

simulation of the cellular network that provides accurate calculations of the 

environment and entities. In this chapter we will analyze thoroughly all these modules 

and provide description for their functionalities. 

2.3.1 Topology and Mobility Module 

The placement and location of mobile terminals in space, with respect to the positions 

of the various network elements, is a key input parameter of a system level 

simulation[3][4]. Large scale network scenarios such as large, dense urban, multi 

kilometer coverage areas with a mixture of buildings and streets require the usage of 

element placement models that are based on measurements from various European 

capitals (e.g. Paris or Berlin). These models are sometimes mentioned as population 

density maps and they play a key role in the generation of traffic volume through 

space. 

 

Figure 8 - Example of a "realistic" telecommunication traffic demand map based on 3GPP models[5] 
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Figure 9 - Example of Topology generated by the simulator 

In these examples (Figure 8 , Figure 9) We see how a realistic 2D city map can be 

mapped to a simulation scenario with mixed radio elements (blue are sector antenna 

and orange are Pico cell radiuses) 

2.3.2 Physical Layer Module – Channel Modeling 

 

Figure 10 - Directional Gain of sector type antenna used for Macro eNodeB components 
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The radio channel transmission model performs accurate link budget calculations 

taking into consideration a fully capable 3-D antenna model. This includes a) Path-

Loss model using multiple log-distance values for various environments based on 3GPP 

and other literature[5][6] (e.g. GreenTouch ), b) Probabilistic Shadowing model to 

include the time-related occurrence of obstacles that remove the line of sight from the 

transmission, c) inclusion of additive / reductive interference from the surrounding 

radio transmission systems and multi-path reflections that result into the “fast-fading” 

phenomenon, d) models for transforming the radio quality into effective symbol and 

bit-rate at the data link layer, e) location-based absorption for various inddor 

environments (e.g. solid metal / concrete buildings that can lead to 20dB+ 

transmission losses for 2100Mhz transmission frequency) 

Element Type Pathloss Model 

Macro eNodeB (Large range) 128.1   + 37.6log10(R), R km 

Pico cell (Smaller range) 140.7    + 36.7 log10(R), R km 

 

The simulator’s graphical model can render for each different point of the playground 

(Figure 10, red to yellow colored interpolation of gain in dB) the result of the directional 

gain of the 3D antenna model. 

2.3.3 Physical Layer Module – Probabilistic Shadowing 

The shadowing module of the simulation engine[5][6] can greatly affect the outcome 

of the quality of service measurements for a simulation as it provides significant 

variability in the acquired throughput. A statistical model [6]is based on references 

that follows the log-normal distribution for shadowing coefficients that are combined 

with the geolocation of the user using the spatial correlation method. To achieve this 

the playground of the simulation is split into 50meter (adjustable) tiles that contain a 

random but unchanging shadowing value for any user equipment terminal inside. The 

terminals share the spatial shadowing value and therefore their radio environment 

becomes correlated (spatially). The lognormal distribution used for sampling the tile 

grid can take various parameter values based on the area type (i.e. DU, UR, SU, RU) 

and can range from 10 to 4 dB standard deviation and -5 to +5 dB mean value. The 

2nd component of the shadowing model is linked to every single pair of UE – Network 

device and will be referred to as the “pair-wise” shadowing component. To produce 
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higher shadowing diversity, each terminal has its own shadowing sampled value for 

each network element providing uniqueness in its radio environment and better 

formation of the statistical value of the empirical model. For the final shadowing value, 

a combination of the spatial and the pairwise component is used (divided by square 

root of 2). This value is then used for every new calculation of the radio quality and 

provides a solid basis for the shadowing component of the total link budget. The 

reduction of those dB’s is a sum of the direct, refracted and reflected waves that can 

occur in this kind of radio environments. The pre-computed shadowing values are a 

very time-efficient technique that sacrifices very little accuracy in large scale system 

level simulations. 

 

Figure 11 - Geospatial placement of the tile shadowing areas leads to accurate shadowing calculations 
that reproduces the real distributions 

Simulator-generated visualization (Figure 11) can show in a greyscale projection the 

value of the shadowing that is computed for each tile of the playground. 



 

 53 

2.3.4 Physical Layer Module – Channel Spectral Efficiency and Net 

Throughput 

For the physical layer module that is responsible for converting the channel quality 

(i.e. RSSP, RSRP and INR/SIR/SINR ratios) we are utilizing a pre-computed mapping 

curve model[5][6]. This model included all the symbol level error and distortion effects 

as a function of the achieved SINR on the receiver and can also be parametrized by 

different MIMO or SISO configurations (including 1x1, 2x2, 4x2 and 8x2 stream 

configurations). The accurate interference and noise power calculations along with the 

link budget are being calculated into a total net throughput that includes coding losses, 

timing losses for signaling frames and losses based on fast fading. The spectral 

efficiency curve can also be visible in the following (Figure 12 – green for 2x2, blue for 

4x2 and red for 8x2 mimo configurations) 

 

Figure 12 - Simulator's mapping curve spectral efficiency model showing the spectral efficiency as a 
function of SINR 

2.3.5 Physical Layer Module – Channel Interference Model 

Channel interference [11]is one of the most important negative aspects of the cellular 

telecommunication channel. The continuous reuse of the same frequency (and time) 

resource results in different radio elements interfering with each other which 

contributes to the degradation of the link quality and can result in error, lower achieved 
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throughput and /or outage. In the simulation software, we are approaching the 

interference phenomenon with two different models. First, we implemented an 

interference model that was based on a statistical estimation based on the neighboring 

cells load (usage). This resulted in accurate estimations on a macro scale (total amount 

of interference) but failed to capture the impact of interference in a link-to-link level 

of detail. Since this tool was designed to implement and test the impact of algorithms 

that can occur in the lowest granularity, such as radio resource allocation algorithms 

on the scheduler level of RRC, we redesigned the interference module in a different 

approach. The second implementation takes into consideration tree additional new 

parameters: time frames measured in air frames (0.5 – 1 ms), resource blocks 

measured in subcarriers per band and space (propagation of the interfering 

transmission). In this way we are continuously calculating with high accuracy (and 

complexity) the instantaneous interference that occurs in every user equipment 

terminal of the simulator that is actively operating. This captures a realistic value for 

the effective (achieved) SINR of the terminal that can be fed into the data link layer 

net throughput mapping curve mechanism described previously. Additional 

optimizations to the implementation were also included in the simulator in order to 

improve reduce the complexity of the interference calculation. The interference 

calculation frequency is adjustable, but the default value is set to be 100 ms (which is 

the interval of operation for every network device) and inside this interval we are 

assuming that the active load for each element is the average previous load. We are 

also using a bitwise transmit mask for every scheduled resource block (time and 

frequency entry) that can be orthogonal or overlapping. 

2.3.6 Energy Module – Calculation of power consumption 

The scope of this PhD dissertation is to measure important operational KPIs for various 

scenarios in order to optimize them. Such a KPI is the total power consumption of the 

substrate network which directly maps to the OPEX of the infrastructure and 

consequently to the EMF footprint of the hardware. The origins of the power 

consumption can be split into two different categories: a) power consumption that 

results from the cellular network’s physical layer – data link layer (antennas and 

transmission components) and b) power consumptions from the back-end 

infrastructure including the processing servers and the supporting links (copper wire, 

microwave links or optical fiber). Studies performed[8][9][10] on these systems have 

shown that the back-end power consumption tends to remain stable and linearly linked 
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to the number of elements included. On the other hand, the radio transmission related 

parts of power consumption can show very high variance based on multiple parameters 

of the air medium. Simulation models of the literature, real data acquired from existing 

infrastructure and theoretical energy models can lead to very accurate calculation 

models to be incorporated into the software platform. The power consumption model 

is a linear model with a fixed offset and limit. The dependent variable of the model is 

the element’s load (i.e. the amount of air frames within a specific time window that 

were used for transmission). In 4th generation LTE, this load is often measured in 

Resource Blocks (temporal and frequency pairs). The final form of the calculation 

formula is Minimum Energy Consumption + 100% * Power Consumption Margin. 

Quantitively the minimum to maximum consumption ratio have a factor of between 2 

and 5 in difference. This drastically impacts the active power consumption of LTE 

simulations based on the radio transmission state. Impacting the radio transmission 

circumstances (e.g. improving any aspect that un-loads the cell whilst maintaining the 

same effective bandwidth results in high benefits for energy consumption). Another 

aspect that influences the power consumption of simulations is the usage of multiple 

antennas (input and output) to utilize MIMO configurations. Finally, some power 

consumption models use reference hardware that have different shutdown policies 

when they are being inactive or move to a sleep state. All these can be seen in the 

considered power values below. 
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Table 2 - Linear Power Consumption Model Coefficients [7][8] 

 

2.3.7 RRC Layer Module – Handover Models 

An important feature of cellular networks is the capability to provide wireless access 

in moving (mobile) users in the served area. This is achieved by the involvement of 

signaling procedures[11] that perform the service migration of one eNodeB to another, 

also named as the “handover” procedure. Because of the importance of this procedure 

and also because of the high impact it has to the HetNet systems, a handover-specific 

module has been developed that will be active in all simulations. The basic operational 

principle behind the handover algorithm is the provisioning of measurements from the 

LTE cell and the UE device in order to identify the best targets as handover candidates. 

This function is repeated for as long as the user is active (i.e. in the RRC Connected 

state). The active handover algorithm will trigger a handover operation that will change 

the user’s active cell to the best candidate based on the received signal strength 

indicator (RSSI). This procedure is implemented in the system using two different 

approaches (as found in the literature[11]). The first handover algorithm 

implementation is called the “Threshold-based handover”. In this implementation, a 

handover threshold value is used as a “trigger” for the best cell selection. If the active 

cell’s RSSI is below the designated value, the user will then change cell to the best 

possible. This methodology can generally control the effective range in which each cell 

will operate and absorb traffic, however it requires different parametrization for 
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different area types since other ISDs will result into different value ranges for the 

received signal strength (especially in the cases of SU and RU area types. For this 

purpose, we have also implemented the second case of handover algorithm, namely 

the “Hysteresis-based handover”.  

 

Figure 13 - Hysteresis additional RSSI margin 

Hysteresis-based handover compares all the available handover target’s RSSI with the 

current (serving) cells value. If their difference (hence “hysteresis”) is greater than the 

hysteresis configuration value, then a handover event is being triggered. This approach 

is self-tuned since the difference of the values is being used. An additional part of the 

handover module is the inclusion of the cell bias or CIO configuration parameter. This 

scalar configuration is used as a virtual RSSI gain for a specific cell or cell-UE pair. 

Adding an imaginary value into the RSSI measurement feedback, the network’s 

handover algorithm is being “manipulated” in order to achieve manually triggered 

handovers and manage the network in a more controlled way. The simulator has a 

special visualization module (Figure 13) to display the active hysteresis values for each 

cell. 
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2.3.8 RRC Layer Module – Radio Resource Allocation & Scheduler 

Models 

LTE networks have a built-in notion of quality of service for each of their active 

(serving) users. The reason behind this is that this technology has been developed as 

a commercial technology that will be used in a paid access manner. For this reason, 

the scheduling and radio resource allocation layer needs to be a fully controlled and 

extensible environment in which different policies can be applied. In other networks, 

this layer can sometimes operate in either best effort or take decisions based solely 

on the physical layer’s restrictions (e.g. Wi-Fi). The radio resource allocation module 

in LTE networks is governed by the RRC layer which dictates how the lower level 

protocols (i.e. RLC) will handle the pending traffic. The quality of service is provided 

by classification of the generated traffic into several classes, example classes are 

“default”, “high-priority”, “low-latency” etc. based on the specific quality of service 

characteristics they have. The scheduler module is a submodule of this system which 

handles the placement of the requests to transmit into the time queue. Users can 

either receive their transmissions simultaneously (split into different resource blocks) 

or they can have a round-robin access into the downlink / uplink channel. For the 

various classes mentioned previously, different policies need to be followed in order to 

ensure successful transmission. 

2.3.9 Application Layer Module – Traffic Demand Model 

For the telecommunication traffic demand module, we have implemented a 

programmable downlink / uplink traffic generation scheme which we can create 

various different traffic profiles that correspond to different inter-packet arrival times, 

packet size variations (constant vs distribution based vs specific sequences for 

protocols such as TCP / RTSP) and also different expectation and/or timeout values 

for the application layer (which results into delivery failures). Reference 

scenarios[12][13][14] set an average per Km or per user equipment device rate and 

we can easily translate this specification to values of such a model. In the lifecycle of 

a simulation, every user equipment device generates a transmission job of the selected 

model by sampling a Poisson generation function. The requests are sent into the buffer 

of the system and translate to data being transmitted through the air interface. In the 

standardization literature, we see a simplified version of FTP transfer model being used 

thoroughly for various simulations. This traffic model is using two different types of 

packets generated with different probabilities:96% of the packets generated 
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correspond to signaling of web site micro-transactions (ajax requests, REST , JSON, 

XML payloads of http messages) of an average size 10KB and the rest 4% of packets 

correspond to the initial load of the web site resulting in an average ~2MB size packets. 

This is based on statistical study on a very large number of websites and mobile 

applications used currently and accessed through mobile internet. We can refer to this 

traffic model as “2020 WWW-FTP model”[7][8] which will be used in the following 

chapters as a reference simulation traffic model. As a quality of service parameter, the 

expected delays for each of the two types of packets are 4000ms (for the initial, large 

packet) and 20 ms (for the smaller signaling packets) respectively. In the diagram 

below we can see a time diagram of packet arrivals and their transport delay as a 

function of time. 

 

Figure 14 - Traffic Model Implementation in the Simulation Software[6] 

2.3.10 Application Layer Module – Hourly Traffic Demand Profiles 

The usage of a 4th generation mobile terminal device is influenced by various aspects 

of the user’s everyday life cycle. This daily / weekly cycle changes the way they use 

their devices and the amount of traffic they generate. This can act as its own separate 

research topic, however for the scope of this study we will focus only on a set of 

aspects that can be easily incorporated and integrated into the simulation tool. A time-

related study[6] of daily profiles for different area types (DU, UR, SU, RU) show (Figure 

15 – one line per case that shows the multiplication weight per hour) that there is a 

coherent daily traffic profile that acts as a “weight” for the usage of mobile internet. 

We have included an extension in the traffic model of the simulation software that will 

translate the current (active) simulation time into such a weight based on the 

simulation area, therefore enforcing the demand curve of the external reference 

measurements. 
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Figure 15 - Daily Traffic Demand Profile for a 3GPP-based cellular network[6] 

 

2.3.11 Network Management Module – Application of optimization 

actions 

Apart from the regular operation of the cellular network, various network management 

interfaces must be utilized in order to optimize / tune or deteriorate the simulation’s 

performance KPIs. The developed libraries of the simulator allow for a rich 

parametrization the UE devices and all the types of the heterogeneous network 

elements with either a provided configuration file in .JSON format or by utilizing the 

GUI (developed in Java Swing) in order to edit settings of the various elements. In 

order to develop algorithms that will be activated in the runtime and act as 

management agents, appropriate programming styles have been used based on other 

simulation software (e.g. NS2 / NS3 / OpNet). In the specifications of a simulation 

scenario, a user can activate a management action or schedule it to occur after an 

event or after a specific point in time. In this way, the various proposed algorithms will 

produce usable and reproducible measurements that will not require the user’s 

interaction from the GUI. 

2.4 Graphical User Interface 

The design of the System level simulator for this study includes a graphical user 

interface to give the user the capability to adjust a simulation and monitor its runtime 

(before performing the simulations in an exhaustive and automated manner). The 

programming language used for this GUI is the Java Programming Language (Simple 

Edition version 8). The design of the UI is maximizing the user’s visible information 

and the controls that can affect the simulation. 
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Figure 16 - Indicative View of the tool's graphical user interface 

2.4.1 Network Element Resource Allocation Visualization 

A specialized visualization module was designed to allow the user to monitor each 

substrate element’s active radio resource allocation. Different allocation 

schemes[17][18] are assigned a different background color to be used as a 

replacement color for the network element’s radius. The function for the generation of 
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the colors is a hashing algorithm applied on the available frequencies and the resulting 

hash value is then used to perform an HSB color conversion (Hue-Saturation-

Brightness color model).  

 

Figure 17 - Visualization of radio resource allocation using colored radius 

During the simulation’s runtime, the initial allocation is immediately switched to the 

designated active allocation according to the radio resource management 

implementation and continuous to change if necessary (e.g. if dynamic resource 

allocation SON is activated). 

An additional visualization capability for the active allocation is a customized matrix 

view which shows the per element resource block allocation using the same color 

coding as the playground background colors. The horizontal axis of the visualization is 

the element id and the vertical axis is occupied if the resource block is allocated to the 

specific element at the present (simulated) time.  
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Figure 18 - GUI for resource allocation 

 

Figure 19 - Radio Resource Group visualization (reuse factor 3) 

These capabilities are a key aspect of the simulation tool in a sense that they allow 

the safe development (with rich graphical environment that allows for easy debugging) 

of radio resource allocation algorithms. The best performing radio resource allocation 

algorithms can effectively extend the 4G standard’s capabilities and improve this 

technology. 

2.5 Validation of the Simulation Software 

In this section we will provide the methodology that was followed to validate the 

accuracy of the simulation software along with a set of KPIs / measurements that will 
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be used to compare with other referenced 3GPP-based simulators for the predefined 

reference scenarios of the various technical reports / specifications of IETF/3GPP 

2.5.1 Validation Methodology 

The most important part of developing a simulation software that will replicate real 

environment conditions is the simulation result validation. In order to ensure that the 

tool reproduces trustworthy results we first must isolate some key scenarios that will 

be used to perform the calibration measurements. Thankfully, 3GPP has defined a set 

of standardized reference scenarios to be used for both mature (reference to year 

2010) and future (projections to year 2020) with enough geographical diversity (all 

different designated area types namely dense urban, urban, sub-urban, rural). The 

next step is to select the proper network KPIs that will be used to perform the value 

comparison. According to methodology defined[4][5][6] in the GreenTouch 

Consortium and other 3GPP partners, the metrics will be converted into probability 

density function and their integral – the cumulative distribution function. The different 

CDFs will then be passed through a statistical significance calculation function that will 

show the statistical likelihood between the results generated from this software and 

other existing simulation software from other organizations (e.g. ALUD, Orange, 

POLIMI).  

2.5.2 Simulation Calibration KPIs 

The KPIs that will be measured in the various simulations are basically three and are 

split into different categories (different underlying modules of the simulator). Firstly, 

the Coupling Loss CDF is the distribution of all the propagation losses for each UE 

device in the simulation. This targets the mobility and geometry module of the 

simulation as it is responsible for the 3D- distance calculations, the propagation loss, 

and the motion of the UE devices. It also checks the shadowing and absorption 

modules (mentioned in previous chapters) to ensure that the simulation tool has 

identified correctly the users with “good” and the users with “bad” radio environments. 

Second KPI is the SINR CDF, it is based on the coupling CDF but it also incorporates 

the noise calculation module (based on the reference technology of the receiver) and 

the interference calculation module (which in itself uses its own coupling 

measurements). Another key aspect of the SINR calculation is the addition of the 

generated traffic to the users. In order to achieve high accuracy in interference we 

need to replicate the same amount of traffic that will result into neighboring 

interference conditions. SINR is a key measurement for the physical layer of the 
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software as it reflects the end quality of propagation that the link will have to translate 

into effective throughput. The last calibration KPI is the normalized achieved 

throughput CDF. This statistical measurement is the final QoS measurement of the 

total simulation scenario and it provides accuracy in the link level (layer 2) of the 

system. Based on the SINR-to-Throughput mapping curve and the implementation of 

the radio scheduler of the system, the achieved net throughput is used to serve the 

underlying telecommunication traffic and therefore provides a safe basis to build more 

calculations (of application layer and other higher-level protocols).  

 

2.5.3 Simulation Scenario Parameters 

The simulation parameters that are used for the calibration process are split into two 

categories: network layout and number of elements such as inter-site-distance an and 

traffic model parameters such as packet arrival rate, avg packet size and. These both 

contribute in different aspects to the generated results of the simulation as they 

change the operation of various functional modules from propagation to network 

operation. 

 

Figure 20 - Network Layout parameters for each different area type 

 

Network Layout for each operator DU

2GHz

U

2GHz

SU

2GHz

RU 800MHz

Per person Busy Hour Macro Cell DL Data demand [kbps]

(share of each operator, inc. 2 times overprovisioning) 

0,40 0,40 0,40 0,40

required Macro Cells Capacity [Mbps/km²] 4,0 0,4 0,1 0,012

required Macro Base Station density  [sites/km²]  0,078 0,0078 0,0023 0,0002

required ISD for capacity [m] 3855 12191 22258 70387

ISD of available sites [m] 500 1000 1732 6000

maximum ISD for >95% data coverage [m] 1732 1732 1732 4330

Selected ISD [m] 500 1000 1732 4330

Selected BS density [1/km²] 4,62 1,15 0,38 0,06

Area per macro site (3 sectors) [km²] 0,22 0,87 2,60 16,24

Number of macro persons camping per sector [1/sector] 180,4 72,2 64,9 40,6

DL Traffic load [Mbps]/maccro sector (w/o overprovisioning) 0,143 0,057 0,051 0,032

Arrival Rate per macro sector (@2MB) [1/sec] 0,00894 0,00357 0,00322 0,00201
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Figure 21 - Simulator settings for full simulation (busy hour) per area type 

2.5.4 Dense Urban Scenario Results 

For the evaluation of the Dense Urban scenario featuring hexacombs of 500m inter-

site distance and all DU-related propagation parameters (absorption, shadowing, 

population density and traffic model) it is evident from the coupling loss that the 

differences between each tool are small close to +-0.5db. In the case of the 

distribution of SINR for the playground, the tool products a curve that has slight 

difference with the rest of the tools at the [-3,1]db range and also close to the [19,…] 

where all tools seem to deviate with different behaviors. The mean normalized 

downlink throughput deviates for at least 3% at the ranges 0-0.3 and 1-1.5.  

 

Figure 22 – DU Calibration Results of the simulation software for coupling loss 

 

Simulator settings for busy hour

for full simulation playground

DU

2GHz

U

2GHz

SU

2GHz

RU 800MHz

Traffic factor over average time of day 1,4 1,4 1,4 1,4

Number of macro sectors 21 21 21 21

Number of small cells 0 0 0 0

Represented area [km²] 1,52 6,06 18,19 113,66

Macro cell arrival rate in playground area [1/sec] 0,19 0,08 0,07 0,04

Small cell arrival rate in playground area ]1/sec] 0,00 0,00 0,00 0,00

Total arrival rate 0,19 0,08 0,07 0,04

Offered traffic [Mbps] 3,00 1,20 1,08 0,68
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Figure 23 – DU Calibration results of the simulation software for SINR 

 

Figure 24 – DU Calibration results of the simulation software for average normalized throughput 

2.5.5 Urban Scenario Results 

In the urban case featuring hexacombs with 1000m inter-site distance we also see a 

very close distribution for all the simulation software at the coupling loss kpi. The 
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distribution of noise and interference is showing an increased range of ~1.5 db with 

highest values found at the Orange simulation software and the lowest values for the 

PoliMI and UPRC simulator. Finally, for the Mean normalized user throughput we see 

for the same ranges as the DU case (0-0.3 and 1-1.5) an identical deviation of ~3%. 

 

Figure 25 – UR Calibration results of the simulation software for coupling loss 

 

Figure 26 – UR Calibration results of the simulation software for SINR 
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Figure 27 - UR Calibration results of the simulation software for average normalized throughput 

2.5.6 Sub-Urban Scenario Results  

In the sub-urban case featuring hexacombs with 1732m inter-site distance we see a 

slight deviation on the coupling loss curve at the 120db losses from the PoLIMI 

simulator. For the interference distribution measurements, we see that the margin of 

decline increased to ~2dB and we see distribution variations from the Orance, CEET 

and UPRC tools on various db sections. Finally, for the normalized throughput curve 

we see the same pattern that applies for the DU and UR case. 

 

Figure 28 - SU Calibration results of the simulation software for coupling loss 
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Figure 29 - SU Calibration results of the simulation software for SINR 

 

Figure 30 - SU Calibration results of the simulation software for average normalized throughput 
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2.5.7 Rural Scenario Results 

The final area type that is used for the calibration is the largest when it comes to 

coverage area. Rural has an inter-site distance of 4.33 km covering a playground of 

over 15x15km hexacomb. Slight variations again in the coupling loss of low significance 

for all tools provides solid verification for the propagation model. In the zone with high 

interference, (low SINR) we see that the UPRC tool deviates for approximately 8% 

until the -3 db point. This can be due to the low number of samples generated 

(because of the low population density of the rural area type). In addition, the 

normalized throughput curve deviates for 2-3% in a number of different points without 

causing any concerns for simulation result faults. 

 

Figure 31 - RU Calibration results of the simulation software for coupling loss 
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Figure 32 - RU Calibration results of the simulation software for SINR 

 

2.6 Conclusion 

In this chapter, it was shown that a valid simulation and knowledge-building software 

was necessary to move further with research on the optimization in cellular networks. 
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Such software was developed according to the specifications of other similar simulation 

environments with consideration for the upcoming chapter’s requirements in 

configuration and information building capabilities. After the completion of the 

software development, a thorough calibration / validation process was followed as to 

ensure that the software is a simulator of the real-world conditions. The successful 

calibration process is key to allow for new, beyond-state-of-the-art simulation 

scenarios that will allow us to prove that extensions in the technology are required to 

further advance the quality, efficiency and success of the 4G+ era. After performing 

many simulations in all the designated scenarios and comparing them with the 

respective results of the rest of the simulators, the simulation tool was found as a 

successful environment for 4G simulations. This means that new scenarios with 

different parametrization of the various aspects can be tested, and the results can be 

reliable enough to support new algorithmic schemes as optimization and improvement 

of existing technology. 
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Chapter 3 – Maximization of Energy Efficiency with 

static management and network redesign 

3.1. Introduction 

Energy efficiency as a management policy for HetNets involves the collection of metrics 

that are related (or contribute) to the power consumption footprint of the 

telecommunication infrastructure. All cellular communication systems require energy 

in order to provide the radio data transfer services they offer (either through the air 

or the backhaul interfaces). A large amount of energy is used by this network through 

devices such as controllers, servers and routers, various elementary network 

elements[1][2] that are necessary for the promised quality level of communication. 

The main metric that will be the source of analysis (and from each other metrics derive) 

is instantaneous and cumulative power consumption, measured in Watt (or KWatt) by 

all network components. The cumulative power consumption is the total energy 

required for the operation of the system and is measured in Joule. Other very 

important energy-related metrics are created by transformations (ratios and other 

formulas) namely the average power consumption, variance and standard deviation of 

power consumption, different time units for total power such as Kw/h (for 1-hour 

duration measurements). Energy costs alone are not enough to perform successful 

optimization actions. In order to make sure that our actions do not affect the quality 

of the network we need to include QoS KPIs in our evaluation. One very important KPI 

that is used in quality of service calculations is the achieved instantaneous throughput 

of each user equipment device. KPIs that use the energy consumption in combination 

with network link quality (in the form of instantaneous throughput) are two ratios: 

network intensity (measured in Kbit / J) , a measure that shows how efficiently every 

used Joule is converted and the inverted ratio , energy efficiency (measured in J/Kbit) 

translating into how much energy is required to achieve curtain levels of QoS service. 

Finally, one important KPI for measuring the impact of configuration and algorithms 

on quality of service is the packet drop rate (or call drop rate for GSM calls) and the 

average per packet delay. To summarize the metrics that must be monitored for 

energy efficiency optimization, we split them into three categories: a) Energy related 

that are expected to be reduced (i.e. Power consumption and total energy, b) QoS 

related that are expected to remain unchanged within expected ranges (i.e. Average 

throughput, packet or call drop rate, and c) Composite KPI that mix A and B type KPIs 
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and they are expected to either increase(intensity) or decrease(efficiency). The total 

result of the analysis will be the overall effectiveness of the algorithms. 

3.1.1 Energy Efficiency in HetNets 

Energy efficiency in the complex environment of HetNets is one of the key KPIs of the 

reduction of cost and increase of element health. From a network management 

perspective, it is one of the three core categories of optimization problems for the 4th 

generation LTE. This type of telecommunication networks can have a very high 

variance in their power consumption profiles based on the demand in network access 

and the number of users that occupy the underlying area. These systems also have 

very strict specifications on the network transmission quality KPIs (mentioned in 

previous chapter[3][4]). Failure to comply with these specifications is not acceptable 

as it is immediately visible to the users of the network resulting into considerate loss 

of income for the telecommunication operators. To accommodate for this (even if done 

so in an inefficient way), operators perform actions of resource overprovisioning which 

results in high energy consumption, imbalanced usage of spectrum and added 

complexity in infrastructure management. Overprovisioning also results in low spectral 

efficiency, due to the fact that the extra spectrum is only utilized in extreme demand 

situations. The root cause of the high-power consumption in HetNets is overloaded 

network elements. Network load also leads to interference generation, which amplifies 

the problem. Since the air frame buffers need to forward the information to the user 

terminals, they need the best possible radio environment in order to achieve the 

highest transmission qualities. In the same time, constantly transmitting cells increase 

the overall interference which lowers the quality. This phenomenon is continuously 

deteriorating and leads to very high packet loss and consequently outage. Initial design 

of a cellular network tries to overcome congestion based on the current specifications. 

Unfortunately, since the installation of the infrastructure and the initial design process, 

the network demands evolve, especially after the introduction of smart devices 

(smartphones) with increased capabilities and embedded extensibility. In order to 

tackle this situation intelligently, we need to analyze the daily “load” KPI of reference 

areas for specific population densities and apply optimization according to these 

historical data. Empirical models and forecasting models can often be a part of the 

design process, providing with future projections of the incoming traffic demand but 

their accuracy diminishes as new parameters/aspects are being brought and 

technology evolves. For HetNet infrastructures, we can select from several intelligent 
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configuration options that benefit from this knowledge-building. One large category of 

solutions revolves around the manipulation of the several element’s load (load-

balancing, load transfer, etc.). Since element load has such a large contribution to the 

power consumption KPI, we can apply load-balancing techniques like placing new 

types of network coverage elements that will absorb traffic partitions from the eNodeB 

elements. In order to ensure their co-existence in the HetNet environment, proper 

parametrization must be performed in the handover algorithm parameters to ensure 

the amount of offloading that they can absorb is adequate and worth the investment 

and extra complexity. In addition, the exact location of the new coverage elements 

must be selected strategically in order to align with the various traffic centers (hot-

spots). 

3.1.2 Simulation Scenario Topology 

The simulation scenario (Figure 33) that will be used for this chapter is based on 

reference scenarios mentioned in 3GPP specifications[3][4][5][6][7]. One of the key 

characteristics of the input parameters is the inhomogeneous distribution of the 

population density. Dense Urban environments tend to present with such load 

geometries due to the different urban facilities (like transportation, markets etc.). This 

specific scenario has detailed instructions for the placement of the UE terminals and 

their generated traffic. In order to follow them, classes of UE devices must be declared 

with different position characteristics. 

• Ambient Users that will correspond to the 40% of the total population. They 

will be uniformly placed in the playground with a density of 1 ue / m2 

• Hot-Zone Users that will correspond to the 40% of the total population. They 

will be focused in hot-zones spread throughout the playground with a density 

of 1 hot-zone / km2. Each hot-zone will enforce a population density value of 2 

ue / m2 

• Hot-Spot Users that will correspond to the 20% of the total population. Hot-

Spots will be generated inside the hot zones with a density of 2 hot-spot / km2. 

Within a small radius from the center of the hot spots, ue devices will be 

generated with a density of 4 ue / m2 

The scenario also specifies the placement of the eNodeB 3-sector antenna elements 

for the 4G coverage. A 1500x1500 meter playground closely fits a full 6 eNodeB 

hexacomb of cells (18 elements in total) if we use the standardized inter-site-distance 

between the sites of 500m (Dense Urban). In order to maintain the uneven distribution 
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of users, we will not apply any mobility model to the UE terminals as it would be very 

complex to design motion patterns that will obey the constraints. 

 

Figure 33 - Population density heat-map for the specific simulation scenario 

3.1.3 Simulation Traffic Model 

For this simulation scenario, we will be using a traffic model that derives from the 

initial specifications of the simulation software. The selected traffic model in the WWW-

FTP projection for 2020 traffic, which is composed from two different packet sizes, 

small packets (~10KB) with high frequency (96%) of arrival for signaling, updates and 

AJAJ response and large packets(~2MB) with low frequency (4%) and large payload 

for the initial mobile application / web page load. The average traffic demand 

(throughput / m2) generated from this model will be 10Mbps/m2. The arrival probability 

distribution for each UE device is a separate stochastic Poisson generation process. 

This will ultimately result in the desired inhomogeneous distribution of the traffic 

(according to the specified user population density) with lower traffic demand on the 

ambient user area (most area of the playground) increased traffic in the hot zones and 

most of the traffic in the hot spots. In addition, for the quality of service requirements 

of the user traffic, we will be enforcing the 2020 expected delay thresholds that are 

specified in the literature [6]which specify 100ms maximum delay for the signaling 

small packets and 500 ms for the large packets. This delay will be the network 

transport delay as propagation and processing delay is not included in the system level 

simulator software. Any packet serving delay higher than the expected results into 

application-level rejection (packet drop) and subsequently, RRC session failure. 
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3.1.4 Simulation Network Element Characteristics 

The available network elements that will be used for this simulation (both for the initial 

scenario and for the optimization phase) will be reference hardware in the predefined 

simulator assets. The sector antenna[6] of the eNodeB will use a) maximum transmit 

power of 49dBm (for 2x2, 4x2 and 8x2 MIMO with diversity gain) b) 3D sector antenna 

model with max gain 14 dBi c)15-degree vertical tilt (Dense Urban inter-site distance) 

d) half-beam width 70 degree. For omni-directional antennas that will be used for Pico 

elements the simulator will be configured to maximum transmit power of 30 dBm and 

5 dB omnidirectional gain (at the surface level). For the power consumption model of 

the network elements, the eNodeB will use the standard load-based model with 

minimum power consumption of 473.3 watt and maximum 880.3watt. The pico cell 

will use an order of magnitude less energy with parameters of 33.9 and 53.7 watt 

respectively. For the transmit bandwidth, we are assuming 20Mhz bandwidth slices for 

each of the Pico and eNodeB elements. For the initial handover parametrization, we 

are setting the Pico bias value to 10 dB (virtual gain) 

Table 3 - Macro cell and Pico cell simulation characteristics 

 

3.1.5 Simulation Optimization KPIs 

The selected performance metrics that will be used to evaluate the effectiveness of 

the optimization schemes will be based on the analysis of the previous chapters. More 

specifically they are separated in contextual categories: a) Energy characteristics that 

are linked to the OPEX of the cellular network such as Power consumption, total energy 

of the equipment, b) Telecommunication link quality characteristics such as average 

per UE downlink throughput and average packet transmission delay. Another 

important quality of service parameter is the cell edge throughput, namely the 

achieved throughput from the lowest 5% (percentile) of the throughput’s distribution. 

Finally, the packet download success ratio (%) is another important indicator of 

quality. c) Mixed characteristics that combine OPEX and quality characteristics (a+b) 

such as energy efficiency and energy intensity 
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3.2 Problem Solution  

We are exploring various approaches to improve the energy efficiency of the setup in 

such a HetNet environment. These approaches can be a) Multi-Operator infrastructure 

sharing[9][10][11][12][13], b) Uniform Placement of Pico cell elements in the 

playground to offload the cells[14][15][16], c) Intelligent Placement of Pico cell 

elements to target the traffic in the high-density zones, d) other methods of QoS 

improvements such as increase in effective bandwidth of cell elements. For the next 

chapters we will apply these principles to reduce the EMF footprint and power 

consumption while maintaining the QoS of the simulation in adequate levels 

3.2.1 Power Improvements - Operator Infrastructure Sharing 

Modern HetNets operate simultaneously in most civilian zones using different slices of 

the 4G spectrum. These networks are operated by different network providers and are 

isolated orthogonal networks that, due to the stochastic nature of the traffic 

distribution, are in different load states. Usually 2 to 6 network operators (depending 

on the country) coexist in the various domestic zones. All these operators are 

overprovisioning their network equipment with radio resources (equal spectrum) and 

network elements (close or same in number) in order to be able to serve opportunistic 

traffic spikes. In addition, the geographical nature of the serving zone restricts the 

providers from reducing the number of network elements they use for coverage and 

signal penetration constraints (i.e. locations of the cellular coverage map must always 

have a minimum service capability). However, traffic analysis on historical data and 

projection models show us that the same substrate network area can be served by 

one network operator with the sacrifice of partial quality of service degradation. 

Deactivating or switching the infrastructure to sleep modes while 1 (out of 4) providers 

would serve the traffic could lead to important power consumption benefits (as seen 

by the min-max values of power consumption of the elements). Since the 4G standard 

requires a fixed quality of service level, we need to explore additional QoS 

improvements. 

3.2.2 QoS Improvements - Pico cell placement and bandwidth 

increase 

Infrastructure sharing imposes a radical change in the active available resources to be 

used for the radio transmission. This greatly affects the provided quality of service and 

rises the need for technological countermeasures. Pico cell elements have been shown 

in rich literature as a method of energy efficient high-quality coverage technology. 
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Based on the reference Pico cells technology (shown previously) a new network design 

that would include them in the coverage area would have minimum energy efficiency 

and power consumption impact whilst keeping the quality of service in the same (ever 

higher) levels. Various schemes can be followed as for the placement of the Pico cells 

in the playground depending on the knowledge that we assume we can utilize. In a 

simplistic case, Pico cells can be placed in an evenly distributed manner (much like the 

hexacombs of the cellular network). This however will not be the optimum placement 

as the pico cell elements work most effectively when placed in a location with high 

population density. The second and more advanced placement scheme is to utilize the 

known user distribution (as created by the simulation software) to target the 

overloaded zones (denoted as hot-zones or hot-spots) with Pico cells. That way the 

small coverage of the Pico cells wil be sufficient to offload the eNodeBs and therefore 

reduce the power consumption of the infrastructure. Another important aspect of this 

optimization is configuration on the handover algorithm of the network. Since pico cells 

wil be placed in a densely covered area by nearby sector antenna eNodeBs, we need 

to make sure that users will handover their service effectively. The Pico Bias parameter 

works as a virtual power gain, masquerading the closest Pico cell’s transmit power as 

the strongest received without the need of manual handover. 

3.2.3 QoS Improvements – Available Bandwidth increase 

Another method to maintain high levels of quality of service after performing 

infrastructure sharing and element turn-off is bandwidth transfer. As analyzed in 

previous chapters, multiple operators own different slices of the available 4G 

bandwidth. By shutting down these elements (via power control or infrastructure 

sharing) this bandwidth becomes unused and therefore underutilized. This bandwidth 

can then be transferred dynamically in the other cells increasing the capability in which 

they serve the area. Although the increase in bandwidth will reduce the service time 

(and subsequently the load of the cells) It is important to note that it will also increase 

the power consumption of each cell. Large part of the power consumption comes from 

the linear amplifiers of the digital transmission and higher energy requirements will be 

needed for double or triple the bandwidth. The conclusion is that, although spectrum 

transfer is an option for extreme cases of QoS degradation, it needs to be performed 

selectively in isolated zones in order to not reverse the energy efficiency effects of the 

optimization. 
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3.3 Application of the Proposed Scheme – 2-Phase Optimization 

Having analyzed the hypothetical outcome of the various solutions to the energy 

efficiency problem, we propose the following optimization methodology(Figure 34). 

Initial simulations will be run for the network’s performance before optimization: this 

state will be now on referred to as “reference scenario”. The next step will be to apply 

infrastructure sharing in the same simulation scenario. This means merging all the 

users from different network operators into a single operator and shutting down the 

operation of the elements from the rest. The removal of all the eNodeB elements will 

consequently lead to great reduction in power consumption of the network but the 

increased traffic transferred to the single operator will lead the infrastructure to very 

high load and likely high outage. This scenario will then be used to test the various 

offloading techniques that we mentioned in the previous scenarios in order to maintain 

the energy benefits and improve the quality of service into an adequate stage. Uniform 

placement of Pico cells will be used in addition with the increase of the effective 

bandwidth of the eNodeB elements. Finally, the intelligent placement of the Pico cells 

inside the hot zones is expected to provide the best solution to the problem. Variations 

of the Pico cell placement configurations will be tested and compared in order to find 

the instance in which the quality standards (predefined by reference scenario) will be 

met (or surpassed). In addition, increase on the available bandwidth will also be tested 

as a candidate to absorb the QoS deterioration caused by the infrastructure sharing. 

 

Figure 34 - The proposed scheme performance evaluation 
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3.4 Performance Evaluation 

In this chapter we will analyze the results from the various executions of the simulator 

software in order to identify the problems generated in the reference scenario and 

validate that the proposed scheme is showing evidence of improvement in the 

operation of the cellular network. 

3.4.1 Evaluation Methodology 

The complexity of simulating such a large reference scenario (including multiple radio 

access network elements and user equipment devices) is forcing us to perform small 

simulation samples of various states in which the network can be set. According to 

methodologies from other simulations, we can split the daily traffic profile of a 

network’s profile into small sub-simulations of different traffic demand amplitude 

(weight). After gathering all these measurements, we then complete the profiling of 

the total simulation by performing a weighted average summation of the results. These 

“load weights” take the values of 20%, 40%, 100%, 120%, and 140% (peak rate). In 

addition, simulations for various other environments (such as Urban, Sub-Urban or 

Rural) could also be included but will not be for the scope of this study. The selection 

of the focused KPIs will be based on the analysis performed in previous chapters. 

Energy efficiency, intensity, power consumption and total energy will be converted in 

a per km2 density value for extrapolation purposes. For the quality of service 

measurements, average packet download time will be used as well as the packet failure 

rate (which will be a direct result of packets exceeding their delivery expectation rate). 

Finally, as an additional QoS KPI we will be using the cell edge throughput (equivalent 

to the fifth percentile of the throughput CDF). The gathering of the datasets is part of 

the implementation of the simulation and knowledge-gathering tool developed for the 

scopes of this dissertation. This includes the generation of the reports and graphs of 

the following chapters.  

3.4.2 Result Analysis – Reference scenario 

The first results that we will be analyzing are from the “reference scenario”. This 

scenario included 4 simultaneous network operators serving a Dense Urban area of 

1500 square meters of the specified user density and traffic model. In addition, each 

operator has 20 MHz of bandwidth at his disposal and serving with a separate 6-site 

(18 cell) hexacomb. All load levels were evaluated for all the selection of the KPIs and 

created the reference measurement for all the improvements. The results followed the 

expectations of the preliminary study: Quality of service is in the expected (adequate) 
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levels whilst the resource usage and power consumption are in a high state. It is 

important to note that the 4 operator system benefits also from the different radio 

frequencies that result into zero to little inter-channel interference.  

3.4.3 Result Analysis – Phase I - Infrastructure Sharing 

Activating the “infrastructure sharing mode” from the simulation configuration, leads 

us to the results of phase 1. A total of 20Mhz allocated at operator 1 is used to serve 

the same number of users for the selected area. The disabled network elements of the 

simulation have dramatically decreased the power consumption(Figure 35), but the 

network is now at a state of increased load. Quality of service begins to radically 

deteriorate especially for the case of the peak hour (140% load), (Figure 37,Figure 

38). However, at this stage we have the least amount of network elements and the 

smallest required bandwidth.  

3.4.5 Result Analysis – Phase II – Intelligent Pico placement 

Phase 2 is split into all the different configurations of location and number of Pico cell 

placement. The idea is to use the simulation software in order to identify the optimum 

number of Pico cell elements for the performance “repair”. After reaching the boundary 

of 7 Pico cells per hot spot (with hot spot placement) we see that we have successfully 

recovered (and even improved in cases of edge throughput) the performance KPIs 

with a benefit of 55% in power consumption (Figure 35, Figure 36) of the network. 

 

Figure 35 - Power consumption for each simulation scenario 
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Figure 36 - Energy efficiency for each simulation scenario 

 

Figure 37 - Edge throughput (5%) for each simulation scenario 
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Figure 38 – Packet drop rate for each simulation scenario 

3.3.3 Results from bandwidth increase 

As expected from our initial analysis, the increase of the eNodeB’s effective bandwidth 

resulted in an increased power consumption for all different load levels. This result 

however is still valuable because the network quality of service increased dramatically 

surpassing the “reference scenario” initial values. This means that scenarios like this 

could be a considerable input for future network configurations with increased 

available bandwidth and smaller number of operating network elements. 

 

Figure 39 - Power consumption for various bandwidth allocations 

3.4 Conclusion 

Energy efficiency is a very important goal in the cellular network design and operation 

lifecycle. In this chapter we have shown that initial network design can lead to 
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important losses in power and energy efficiency which would normally be handled in 

an inefficient way. Intelligent redesign of the cellular network, knowledge building from 

historical data of traffic usage and advanced radio coverage elements such as Pico 

cells can be a combined methodology to dramatically reduce the power consumption 

of this system without sacrificing quality of service or efficiency. Simulations in 

reference scenarios confirm that these solutions are effective even in the most densely 

populated areas, producing large amounts of stochastic traffic. These findings greatly 

solidify the importance of Knowledge-building in the design and configuration of 

cellular networks. 

  



 

 90 

3.5 Chapter References 

[1] F. Richter, G. Fettweis, M. Gruber, and O. Blume, “Micro base stations in load 

constrained cellular mobile radio networks,” in Proc. IEEE 21st Int. Symp. Personal, 

Indoor Mobile Radio Communications Workshops (PIMRC Workshops), Istanbul, 

Turkey, Sept. 26–30, 2010.pp. 357–362. 

[2] O. Arnold, F. Richter, G. Fettweis, and O. Blume, “Power consumption modeling 

different base station types in heterogeneous cellular networks,” in Proc. Future 

Network Mobile Summit, Florence, Italy,June 2010, pp. 1–8. 

[3] GreenTouch, “End to End Network Architecture and Progress Measurement towards 

the Factor 1000 Improvement in Network Energy Efficiency” of the GreenTouch 

technical committee, Jan. 7, 2013. 

[4] GreenTouch, Mobile Architecture Doc 1 - Models & Methodology, Version 3.0, 

Mobile Architecture/Metric Group 

[5] GreenTouch, Mobile working Group, Mobile Communications WG, Architecture 

Doc2: Reference scenarios, May 8, 2013 

[6] GreenTouch, Mobile working Group, Mobile Communications WG, Architecture 

Doc2A: Update on Modelling Parameter, December 11, 2014  

[7] GreenTouch Mobile Communications WG, Architecture Doc3: GreenTouch Technical 

Solutions, 28 May 2014 

[8] GreenTouch, Mobile Communications WG, Architecture Doc4: Energy Efficiency of 

GreenTouch Technical Solutions, version 0.2, 26 May 2015 

[9] T. Frisanco, P. Tafertshofer, P. Lurin, and R. Ang, “Infrastructure sharing and shared 

operations for mobile network operators from a deployment and operations view,” 

in Proc. IEEE Network Operations Management Symp., Apr. 7–11, 2008, pp. 129–

136. 

[10] J. P. Pereira and P. Ferreira, “Infrastructure sharing as an opportunity to promote 

competition in local access networks,” J. Comput. Networks Commun., vol. 2012, 

Article ID 409817, 11 pages, Feb. 2012. 

[11] D. Meddour, T. Rasheed, and Y. Gourhant, “On the role of infrastructure sharing 

for mobile network operators in emerging markets”, Comput. Networks, vol. 55, no. 

7, pp. 1576–1591, 2011. 

[12] F. Berkers, G. Hendrix, I. Chatzicharistou, T. de Haas, and D. Hamera,“To share or 

not to share?,” 14th Int. Conf. Intelligence Next Generation Networks, Oct. 11–14, 

2010, pp. 1–9. 



 

 91 

[13] Evolved Universal Terrestrial Radio Access (E-UTRA), RAN Sharing enhancements, 

3GPP TR 22.852 

[14] Evolved Universal Terrestrial Radio Access (E-UTRA), Network sharing; Architecture 

and functional description, 3GPP TR 23.251 

[15] Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-

UTRA physical layer aspects, 3GPP TR 36.814 

[16] Cisco, "Cisco Visual Networking Index: Forecast and Methodology, 2010-2015," 

white paper, June 1, 2011 

  



 

 92 

  



 

 93 

Chapter 4 – Quality of Service Optimization 

utilizing dynamic radio resource allocation 

mechanisms 

4.1 Introduction 

Optimum radio resource allocation in 3GPP cellular networks (especially 

HetNets)[1][2][3] is a multi-factor problem that is widely studied in the available 

academic literature. It is also an important study item of the standardization technical 

teams of 3GPP for specifications that will impact the performance of the technology’s 

future releases. From a digital communications perspective, 4G networks use a 

physical layer of OFDM multiplexing (OFDMA for multi-user environment) which is 

essentially an evolution of the GSM (2nd gen.) FDMA / TDMA 2-dimensional 

implementation. In principle, time and frequency resources are split into two 

dimensions that can be split in a discrete manner. Time is split into the minimum 

transmission window which generally results in higher frames of 0.5 or 1 milliseconds. 

The frequency dimension is split into the minimum possible bandwidth (180-200 Khz 

subcarriers) that can contain the information symbols. The difference between 2G and 

4G is in the wave form. 4G is using the OFDM pulse also known as subcarrier that is 

an improvement from various perspectives. The 2D pair entries group together in what 

is referred to as “resource-block” which is the minimum allocation that an active user 

terminal can acquire from the system for transmission. Algorithms that select which 

resource block will be allocated to which user (and for which application) are generally 

called radio resource allocation policies and are implemented in the scheduler of the 

LTE layer 2 system.  

4.1.1 Dynamic Resource Allocation in HetNets 

In HetNets, multiple high-level objectives can determine the drive for dynamic radio 

resource allocation policies[4][5]. As a general rule, the default policy in which 

networks provide access to the shared is through the means of equal resource 

allocation, sometimes referred to as “even” or “round-robin” allocation. This allocation 

scheme however does not include any intelligence since it will provide equal quality of 

service to users with the same radio environment conditions. Round robin allocation 

can either be a full buffer per user allocation, in which every time frame of transmission 

a single user is utilizing the channel or it can be a sequential radio resource distribution 

for simultaneous users. If we include additional information to the radio resource 
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allocation algorithms, we then have a number of “intelligent” radio resource allocation 

policies. Firstly, we have the spectral efficiency objective which translates to achieving 

the highest possible throughput / service per km2 / per Hz sometimes referred to as 

“greedy”. This translates to a good conversion rate of the raw resource (purchased 

frequency band) into network throughput. However, the reality of this goal is that it 

will benefit only user equipment devices that experience the best radio environment. 

The spatial diversity of cellular networks in cities and all geographical area types does 

not allow for direct line of sight telecommunication links. The cellular technology is 

designed to penetrate various zones such as buildings, alleys, industrial zones and 

transportation facilities at the cost of signal strength and network errors. Distributing 

resources to the small part of the coverage distribution that receives the best radio 

quality will lead to outage for many users and will cause the technology to fail in one 

of its most important goals: coverage rate. In the opposite hand of this approach we 

have the opposite policy of overprovisioning users with bad radio quality. This is 

sometimes referred to as the “fairness” policy. By doing so we are reducing the quality 

of service diversity between users at the cost of radio resources. Users with good radio 

quality receive low resources and these resources are then transferred to the users 

with bad radio conditions. Ultimately the users can then experience equal services. 

One key element of efficient radio resource allocation is the physical layer monitoring 

function. Through the means of measurements and LTE signaling, the network must 

be aware of the transmission link quality of each user and its corresponding access 

device. Utilizing this information for decisions that involve the scheduling of packets 

and radio resource allocation is sometimes referred to as cross layer optimization or 

cross layer information exchange. For the radio resource allocation problem, simple 

localized measurements performed between the UE and the eNodeB do not suffice. 

The most important factor of quality deterioration if LTE networks is inter-channel 

interference as it results from the densification of the element deployment. Since the 

information of every single transmission and occupied resource block is not included 

in the backbone signaling, it is believed that a centralized approach to efficient radio 

resource allocation is better. Centralized SON functions can provide a general overview 

of the network area’s instantaneous (and future) interference profile based on the 

knowledge of the network element’s load and current resource allocation. The 

signaling of the UE terminal with the eNodeB also provides geospatial information for 

total knowledge of the geography of the problem. That can lead to estimations of the 

INR, SNR and SINR ratios for each UE device accurate enough and fast enough that 
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can be applied in real time dynamic radio resource allocation. For the next chapters, 

we have selected a specific simulation scenario in order to test and contradict the 

various dynamic resource allocation algorithms of the literature. We have also a 

proposed algorithm that we believe will greatly improve the quality of service and the 

fairness of the HetNet infrastructure and positively contribute to the technology’s 

evolution. 

4.1.2 Simulation Scenario 

The selected network simulation (Figure 40)is a Dense Urban area type large scale 

simulation playground including 19 eNodeB sites (3 sectors each). We are using a 

HetNet infrastructure, with homogeneous placement of 9 Pico cells inside every sector 

eNodeB resulting in a total of 228 radio access elements (out of which 171 are small 

cells). The radio configuration of these elements is 4 full LTE bands resulting in 20 

MHz (or 100 resource blocks) for each cell. The selected network topology is generated 

by the hexacomb network layout generator which resulted in a central 6-cell hexacomb 

with 13 additional eNodeB sites on the circumference. The operational band for the 

Pico cells is the LTE 3.5GHz band (different resource slice than the eNodeB which 

operated in the 1800 MHz LTE band) so that they can greatly penetrate the users in 

spite of the dense placement in the center of the antenna sector of the macro base 

station. 

Table 4 - Network Element characteristics of the simulation 

BS 
MIMO 
mode 

Bandwidth 

Macro 2x2 20Mhz 

Small 
Omni-

antenna 
20Mhz 
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Figure 40 - The simulation scenario topology 

4.1.3 Simulation Traffic Model Variations 

For the next experiments that will determine the optimum dynamic radio resource 

allocation scheme, a set of different test cases have been designed in order to 

thoroughly cover all possible load levels. By parametrization of the “average per user 

daily requests” of the simulators FTP Application layer emulation, we end up with 5 

different scenario variations to be evaluated varying from 2280 to 14400 packets per 

day per user. The number of UE devices used for this simulation is 5000 uniformly 

distributed in the playground. For the packet size requested for transmission, we will 

be using a fixed 2MB (large packet) in order to achieve the wanted 4 to 20 MB / minute 

per user load level. 
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Table 5 - Simulation test cases 

Test cases Users Sessions/Day/User Packet size 

1 5000 14400 2Mbytes 

2 5000 11520 2Mbytes 

3 5000 8640 2Mbytes 

4 5000 5670 2Mbytes 

5 5000 2280 2MBytes 

4.1.4 Simulation Service Classes 

In addition to the simulation traffic model, we will be splitting the packet transmission 

entries into different categories of packet priority in order to include this also into our 

benchmarking. In a sense we want to be able to parametrize the radio resource 

allocation to also include a quality of service class in the level of service. Quality of 

service classes can be found in various literature references such as the US three tiered 

authorization framework[6][7]. An example of different QoS classes can be a) general 

access users (GAA) which is the default access to the medium and will have no 

throughput guarantee (as well as no delay thresholds). The GAA class will be the most 

likely class to activate and will result in the majority of the packets generated in the 

system. The second class (b) can be referred to as the priority access layer users (PAL) 

which have higher priority than the GAA users. Finally, we have the (c) class Incumbent 

Access or IA users which have mission critical transmissions and demand the highest 

priority. These classes will be adopted in the much simpler descriptions of low, medium 

and high priority. For the simulation we will randomly distribute various generated 

packets as to emulate real world conditions where users request premium and/or non-

premium services simultaneously by using their phones. 

 

Figure 41 - Service class example hierarchy 
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4.2 Problem Solution  

For the solution of the optimum radio resource allocation problem from an average 

quality of service perspective, we will enumerate the literature’s most referenced 

[8][9][10][11][12]implementations and analyze their operation separately. We will 

then analyze more advanced techniques and our suggested cross-layer optimization 

approach. Afterwards, we will select 2 cases from the SOTA and perform simulations 

in order to compare its performance with our suggested solution for the various priority 

levels and load levels defined previously.  

4.2.1 Radio Resource Allocation Algorithms 

As mentioned in previous chapters, there are several approaches 

[13][14][15][16][17][18][19][20]to the radio resource allocation problem depending 

on what is your ultimate optimization goal.  

4.2.2 Full buffer radio resource allocation 

The most simplistic radio resource allocation approach is the full buffer or full allocation 

approach. Allow all elements to use all resources simultaneously. This simplistic 

approach is only effective if inter-site interference is very low and the traffic demand 

is also within normal ranges. Maximum load will result in disastrous interference levels 

and this allocation can only benefit users with the best radio quality conditions 

(greedy). 

4.2.3. Orthogonal frequency reuse with reuse factor  

 Orthogonal radio resource allocation with reuse factor (e.g. 3) is a traditional method 

of radio resource allocation to reduce inter-channel interference. Neighboring cells are 

allocated with different slices of the total bandwidth, resulting in no overlapping 

frequencies and no interference (for the neighboring cells). This greatly benefits the 

users with the worst radio conditions which will receive service levels of the best 

possible quality (assuming already bad signal strength from serving cell. The combined 

solution of these two algorithms is the prioritized orthogonal full allocation scheme. 

Each cell has all the total resources available, however it prioritizes an orthogonal set 

over the total amount. In low load situations, this will result in fair and high-quality 

communications. While the conditions change and demand increases, the quality of 

transmission will deteriorate and reach the 100% load limit like first case.  
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4.2.4 Random resource allocation 

Random resource allocation is a simple methodology that requires very little to low 

planning and knowledge of the existing system. Regardless of that, it can perform as 

good as the orthogonal reuse algorithm of the literature due to the combination of 

randomness and the stochastic nature of cellular traffic. The conflict probability, 

however, increases according to the average load of the surrounding cells (like cases 

1 and 3) and its theoretical limits are the same. From the SOTA algorithms, the random 

algorithm will be implemented as the best possible solution for both high performance 

and fairness.  

4.2.4 Advanced algorithms for radio resource allocation 

Other dynamic channel allocation schemes are found in the literature; however they 

are more intrusive for the HetNet systems in a way that much customization is required 

for their success.  

  

Figure 42 - An overview of LTE radio resource allocation algorithms 

The first algorithm is the load balancing resource exchange algorithm. It starts at an 

initial stage like algorithm the orthogonal reuse partitioning – even partitioning and 

starts a control loop that aims at balancing the load of all the network elements. The 

key operation is the resource block exchange between the various cell elements. If an 

eNodeB’s load increases, the algorithm will require resources from a neighboring cell 

in order to balance them out. The extra resource will be used for as long as the traffic 
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demands it and then it will be traded back to maintain equilibrium. This algorithm is 

very effective in principle; however, it has curtain drawbacks that are tightly coupled 

with the cellular technologies in general. This algorithm falls under the category of 

distributed SON functions. Each eNodeB will act as a local agent to solve a local 

problem. To do so it needs a communication protocol for interfacing with its 

neighboring cells. Via this signaling route, the cell will then communicate the demand 

for additional resources and standardized methods must be able to implement such an 

exchange. This requires a lot of extensions for the standard cell-to-cell communication 

cell (X2 interface). Another problem with this algorithm is the extreme case. No amount 

of resource exchange can solve the traffic demand overload problem. It will however 

even the problem out as good as possible and can be used in conjunction with 

handover optimization and traffic steering schemes.  

4.2.5 The proposed resource allocation scheme 

The suggested algorithm that will be used for the basic comparison with all the other 

literature is the cross-layer-interference-aware DCA algorithm. By the means of 

measurement collection in a centralized SON instance, the network is able to deduce 

the SINR (INR or IR) of each different eNodeB – UE pair in the playground. It will then 

rank the available resources with a weight that will mark either “clean” or “dirty” 

frequency block. If we exclude the computational complexity from the equation, we 

are expecting this algorithm to outperform the random allocation algorithm of the 

literature. The reason is that whatever the load case is (low or high) we will always 

have a notion of the best and worst resource to provide. This will be as accurate as 

the interference calculation models can be based on the radio feedback of the UE 

terminal and propagation models. It will also be based on the current transmit load of 

the neighboring cells therefore it will collect multi-source information from the 

network. In general, these algorithms have a “core” flow diagram that they follow that 

can be seen in the following flow diagrams. We see that extensions can be performed 

in the channel assignment step of the diagrams. 



 

 101 

 

Figure 43 - General Radio Resource Allocation Flow Diagram[12] 

4.2.2 SOTA algorithm: Random Resource Allocation 

The random resource allocation algorithm is a simple but effective DCA scheme. It 

provides all eNodeB elements with full radio resource capabilities and tries to achieve 

lower SINR values by using a random resource allocation. Randomness is an effective 

and cheap way to allocate resource in an orthogonal manner, especially for low load 

values of the network elements. As the load of each element increases however, the 

radio transmit conflicts are rising leading into the same situation as the full buffer serial 

allocation. The key to this algorithm is which scenario it will be applied and what actual 

level of element load will be achieved. Below we can see a flow diagram of the 

algorithms implementation as it is included in the various radio resource algorithm 

implementations of the simulation software. 
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Figure 44 - Flow diagram for the random DCA algorithm[12] 

4.2.3 Proposed Algorithm: Interference-Aware Resource allocation 

Interference-aware resource allocation is our suggested DCA scheme for the solution 

of the fair allocation problem. It is an algorithm for evaluating locally every different 

resource block according to an estimation of the SINR that the transmission will 

produce. This is done by information exchange from a centralized SON function on the 

network controller of the HetNet. If the complexity of such an algorithm is not 

restrictive for real time usage, it can prove to be the best in terms of fairness and 

relative quality of service per user. It will also allow for quality of service class 

enforcement for the various use cases we have analyzed in the previous chapters. The 

flow diagram of this algorithm is an extension of the simple resource allocation diagram 

in which all the resources are rated with a different SINR coefficient. In cases of 

extreme load, all the resources will be used and then the full buffer mode will arise. 

However, the notion of resource ranking and the “best” or “worse” resources might 

produce better results in the high vs low priority service requirements.  
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Figure 45 - Flow diagram form the interference-aware DCA algorithm[12] 

4.3 Performance Evaluation 

In this section we will analyze the performance KPIs of each of the following three 

DCA algorithms: The basic algorithm (hereby named SOTA or A for short) which will 

include full spectrum allocation for reference purposes.  

 

Figure 46 - Average air-interface latency for each test case and algorithms A, B, C 
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The SOTA random algorithm denoted as B which will be compared to our proposed 

algorithm and the algorithm with QoS priority named the “interference-aware 

algorithm” or C. The selected KPIs that will be compared are average (per user) 

measurements of QoS in order to achieve both high performance and fairness for all 

the UE terminals. The KPIs that will be displayed are the average packet latency (for 

the specific simulation traffic model) and the normalized per user throughput. These 

results will also be split into different histograms for different packet classes (as 

described in the simulation test cases chapter). 

 

Figure 47 - Average air-interface latency per priority level 

The first set of results to analyze is the average air interface latency. On average, it is 

shown that our proposed algorithm outperforms the other two algorithms (up to 50%) 

especially in high and medium priority services by giving them a performance boost. 

On the contrary, low priority services seem that they do not benefit as much as the 

other two. In the next figure, the results are sorted by priority levels, and the large 

benefit of our algorithm is more visible for high priority which is not the case for low 

priority services. 
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Figure 48 - Normalized Throughput for each test case and algorithms A, B, C 

 

Figure 49 - Normalized Throughput for each priority level 

The next result set illustrates the normalized throughput for each of the test cases and 

compared among each algorithm. It is evident that our algorithm performs better in 

almost every test case and especially in cases with higher loads (compared to less-

loaded simulations). Switching the analysis perspective, we see that the next figure 

illustrates the normalized throughput as of service priority levels and here (as shown 

in latency charts), our solution seems to perform better especially in higher and 

medium priority services compared to low priority services.  
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The test cases used for this study where designed in order to investigate the 

performance difference between the state-of-the-art and our proposed solution. Our 

proposed solution was able to dynamically choose the optimum channel based on 

interference of the current position and thus allow each user to connect with higher 

speed and receive the file faster with less air interface latency. On the contrary, the 

algorithms that used for comparison on average were making the less optimal selection 

of the channels (without giving priority based on QoS requirements),hence the users 

were not able to download at full speed and with higher loss packet ratio, creating a 

continuously loop of poor selection of channels without being able to overcome this 

situation. Furthermore, there are some differences between random allocation of 

channels and SOTA algorithm when increased load is provided in the system. The 

random allocation has worst performance in high and medium priority services. The 

state-of-the-art algorithm performs better, and our proposed algorithm has the best 

performance especially in high and medium priority services. 

4.4 Conclusion 

Dynamic Channel allocation and radio resource management is part of the complexity 

that the large configuration space of HetNets introduces to network operators. Analysis 

of the knowledge provided by real world data, analytical models and simulations can 

be used as important tools to understand which DCA scheme is most effective under 

various circumstances. In this chapter we have seen that basic radio resource 

algorithms fail to handle situation of overloaded areas in large scale HetNets. Random 

DCA helps with the problem but fails to handle situations of critical load. Random DCA 

also has no notion of embedded quality of service classes, something that can prove 

useful if the network wants to prioritize different classes of service instead of treating 

all traffic as equal. A proposed, multi-context DCA algorithm that utilizes both radio 

quality and network load aspects to provide projections for the quality of each resource 

block is shown to outperform the SOTA and the random algorithm in both selected 

QoS and fairness indices. By including the interference into the computation for the 

resource allocation, we reduce the required resources, and this ultimately results into 

more energy efficient networks. These findings may push the design of the 4th and 5th 

Generation standards to include this additional information in their message exchange 

protocols and allow for further advances and achievements in terms of technological 

features. 
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Chapter 5 – Congestion Prediction and Prevention 

using Machine Learning models 

 

5.1. Introduction 

Cellular network congestion is one of the most important problems in the 

infrastructure’s lifecycle. Network congestion is the high usage rate of the network’s 

resources which will result in a high interference low efficiency state. Planning 

techniques (used during the design of these networks) use estimates on the network’s 

usage to provide resources and they fail to overcome the opportunistic, random and 

unexpected nature of the user’s traffic. In addition, reactive SON-based approaches 

rely too much on control loops that have a very slow convergence rate (e.g. LB-SON). 

Key to the prevention of congestion is the existence of adequate management options 

that will be able to eliminate the congestion (by either resource increase or intelligent 

offloading) and the ability to have a constant probability of congestion or the means 

to predict incoming congestion events beforehand, therefore avoiding the problem 

from ever happening. 

5.1.1 Simulation Scenario 

For this chapter, we have designed a simulation scenario of a small isolated, 2-cell 

area that has constant user equipment motion. This can sometimes be part of a dense-

urban city centre or an area near a city square / event area. Mobility and high user 

density in dense-urban environments is one of the key factors of congestion in many 

simulations.  
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Figure 50 - Congestion Simulation Scenario 

The users of the simulation are split into two categories: The ambient users, moving 

in a random manner around the playground of the simulation (marked as green circles 

in the graphics) and the concentrated users (marked as pink dots in the graphics) 

which move as groups would move in various social and other events (e.g. users 

coming out of transportation vehicles). For the traffic model of each of the two groups, 

we have selected the reference 2020 FTP traffic model used in the previous 

simulations. An addition is that the concentrated users traffic model is parametrized to 

have 100x increased small packet arrival rate. This is since these users have a lot more 

cell phone usage. Multiple scenario executions will be conducted in order to account 

for all different global traffic levels (20%, 40%, 100%, 120%, 140% etc.) 

The outcome of this configuration is that the location in which the group of users 

selects to move results in congestion for the cells that are serving it as part of its 

coverage area. We can see this clearly in the measurement module of the simulator 

and the load indication on the screen. The congestion moves from one cell sector to 

another as a result of the high demand concentration. 
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Figure 51  - Cell load congestion on the simulation scenario 

For the other simulation scenario parameters, we are using the reference scenario for 

Dense Urban 2020 standard simulations[1][2] (including power models, antenna 

parameterization, spectral efficiency, MIMO mode, available LTE resources and Pico 

Cell technology). 

5.1.2. Congestion Control mechanisms in HetNets 

The mechanisms that can be included by management policies[3] in order to avoid 

network congestion are offloading mechanisms that are based on the mobility 

management subsystem. The idea is that a traffic spike can be handled by surrounding 

cell elements if proper parametrization of CIO and element bias values are changed 

(in real-time). These elements can either be eNodeB cells or Pico cells depending on 

the simulation scenario and the assumed area type. Parametrization of this sort will 

lead to active users being moved to less loaded cells and resolve the overload issue. 

This procedure can occur either in the inactive user terminal (using the relocation 

procedure) or in the RRC connected state (using the RRC reconfiguration procedure) 

also known as a handover. These mechanisms are traditionally activated by either 

manual configuration, in order to fix a specific mobility issue such as high traffic 

highways, or by activating a specific network KPI rule. These rules are simplistic 

threshold-based approaches that use either the current value, the change in the value 

or combination in order to trigger a change in the handover parameters. Whichever 

the case is, the problem is that the users experience a short but significant amount of 
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negative radio quality because the algorithm is simply “reacting” to the problem. In 

order to prevent this, we need to apply a sense of predictive KPI modelling that will 

be used as a trigger for the same congestion control countermeasures. 

5.2 Problem Solution 

We have formulated an ensemble of machine learning models and network 

configuration as a means to intelligently prevent large amount of the congestion 

caused by the user equipment concentration. For this solution, we have studied 

thoroughly the existing SOTA literature for congestion predictive models (supervised 

and unsupervised), we have selected the best algorithm (namely the SOM , semi-

supervised model) which is then trained in a collection of data from the selected 

simulation during both congestion and normal operation, and we have used the 

predictive model as an input trigger for the activation of congestion prevention 

counter-measures as described in previous chapter. 

5.2.1 Unsupervised Machine Learning Models 

Unsupervised machine learning models[5][6][7][8] is a sub-category of machine 

learning models that specialize in the discovery of hidden features and information in 

seemingly uncorrelated raw datasets. It usually involves a training process in which 

the model tunes its hyper-parameters based on a training dataset and an underlying 

optimization problem. Known unsupervised algorithms can be split into additional sub-

categories such as distance-based clustering methods (K-means, X-means etc.), 

density-based clustering (DBSCAN, Optics etc.) and vector quantization algorithms 

such as Self-Organizing Maps and Growing Neural Gas. In the subsequent chapters we 

will focus more on the application of the vector quantization algorithms SOM and 

growing neural gas (GNG) which will allow us to build a robust, intelligent predictive 

engine for cellular simulated networks.  

5.2.2 Growing Neural Gas (GNG) 

In the literature of unsupervised learning techniques, vector quantization and 

clustering can also be achieved by using the growing neural gas algorithm[9]. Gas 

molecules tend to move to areas of lower pressure from zones of higher, and they 

tend to form links in cases of low distance between them. On the contrary high 

temperatures cause these links to break and their speed to increase. An artificial gas 

simulation also known as growing neural gas simulation can use this analog to move 

gas molecules into the most crucial spots of the shape of a data point cloud. The 
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algorithm is transforming a number of random initial molecule points into a connected 

graph of vertices and edges that is capturing the “shape” of the underlying data (like 

it would capture the shape of the low-pressure container in the case of gas). This 

technique is very robust especially in higher dimensions that regular clustering 

techniques mostly due to the connections between molecules playing a role of 

gateways to different areas. The connections are also exhibiting gravitational forces 

and therefore achieving median values and even distribution of molecules. Various 

code implementation of the growing neural gas algorithm can be used to show that 

this algorithm can effectively reduce the size of a dataset into multiple orders of 

magnitude lower without losing information for decision making on the quantized data. 

In order to use this algorithm effectively as a clustering method, we need to identify 

the topological objects of our data. Various shapes that are distinguishable from one 

another or groups of objects that are linked can form cluster labels. Therefore, we can 

also extract information about what family of data points is the most fitting for the 

measurement of a new network element. 

We have conducted experiments for the growing neural gas to see its strengths and 

weaknesses against various pathogenic n-dimensional datasets. For the data point 

generation, we are using N-dimensional shape distributions of particles and also the 

orthogonal interlocking rings dataset. 

 

Figure 52 - 3D representation of the interlocking rings dataset[9] 

This dataset consists of two groups of data points (2 rings or donut-shaped objects) 

that are linked, and they intersect from every direction of analysis. Distance-based 

clustering algorithms fail in this dataset because they do not perform a local search or 
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agglomerative approach. The growing neural gas algorithm overcomes this by forming 

the rings itself using the gas molecule edges. These two rings are not in any contact 

in the 3-dimensional space and they are perfectly isolated in their own embedded 

surface. 

 

Figure 53 - a) Initial Dataset before algorithm execution b) GNG links identified 

 

 

Figure 54 - a) GNG quantized data points b) GNG during execution 

Measurements on actual HetNets may contain a lot of hidden information by the shape 

of their point clouds and the GNG algorithm can assist on identifying them effectively 

and using the result as an input for various management actions that will optimize the 

operation of the infrastructure. For a real-case application, the algorithm has a good 

efficiency and it is designed to work on real-time data with streams of new 

measurements constantly updating the topology of the underlying structure. This adds 
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to its robustness and can accommodate for changes in the architecture and evolution 

of the HetNet which is a serious drawback for other unsupervised learning algorithms. 

5.2.3 Self-Organized Maps  

Self-Organized Maps is an unsupervised machine learning 

model[10][11][12][13][14][15][16][17][18] that specializes in the revelation of 

hidden structure behind collected data that can lead in the identification of meaningful 

data groups of hidden variables. This information can be crucial to understanding the 

underlying cause of a problem and its characteristics or it can even allow us to optimize 

curtain situations by using it as a predictive indication. SOMs are essentially the 

projection of a dataset in a 2-dimensional discrete grid of fixed dimension, with each 

different grid containing a vector value that is learned to be characteristic of the 

dataset. In order to find these vectors, a “hidden” simple neural network is optimizing 

the Euclidean distance KPI which results into the discovery of these key vectors. SOM 

projections also allow for easy optical detection of clustered data. A preprocessing 

pipeline is necessary on the data in order to acquire the maximum potential knowledge 

from the SOM algorithm, this preprocessing includes feature scaling and dimensionality 

control. The execution of the SOM algorithm begins with the random initialization of 

the discrete matrix. The collected data points from the real dataset are then “thrown” 

into the grid in a position that is closest to their Euclidean distance. This results in a 

“spreading” effect altering the values of the neighboring vectors. The locality of the 

SOM algorithm is creating a geography of the data while acting also as a noise-

removing filter that focuses only on the essential part of the collected data. After 

enough iterations of the SOM algorithm, the structure of the data begins to take form 

and it can even be visual by 2D projection and coloring functions. 
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Figure 55 - a) SOM hidden neural network b) Color SOM map (example)[11] 

 

5.2.4 Semi-Supervised Classification 

In the existing literature[19][20][21][22], we have found that classification problems 

can be approached with a large variety of algorithms, each with its own benefits and 

drawbacks. Most of these algorithms is shown to have high sensitivity on the input 

dataset and particularly to the diversity of the input KPIs. Fixed feature length and 

sample count is causing a lot of models to require large customization in order to be 

used in this study. Dimensionality reduction techniques are shown to be selected as 

preprocessing steps, as much as vector quantization methods which reduce the input 

dataset to a smaller, more focused subset. Dimensionality reduction can vary from 

various mathematical operations (such as summation, averaging, various statistical 

properties) and also output of clustering techniques such as centroids, medoids and 

gas molecules. Semi-supervised models utilize benefits from both categories of ML 

models. It uses the existing structure and knowledge acquired from the unsupervised 

techniques to establish a geometry of the problem (i.e. a geometric expression of 

various hidden states of the system, some of which could be the problematic states) 

and then it uses a small samples of supervised data to label the sections into the 

prediction results. New data points are then placed inside the embedded geometry of 

the models, and their distance from the various supervised data points is used to 

determine the output of the classification algorithm 
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5.2.5 Cell Congestion Prediction using Semi-Supervised SOMs 

In order to utilize the predictive capability of the semi-supervised SOM model, we need 

to plot a total workflow / lifecycle of the solution. As we see in the diagram (Figure 

56), historical simulation data is being processed and fed into the predictive engine, 

there it is being filtered according to its correlations. The training of the SOM model 

occurs and then the Semi-Supervised model is formed based on the congestion 

samples acquired from the simulation. After that the model is ready for real time 

classification of values acquired from the live simulation. 

 

Figure 56 - SOM usage methodology, from training to usage 

5.3 Performance Evaluation 

Results are split into three categories: A) SOM quantization and clustering plots during 

the training and after the finished training results. These will show us insights between 

the various simulated network KPIs and the congestion of the network. B) Predictive 

modelling results that is an isolated study for the accuracy of the semi-supervised 

classification subproblem of congestion prediction. C) Network KPI (simulation) results 

after applying the prediction as input for the trigger. There we will see the 

improvement or decline of the congestion rate KPI as a function of the reference and 

proposed algorithm. 



 

 118 

5.3.1 SOM Predictive model metric correlation 

After running an adequate amount of simulations in order to generate data, we then 

feed them to the SOM engine in order to generate the SOM maps. We see (Figure 57) 

that many implementations allow for probing on the training process to debug its 

effectiveness. After the first initial data points, small clustering of data occurs that 

quickly changes into more complex and intricate “valleys” and “mountains”.  

 

Figure 57 - Training Progress of the SOM map model[11] 

We can swap the colouring (Figure 58) in order to show the shape that different 

metrics take. 

 

Figure 58 - Metric Correlation of congestion with other KPIs[11] 

In order to understand the predictive model’s insights, we need to visualize the U 

matrix of the target KPI (namely the “congestion”) and highlight the areas with the 

highest value in order to see what corresponding values the other KPIs have. We see 

that congestion triggers with high edge user throughput, moderate average 

throughput, high number of users, high downlink traffic volume, very high 

instantaneous load and moderate number of associated users.  
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5.3.2 SOM Predictive model prediction accuracy 

In order to evaluate the robustness of the SOM predictive model we need to use it to 

generate predictions for various traffic levels of the reference simulation scenario. In 

each case we count the time that the congestion label is predicted and then after a 

short period of time, congestion occurs. As we see from the overall collection of the 

evaluation results (Figure 59), it is evident that the predictive model accuracy 

diminishes on the validation set as the traffic increases. This can happen because of 

many reasons but the most apparent is that the high volatility and instability that the 

high traffic demand introduces to the system changes the statistical mechanics of the 

congestion.  

 

Figure 59 - SOM predictive model accuracy per load level 

5.3.3 Network KPI results on simulation 

The final set of results is the effectiveness of the end-to-end solution (Figure 60). 

Predicted congestion labels trigger activation of the offloading mechanism which in 

turn reduces the congestion rate of the simulation. This is being compared to the 

reference, threshold-based algorithm in order to see if there are any benefits in the 

proposed solution. We can see that in every case of load level, the predictive 

congestion avoidance solution outperforms the reference algorithm by a factor that 

varies from 5 to 2 (from low to high load levels respectively). This is a significant 

improvement of the system’s stability as it means that congestion is avoided even in 

this extreme case of sudden traffic spikes. 
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Figure 60 - Network congestion KPI measured for different load levels 

 

5.4 Conclusion 

In this chapter we have studied the advanced network optimization methodology of 

applied predictive modelling for network congestion prevention. This involved the 

detailed process of composing, implementing and training such predictive models in 

real measurements of a simulated 3GPP-based cellular network. We have also 

formulated a mechanism to incorporate the predictive output of such a model into a 

SON control loop that utilizes the future indication of a congestion as a trigger for 

network load reduction actions. We prove that the early indication of incoming 

congestion is a key aspect in improving the network stability aspect of the system 

which reduces the overall need for resource overprovisioning and therefore makes 

network elements cheaper and energy efficient. We also have shown that faulty 

assumptions and incomplete training is a pitfall that can lead into false prediction 

results and low effectiveness of the process. Having evaluated thoroughly the overall 

outcome of the predictive modelling we conclude that they can be an important 

addition in the future cellular communication technologies management plane. 
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Chapter 6 – Identifying groups of Network Elements 

and User Types by the means of clustering 

techniques 

6.1 Introduction 

Effective management of HetNet infrastructure can sometimes means successful 

grouping and simultaneous configuration of connected or similar network entities. As 

the size of a network rises, and multiple devices are being placed in various location 

of the serving area, it becomes harder and harder to precompute which network 

elements will behave in the same manner and exhibit the same type of performance 

incidents. In order to improve this, we need to introduce a methodology that will allow 

for a data-driven (measurement-driven) grouping of network elements that will 

correspond to same area types and same requirements for resources and/or 

management. These techniques (namely unsupervised learning or simply ‘clustering’) 

will be applied into two different perspectives of a telco infrastructure dataset. In the 

first case it will be used to identify groups of serving network elements (like mentioned 

before), and in the second case it will be used to identify different groups of users that 

have different requirements for data access.   

6.1.1 Simulation Scenario 1 – Cell groups 

For the first case we have developed a simulation scenario of a number of cell coverage 

elements that are serving the same amount of user equipment devices – generating a 

uniform amount of downlink traffic. This can be the case for random locations of the 

urban / dense urban area as different population densities can be identified in various 

zones. This is not always possible to include in the planning phase of these networks 

due to the constant evolution of the substrate area. 
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Figure 61 - Cells with similar network load KPI 

 

6.1.2 Simulation Scenario 2 – User equipment device groups 

For the second simulation scenario, we are focusing on the automated identification 

of users with different traffic demand profiles. Leveraging on the capabilities of the 

variable traffic model of the network simulator, we are separating the users into 

different categories of broadband access. Global management of the hole will not be 

as effective as a customized strategy on the ways to handle the resource allocation on 

different classes of users. Here we will be applying the clustering algorithm in order to 

identify  

 

Figure 62 - Different groups of user equipment devices 
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6.2 Problem Solution 

Rich literature exists[1][2][3] in the vast field of data clustering and unsupervised 

learning as seen in multiple publications and applied implementations. The generated 

dataset from the proposed simulation scenarios follows a generic structure that makes 

it possible to apply different approaches from different fields of the machine learning 

community. The first category of algorithms that we will discuss are Euclidean-distance 

based clustering techniques (e.g. K-means and X-means) that will characterize a set 

of measurements from a network element based on their geometric Euclidean distance  

6.2.1 Data clustering using distance-based algorithms (K-means, X-

means) 

The baseline clustering algorithms of the literature are the K-means and its variation 

X-means distance-based algorithm[4][5][6][7][8][9]. It is an algorithm for identifying 

geometric centres of clustered data points for n-dimensional datasets that will then be 

used to characterize them. These centres, namely centroids, are the main 

characteristics of all the members of the cluster. The k-means algorithms require a 

prior selection of the number of clusters that it will generate. This is described to be a 

weakness as it is not always apparent from the use case that the data will have a 

known number of point clusters. Extensions of the k-means algorithms such as the X-

means algorithm is using an internal optimization process to automatically determine 

the optimum number of clusters in a dataset. 

 

Figure 63 - distance based clustering[4] 

In general – distance-based clustering algorithms suffer from the same types of 

drawbacks all revolving around non-linearly separable groups. Since the centroid is a 
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point that is used to group the particles together, the separation hyperplanes are 

required to be part of the linear sub-space. This means that non-linear groups cannot 

be separated in an effective manner. Specific datasets[8][9] exist in the literature and 

illustrate such drawbacks. 

6.2.2 Data clustering using density-based algorithms (Optics, DBScan 

and Gaussian Mixture Models) 

In this category of clustering algorithms, the authors[10][11] are trying to identify the 

clusters of data points by a degree of reachability between various location of the 

dataset. This is solving the linear hyperplane problem introduced by the distance-based 

clustering family and can help with identifying more complex clusters. Sensitivity 

hyperparameters will dictate whether two nearby data points are connected and 

therefore belong to the same cluster. Another important aspect of these clustering 

algorithms is that they have an additional feature - the outlier cluster. Data points that 

get isolated and are found outside of the range of other clusters are marked as noise 

and being designated to the noise cluster. 

 

Figure 64 - Clustering using DBScan and OPTICS[10] 

Gaussian mixture model clustering is based on gaussian distribution identification in 

the underlying data. It is implying that each subgroup of data points belong to different 

distributions (with other median and standard deviation) and therefore it can be 

separated and distinguished. 
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Figure 65 - Gaussian Mixture Model clustering[11] 

6.2.3 Clustering and dimensionality reduction techniques 

Clustering of data points is a process that is very sensitive to the high dimensionality 

of the dataset. In the cases of cellular network datasets, the large amount of 

measurements performed in various layers of the network such as traffic volume, 

packets, types of packets, alerts and alarms, procedure counters, indicators and other 

KPIs leads to data points of high dimension. Dimensionality reduction techniques can 

be used in two different ways with this type of dataset. The first case is at the input 

dataset pre-processing stage, were by applying the dimensionality reduction operation 

in order to acquire a more robust and accurate clustering result mostly due to the 

cleansing effect towards noise and correlated dimensions. In the second case, we are 

using the dimensionality reduction as a tool to debug or to make sense of the output 

of the clustering algorithm 

 

Figure 66 - Methodologies of dimensionality reduction in clustering 

6.2.3.1. PCA / ICA projection 

Principal component analysis [12][13]is a method for projecting multi-dimensional 

datasets into smaller dimension (usually 2 or 3) capturing the maximum possible 

information in the form of colour distinction and separability. For this purpose, both 

PCA and ICA are trying to produce composite dimensions that satisfy different 

statistical measures of non-likelihood between the multi-dimensional samples. In PCA, 

various implementation revolving the co-variance matrix of the dataset such as SVD 
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(singular value decomposition) result in dimensions that are separated based on the 

maximum variability of the vector values. In ICA, the notion of independence (meaning 

statistical independence) is used in the form of mutual information gain and entropy 

loss. The process aims at finding the appropriate transformation to provide the most 

accurate projection on an independent space or plane. 

 

Figure 67 - Projection of multi-dimensional data into a 2-dimensional plane using PCA[13] 

6.2.3.2 t-SNE projection 

More advanced techniques of dimensionality reduction[14] for identification of data 

clusters have been developed that take advantage of statistical properties of that 

dataset in embedding space. Namely the Student’s T distribution stochastic 

neighbourhood embeddings algorithm is such an implementation that is transforming 

a multi-dimensional dataset into a low dimension projection (the output dimension can 

sometimes be 2 or 3) by minimizing the Kullback-Leibler divergence distance between 

conditional probability distribution of the data points. 
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Figure 68 - Illustration of the 2D projection capabilities of t-SNE [14] 

Applications of the tSNE algorithm have shown linearly separable clusters of data 

points in famous, complex dataset such as the MNIST dataset (consisting of a large 

number of hand-written digits). 

6.2.4 Time Series Pattern clustering 

Time series pattern clustering is a special family of clustering techniques that rely on 

different pre-processing for the execution of the clustering operation. In particular the 

idea is that data points should not group together based on their value but on their 

time evolution and shape of their evolution. In HetNets this is especially useful because 

of the various heterogeneous elements that they are being used. Small cells and 

eNodeBs operate in different network metric scales due to their different capabilities. 

However, in various use cases, they all exhibit temporal and periodic phenomena that 

are wanted to be identified and grouped together. Pattern clustering is using entity-

wise scaling for the data points (using the min and max of the observed values for 

each element) and therefore it brings the data point vectors into a comparable scale. 

It can then work with any of the aforementioned clustering algorithms to produce 

different results than the original, total max min scaling that is being performed. 

6.3 Performance Evaluation 

The selected algorithms will be compared in their respective accuracy on grouping 

together the network elements and user equipment devices that have originated from 

the same group in the simulation environment. In case 1 – network element clustering 

– we are expecting the clustering algorithms to provide three different clusters for 



 

 130 

each different user equipment density zones generated in the simulation environment. 

In case 2 – user equipment devices clustering – we are expecting the clustering 

algorithms to provide us with user equipment devices clusters that correspond to four 

different classes of application usages. For the experiment we will be evaluating the 

number of cells assigned to their correct cluster. This will form the MAPE KPI (mean 

absolute percent error). We will average this KPI over all classes in order to create a 

weighted total MAPE 

6.3.1 Network Element Clustering Performance Results 

For the case of network element clustering, the simulation consists of 42 network 

elements split into three different clusters of different areas (low, medium, and high 

network usage). 

Algorithm Low 

Cluster 

Medium 

Cluster 

High Cluster Total Noise Low 

MAPE 

Mid 

MAPE 

High 

MAPE 

Total 

MAPE 

Simulation 24 12 6 42 0 
    

K-means 15 24 3 42 0 -37,50 100,00 -50,00 154,17 

X-means 21 18 3 42 0 -12,50 50,00 -50,00 79,17 

Dbscan 25 11 5 41 1 4,17 -8,33 -16,67 18,06 

Optics 24 10 6 40 2 0,00 -16,67 0,00 16,67 

GMM 11 25 2 38 4 -54,17 108,33 -66,67 184,72 

Table 6 - Network Element Clustering Benchmark 

 

Figure 69 - Evaluation of clustering per algorithm used 
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Figure 70 - MAPE per class per clustering method 

For the case of network element clustering, the results of the evaluation indicate that 

the density-based methodologies, such as DBSCAN and OPTICS provide the best 

results for identifying hidden groups or subgroups of network elements. This is 

indicated in both the clustering per class and also the average MAPE of each class. 

6.3.2 User Equipment Clustering Performance Result 

For the user equipment device clustering approach, we are analyzing the result of 

identifying 4 different classes / levels of network usage. 

Algorithm Low 

Cluster 

Medium 

Cluster 

High 

Cluster 

Very 

High 

Total Noise Low 

MAPE 

Mid 

MAPE 

High 

MAPE 

Very 

High 

MAPE 

Average 

MAPE 

Simulation 250 150 50 20 470 
      

K-means 215 161 59 35 470 0 14 -7,33 -18 -75 28,58 

X-means 225 171 53 21 470 0 10 -14 -6,00 -5,00 8,75 

Dbscan 195 180 45 19 439 31 22 -20 10,00 5,00 14,25 

Optics 194 133 52 19 398 72 22,4 11,33 -4,00 5,00 10,68 

GMM 201 174 71 14 460 10 19,6 -16 -36 30,00 25,53 
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Figure 71 - Clustering results for UE Devices per algorithm 

 

 

Figure 72 - Clustering MAPE per algorithm 

In this case, we see that the overall performance of most algorithms is good, even for 

the cases of the Euclidean-distance-based algorithms (k-means, x-means). However, 

the best algorithm for identifying the user equipment device groups is shown to be the 

X-means algorithm yielding results very close to the ones of the optics. 

6.4 Conclusion 

Automated identification of network elements with the same behavior with reliable 

accuracy is a crucial asset to extend the capabilities of cellular networks. In this study 

we have selected two different cases of network elements clustering: serving element 
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clustering (namely cells and Pico cells) and user devices clustering (split into different 

broadband access demand categories). For each case, we have exhausted the 

hyperparameter tuning and multiple implementations and found that both density-

based and hyperplane-based approaches work for different problems. The solution for 

applying these methodologies with accurate results is to take into consideration all 

algorithms when coming up with a decision to group together elements and apply 

management actions. 
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Chapter 7 – Forecasting of HetNet network KPIs 

7.1 Introduction 

In various aspects of design, operation and management for HetNets, an accurate 

forecast of the key network metrics is crucial for many operational decisions. Network 

forecasts can be used for fault prediction, congestion avoidance, future planning or 

adaptation / deprecation of new /old technologies in the complex stack of HetNet and 

Ultra-Dense deployments. Forecasting algorithms of different families and 

specifications exist in the literature of engineering, financial analysis and networking 

and each has its own benefits and also limitations as to its usage. It is the purpose of 

this chapter to study how these algorithms can fit into cellular hourly and daily KPI 

evolution prediction in order to further strengthen optimization algorithms that take 

such KPIs as input. This will result in “predictive” flavour of Planning and SON functions 

that will provide better results than reactive approaches. 

7.1.1 Time granularity 

HetNet KPI measurements are generally conducted in a continuous automated manner 

therefore resulting into very large amounts of data stored in the system. These 

measurements are then aggregated in higher granularities in order to maintain a 

meaningful history. The aggregation of these KPIs is conducted by gathering 

measurements of a specific time window (which can sometimes be 5,15,30 minute or 

1,3,6,12,24 hour) depending on the system. It is in the nature of HetNets and cellular 

networks in general that different phenomena and patterns will be visible in different 

time granularities. Before conducting any forecasting operation, we need to make sure 

that our input data has the wanted “resolution” in order to identify re-occurrences of 

curtain patterns and outcomes. In general, cellular network traffic exhibits a number 

of expected behavioural patterns in relation to the time. Daily profiles are daily patterns 

that show us how the network load changes in the different “zones” of the day. It 

usually has one pattern for working days (Monday to Friday) and a different pattern 

for the weekend (Saturday-Sunday). Weekly profiles change only during holidays 

seasons (e.g. Christmas and Easter). Monthly and seasonal profiles are also highly 

correlated with the holidays season and especially in areas with high summer tourism 

(e.g. Greece, Italy) where a very large number of visitors are gathered in various zones 

such as recreational areas, parks, beaches etc. All these different perspectives of 
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looking at network data provide us with different network KPI waveforms due to the 

aggregation (either averaging or summing, depending on the KPI).  

7.1.2 Entity granularity 

Another important aspect of input data selection for forecasting is the entity or 

element-wise granularity of measurements. In HetNets and general in large scale 

network infrastructures, we have a rich hierarchical ladder of interconnected 

components. A measurement of the various network KPIs is generated in the lowest 

of granularities but due to the large frequency of measurements and the need to keep 

large history, it is then being aggregated to a point higher in the network hierarchy. 

For 4G/LTE components this hierarchy follows this flow of information: Radio unit 

(namely the antenna that is serving an area), LTE Cell (consisting of various radio 

units , especially in MIMO or CoMP deployments) , LTE Site (consisting of a number of 

LTE cells that can either correspond 1-1 with a radio unit or include more), LTE location 

Area Code consisting of a number of LTE sites, LTE prefecture which consists of a 

number of area codes and finally total area (e.g. Athens, Chania, Argolida) consisting 

of a number of area codes and their respective sub-components. Other entity 

aggregation capabilities consist of grouping cell elements together with their vendor, 

their technology attributes such as M|IMO configuration, or their respective area types 

such as Dense Urban, SU, RU. 

7.1.3 Aggregated Prediction 

In order to predict KPIs for the aggregation of a set of elements, two approaches can 

be made each with their respective pros and cons. The agglomerative approach means 

that we are performing a forecast for the lowest of granularities for each element, and 

then we are performing aggregations in either time or entity in order to scale the 

prediction up. Performing forecasting in the lowest granularity requires more intricate 

and sensitive models in order to capture the high variability and changes in the values 

of the actual measurements. After the aggregation however, some of this 

microphenomena get smoothed out leaving only the bigger picture of the group of 

elements (or total network) that we wish to analyse. In the second approach, we are 

performing the aggregation on the wanted network KPIs first, and then the final 

aggregated dataset is fed into more generic and simple prediction models in order to 

provide a better sense of the “trend” and potential evolution of the smoothed out KPI. 
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7.1.4 Network Data Measurement Issues 

The generation of cellular network data measurements is being performed by the 

control plane network of the LTE backhaul. This is being performed by the means of 

period measurement requests that get executed in a distributed manner and then 

aggregated in higher elements such as the EMS (entity management system) and then 

aggregated and forwarded to the top level element NMS (network management 

system). This procedure cannot be always reliable as multiple changes occur in the 

duration of the network uptime. This results into datasets with a lot of different missing 

sections of KPIs, entities, and various discrepancies that can damage the outcome of 

a predictive model in detrimental ways. Each forecasting model has certain sensitivity 

to noise and irregularities and special handling of these cases in a per-model basic 

must be performed. The summary of these methodologies are found in the literature 

as imputation methods, and they vary from simple data generation techniques to 

intricate models that perform learning on the original data in order to complete the 

missing sections. 

7.2 Problem Solution 

In order to perform effective forecasting of network KPIs in either the lowest or the 

highest granularities, we need to enumerate the processing capabilities that the 

literature and also the open source libraries and projects can provide[1][2][3][4][5]. 

In general, the forecasting problem begins with an exploration process of the different 

time series samples that are provided in the dataset. The series can be investigated 

by using visualization tools (e.g. MS Excel, MATLAB) or using integrated data science 

environments such as Jupyter notebooks (python), Tableau software platform etc. 

Additional statistical tests can be performed in the time series that will analyse the 

series as a random variable.  

Important indices such as autocorrelation and heteroscedasticity can either generate 

the optimum values for predictive model hyperparameters or hint as to which model 

is the most suitable for the specific dataset. 

7.2.1 Forecast using Linear, Polynomial and Harmonic decomposition 

Time series of network KPIS have different shapes and time evolution patterns for 

different technologies and cases of system operation[1][2]. These shapes are 

generally complex but can be summarized into simpler higher-level functions if 

prediction detail is not as important as a general understanding of the “Trend” they 



 

 138 

enclose. The computation of a series trend is usually the output of a univariable linear 

regression procedure that leads into different curve shapes being fitted. Most 

commonly functions used for trendlines are linear, Nth order polynomials (Figure 

61)and sinusoid (Figure 74)functions. These can be computed and then used for any 

time value wanted to generate a prediction. The accuracy of this prediction is as 

accurate as the likeness of the original series to the decomposed series.  

 

Figure 73 - Polynomial detrending, original (green), trend (black), detrended (blue) 

Basic function decomposition is most commonly used in the pre-processing phase of a 

forecasting ensemble technique. Calculation of the trend is followed by divisive or 

subtractive detrending, resulting into a new (residual) time series that no longer 

contains a trend component. This allows for predictive models that specialize into other 

series to perform better, focusing on the evolution of the detrended data points. In 

the case of harmonic decomposition, repetitive application of harmonic fits and 

detrending can degenerate into a simplistic FFT decomposition due to the 

orthogonality of each different sinusoid function being subtracted from the original 

series. 
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Figure 74 - Harmonic detrending, original (green), trend (black), detrended (blue) 

7.2.2 Forecast using Holt-Winters Method 

The holt winters method[4] (Figure 75)is an autoregression prediction model that is 

widely used in time series forecasting of financial and retail data. It is based on the 

basic principle of digital signal decomposition. Analysing the history results into 

different components that act independently and they are being predicted 

independently. In the end the final predictions result from their combination. The 

algorithm has two core implementations, the additive and multiplicative which 

differentiates in the methodology that is being used for the composition ensemble. 

 

Figure 75 - The additive and multiplicative holt winters implementation pseudo-code 

Holt winters method also has three (3) hyperparameters, one for each individual 

smoothing phase, that are mostly found using a heuristic hyperparameter search 
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scheme such as grid search. Because they are continuous real parameters from [0,1], 

a sampling interpolation methodology must be followed in order to avoid long 

execution times for the algorithm. The best fit (Figure 76) of the model on an adequate 

validation period will result in the optimum hyperparameters for the total model. 

 

Figure 76 - Holt-Winters filtering prediction example 

The output of the prediction result from the holt-winters model is generated by 

combining (additive or multiplicative) of the various subcomponents it 

generates(Figure 77). The components generated are a) seasonal, b) trend, c) level 

and d) xhat as seen in the example chart. 

 

Figure 77 - decomposed time series components of the holt-winters model 
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7.2.3 Forecast using ARIMA / SARIMA / SARIMAX models 

The ARIMA model family [5][6]is another autoregressive method for generating 

predictions based on computations performed in the historical data. It stands for Auto-

regression (the first term that contributes to the computation), Integration (the second 

term of the computation) and Moving-Average (the 3rd term). Variations of the ARIMA 

model are the SARIMA which introduces also a seasonal component in order to repeat 

the feed-forward process and the SARIMAX which adds the ‘X’ for Exogenic. Exogenic 

series extended the algorithm from autoregression to MISO regression (multiple-input-

single-output). This means that for the calculation of the wanted KPI, we will be using 

an additional time series along with its history. In some cases of network forecasting, 

a hexogenic mask of network events (which are greatly correlated with the selected 

KPI) can lead to a dramatic increase in the accuracy of the SARIMAX model. Hexogenic 

series will also be studied further in the time regression models that will be investigated 

in this study. ARIMA is using 3 hyperparameters to tune its calculation layer, namely 

P,D,Q which are positive integer parameters. They are low in complexity, so they are 

usually included in a grid search hyper parameter heuristics scheme (Figure 78). 

  

Figure 78 - Example of forecasting using the ARIMA model 

ARIMA is a widely used forecasting model for the capabilities that its variations provide. 

It has the potential to match many different series with different evolution profiles and 

it also can capture linear and approximations of polynomial trendlines. 

7.2.4 Forecast using Empirical distributions 

Empirical Distribution prediction is a statistical forecasting model that specializes in 

periodic or pattern-line time series forecasting. It splits the data into different sub-

series based on a generated time characteristic such as day of week, week of year, 
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month etc. These different series are then treated as statistical distributions. In order 

to perform a forward forecast, we generate a new timestamp and are selecting the 

distribution (or set of distributions) that are associated with the specific time instance. 

We then perform random sampling on the distribution (Figure 79), generating a sample 

from the history of the series and combining it with the other samples. In the end we 

have created the forecast from existing data points of the past of the entity. The 

simplicity and effectiveness of this algorithm lies in various statistical properties that 

are being maintained during this procedure. However, this algorithm fails to capture 

other function forms such as linear or polynomial trendlines. It is also sensitive to 

random noise which can greatly reduce the predictions accuracy. 

 

Figure 79 - Forecasting using empirical distribution sampling 

7.2.5 Forecast using Regression Trees (Random Forests/ Gradient-

Boosted Trees) 

Tree models[7][8][9] is a big family of machine learning models that are using the 

tree data structure as a method of taking a decision in either classification or regression 

problems. The tree is being fitted into the input data with different optimization goals 

(e.g. stability, balance, lowest number of children nodes) and each leaf represents one 

of the possible decisions of the prediction problem (Figure 80). The effectiveness of 

tree models has led to their evolution by adding more and more individual trees into 

an ensemble array. Random forests and gradient boosted trees (with XGB as one of 

their most well documented implemented) are tree ensemble methods that use a large 

number of pre-fit trees to come into a prediction conclusion. They are one of the best 

non-neural network predictors and can be used in correlation with time and other 

exogenic factors in order to generate forecasting outputs. 
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Figure 80 - example of a tree regression model[8] 

One of the drawbacks of tree regression models is their ineffective modeling of the 

various trendlines (e.g. polynomial and linear). This becomes due to the fact that 

trendlines generate data points outside of the value domain of the input dataset 

whereas in tree models the predicted variable comes strictly from inside the input 

dataset. In a sense tree models are an organized redistribution of the initial data points 

(with their interpolated values). In conjunction with trend learning and detrending, 

tree models can be one of the most effective models to achieve fine detail forecasts. 

7.2.6 Forecast using Neural Network Regression 

Neural networks[10][11][12][13][14][15] are universal function approximator models. 

They consist of multiple computation network nodes that are connected via a feed 

forward mechanism. Their architecture (Figure 81) is inspired from the biological 

neurons that exist in every neural biological system. While connections in a neural 

network depict summation of values, circles represent transfer functions that transform 

the input data into different continuous functions. Neural networks have a notion of 

architecture which consists of several hyperparameters: a) number of neurons, b) 

number of layers, c) type of layers, d) type of activation functions. Different 

instantiations of these groups of hyperparameters can lead to different functional 

approximations of regression or classification problems. Neural networks also have a 

very large number of hyperparameters that are named weights. Weights are being 

multiplied at the output of each node to the generated value and they change 

depending on the input data via the learning process. Neural networks come with their 



 

 144 

own custom-built hyperparameter tuning methodology that is inspired from the neural 

networks itself. It uses gradient descent, a computation method to use the prediction 

error as a correction factor for the weight hyperparameters. The error is being 

transmitted backwards from the end nodes of the feed-forward graph towards the 

start, where the input features are placed. The procedure of correcting the weights of 

a neural network by back-wards traversal is referred to the literature as the back-

propagation algorithm and is the cornerstone of the success of neural networks as a 

model. The complexity that neural networks capture is one of the highest that exists 

in the present literature and a lot of research on their evolution, deep neural networks, 

is used to model highly accurate complex phenomena 

  

Figure 81 - Neural Network example architectures[13] 

7.2.7 Fitting and hyperparameter tuning of the models 

Machine Learning models mentioned in the previous chapters each possess a number 

of hyperparameters that can change the behaviour or output of the model. These 

hyperparameters can be categorical (e.g. additive or multiplicative detrending), 

numerical categorical (e.g. Arima P values from the set 1,5,12) or continuous integers 

and doubles which can be described as values ranges (e.g. Holt Winters A parameter 

with offset 0, limit 0 and step 0.05).  

Table 7 - Forecasting models hyper-parameter space 

Model Parameter Type Values 

ARIMA P  Integer, Range 1,2,3, …,15 

 D Integer, Range 1,2,3, …,15 

 Q Integer, Range 1,2,3, …,15 
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Trend Fit Order Integer, Range 1,2,3, … 15 

 Mode Categorical Harmonic, 

Polynomial 

 Edit Mode Categorical Additive, 

Multiplicative 

Holt-Winters A Double, Range 0,1 step 0.01 

 B Double, Range 0,1 step 0.01 

 C Double, Range 0,1 step 0.01 

 Seasonality Integer, 

Categorical 

12 (monthly), 4 

(seasonally), 24 

(hourly), 365 

(yearly) 

 Mode Categorical Additive, 

Multiplicative 

Distribution Fit Mode Categorical Daily, Weekly, 

Monthly, 

Seasonally, Yearly, 

Total Distribution 

 Aggregation Mode Categorical Sample, Min, Max, 

Mean 

Regression 

Trees (RF / GB) 

Number of Trees Integer, Range 1,5, …, 1000 

 Fit criterion Categorical Gini, Entropy 

 Max tree length Integer, Range 5,10, …,100 

Artificial Neural 

Networks 

Architecture Style Categorical Triangular, 

Symmetrical 

 Activation Function Categorical Relu, Identity, 

Sigmoid, tanh 

 Number of Layers Integer, range 0,5, …,50 

 Regularization / 

overfitting control 

Categorical L1, L2 norm, 

dropout, drop 

connect 

 Solver Categorical Batch gradient 

descent, 
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Stochastic gradient 

descent, minibatch 

 Minibatch Size Integer, range 

(optional) 

5, 50, …, 500 

 Error metric Categorical MSE, XENT, 

Negative Log 

Likelihood 

The product of all the possible models, hyperparameters and their values can 

sometimes be found in literature as the configuration or scenario space (Table 7) of 

the optimization process. In order to select the best model instance from the available, 

we need first to select the wanted prediction error KPI, one that will most accurately 

depict the wanted output from the prediction model. The application of the error 

function can only be applied in a section of the existing time series (i.e. part of the 

history). This subset of the original time series history is commonly referred to as the 

validation set, or validation period (for time series). The process (Figure 82) of iterating 

through the available model instances and searching for the optimum configuration is 

commonly implemented by the means of a grid-search algorithm. In grid search each 

possible configuration is being assessed and therefore all available instances are being 

trained. In cases where the scenario space is very large or consisting of too many 

numerical range variables, other approaches can be followed in order to reduce the 

number of models evaluated. Random search, random walks, Greedy search, 

simulated annealing, genetic algorithms, taboo search, ant colony, bee colony, particle 

beam search, gradient descent, gaussian optimization are 

 

Figure 82 - Selecting the optimum model instance from various ml implementations 

suboptimal optimizers that can help tackle the large scenario space of models. In 

addition, the search for the optimum configuration is a fully parallelizable problem 



 

 147 

which can utilize a number of big data technologies methodologies and libraries such 

as Apache Spark, Apache Hadoop MapReduce and multi-processor parallelization on 

GPUs. During the hyperparameter search we can closely monitor the progress of each 

different current best model’s result. By visualizing the progression and improvements 

(Figure 83) in the accuracy of the model, we can then decide to forcefully interrupt 

the hyperparameter tuning background procedure manually.  

 

Figure 83 - Progress of the hyperparameter tuning function 

7.2.8 Data Imputation schemes 

As we mentioned in the problem statement, the dataset that is used in the input of a 

forecasting model can sometimes have missing values in various isolated or 

consecutive timestamps. This is generally referred to as the imputation problem and 

many methods exist in the literature[1] for solving this issue.  

 

Figure 84 - Imputation with single value replacement, a) zero, b) average (black) 

However, since all these new data points are not part of the original dataset, there can 

be no guarantees that they will not negatively impact the results of the machine 

learning models. Data imputation schemes are split into three core categories, 

statistical, smoothing and deterministic. In the statistical data imputation schemes, we 

have, average value imputation (replacing missing values with the average - Figure 

84), distribution learning and sampling, distribution learning and average-sub-

distribution (Figure 85). In the cases of imputation by smoothing, the exponential 

moving average (EMA) and the sliding window moving average are one of the most 

common methodologies (Figure 86).  
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Figure 85 – Imputation using distribution sampling (black) 

 

The generated values are the result of the smoothing operation applied multiple times 

until it reaches the number of missing points.  In the deterministic imputation methods, 

we have single value replacement (most common value, zero value, max, min value), 

linear imputation (replacing all missing data points with linear interpolation of the latest 

two values), Bezier curve and other polynomial interpolation which are commonly used 

in various plotting / charting libraries and open source implementations as well. 

Imputation also needs to determine the time frame in which it will perform the 

imputation.  

 

Figure 86 - Imputation using linear and EMA model (black) 

In a dataset consisting of multiple elements, the start, end and interval of each element 

can be determined either individually or globally. In the global case, the minimum and 

maximum timestamp of all elements is used for each individual element’s imputation 

range. In the local, we are simply using the interval of the dataset to fill the missing 

data from internally of the series. The latest method generates the least problems in 

the machine learning models that are sensitive to noise but is worse in models that 

require time alignment between the various elements. 
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7.2.9 Proposed Forecasting pipeline 

For the evaluation of each algorithm, we are proposing a framework in which multiple 

computational sections will be performed sequentially until the final prediction is being 

generated. These computational sections consist of the previously mentioned 

techniques, namely the filtering, aggregation, data imputation and forecasting 

categories and their respective children algorithms. Each operation will either add, 

subtract or edit one of the series of the inference instance. Operations may also 

append meta-data in the inference instance (e.g. the linear coefficient of the trendline) 

in a way that it can algorithmically and programmatically be accessed by future 

operations. This pipeline will take in considerations all mentioned model weakness and 

strengths and try to maximize their effectiveness while having the ultimate goal of 

achieving the highest accuracy on the forecast for each network element KPI. 

 

 

Figure 87 - The proposed Forecasting pipeline 

For the micro-forecasting case, where high detail of daily and weekly phenomena is 

required, we will be using a preprocessing pipeline which will include two different 

machine learning models used simultaneously. Trend analysis will be performed in the 

input data using polynomial or harmonic detrend (order 0, 1, 2, ...). Then the trend 

will be removed and passed on to the pattern fit models (distribution, neural network, 

random forests or gradient boosting trees). After the pattern models are trained, we 

perform the prediction phase on the new timestamps (forecasting range). Then we 

apply the trend (calculated in the previous phase) and shift the prediction on the 

trendline. Afterwards there is a cleaning stage in which we can automatically control 

some extreme values of the dataset. These cleaning rules will then be followed by 

another imputation method, replacing all the removed values by their linear 
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interpolation. This is found to provide the best forecasting result as it can handle 

multiple anomalies that exist in such network KPI datasets. 

7.3 Performance Evaluation 

For the performance evaluation of the listed algorithms, we will select two different 

cases of forecasting problems. Forecasting on the microscale of network phenomena 

in the lowest time and entity granularity and forecasting on long-term aggregated 

network data for strategic planning and future predictions of aggregate values. In the 

cases of cellular networks, HetNet and other network infrastructures, both cases are 

needed in different scopes. Micro-prediction with high accuracy for short-term data 

can be used as input for real time optimization loops, fault prediction and anomaly 

detection whilst macro-prediction on network aggregate KPIs can be used for strategic 

planning, spectrum purchase and network rollout decisions. 

7.3.1. Regression performance KPIs 

For the evaluation of the accuracy of each predicting model, the literature 

[8][10][12]consists of multiple error indices (Figure 88) between the predicted values 

and the validation values. It is usual for forecasting problems to select the latest ‘n’ 

values of a dataset as its validation set. For this study we will be focusing on the MAPE 

error KPI which gives us an estimation of how much the prediction error is in relation 

to the actual value of the KPI. This allows us to estimate more qualitatively the 

performance of our model and how easily it can be used, regardless of its error, to 

assist in decision-making processes.  
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Figure 88 - Calculation of various error KPIs for the forecasting models[1] 

7.3.2 Performance Evaluation results for micro-scale forecasting 

Micro-scale forecasting is performed mostly on bounded KPIs (with known maximum 

and minimum values) with a lot of time-related correlation, periodicity, random noise 

and other phenomena. In HetNets these KPIs can be, Instantaneous Uplink / Downlink 

throughput, Cell Load, Cell power consumption (watts). The most sensitive models of 

the literature are used in order to capture as much complexity as possible from the 

train data and replay it in the forecast. The autoregressive models lack the 

computational depth to emulate and learn the different phenomena, that’s why they 

sometimes can provide very bad results in this case. 

Table 8 Average MAPE for the Micro-scale forecasting per model (Downlink Tput) 

Model Avg MAPE (%) 

Neural Network 5 

Gradient Boosting Tree 11 

Random Forest 12 

Distribution 42 

Holt-Winters 69 

ARIMA 75 

Trend Fit 80 
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Figure 89 - Micro-forecasting indicative results 

7.3.3 Performance Evaluation results for macro-scale forecasting 

Macro scale forecasting is performed in network KPIs that are aggregate network 

gauges. These can be Downlink / Uplink total bytes (or TB), Uplink / Downlink packets, 

or total energy consumption. The entity aggregation for these KPIs are usually Site, 

Prefecture, cluster or region. The time granularity aggregation also is using sum and 

monthly time signatures. By applying this on the KPIs, the variations and fluctuations 

of the KPIs diminish. Also, the fact that these KPIs are increasing summations means 

that the trend component will play very huge part on the predictive accuracy. Auto-

regressive methods have embedded trend-computation features. This is the reason 
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why ARIMA and Holt-Winters provide the best predictions and therefore are the most 

effective as it can be seen in the average results. 

 

Table 9 - Average MAPE for the Macro-scale forecasting per model (TB usage) 

Model Avg MAPE (%) 

Holt-Winters 15 

ARIMA 17 

Random Forest 19 

Neural Network 19 

Gradient Boosting Tree 25 

Trend Fit 62 

Distribution 89 

 

 

 

Figure 90 - Indicative Model Results for Macro-scale forecasting (TB-Usage) 
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7.3.4 Evaluation of training and execution times 

In real case scenarios, it is required that all these aforementioned machine learning 

models are being constantly fed with new data and perform accurate predictions. 

Friction with implementation and usage for the scope of this chapter has led us into 

the conclusion that an additional study must be shown, one that depicts the complexity 

and therefore the time delay for each model on their training and prediction phase. 

For every model type, we will be calculating the average train (fit) time, and also the 

order of complexity for hyperparameter tuning and their multiplied KPI namely, the 

grid search delay order (i.e. the average delay that it would take for a grid search to 

find the optimum model over all possible hyperparameter scenario) 

Table 10 - Performance Evaluation of Forecasting algorithms 

Model Delay 

(ms) 

Hyper Parameter 

Order 

Grid Search Delay Order 

Distribution 50 10 500 

Trend Fit 100 10 1000 

Holt-Winters 183 1000 183000 

ARIMA 210 1000 210000 

Random Forest 1211 10000 12110000 

Gradient Boosting Tree 2251 10000 22510000 

Neural Network 5041 100000 504100000 

From the general results, we see that the complexity of each model has a direct impact 

on the average delay(Figure 91). As we mentioned in the previous chapter, the 

distribution and trend fit are the lightest methods, followed by the ARIMA/Holt-Winters 

pair of autoregressive analysis. The tree models and the neural network model consist 

of complex internal optimization loops and this causes additional delay. Their delays 

also have a lot of variability that can occur from either the input dataset (train set) or 

the selection of hypermeters. 
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Figure 91 - Average delay per forecasting model 

For a general dimensioning study, we need to see the order of hyperparameters of 

each model (Figure 92) and multiply it with the average delay per training (Figure 93). 

This makes the neural network a dominator model overall. However, the complexity 

of neural network architecture is not necessary a target for hyperparameter tuning. 

Reference architectures and duplicate architectures can sometimes reduce the 

scenario space into simpler, easier to traverse subspaces. 

 

Figure 92 - Hyperparameter space order per model 
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Figure 93 - Order of scenario complexity and average grid search delay 

7.4 Conclusion 

For this chapter, we have thoroughly evaluated a large literature of forecasting models 

and methodologies in order to provide insights as to which forecasting process is the 

most optimum for forecasting of micro-scale network KPIs and also for macro-scale 

aggregate KPIs. Each case has different characteristics and therefore requires different 

handling by predictive modelling. In our benchmarks, neural networks have been 

shown to be the most accurate predictors for micro-scale forecasting. This 

accompanied with polynomial detrending is performing in the best possible way for 

live network KPIs such as Uplink/ Downlink Throughput, Uplink / Downlink packet rate 

and Power consumption. For macro-scale forecasting, consisting of ever-increasing 

network gauges such as total Uplink /Downlink bytes, Uplink/Downlink packets and 

Energy consumption (total joules) we have found that simple models such as the holt-

winters exponential smoothing model and ARIMA perform better or equal with these 

intricate models. This happens because the aggregation nature of the preprocessing 

pipeline is eradicating the random noise and micro-phenomena that better showcase 

the complex models. Another important conclusion is the time restriction that is being 

imposed in the case of the most complex models used. Neural networks and the 

various tree ensembles that we have tested have a relatively increased training time. 

This combined with their very vast number of hyperparameters, tells us that the extra 

points of MAPE increase require a lot of resource and time, something that will be 

available depending on the use case of the forecasting. If the forecasting is used in a 

real time cycle and requires constant retraining, then the accuracy can be sacrificed in 

order to provide with timely results to an existing optimization algorithm. 
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8 - Thesis Conclusions 

8.1. Overview 

The way forward for the next generation of cellular communications are complex large-

scale infrastructures, HetNets, UltraDense networks and high-performance services. 

These systems are being analysed in chapter 1 of this thesis and after thorough 

analysis of the various technological aspects, we came into conclusion that this study 

requires an accurate simulation engine to design the use cases and measure the 

results. In this study we have also isolated several issues that rise in these reference 

architectures and researched the modern literature for solutions to problems and other 

improvements.  

 

Figure 94 - Overview of this doctorate thesis outputs per year 

Due to the complexity of this technology, it was identified that all different 

management and optimization approaches has benefits and should be used 

simultaneously in order to achieve the maximum performance and effectiveness. 

Firstly, cellular network simulation platform was shown to be critical to the execution 

of each different study that was performed. The accuracy of the data generation 

system allowed for the designed algorithmic solutions to perform according to the 

estimations and also revealed hidden issues that could not be foreseen by the 

theoretical analysis. Network design and infrastructure sharing between network 

operators played a huge part in the energy efficiency of future cellular operation 

scenarios as proven in chapter 3. Dynamic micromanagement of resource allocations 

by implementing an interference-aware SON proved to assist the LTE cell in providing 

the best possible quality of service to user equipment devices of various traffic 

demands. By extending the LTE network with predictive capabilities, we opened the 

possibilities for even further advancements in various management schemes. 
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Forecasting algorithms can enhance the operation of SON functions and planning 

operations for future evolution of various KPIs. Unsupervised grouping of network 

elements finds hidden behavioral patterns and structure in cells and user terminal 

devices allowing for targeted management. Finally, congestion prediction by the 

means of semi-supervised classifiers showed important increase in the network 

robustness of the HetNet scenarios executed. 

8.2 Conclusions regarding Simulation engines for HetNets  

In Chapter 2 of this thesis, we analyse the simulation engine that was designed 

specifically for this study. Based on the technological inputs from chapter 1, we tailored 

a custom Java-based large scale HetNet simulation tool that greatly exceeded the 

functionalities of existing simulation engines. The key aspects of the new software 

designed are: Scenario building flexibility including various technologies such as LTE 

Cells of different Antenna patterns, smaller cells of Pico cell technology, Multi-provider 

support, Wifi Access point emulation, full radio environment simulation including EIRP 

/ SINR calculation and user equipment device simulation application usage using 

stochastic processes. This combined with multiple network KPI measurements and 

reporting capabilities (including charting, visual graphics on map playground and excel 

reports) gave us a research toolbox adequate to perform this study. 

8.3 Conclusions regarding HetNet planning and Energy 

Efficiency 

High energy consumption is a direct consequence of the expected traffic demand from 

the cellular networks. In chapter 3 we have analysed the possible improvements that 

can be derived from a series of redesign operations in a reference HetNet scenario. 

We have shown that cross-network-provider infrastructure sharing can be used to 

greatly reduce the total energy consumption of the network in the small cost of 

coordination between operators and also some performance losses. In the second 

stage of re-design we have analysed the underlying demand topology of the dense 

urban area and strategically placed Pico cells in the vicinities of various urban hot 

spots. Then we measured the same performance KPIs and saw that we have recovered 

and in some cased improved the network throughput and cell edge throughput (which 

had greatly deteriorated from the infrastructure sharing operation). We have also 

shown that an alternate solution (namely the increase of the cell spectrum) will not 

have the wanted results due to the increase in the demand for power in the cells high 

power amplifier unit. 
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8.4 Conclusions regarding SON functions and Quality of Service 

improvements 

Het-Net quality of service is one of the most important aspects of their effectiveness 

as network infrastructures. Achieved throughput for user terminal devices in all the 

possible variations of radio conditions in conjunction with the diverse smartphone 

application environment means that LTE networks must be able to optimize the radio 

resource allocation and scheduling schemes in the fastest possible way. Existing radio 

resource allocation found in literature and the 3GPPP standards show that there is 

room for an improved RRA scheme that will take into consideration the SINR ratio in 

order to generate decisions for the per-user equipment real time resource allocation. 

Implementation of the state of the art algorithms and the proposed scheme in key 

simulation scenarios of the 4G network show that the proposed algorithm greatly 

increases the achieved throughput of the wireless network due to its better 

understanding of the overall network’s degradation caused by the interference in each 

user terminal device. Considerations were also made for incorporating an a-priori user 

class tag that will further enhance this algorithm to greater user throughput gains. 

8.5 Conclusions regarding Load balancing using Congestion 

prediction 

In chapter 5 of this doctorate, we have analysed the literature for robust and efficient 

predictive methodologies in order to achieve reduction or elimination of network load 

congestion in specific 4G/5G network transmission scenarios. We have shown that 

unsupervised vector quantization algorithms such as the self-organizing map used in 

a semi-supervised prediction model can provide accurate congestion prediction 

indication. This indication can be used in a control loop that constantly affects the load 

of network elements by performing traffic steering via exploitation of the LTE handover 

mechanism. Integration of the predictive model in the SON algorithm has shown a 

dramatic decrease in the network load and the highest achievable values (congestion). 

Machine learning-augmented real time optimizations functions consist of various 

moving parts that require constant monitoring and finetuning. Also, the complexity of 

the learning process may impose hard limitations in the hardware that is performing 

these tasks in order to provide timely results. However, we have shown that the 

benefits from adapting this technology as part of a standard optimization procedure 

far outweigh the drawbacks.  
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8.6 Conclusions regarding Network Element / Device Clustering 

In chapter 6 of this doctorate thesis, we have focused on the problem of identifying 

element groups with the same behaviour that can be clustered together to improve 

management and operations on a HetNet system. We have studied the literature of 

various approaches and focused mostly on unsupervised machine learning techniques 

because of their robustness and capability to understand hidden structures and 

patterns on various (telco and non-telco) datasets. We split the problem into two sub-

problems and studied the algorithms under two hypotheses. The problem of identifying 

groups of LTE cells based on the density of their underlying user equipment devices 

and their network performance KPIs and the case of grouping together different user 

equipment devices that belong to different classes of broadband access usage. The 

results showed us that for the first case (per cell clustering), density-based clustering 

algorithms show the most promising results and are more accurate to their predictions. 

In the second case however, the case of the user equipment devices, we see that 

using Euclidean distance algorithms like X-means and K-means we can correctly 

identify the groups of users that belong to their corresponding network traffic demand 

model. This shows us that there is no single global algorithm that perform better for 

clustering of network KPIs and all different families should be checked and 

benchmarked to acquire the optimum grouping results. 

8.7 Conclusions regarding Network KPI Forecasting 

In chapter 7 of this doctorate thesis, we have identified the need for a predictive layer 

for various operational network KPIs in order to assist on real time management or 

large-scale network planning operations. We have studied the literature for the state 

of the art in forecasting models for time series data of different industries and forms. 

The problem of network forecasting was split into two subproblems, a) the forecasting 

for micro-management with sensitivity in every day fluctuations in the data and b) the 

forecasting for macro-management which relies on trendlines and long-term time 

evolution and can assist in planning tools that estimate traffic demand and load for 

large element aggregations. In order to better utilize the selected machine learning 

models, a data pipeline was devised for each of the two cases mentioned. The data 

pipeline consists of various time series processing components such as data imputation 

schemes, input filtering, output filtering, smoothing functions, evaluation functions for 

error metrics, and model hyperparameter tuning. In the end two different pipelines 

were isolated as the best, one for each scenario. Long-term predictions are found to 
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be better approximated by using trend-sensitive models such as polynomial fit, ARIMA 

and Holt-Winters. In the cases of micro-prediction models, we have found that the 

pattern matching capabilities of distribution learning, tree models and neural networks 

is far more superior in terms of complexity than the autoregressive models. Finally, a 

performance benchmarking analysis has been performed in order to identify the fastest 

and slowest performing model. Neural networks sacrifice a lot of speed in order to 

obtain their complexity and accuracy whereas polynomial trend fit was found to be the 

fastest model to fit for all datasets. In general, speed of a machine learning will only 

be an impacting factor if these prediction models are being trained in real time during 

the operation of the network with constant retraining. Such rare cases can occur in 

embedding predictions as an input for a SON function or other optimization algorithm. 

8.8 Consolidation and way forward 

This doctorate thesis is approaching various different technological aspects of the 

current and future heterogeneous cellular network deployments. The complexity that 

these infrastructures impose result into various conflicting optimization goals and 

require advanced methodologies in order to provide robust and important 

improvements. For this study, we began analysing the current solutions on some of 

the key issues that occupy the literature, namely efficient 3GPP networks and 

intelligent radio resource allocation / scheduling. However, the way forward has led us 

into the new territory of Artificial Intelligence and machine learning. These 

methodologies were then used to either support or solve issues from various other 

aspects of the network such as congestion avoidance by predictive algorithms, 

identification of network element clusters and user equipment devices clusters and 

also forecasting of network KPIs on different granularities. Machine learning is proving 

to be a stable and robust tool to assist in the solution of various ICT technologies, 

expanding from systems and networks to financial systems, engineering, medical and 

commercial applications. Machine learning and AI improves sustainability of cellular 

infrastructure by reducing their resource usage, improving their operation and 

therefore resulting in less energy consumption and EMF reduction. In the future, it is 

expected to be incorporated in various forms as a component for industrial solutions 

and products. 
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APPENDIX A – ΑCRONYMS  

Acronym Explanation 

A  

AI Artificial Intelligence 

AJAJ Asynchronous JavaScript and JSON 

AJAX Asynchronous JavaScript and XML 

APE Absolute Percent Error 

ARIMA Auto-Regression, Integration, Moving-Average 

B  

Bps Bits per Second (throughput) 

C  

CAPEX Capital Expenses 

CDF Cumulative Distribution Function 

CIO Cell Individual Offset 

COMP Coordinated Multi-Point (LTE-A) 

D  

DBSCAN Density-based Spatial Clustering of Applications with Noise 

DCA Dynamic Channel Allocation 

DU Dense Urban (Area Type) 

E  

EMS Entity Management System 

EMF Electro-Magnetic Force emissions 

F  

FDMA Frequency-Division Multiple Access 

FTP File Transfer Protocol 

G  

GAA General Access Application (Class) 

GBT Gradient Boosting Trees 

GSM Global System for Mobile Communications 

H  
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HetNet Heterogeneous Cellular Network 

HLO High Level Objective 

HSDPA High Speed Downlink Packet Access 

HTTP Hyper-Text Transfer Protocol 

HTTPS Secure Hyper-Text Transfer Protocol 

I  

IA Incumbent Access (Class) 

ICA Independent Component Analysis 

INR Interference-to-Noise-Ratio 

ISD Inter-Site Distance 

J  

JSON JavaScript Object Notation 

K  

KPI Key Performance Indicator 

L  

LTE Long-Term Evolution of the 3GPP standard 

LTE-A LTE-Advanced 

M  

MAPE Mean Absolute Percent Error 

ML Machine-Learning 

MIMO Multiple Input Multiple Output (antenna) 

MSE Mean Square Error 

N  

NME Network Management System 

O  

OFDM (A) Orthogonal Frequency Division Multiplexing (Multiple Access) 

OPEX Operational Expenses 

P  

PAL Priority Access Layer (User Class) 

PCA Principal Component Analysis 

PDF Probability Density Function 
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Q  

QoE Quality of Experience 

QoS Quality of Service 

R  

RB Resource Block 

RLC Radio Link Control 

RRC Radio Resource Control 

RRH Remote Radio Head 

RRM Radio Resource Management 

RSSI Received Signal Strength Indicator 

RTSP Real Time Streaming Protocol 

RU Rural (Area Type) 

S  

SNR Signal-to-Noise-Ratio 

SINR Signal-to-Interference-and-Noise-Ratio 

SON Self-Organized Network (Functions) 

SOM Self-Organized Map (Model) 

SOTA State of the Art 

SU Sub-Urban (Area Type) 

T  

TCP Transmission Control Protocol 

TDMA Time-Division Multiple Access 

t-SNE T-distributed stochastic neighborhood embedding 

U  

UMTS Universal Mobile Telecommunications System 

UR Urban (Area Type) 

W  

Wi-Fi Wireless Fidelity Alliance 

WWW World-Wide Web 

X  

XGB (e)Xtreme Gradient Boosted Trees 
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