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Περίληψη

Στο χρηµατιστήριο, κεντρικό ϱόλο έχει ο Market Maker ο οποίος παρέχει ϱευστότητα στην
αγορά αγοράζοντας και πουλώντας µετοχές. ΄Ενας απο τους ϐασικούς σκοπούς του είναι να
επωφεληθεί από τις συνεχόµενες αλλαγές της τιµής της µετοχής. Στις µέρες µας, το µεγαλύτερο
µέρος της αγοραπωλησίας των µετοχών γίνεται µε την ϐοήθεια των υπολογιστών, µε αποτέλεσµα
οι ταχύτητες και η πολυποκότητα των αγοραπωλησιών να εκτοξευθεί. ΄Ετσι ο Market Maker
ϑα πρέπει να ανταποκριθεί στην αύξηση της ταχύτητας και της πολυπλοκότητας µε την εφαρ-
µογή ευφυών αλγορίθµων και σύγχρονων τεχνολογιών. Στην παρούσα εργασία υλοποιήσαµε
σε Python µια αναλυτική προσοµοίωση ενος limit order book µε τις ϐασικές λειτουργίες του.
Επίσης υλοποιήσαµε µια γεννήτρια τυχαίων αγοραπωλησιών που τροφοδοτεί το limit order book
µε τυχαίες εντολές αγορών και πωλήσεων. Επιπλέον ο σχεδιασµός της γεννήτριας ϐασίστηκε σε
πραγµατικά δεδοµένα του Kaggle, και πιο συγκεκριµένα στο Algorithmic Trading Challenge
dataset. Τέλος υλοποιήσαµε εναν Agent ο οποίος χρησιµοποιεί Online Αλγορίθµους, τον εn-
Greedy,τον UCB και τον EXP3, οι οποίοι χρησιµοποιούν στρατηγικές παραθύρου και τις οποίες
εµπνευστήκαµε απο την ϐιβλιογραφία. Πειραµατικά, συγκρίναµε την απόδοση των Αλγορίθµων
όσον αφορά το κέρδος του Market Maker, αλλά και όσον αφορά το Regret σε σχέση µε την
καλύτερη στρατηγική.
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Abstract

The key role of a Market Maker in stock exchange is provision of liquidity via issuing of
buy and sell orders for a security; at the same time he is willing to profit from the changes
of the stock price. Nowadays, in modern stock exchanges, most of the trading occurs in
computers and thus the environment has become more demanding in terms of the speed
and complexity of transactions. For that reason, the Market Maker must use high tech
software and efficient Algorithms to adapt to these changes. In this thesis, we developed a
limit order book simulation with its basic functions using Python. We further developed a
"random order generator" which feeds the Limit Order Book with pseudorandom buy and
sell orders. In order to create the generator, we analysed the Algorithmic Trading Challenge
dataset from Kaggle which consists of real stock market data. Finally, we designed an Agent
that uses a class of Online learning algorithms, the εnGreedy, the UCB1 and the EXP3.
These Algorithms are using a class of window based strategies, inspired from the literature.
In our experiments we compared these algorithms with each other, focusing on the Agent’s
profit and their regret in terms of the overall best window strategy.
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Chapter 1

Introduction

In this thesis, we consider the problem of designing an automated Agent for stock trading
exchanges. An automated Agent is a bot (automated program) which observes a certain
environment, takes actions on that environment and learns how that environment operates
so as to take better actions. Our Agent’s environment is the Limit Order Book where the
Agent constantly decides whether to sell or to buy a stock.

Limit Order Book is a continuous record which holds all the incoming buy and sell orders
from the people who are willing to trade, for a certain stock. It also matches the buy orders
with the sell orders in the appropriate and legal order. The Agent observes some of Limit
Order Book’s variables, such as the price of the stock, in order to learn how it operates at a
certain period so as to make better decisions on buying or on selling.

The use of automated Agents that continuously sell and buy stocks in a duration of millisec-
onds is called High Frequency Trading (HFT). HFT is a type of trading where the trader sells
or buys stocks in fraction of seconds, with the help of computer system which can provide
large computational power. HFT also uses Algorithms from the field of Machine Learning
and AI. A common class of Algorithms used in HFT are Online Learning Algorithms.

An Online Algorithm is one that receives input sequentially in small well defined chunks.
Upon reception of every chunk of input data, the Algorithm must process it and make an
irrevocable decision. The whole sequence of decisions makes up a solution for the whole set
of data. In constrast, an offline Algorithm receives the whole input upfront and outputs a
global decision [12, 5].

In Machine Learning, an Online Algorithm at timestep t, receives input xt, processes xt and
makes a prediction ŷt. In the offline setting of Machine Learning, the Algorithm processes
the whole dataset at once and then it can make predictions.
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We apply a class of online algorithms for High Frequency Automated trading. We also create
a custom trading environment where we conducted our experinments.

High Frequency trading (HFT), from its appearance, has made some fundamental changes,
in the way that people are trading stocks (and other goods) in modern financial markets.
Nowadays, most of the trading occurs in computer systems, whose computing power outper-
form compared to humans. That is because computers can react faster and more frequently
to changes that occur in stock markets [16].

For that reason, a large field has been developing in the past 20 years, that combines com-
puter science with financial science. More specificaly for HFT, scientists have developed (and
they are still developing) algorithms which are applicable to stock market. Aldridge metnions
in [2] that the profitability of high-frequency enterprises is further reinforced by the exponen-
tial growth of the trading industry and that HFT now accounts for over 60 percent of trading
volume coming through in stock exchanges.

We study a class of Online Learning Algorithms and we measure their performance in a HFT
trading setting. We also have created from scratch a Limit Order Book simulation and its
basic functionality based on the rules of the largest stock exchanges. We have also analyse
the data of the dataset "Algorithmic Trading Challenge" in order to create a generator which
simulates the transaction flow that happens in a stock market.

After we have set up our custom stock market environment, we create an Agent that trades
in that environment. The Agent also trades based on these Online Learning Algorithms that
instruct him when to buy and sell a stock.

Finally we evaluate and we compare these Online learning Algorithms based on the profit
of the Agent, the amount of stocks the Agent holds overtime and with the notion of Regret,
which is how good the Agent’s is action from the optimal action that Agent could have taken.

In more detail in these thesis:

– In chapter one, we give a brief presentation of every key component of our study. We
present some basic terms about stock market. We also provide the basic theory of
Online Learning and we present the fundamental online algorithms that we will use in
our setting.

– In chapter two, we put existing work which we used to build these study. These chapter
includes prior work about Online Learning, High Frequency trading, Limit order books
and Market Making. We also present some basic features of the LOB.

– In chapter three, we present our developments which we created in order to conduct

7



our experiments.

– In chapter four we present the results of our experiments and we analyze the perfor-
mance of our HFT Automated Agend that use three Online Learning Algorithms.

1.1 Stock market and exchanges

The stock market is an exchange market where the companies’ shares are bought and sold.
Some of the largest stock exchanges are the New York Stock Exchange, Nasdaq, London
Stock Exchange, Japan Exchange Group where thousands of trades occur every hour.

All exchanges and markets provide a secure and regulated environment where all participants
can trade stocks and other financial goods. For convenience, in this work, we discuss
only stock trading. A stock is a security that represents the ownership of a fraction of a
corporation.

The basic function of a stock exchange is as follows:

A number of participants who want to buy or sell stocks enter the exchange. A regulator
determines the correct market price pt of a particular stock based on supply and demand.
The participants start placing their orders. In general, there are two types of orders: market
orders Mt and limit orders Lt.

• Mt Market orders are the most common orders in an exchange and the most direct
ones. When a participant wants to buy or sell a certain amount of stocks, he places a
buy market order MBt (or respectively a sell market order MSt ) for X , and the trans-
action is executed at the current market price.

• Lt Limit orders are slightly more complicated than market orders. A participant places
a buy LBt or a sell LSt for a certain amount of X shares at a specific price p. Then he is
waiting until there is a counterparty that agrees to transact at that p. This means there
is a possibility that the order will never be executed. A participant can also cancel his
order before it is executed.

The execution of an order happens after two participants (a seller and a buyer) agree on a
price p and on a quantity of stocks X . When the transaction is executed we call it a match,
because a sell order matches with a buy order. Since there are thousands of participants
which are continuously placing orders, the exchange has a priority on how the orders are
executed and in which order. Firstly the orders that are closer to market price pt are executed,
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i.e. the buy orders with highest price and the sell orders with the lowest prices. Time priority
is also observed.

A stock exchange operates like every other market with its own rules and regulations. The
exhange ensures fair transactions, efficient price discovery and maintenance of liquidity.

The participants in stock exchange can have a variety of roles and functions. An investor, for
example, buys stocks and holds them for a long time (months or years). A trader buys and
sells stocks continuously in seconds or minutes seeking a profit from small price changes. A
market maker’s role is provision of liquidity via issuing of buy and sell orders for a security;
at the same time he is willing to profit from the changes of the stock price. In our work we
view the stock exchange from the perspective of a market maker.

A Market Maker (MM) is a firm or individual who actively quotes both a buy or a sell price
in a stock exchange, hoping to make profit by exploiting the difference between bid price
bt and the ask price at, known as the spread st. MMs serve an important role in a stock
exchange, as they help to reduce liquidity risk and generally they provide a higher level of
service compared to electronic trading. They also avoid the risk of holding a large number of
stocks because they may see a decline in the price of a security after it has been purchased
from a seller and before it is sold to a buyer.

Bid price bt: is the highest price that a buyer is willing to pay

Ask price at: is the lowest price that a seller is willing to accept for selling a security

The MM uses a Limit Order Book (LOB). The LOB rocords limit orders for a specific stock.
Each limit order entering the market, is recorded by the LOB. The LOB executes buy orders
at a price at most equal to the specified price, and sell orders at a price at least equal to the
specified price.

High frequency trading with online learning

In the recent years, trading occurs mostly in electronic servers in data centers [14], where the
trade orders are transferred via the internet. Most of the trading is not performed by humans
but by computers. That is because nowadays it is more efficient for a human to create a
trading algorithm and let the computer do all the "dirty" job than to trade oneself alone. As
commented in [14] a computer reacts faster than a human (operating at the submillisecond
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time scale), more frequently, and can expose itself significantly less in the market.

An efficient HFT algorithm receives a large amount of data every microsecond and it must be
able to process the received data very quickly and make the right decisions. For example, if
it detects a change on the price for a stock, it should react by placing a buy or a sell order.

Online learning algorithms are suitable for high frequency trading. At an online setting
new input is revealed sequentially. The algorithm should react to that input by making a
decision, e.g whether or not to submit a trade. An HFT trading algorithm should react as
fast as possible to the incoming inputs. The larger the amount of data the algorithm has to
process, the slower it will be in decision making. For that reason a trading algorithm should
only keep a minimal amount of data and parameters which should reflect the current state
of the market and must be updated in real time when new changes are observed [14].

Market Making with HFT

HFT Algorithms are commonly used for Market Making. As mentioned above, Online learn-
ing is very applicable to trading algorithms. Another class of algorithms that can be very
useful in HFT and especially in market making are reinforcement learning algorithms. In
Reinforcement learning (RL), an Agent takes actions in an environment, in order to maximize
its cumulative reward. In our case the Agent is the MM, the environment is the limit order
book, the actions are the trade orders and the cumulative reward can be MM’s profit.

1.2 Online Learning

Online Learning is a subcategory of Machine Learning where data appear in a sequential
order at each step and a prediction is made based on those data. As a result, in Online
learning the training and the prediction occurs simultaneously.

At each time step t, an Online Algorithm receives the data xt ∈ X and makes prediction
ŷt ∈ Y. After that it receives the true value of yt and calculates how far the prediction ŷt
was from yt. The latter is calculated by a Loss Function L(yt, ŷt) and the main goal of the
Online Algorithm is to reduce the cummulative loss

∑T
t=1 L(yt, ŷt) over horizon T [15].

Loss : L(yt, ŷt) = |ŷt − yt)|
(1.1)
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Regret : RT =

T∑
t=1

L(yt, ŷt) −min
T∑
t=1

L(yt, ŷt) (1.2)

1.2.1 Expert advice algorithms

A basic online setting is the Expert Advice [7],[15]. In this setting there are N experts. The
Online Algorithm now after it receives xt ∈ X , it then receives a prediction from every expert
ŷt,i ∈ Y where i = 1, ..,N. Every ŷt,i is compared with the true yt and it calculates cumulative
L. The objective is to minimize the RegretR. Regret defines the difference between Algorithms
cumulative L and the cumulative Loss of the best expert.

A basic Online Algorithm on the Expert setting is the Weighted Majority Algorithm (WM) [13].
WM assigns a weight to an expert. All Experts start with the same weight. At every timestep
WM generates predictions using a weighted majority vote. When the true output is revealed,
the weights of the Experts that predicted wrong are reduced. Thus, every time an expert gives
a wrong advice we reduce our trust in him so we have to reduce his vote on which action we
should take.

Algorithm 1 Weighted Majority [15]

Ensure: N experts: i = 1, 2, ...,N and K actions aj(t) j = 1, .., K
Ensure: Initialize: wi(1) = 1 for i = 1, 2, ...,N and β ∈ (0, 1]

for t = 1,2,... do
Play aj with max

∑
i:ai(t)

wt,i
Action âj with highest ri revieled
for i = 1,...,N do

if ai! = âj then
wi = wiβ

end if
end for

end for

An evolution of WM Algorithm is a randomized version of it, the Randomized Weighted Ma-
jority RWM. That Algorithm uses a probability distribution to select an expert rather than a
weighted majority vote. In the beginning, a weight wi(1) = 1 and a probability pi = wi∑N

i=1wi

are assigned to every expert. At every timestep we select a random expert based on pi and
we receive a reward. If the ai is not the âj then wi is reduced and then the probabilities pi
are recalculated.
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Algorithm 2 Randomized Weighted Majority [15]

Ensure: N experts: i = 1, 2, ...,N and K actions aj(t) j = 1, .., K
Ensure: Initialize: wi(1) = 1 for i = 1, 2, ...,N, β ∈ (0, 1] and pi = 1

N

for t = 1,2,... do
Every expert advices for an action ai
Select a random expert based on pi
Action âj with highest ri revieled
for i = 1,...,N do

if ai! = âj then
wt+1,i = wt,iβ

end if
Wt+1 =

∑N
i=1wt+1,i

end for
for i = 1,...,N do
pi =

wt+1,i∑N
i=1Wt+1

end for
end for

Another extension of WM algorithm is the exponential Weighted Average Algorithm. That
algorithm selects the action that maximizes

∑N
i=1wtai∑N
i=1wt

. For the experts that did not select the

best action, their wi is reduced according the following rule: wt+1,i = wt,ie−ηL(ât,at).

Algorithm 3 Exponential Weighted Majority [15]

Ensure: N experts: i = 1, 2, ...,N and K actions aj(t) j = 1, .., K
Ensure: Initialize: wi(1) = 1 for i = 1, 2, ...,N and β ∈ (0, 1]

for t = 1,2,... do

Play aj with
∑N

i=1wtai∑N
i=1wt

Action âj with highest ri revieled
for i = 1,...,N do

if ai! = âj then
wt+1,i = wt,ie

−ηL(ât,at)

end if
end for

end for

1.2.2 Multi-armed Bandit Algorithms

Another class of Algorithms which can do Online Learning are Multi-armed bandit algo-
rithms. Those Algorithms are for solving the exploration vs exploitation dilemma, i.e. the
tradeoff between collecting information from a set of actions, in relation to their outcome,
in order to learn which one is the best, and to use that information to avoid choosing the
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actions with the worst outcomes.

Multi-armed Bandit problem and exploration vs exploitation dilemma

Consider we have a slot machine with N arms. Every arm gives a reward ri ∈ (0, 1) where
i = 1, ..,N, which is generated from a probability distribution with unknown expected reward
E[ri]. The goal is to select the arm, always yielding the highest reward in order to maximize
our total profit.

Since the expected rewards E[ri] of the arms are unknown, we have to constantly evaluate
every arm we choose in order to know how good the arm is in the long term. For example,
keeping track of the average reward ri which every arm produces will help us determine
which is the best arm until then.

Average reward ri =

∑ni

j=1 ri

ni
,where ni is the number of times arm i has been played

It is a fact that, at any timestep there is at least one arm which has the highest ri. In that
case,we can use ri as an estimate that will instruct us which arm to select next. A method
that selects the best arm based on ri is the Greedy Algorithm. The Greedy Algorithm forces
us to always select the arm with the best ri. More specifically, the Greedy method 1) finds
the arm with the highest ri, 2) plays that arm and then 3) receives the reward and 4) updates
the ri of that arm.

Algorithm 4 Greedy Algorithm [18]
Ensure: N arms: armi with i = 1, 2, ...,N

for t = 1,2,... do
j = argmax(ri[armi])
play arm j and get reward
update riarmj

end for

By always playing the arm with the highest ri, we might miss a better reward by an arm that
did not have the highest ri. For this reason sometimes it might be better to select another arm
in case we discover a better reward. In other words, we have to explore to find a better arm.
That can be achieved with ε-Greedy Algorithm. The difference between ε-Greedy Algorithm
and Greedy, is that ε-Greedy not only selects the arm with the best ri, but it also explores
a random arm once in a while with a probability ε, in case it receives a better reward. More
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specifically, ε-Greedy Algorithm, with probability ε plays the arm with the best ri while with
probability 1-ε it plays a random arm. Then it receives the reward of that arm and updates
the ri.

When probability ε = 1 ε-Greedy Algorithm selects only the arm with the best SR, like Greedy
algorithm, it always exploits the arm with the highest ri. The smaller the ε, the more ε-Greedy
explores other arms in case it finds an arm with higher reward at that time.

The above setting illustrates the exploration vs exploitation dilemma. Depending on the
expected reward of the arms, we have to balance exploration and exploitation by choosing
the right ε. If we are sure that an arm is far better than other arms, it will be better to exploit,
but if the expected rewards of the arms are close to each other it will be better to explore
more.

Reinforcement Learning

The multiarmed bandits problem, the expoitations vs exlporation dilemma and the algorithms
that we discuss above are some basic fundamentals of Reinforcement Learning.

Reinforcement learning(RL) is the area of Machine Learning where an Agent learns by inter-
acting with an environment in order to receive a reward. More specifically, the Agent takes
some actions a(t) inside that environment and depending on that action it receives a reward.
The main goal of Agent is to always take the actions which yield the highest reward in order
to maximize our total profit. For example, at the multiarmed bandit setting we discussed
above,the Agent interacts with the environment, the environment is the slot machine, and
Agent’s goal is to find the arm that produces the best outcome over time. As the Agent
interacts with the slot machine, he tries to discover which is the arm that will produce the
highest reward at every time step.

Reward r(ai) = { outcome from action ai}

at defines the action taken at time step t

As we have previously mentioned in Online learning we make a prediction yt at timestep t,
after xt is received. In this thesis we use Reinforcement Learning along with Online learning
for the training process. For example the Agent receives at every t the state of the environment
(xt) i.e. how the actions have performed so far, and then it takes a(t) (yt) and receives the
reward (ŷt).
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Source: http://technopremium.com/

Strategy A = { at where t=1,2,.. }

To solve Reinforcement learning problems we use algorithms which instruct us what a(t) we
should take every time. We call those algorithms Strategies A. Every A has a value function
QA(ai) for evaluating every action a(t) it takes. For example a common QA(ai) calculates
the average of the reward ri of each action taken.

Value function QA(ai) is the value of action ai under strategy A:

QA(ai) =

∑∞
t=1 r(ai)

N(ai)
where N(ai) defines the times ai has been selected

Averaging Strategies A are appropriate for problems where the rewards do not change. Two
fundamental averaging strategies we mentioned before are Greedy and ε-Greedy Algorithm.
The Greedy Algorithm exploits the action with the highest ri. The ε-Greedy Algorithm exploits
also the action with the highest ri, but sometimes with some probability ε it explores in case
it receives a higher ri. Sutton and Barto at their book [18] compare these two algorithms and
have come to the conlusion after experiments that ε-Greedy Algorithm not only give average
overall reward ri higher than Greedy Algorithm, but selects the optimal action more often.

15



Algorithm 5 E-Greedy [18]
Ensure: K actions: ai with i = 1, 2, ..., K

for n = 1,2,... do
with propability ε:

select ai with highest ri
with propability 1− ε:

select random ai
end for

Most of times exploring will be better especially at the begining of the executions when the
ri of all actions are uknown. At further steps, as the probability distribution starts to reveal,
we can focus on the best actions. An evolution of ε-Greedy algorithms is presented by Auer
et al [4] and it is called εn-Greedy. εn-Greedy operates like ε-Greedy, except for the fact that
probability ε decreaces with a certain rate as long as the uknown E[ri] start to converge to
ri.

Algorithm 6 En-Greedy [4]
Ensure: K actions: ai with i = 1, 2, ..., K, c > 0 and 0 < d < 1

for n = 1,2,... do
ε = min{1, cK

d2n
}

with propability ε:
select ai with highest ri

with propability 1− ε:
select random ai

end for

Another way to encourage exploration at the first steps of the execution is by adding optimistic
initial values to the QA(ai). For example initialize the QA(ai) = x where x > 0. The bigger
the x is, the more the ai will be used. Sutton and Barto [18] show that the Greedy Algorithm
with optimistic initial value performs slightly better than ε-Greedy with no initial values.

The Greedy Algorithm always selects the ai with the highest QA(ai) and the ε-Greedy Algo-
rithm selects once in a while a random action indiscriminately. Another type of algorithms
that balance expoitation and exploration in a more efficient way are the Upper-Confidence
Bound (UCB) strategies. These strategies choose the next action based not only on QA(ai),
but on a UCB as well. The UCB is a quantity that is added to the actual value of the QA(ai),
like an optimistic initial value. The only difference is that UCB decreases as the action is
selected, so after a number of selections the real value of the QA(ai) remains. In that way, a
UCB forces us to explore an ai that might produce high results, until the real value ofQA(ai)
is revealed.
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Auer et al present in [4] the UCB1 Algorithm that uses UCB. At every step UCB1 selects the
ai with the maximum (QA(ai) + c

√
2 ln t
N(ai)

). Every time ai is selected, N(ai) increases while

the quantity c
√

2 ln t
N(ai)

decreases. That means after a number of selections, UCB converges to
0 and UCB1 will select the action based on the true value of QA(ai).

Algorithm 7 UCB1 [4]
Ensure: K actions: ai with i = 1, 2, ..., K

for i = 1,2,... do
take the action ai(t) = maxi=1,..,K(QA(ai) + c

√
2 ln t
N(ai)

)

update N(ai) = N(ai) + 1
end for

All the above algorithms: Greedy, E-Greedy, En-Greedy and UCB1 are the best to use when
the probability distribution of the ri does not change over time. When the E[ri] changes from
time to time, we can not make any statistical assumptions about the outcomes of a. In that
case, these algorithms will underperform.

Auer et al [3] presented an Algorithm, called EXP3. EXP3 in a non stationary setting, where
E[ri] is not stable and selects the best arm at the rate O(T−

1
2 ). EXP3 assigns weights to each

ai and in the beginning it initializes them as wi=1. At each step it uses the weights to create
a uniform distribution from which it will pick an at randomly. It also uses a factor γ ∈ (0, 1]

to control exploration. The closest γ is to 1, the less EXP3 takes into account the wi and the
chances of selecting an action ai become equal. After the selection of an ai, EXP3 updates
its wi based on the ri of the chosen ai and then it normalizes the list of all w to be added to
1.

Algorithm 8 EXP3 [3]
Ensure: K actions: ai with i = 1, 2, ..., K
Ensure: Initialize: wi(1) = 1 for i = 1, 2, ..., K and γ ∈ (0, 1]

for t = 1,2,... do
set Probability distribution P [pi(t) = (1− γ) wi(t)∑K

j=1wj(t)
+ γ
K ], i=1,...,K

draw ai randomly from P and receive reward ri(t)
set wi(t+ 1) = wi(t)exp(

γri(t)
K ) where ri(t) =

ri(t)
pi(t)

for j = 1,...,K do

wj(t+ 1) =
wj(t+1)∑K
j=1wj(t+1)

end for
end for
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1.2.3 Online Reinforcement Learning with Market Making

Online Reinforcement Learning and specificaly the Algorithms we have discussed so far,
can be used for Market Making in HFT. There is a little work on the subject. For example
Abernethy and Kale do market making using spread strategies along with Online Algorithms
[1] and Spooner et al. created a custom reward function and designed a market maker Agent
using reinforcement learning [17].

Some of the basic issues online Reinforcement Learning can solve on market making:

• Minimizing MMs inventory risk. That is to not hold a large amount of stocks for a large
period of time because it might not be able to liquify them or it might has to sell them
cheaper that it bought them.

• The MM can provide efficiently liquidity by transacting when other traders do not, at
situations like when spread is large.

• The MM can earn profit by exploiting price movements earlier that other traders.
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Chapter 2

Market making with Limit Order

Books

In this chapter, we discuss previous work related to the subject of this thesis. That work
helped us not only understand the theoritical consepts of the field we study but also helped
us in our developments. First we discuss features of the Limit Order Book, as presented
in the work about Limit Order Books [9, 11, 10]. Most of the concepts we learned there,
were used in manufacturing a custom LOB with its basic functionalities. Then we discuss
previous work related to Market Making.

2.1 Limit Order Book work

A very detailed explanation about what is the LOB and how it works is written by Gould et
al. [9]. They analyse all the basic components of LOB ,like spread,mid price, ask price, bid
price etc, from theoritical and mathematical perspective. They examine how each component
behaves inside the environment of the LOB, and how that behavour affects the other com-
ponents. For some components like price and volatility they investigate in greater detail the
impact they have upon the function of the LOB. They also explain the impact these compo-
nents have on people’s behavour. For example how a change on the price will affect a buyer’s
or a seller’s decision on placing an order.

A simulation of an order book is presented in [11] by Kane et al. They created a development
package which can simulate the function of the LOB, given order data. They analyse the
functionality of their simulation and how someone can use these methods to reproduce their
own LOB.
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Below we describe some basic features of the Limit Order Book (LOB) and introduce associ-
ated terminology based on the above related works.

2.1.1 LOB Basics

LOB is a data structure that keeps track of all orders, buy or sell, for a specific security. It
also matches buy orders with the corresponding sell orders (and the opposite). An order that
is submitted at some time t Zt = {type,Wt, pt}, consists of three components:

• Order type : Order type can be either Market Orders Mt or Limit Orders Lt. The
initiator of the order also has to specify either if he wants to sell or buy stocks. We
explain Mt and Lt bellow.

• Order size Wt: Order size is the amount of stocks, the initiator of the order desires to
buy or sell. The Wt must be a multiple of the lot size σ, which is the smallest amount
of a stock (asset) that can be bought or sold in a market.

Order Size: Wt = k · σ where k=1,2,...,N N ∈ N

• Order price pt: Order price is the amount of money the initiator is willing to pay or
take in order to buy or sell. pt must be a multiple of the tick size π. Tick size π which
is the smallest interval that two consecutive prices can have.

Order Price: pz = k · π where k=1,2,...,N N ∈ N

For better visualization, the LOB order list can be divided in two queues:

• The ask queue Aq which is the queue of the current sell orders which are in ascending
order depending on the price.

• The ask queue Bq which is the queue of the current buy orders which are in descending
order depending on the price.

The depth D of the LOB is defined as the sum of the quantities of all orders of the book.
Also the depth of Aq, Dask is the sum of all quantities of all ask orders and the depth of Bq,
Dbid is the sum of all quantities of all bid orders, thus D=Dask+Dbid. As we see in figure 2.1
Dask=600 and Dbid=1130.
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As we have already mentioned there are two types of orders, limit orders Lt and market
orders Mt:

• A Limit order Lt is a type of order where you specify the quantityW of the stocks and
at what p you are willing to buy or sell. For example if someone wants to sell 10 stocks
for 49.6$, he places zt = (Lsell, 10, 49.6$). When the order is placed the depth of the
ask price in figure 2.1 will be updated to 110. After someone places a Lt, then he waits
for the order to be executed. The order is executed when someone wants to buy these
10 stocks for 49.6$. More specifically, this will happen when someone places a buy
order (Lt or Mt) that will be matched with zt. We explain about matching below.

• A Market order Mt is a type of order where you specify only the quantity W of the
stocks you are willing to buy or sell. If someone wants to buy 50 stocks immediately,
he places zt = (Mbuy, 50), and the order will be executed at the lowest available sell
price in the LOB. In the figure 2.1 that order will be executed at p = 49.5$ and the
depth at that price will be reduced to 300.

Price Ask queue

49.7 150
49.6 100
49.5 350

700 49.1
330 49.0
100 48.9
Bid queue

Figure 2.1: Limit order book representation

Each queue, Aq and Bq, has price levels. Each price level has a depth, e.g. the depth at
p = 48.9$ is n48.9 = 100 Aq[] and also has a list with all active orders which are placed at
that price (Figure 2.2).

Time Initiator Quantity
02:24:13 user13 20
02:30:14 user4 45
02:31:00 user50 25
04:15:34 user1 10

Figure 2.2: Active orders at price level p = 48.9$
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Order matching The LOB must have a matching algorithm that arranges in which order the
active orders will get executed when an opposite order arrives, e.g. which buy order with
price p$ will get executed after the arrival of a sell order at that price. The most common
matching algorithm is to execute first the orders that have been placed earlier. For example,
based on figures 2.1 and 2.2 let us consider that someone places a sell limit order at price
p = 48.9$ with W = 50. As we can see in figure 2.2 there are 4 active orders at that price
level. The earlier order is the one placed by user13, so it is the first to be executed. After
the first matching, there is a remaining quantity of W = 30. That will be matched with the
second earlier order that was placed by user4. The new depth of the price level p = 48.9$
appears in figure 2.3.

Time Initiator Quantity
02:30:14 user4 15
02:31:00 user50 25
04:15:34 user1 10

Figure 2.3: Active orders at price level p = 48.9$ after Lsell withW = 50

Three basic price components which define the state of the LOB at some time t are:

• Ask price at is the lowest price level at which an active sell order is placed. Considering
the figure 1.1 at = 49.5$.

• Bid Price bt is the highest price level at which an active buy order is placed. Consid-
ering the figure 1.1 bt = 49.1$.

• Mid Price mt is the middle price between at and bt. Considering the figure 1.1 mt =

49.3$.

• Spread St is the difference between at and bt. Considering the figure 1.1 St = 0.4$

Price changes When orders enter the LOB, the above components constantly change, and so
the state of the LOB changes. Let’s take for example figure 1.1. At some time t someone places
aMsell(w = 1050) or a Lsell(p = 49.1$, w = 1050). Then the depth of price levels 49.1$, 49.0$
will become 0 and the depth of the price level 48.9$ will be reduced by 20 (1050−(700+330)).
The outcome of this execution is presented in figure 1.4. After the execution, bt will change
to 48.9$, mt to 49.2$ and St to 0.6$
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Price Ask queue

49.7 150
49.6 100
49.5 350

80 48.9
Bid queue

Figure 2.4: Limit order book representation

2.2 Market Making work

Abernethy and Kale [1] designed an online low-regret algorithm that uses spread based
strategies to do market making, that achieves almost as much payoff as that of the best
strategy.

The Spread based strategies that are used are parameterized by a window size b ∈ {δ, 2δ, ..., B}

where B is multiple of δ. At timestap t, when the market price is pt, stategy S(b) selects
a size b, [pt, pt + b]. When pt drops to pt+1 = pt − kδ, a buy limit order is placed at each
price pt − δ,..., pt − kδ for a fixed number of X shares. If the buy limit order is executed, the
Agent will hold kX. When pt rises to pt+1 = pt + kδ, a sell limit order is placed at each price
pt + b − kδ,..., pt + b − δ for a fixed number of X shares. If the sell limit order is executed,
the Agent will profit from the sell by kbpt. So the Agent is trying to benefit from the price
fluctuations by buying low and selling high inside the window.

Every strategy is valued based on portfolio Vt = Ct + ptHt at time step t, where Ct defines
the cash and Ht defines the shares that Agent is holding. So Vt is the amount of cash the
strategy would have if it liquidated all holdings at the current market price. They assume
that there is a bounded price volatility ∆ > |pt+1 − pt|. This means that each strategy trades
at most ∆ shares at each trading period.

Using these spread based strategies, the authors created a low regret meta algorithm that
applies online algorithms A for learning with expert advice with one expert corresponding
to each strategy S(b). In the beginning the distribution of the weights of the strategies are
generated by A at t be wt. At each time step t, when some orders are executed, the holdings
are updated to Ht+1wt and cash to (Ct+1 − Ct)wt. Then for each strategy S(b) the payoff is
set to be Vt+a − Vt and it is sent to A in order to update the distribution wt+1. The regret of
the meta algorithm is Regret(A) = G

2

∑T
t=1 ||wt −wt+1||, where G = 2∆B+ ∆2.

Abernethy and Kale applied two online algorithms in Experts model to the meta algorithm.
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They applied the classic Multiplicative Weights (MW) algorithm and the Follow-The-Perturbed-
Leader (FPL). MW updates the weights using the rule: wt+1 = wt

exp(ηt(Vt+a−Vt))
Zt

where Zt

is the normalization parameter. With ηt = 1
2Gmin{

√
logN
t , 1} they proved that the regret is

bounded by 13G
√
log(N)T . The distribution wt for FPL is set to be wt = Pr[Vt(b) + p(b) >

Vt(b
′) + p(b ′)], where p(b) is a sample from exponential distribution with mean 1

η . With

η = 1
2G

√
logN
T they prove that regret bounded by 7G

√
log(N)T .

For their experinments they used stock price data for the following stocks: MSFT (Microsoft
Corporation stock), HPQ (Hewlett-Packard stock) and WMT (Walmart stock). They set N=10
window sizes quoted in cents with max window size B = 100. The set of the Window sizes,
quoted in cents is the following: B = {1, 2, 3, 4, 5, 10, 20, 40, 80, 100} They impimented MW,
FPL, simple FTL and a simple uniform averaging over all strategies and they compare their
performance to the best strategy in hindsight. In their results the MW performed nearly as
well as the best strategy and FPL did not perform that well. They also concluded that the
best strategy is different every day, so they raised a need for creating an adaptive learning
algorithm.

Spooner et al [17] developed a high-fidelity simulation using high-frequency historical data
and they designed a temporal difference (TD) reinforcement learning Agent to perform market
making. To create their simulation, they used historical data for 10 securities from 4 different
stocks and they reconstructed a Limit Order Book.

Their Agent uses spread based strategies similar to the Abernethy and Kale [1]. Each strategy
has two basic variables θa and θb, which define the distance between the midprice µt and the
price the Agent will place his orders, µt + θa for sell orders and µt − θb for buy limit orders.
There is also an option for a market order when the Agent wants to clear his inventory, due
to constraints in how much shares it can hold. The reward function of the Agent is defined
as PnL: ri = Ψ(t) = ψ(t)a + ψ(t)b + Inv(t)∆µ, where ψ(t)a,ψ(t)b compute the money lost
or gained from the executed orders of the Agent and the quantity Inv(t)∆µ represents the
cash if it liquifies his holdings. The authors also use two alternative dampened definitions
of reward: the Symmetrically dampened PnL ri = Ψ(t) − ηInv(t)∆µ and the Asymmetrically
dampened PnL ri = Ψ(t) −max[0, Inv(t)∆µ].

In their setting, they also provide an evaluation of three different state space constructions
and propose a linear combination of tile codings as their final representation. The tile codings
use combination of three states: the Agent-state, the market-state and the full-state which
is the combination of the previous two, [17] at 4.3. The learning algorithms they use are:
Double Q-learning, Expected Sarsa, R-learning, Double R-learning and On-policy R-learning.

They compared their basic Agent, that uses fixed distances θa and θb i.e θa = θb = 5, with a
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similar to one of Abernethy and Kale [1]. The basic Agent used a state representation consist-
ing only of the Agent-state and the non-dampenedPnL reward function in order to be more
adaptive in choosing the right θ and it was trained using one-step Q-learning and SARSA.
The basic Agent performed better, it had better average reward and it did not maintain a
large amount of holdings.

Finally, they consider a consolidated Agent, which holds the best variants of the Agent. It
uses the Asymmetrically dampened PnLreward function with a LCTC (linear combination of
tile codings) state-space, trained used SARSA. The consolidate Agent outperforms the basic
Agent and the Agent of Abernethy and Kale [1] and it holds smaller inventory.

T.Chakraborty and M.Kearns presented profitable Market Making algorithms with Mean Re-
version. Mean reversion is a financial term for the assumption that a stock price will tend
to move to the average price over time. Their algorithms are based on a online setting where
their Agent observes the price and its holdings at every timestep and it places buy and sell
limit orders.

The profit obtained from mean reverting models is (κ−z2)/2 where z is the difference between
opening and closing prices and κ is the absolute value of all local price movements. That
means the algorithm of Chakraborty and Kearns is profitable when there is a large amount
of local price movement, but only a small net changes in the price.

Their basic Market Making algorithm works as follows:

• There are t=1,...,T steps and the observed price Pt. Thus P0, ..., PT is the asset price
time series.

• At time t the algorithm cancels all unexecuted orders and places buy orders at prices
Yt, Yt − 1, .., Yt −Ct and sell orders at Xt, Xt − 1, .., Xt +Ct where Ct is the depth of the
price ladder at time t

Based on the above basic model they prove that for any random walk P0, ..., PT there is mean
reverting towards µ = P0. The expected profit of the market making that sets Xt = Pt+1 and
Yt = Pt−1 is positive.

Apart from the basic model they also present two other mean reveting MM models, one based
on Ornstein-Unlbeck Process, which is a canonical stohastic mean reverting proccess, and
a stohastic mean reverting model that has been studied in finance literature, the Schwartz
model.
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Chapter 3

Developments

In this chapter, we present the algorithms that have been developed in order to conduct
our experiments. At first we present the basic functionality of our custom LOB. Most of
the functionality is taken by the theoritical works [9, 11, 10]. We also present the basic
functionalities of our Automated Agent along with the strategies that it uses. Finally we
show how we created a random generator that feeds the LOB with random orders.

For our developments we used Python. The LOB and the Automated Agent were created from
scratch with the use of only some of basic libraries like Pandas,NumPy and Scikit-learn.

3.1 LOB representation

LOB can be considered as a data structure which consists of two queues: the ask order
queue and the bid order queue. The ask order queue holds all sell orders that have not been
matched yet and the bid order queue the buy orders that have not been matched yet.
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Bid Queue
price 7.0 7.5 8.0 8.5 9.0 9.5

quantity 21 45 11 39 24 24
Ask Queue

price 10.5 11.0 11.5 12.0 12.5 13.0
quantity 45 32 24 28 36 16

Figure 3.1: Example of a LOB snapshot

In figure 3.1 a LOB snapshot is represented. The lot size is 1 and the tick size is 0.5. This
snapshot only shows the LOB state from price 7.0 to price 13. The bid price is 9.5 and the
ask price is 10.5. Therefore the spread is 1 and the mid price is 10.

Price changes

As the order flow progresses, the bid and ask price, the mid price and the spread change.
The size of the price change depends on various things, such the trading volume which is
associated to the number of the participants which are in the market and to the size of orders.

When a sell (or a buy) market order comes to the market with a specified quantityQi, it starts
consuming the quantities of the bid price (or ask price) and continues until it consumes all
the quantities of the order. For example at LOB snapshot at Figure 3.1, if someone places a
sell market order with quantity Qi 30, all quantities(24) at price 9.5 will be consumed and
the remaining 6 will be consumed from price 9. So the new bid price will be 9.0 with quantity
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18. Because of the bid price change, the bid-ask spread will change to 1.5 and the mid price
to 9.75. The changes are presented at figure 3.2.

When a buy (or a sell) limit order is placed with price Pt and with quantity Qt there will be
two possible situations. Either the price Pt is less or equal to the bid price and as a result
the order will be placed in queue waiting to match, or the price Pt is greater than or equal to
ask price and thus there is a change to be matched. In the second case, the order will start
to consume the quantities at that price in the ask queue and then will continue consuming
the quantities at lower prices until all are consumed.

For example, in the LOB snapshot of Figure 3.2 if someone places a buy limit order at price
11.5 with quantity Qi, there will be a match at that price. Then all quantities (24) at price
11.5 will be consumed and the remaining 6 will be matched and consumed by those at price
11. The changes are presented in the figure 3.3.

Bid Queue
price 7.0 7.5 8.0 8.5 9.0

quantity 21 45 11 39 18
Ask Queue

price 10.5 11.0 11.5 12.0 12.5 13.0
quantity 45 32 24 28 36 16

Figure 3.2: LOB snapshot after a sell market order

28



Bid Queue
price 7.0 7.5 8.0 8.5 9.0

quantity 21 45 11 39 18

Ask Queue
price 10.5 11.0 12.0 12.5 13.0

quantity 45 26 28 36 16

Figure 3.3: LOB snapshot after a sell market order

3.2 LOB Simulation

For the purpose of this work, a Limit Order Book simulation is created with the basic func-
tionality. For the simulation we followed the work of Gould et al. [9] and from Kane et al.
[11]. We also draw some ideas from the work of Huang et al. [10].

The simulation consists of two queues. The ask queue Aq holds the quantities of the sell
orders that are placed at the corresponding level of the LOB and the bid queue Bq holds the
quantities of the buy orders that are placed at the corresponding level in the LOB. Figures
3.1,3.2,3.3 give a definite representation of these queues. As shown on figure 3.2 for prices
8.0 and 11.0, we have Aq[11.0] = 32 and Bq[8.0] = 11.

We initialize the simulation with m(t) and π. Based on these parameters, we calculate the
starting values of a(t), b(t) and s(t). Provided that the starting parameters are set, the LOB
Simulation is ready to receive orders. There are two basic methods for placing orders: the
Limit Order Method and the Market Order Method.
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3.2.1 Limit Order Method

By placing a Limit Order, one has to specify the action, which can be sell or buy, the price,
at which he wants to buy or sell, and the quantity of stocks.

For every action there are three possible situations:

• Placing a sell limit order at p > a(t) (respectively placing a buy order at p 6 a(t)) for
quantity q. In this case the given quantity is being placed in Aq[p] (or in Bq[p] if buy
order).

• Placing a sell order (or a buy order) inside the spread (at p > b(t) and p 6 a(t)). In
this case p is placed in the queue Aq[p] (or Bq[p]) and p becomes the new a(t) (or the
new b(t) if buy order). There is also a change in s(t).

• Placing a sell order (or a buy order) at p 6 b(t) (or p > a(t) if buy order) for quantity q,
a transaction is executed at Bq[p] (respectively a Aq[p]). If the quantity at the price level
Bq[p] (qp) is less than q, the remaining quantity q ′ = q−qp will be consumed from the
next price levels Bq[p−π], Bq[p−2π] until q ′ = 0. If all the available quantities Bq[b(t)]
are consumed, b(t) will change to the next price level which has available quantities
waiting to get consumed. The spread s(t) will change also.

3.2.2 Market Order Method

By placing a Market Order one has to specify the action, which can be a sell or buy, and
the quantity of stocks to be bought. When a sell order is submited (respectively buy order)
with quantity q, q will be consumed from Bq (respectively Aq) starting from the price level
of Bq[b(t)] (respectively Aq[a(t)]) and it will continue to the lower price levels until q is
consumed. If Bq[b(t)] = 0 (respectively Aq[a(t)] = 0), b(t) (respectively a(t)) and s(t) change.

3.3 Pseudo-random data creation

The data that we are using for this study have been created based on the "Algorithmic
trading" Kaggle Dataset [6]. We analyzed this dataset in order to discover some insights
about the distribution of the orders (buy and sell), the transaction volume and the price
fluctuations. Based on the insights we have discovered, we created an algorithm that feeds
the LOB simulation with pseudo random orders.
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3.3.1 Data Analysis

The preprocessed Algorithmic trading dataset comprises observations at market prices before
and after a liquidity shock (a trade that results in widening of the bid-ask spread). At each
row the change of market prices for a certain security is represented before and after a
liquidity shock. The data schema provided for each liquidity shock is the following:

• Row id: Is the unique identifier for each row ( or the unique identifier for each liquidity
shock.

• Security id: Is the unique identifier of the stock in which it happens the liquidity
shock.

• P_tcount: The count of the previous day on market trades in current security.

• P_value: The sum of the previous day on market trades in current security.

• Trade_vwap: Volume-weighted average price of trade causing the liquidity shock.

• Trade_volume: Size of the trade causing the liquidity shock (number of stocks).

• Initiator: Defines whether the trade is initiated by a buyer or a seller.

• Transtype<t>:Defines whether the time-series event is a trade or a quote.

• Time<t>: Defines the event time.

• Bid<t>: The bid price bt at event time t.

• Ask<t>: The ask price at at event time t.

Before we analyse the dataset we did some processing for our convenience.

1. We sorted the dataset per security id so we can work with only one stock at a time.

2. Then we sorted the events per event time t and we cleaned events that appeared twice.

3. The attributes of the order we focused on are: the transtype, the bid price and the
ask price.
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security_id p_tcount p_value trade_vwap trade_volume initiator transtype1
1 9154 6831386312 2395.0 887 B Q
1 9154 6831386312 2398.0 748 B Q
1 9154 6831386312 2398.0 151 S T
1 9154 6831386312 2398.5 110 S Q
1 9154 6831386312 2398.0 108 B T

time1 bid1 ... bid96 ask96 bid97 ask97
08:00:20.799 2225.0 ... 2397.0 2399.0 2397.0 2399.0
08:00:21.996 2393.0 ... 2398.0 2399.0 2398.0 2399.0
08:00:29.200 2393.0 ... 2397.0 2398.0 2397.0 2399.0
08:00:31.073 2393.0 ... 2397.0 2398.0 2397.0 2399.0
08:00:31.867 2393.0 ... 2398.0 2399.0 2397.0 2399.0

Figure 3.4: Table Algorithmic trading Dataset for stock with security id 1

time transtype bid ask
08:00:20.799 Q 2225.0 2314.5
08:00:20.799 Q 2225.0 2314.5
08:00:20.799 Q 2225.0 2314.5
08:00:20.799 Q 2225.0 2314.5
08:00:20.799 Q 2225.0 2314.5
... ... ... ...
16:29:54.882 Q 2298.0 2299.5
16:29:54.882 Q 2298.0 2299.5
16:29:54.978 Q 2298.0 2299.5
16:29:54.997 T 2298.0 2299.5
16:29:54.997 Q 2298.0 2300.0

Figure 3.5: Dataset after cleaning the data

After the data cleaning we investigated the data in order to find some insights. We analyse
the data from figure 3.5 for a single day and we found the following results 3.6.

p_tcount p_value trade volume average Buyers Sellers
1239 543554971 243.01 1333 1862
Number of Trades Number of Quotes Change of Bid Price Change of Ask Price
7797 77420 7917 6814

Figure 3.6: After analysing the data for a certain day
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3.3.2 Insights and probability distribution

After we had analysed the data, we used our findings (3.6) to create a propability distribution
with which we feed to our algorithm. The insights we discovered are the following:

• Percentage of Trades and Quotes As shown on figure 3.6, on a certain day, the
number of quotes is 7797 and the number of trades is 7797. This means that the 90%
of the transactions are quotes and 10% are trades. So, in our random order generator
a random order has 0.1 probability to be a trade and 0.9 propability to be a quote.

• Percentage of Sellers and Buyers The second insight is about the initiator of the
order which causes the liquidity shock. As we see in figure 3.6 the number of buyers in
a certain day were 1333 and the number of sellers were 1862. This means that ∼60%
of initiators were sellers and ∼40% were buyers.

• Change of Prices The third insight is about how many times the bid and the ask prices
have changed during the day. According to figure 3.6, the bid price bt has changed
7917 times and the ask price at has changed 6814 times. Diving deeper to this insight,
we counted how much they changed after a transaction, according to the tick size π.
For example, according to figure 3.8 (top) at has changed to −π, 2826 times and to π,
2658 times. Also according to figure 3.8 (bottom) bt has changed to −2π, 611 times
and to 2π, 531 times.

• Changes in Spread Another insight is about spread. We calculated the spread prices
depending on π. According to figure 3.7 spread was π 11451 times, 2π 26073 times,
3π 244665 times etc.

Spread/π 1 2 3 4 5 6 7 8 9 10 ...
times 11451 26073 24465 13839 5469 2263 711 236 149 102 ...

Figure 3.7: Frequency of spread values

Ask prices ... -4 -3 -2 -1 1 2 3 4 ...
times ... 63 99 331 2826 2658 447 137 70 ...

Bid prices ... -4 -3 -2 -1 1 2 3 4 ...
times ... 118 224 611 2695 3358 531 175 85 ...

Figure 3.8: Frequency of Ask and Bid Prices
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We use all the above insights to feed our algorithm, in order to create random order data.
Our goal is the data to be closer to reality.

3.3.3 Algorithm that creates random data

The algorithm uses a pre defined function from the python package numpy which is called
choice(). This method takes as parameters the items that we want to choose and their
probabilities. For example, to choose randomly whether an order is limit or market we use
choice({limit,market}, {0.9, 0.1}). The limit choice has 90% probability to be chosen and
the market choice has 10% probability to be chosen.

If we combine the probability distributions from all the insights we have a random order. The
probability of having a sell limit order where bid price changes and also the spread changes
can be calculated as the product of the multiplication of the propabilities.

Random Order = P(limit)× P(seller)× P(price changes)× P(spread changes)

An easy way to represent the above calculation is with a decision tree. The first random
choice is if the order is either a limit order or a market order. On the next node, the second
random choice is if the initiator is a seller or a buyer. Above the initiator node there is the
third random choice for the change of the price. Finally there is a fourth node for the spread
change. The tree is represented in figure 1.4.

Apart from the main calculation of the random order creation, we have created other random
choice distributions for more specific tasks. If the random order is a limit order, then it must
be specified if it is either a sell limit order or a buy limit order. The quantity of the stocks
also depend on the price of the order. For example the closer the order price is to the bid
price or the ask price, the bigger the volume will be. If the order price is closer to the lower
price levels (or to the higher price levels) the quantity will be very small.

For this reason, we divide the price of ask queue and the prices of bid queue into price sets.
The price range may differ from one price set to another. For the Aq: the first price set can be
{a(t), . . . , pr} where pr > a(t); the second price set can be {pr . . . , pr+1} where pr+1 > pr etc.
For the Bq: the first price set can be {pr, . . . , b(t)} where pr < b(t), the second price set can
be {pr+1, . . . , pr} where pr+1 < pr etc. For each price set we have a quantity distribution from
which the algorithm will choose a random quantity number. For the first set the quantity
range will be (Q1, Q2) where Q1 > Q2. For the second set the quantity range will be (Q2, Q3)

where Q2 > Q3 etc. The further away the price set is from the a(t) or the b(t), the smaller

34



the quantities in the quantity range will be.

With the above separation in price sets, we can control more efficiently how random orders
will be distributed over the price range. For example, if we assign a large probability to the
price set that contains the bid price (or the ask price), most of the generated random orders
will be very close to the bid price (or the ask price).

Price and Spread change. Our algorithm uses the price change distributions to choose
randomly if the price changes and how much it changes. Based on our distribution, a small
price change (e.g. p ± π) has higher chance to occur rather than a large price change (e.g.
p ± 5π). The change of spread depends on price change. If there is a sell order with price
change of +3π, that means the a(t) will be a(t) = a(t) + 3π. This will have an impact on
the spread price, so s(t) will grow to s(t) = s(t) + 3π. If there is a sell order with price
change of −3π and s(t) > 3π, a(t) will become a(t) = a(t) − 3π and s(t) will change also to
s(t) = s(t) − 3π.
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Figure 3.9: Probability Tree for random orders

Random orders balancers. If we run the algorithm and let it produce random orders for
a large amount of steps, we will face some issues. In the first steps of the algorithm, there
are not many orders that wait to be consumed in Aq and Bq. If our algorithm produces
an order that is going to consume a large amount of stocks from a queue, then it will
empty the queue and the price is going to change dramatically. For example, if we have
Bq = {(vol = 15, price = 48.5), (vol = 30, price = 50), (vol = 50, price = 50.5)} and our
algorithm produces a sell market order (sell, volume = 100), then Bq will be empty and b(t)
will be undefined. For this reason, we have created a "balancer" which, for the first N steps
of our algorithm creates the same amount of sell and buy limit orders close to starting price,
with no consumption of any queue taking place.
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Similarly to the above issue, since our algorithm produces random data, at some period
of time it might produce more quantities for one queue than for the other, e.g. SB =∑NB

n=1 Bq[p] >> SA =
∑NA

n=1Aq[p]. For this reason, we have created another balancer in
our Algorithm that monitors when the difference between SB and SA exceeds a certain limit.
If that happens, the algorithm produces only limit orders for the queue that has the fewest
quantities.

Another issue concerns spread. As we have already mentioned, the spread changes when
a(t) or b(t) changes. If for example a(t) changes n times continuously by the amount
κπ times (a(t) = a(t) + κπ where κ = 1, 2, ...) and b(t) changes n times continuously by
the amount λπ times (b(t) = b(t) + λπ where λ = 1, 2, ...)) that means s(t) will grow like:
s(t) = s(t) + λπ + κπ. In the real world spread rarely grows more than 10π. So if λ + κ >>
10, s(t) becomes very large and that does not respond to reality at all. For this purpose, we
have created a balancer in our Algorithm that monitors s(t) and, if it becomes very large,
we increase the possibility that the algorithm will produce an order inside spread and at the
same time we decrease the possibility that the algorithm will produce an order that increases
a(t) (or decreases b(t)). This is achieved by assigning greater probability to the price set that
contains prices inside spread.

3.4 Agent Representation

A core component in our study is the Market Maker which we call Agent. The Agent is
interacting with our LOB simulation by placing orders. Its goal is to maximize its profit (cash
C) and also to minimize its exposure, i.e not to hold a large amount of stocks (holdings H) at
the end of a trading period.

At the beginning of a trading period, the Agent has a cash budget C, which it can use to place
buy orders, and a number of stocks H which he can sell in order to increase C. When we
initialize our Agent for the first time we supply it with a certain amount of cash C0 > 0 and
it does not hold any stocks H0 = 0.

At every time step t, the Agent observes the market price pt, and depending on his C and H
it chooses what order to place. It can place either a sell (respectively a buy) limit order Lt
or a sell (respectively a buy) market order Mt. With a Lt it has to specify the price and the
quantity X it wants to place the order. Then it has to wait for the Lt to execute. A Mt is a
more direct order, and the Agent has to specify only the quantity X it wants to sell or to buy.

In order to place the right order, the Agent should keep track of its H and its C. For our
convenience we divide them in two features each:
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• The available Cavl is the cash that the Agent can spend in order to buy stocks.

• The available Havl are the stocks which have not been placed for sale yet.

• The overall Co is the Cavl plus the cash he has placed with a limit buy order which has
not been executed yet.

• The overall Ho are the Havl plus the stocks that have been placed for sale with a sell
limit order and have not been executed yet.

Every time the Agent places a buy limit order at price p for X stocks inside the order book, the
Cavl is reduced by pX, C ′avl = Cavl−pX. When this order is finally executed, the Co is reduced
by pX too, C ′o = Co−pX. At the same time the Ho and Havl are increased by X, H ′

o = Ho+X,
H ′
avl = Havl + X. On the other hand, when the Agent places a limit order at price p for X

stocks , the Havl is reduced, H ′
avl = Havl − X. When that order is finally executed, the Ho

is reduced by X, H ′
o = Ho + X, and available and Co increased by pX, C ′o = Co + pX. When

there is no Havl Agent can not place a sell order and if there is no Cavl he can not place a buy
order.

Except for Co,Cavl, Ho, Havl, another important quantity that defines the overall state of the
Agent or its position in the LOB, is the portfolio V.

V = Cavl + atHo where at is the ask price.

V is the the sum of the Cavl the Agent has plus the cash it would get if it sells all its Ho at
the current sell price.

3.5 Window Based Strategies

Our Agent uses window-based Strategies S for market making, inspired from the spread-
based strategies of Abernethy and Kale [1]; however, in defining the window, we use as a
point of reference the bid price instead of the ask price. We define a window size ws = iπ,
where i = 1, 2, ... and π is the tick size, and B which is the maximum ws. The left bound of
the window wL is defined by current market price pt and the right bound of the window wR
is defined by pt +ws.

WindowW : [wL, wR] = [pt, pt +ws]
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In our implementation we use bid price bt as the pt, so the starting windowW0 is [b0, b0+ws].
At time step t + 1 S(ws) observes bt+1. If bt+1 < bt, the Agent places buy limit orders at all
prices [bt+1, bt) for a fixed number of shares X . If bt+1 > bt +ws, the Agent places sell limit
orders at all prices [bt +ws, bt+1 +ws) for a fixed number of shares X .

Algorithm 9 Window Strategy
Initialize parameters ws, X
Initialize window wL = b0 and wR = b0 +ws
for t = 1,...,T do

Observe bt
if bt < wL then
wL = bt, wR = bt +ws
dB = (wL − bt)/π
Place LB(X ) at prices bt − κπ where κ = 1, .., dB

end if
if bt > wR then
wR = bt, wL = bt −ws
dS = (bt −wR)/π
Place LS(X ) at prices bt +ws + κπ where κ = 1, .., dS

end if
end for

At time step t, if bt drops to bt−1 − κπ, the Agent places buy limit orders LBt at prices
bt−1 − π, bt−1 − 2π,..., bt−1 − κπ for X shares. If all orders LBt are executed then the Agent
will hold Ht = Ht−1 + Xκ shares and his cash will be Ct = Ct−1 − X · {(bt−1 − π) + (bt−1 −

2π) + ... + (bt−1 − κπ)}. At time step t+1, if bt+1 rises to bt +ws + κπ the Agent places sell
market orders LSt at prices bt +ws − π, bt +ws − 2π ,..., bt +ws − κπ for X shares. If all
orders LSt are executed then the Agent will hold Ht+1 = Ht−Xκ shares and his cash will be
Ct+1 = Ct + X · {(bt +ws − π) + (bt +ws − 2π) + ...+ (bt +ws − κπ)}. So the Agent bought
X shares at time step t and sold them at higher price receiving a profit of κwsX .

The intuition behind our Window Strategies is that the Agent waits for the price to drop below
window so he can buy stocks at lower price. Then it waits for the price to rise above window
in order to sell the stocks he holds at higher price so he profits from the window size ws.

In order to understand these strategies better, let’s consider a situation where: tick size
π = 0.1, bid price bt = 47.1, window ws = 0.5, Agents overall Cash Co = 200$ and X=1.
At first, window is [47.1,47.6] and Co = 200$. If bt drops by 3π, b ′

t = bt − 3 ∗ 0.1, window
becomes [46.8,47.3]. Then the Agent places buy limit order for 1 stock at prices 47.1,
47.0, 46.9. When these orders get executed Agent will hold 3 stocks and will have C ′o =

200 − 47.1 − 47.0 − 46.9 = 59$. If then bt rises by 3π, b ′
t = bt + 3 ∗ 0.1, window becomes

[47.1,47.6] again. Then the Agent will place sell limit order for 1 stock at prices 47.3, 47.4,
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47.5. When these orders get executed Agent will have C ′o = 59+ 47.5+ 47.4+ 46.3 = 201.2$.
So at the end the Agent will benefit for that price change by 1.2$

A Strategy’s performance can be measured based on three things.

• Cash C: The amount of cash the strategy has lost or gained within a trading period.

• Exposure or Holdings H: The amount of stocks remained on Agents hands following
the Strategy. The more stocks Agents have at the end of the period, the more exposed
the Agent is in the Market. The problem with exposure is that the Agent might have to
sell the stocks at a lower price in order to have cash immediately.

• Portfolio V: The amount of cash the strategy would have if it liquidated all holding at
the current ask price at. Measure performance with C or H alone is essential but can
be misleading. For example if S at the end of the trading period has: CT<CT−1,HT>HT−1
and aT>aT−1 can be better than CT>CT−1, HT=HT−1 and aT<aT−1.
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Chapter 4

Experimental Evaluation

In this chapter we present our experimentation framework with which we conducted our
experinments. This framework consists of: the Agent, which interacts with the LOB by
placing sell and buy order and a set of Strategies which the Agent follows in order to gain
profit. In order to follow the most profitable Strategy, the Agent uses an Online Reinforcement
Learning Algorithm which applies every strategy as a bandit. Then we present the results
of our experinments. We run our framework with three bandit Online Algorithms: the En-
greedy, the UCB1 and the EXP3.

4.1 Experimentation Framework

We have developed a framework based on reinforcement and online algorithms A which use
the above window strategies. Our goal is to find which A will bring in the most profits. In
contrast with Abernethy and Kale [1], who applied Expert Advice Algoritms to their frame-
work, we apply Bandit Algorithms and more spefically we use the En-greedy, the UCB1 and
the EXP3.

Our framework works as follows:

• The duration of each experiment is finite and is divided in trading periods. Each time
period is divided in time steps.

• We have a set of N Strategies Sn = {S1(ws1), S2(ws2), ..., Sn(wsn)} with different window
sizes each. The performance of each Strategy is calculated with the average Ri with
i = 1, .., n . Ri is the difference between Agents portfolio VT at the start of a trading
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period and its portfolio at the end of that trading period VT+1, Ri = VT+1 − VT . So
Ri =

∑m
j=1 Rj where m defines the number of times that a strategy has been chosen.

• There is an Agent which interacts with the LOB and its main goal is to use Sn in
the most profitable way. The Agent chooses which strategy to follow from Sn at the
beginning of each time period and it places orders based on that strategy. It also places
orders based on his Cav and Hav, in the sense that if Cav=0 it cannot place buy orders
and if Hav=0 it cannot place sell orders.

• We assign an Algorithm A={Engreedy,UCB1, EXP3} to our Agent, which instructs him
which Sn should play at each trading period.

• At every trading period T the Agent receives an Si(wi) where i = 1, ..., n from A.

• At every time step t, where t = 1, ..T , the Agents trades inside the LOB based on the
strategy Sn(wn). At every buy or sell order Co, Cav,Ho andHav are change respectively.

• At the end of T the portfolio VT is sent to A which updates the Ri of Si(wi) where
i = 1, ..., n.

Algorithm 10 Reinforcement Framework
Initialize Agents parameters CT ,HT ,VT
Choose Strategies S = {S1(ws1), S2(ws2), ..., Sn(wsn)} with windows wn
Set R̂i = 0 for each Sn.
for n = 1,...,T do

Algorithm A selects Sn
for t = 1,... do

Agent is trading following the Sn Strategy
end for

end for

4.2 Experinments

We conducted experiments with the same dataset with order data which we created with the
random order algorithm. The whole dataset consists of 3200000 random orders which are
divided in smaller datasets of 2000 random orders each. We called these smaller datasets
trading periods. 400 trading periods form a full trading day. So we run our experinment for
4 trading days.

At each trading period T the Agent uses only one window based strategy S. We have N = 10
strategies with window sizes Ws = {0.1, 0.7, 1.3, 1.7, 2.2, 2.6, 3.1, 3.7, 4.4, 5}. At the end of T we
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calculate the reward Ri of S as the difference between the porfolio V of the current T and the
V of the previous period.

Ri = VT − VT−1

We divide each trading day into 400 periods which consist of 2000 orders each. That means,
each Strategy will be played for 2000 orders. That number of orders will be enough in order
to understand how the performance of the strategy is.

We also calculated the remaining cash Co of that day and also the stocks Ho that the Agent
kept in its hands and did not manage to sell at a price better than the price in which it bought
them. We initialize the Agent C0 = 10000$ and H0 = 0. Consequently V0 = 10000.

We used our Reinforcement framework along with three different basic algorithms A : ε-
Greedy, UCB1 and EXP3. Then we compared the performance of these three algorithms
inside our framework. The performance was measured in the basis of:

• Average reward Ri The Average reward that the algorithm A produced at the end of
the experiment

• Agents assets How the Agent managed C H over time under Algorithm A based on
how prices of the stock performed.

• The Regret We define our notion of Regret as how our framework will perform with A,
versus how it would have been performed if it only chooses the best strategy i.e. the
strategy with the highest Ri.

Price fluctuation

As we observe in Figure 4.1, the price gradualy decreases through execution.

• On day one (steps 0.0-0.8) price starts at 50$ and at the end of the day it is down to
42.2$. During the day, price shows some mild fluctuations with price reaching max at
51+$ two times and went 3 times under 45$.

• On day two (steps 0.8-1.6) price starts at 42.2$ and at the end of the day it is down to
36.0$. In the beginning, price rises slighly to near 49$, then it has a huge drop to 32
$ and in the end, it slightly rises to 36.0$.
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• On day three (steps 1.6-2.4) price starts at 36.0$ and at the end of the day it is down
to 32.5$. Price gradually decreaces till it reaches 27$ in the middle of the day. Then it
rises up to 32.5$.

• On day four (steps 2.4-3.2) price starts at 32.5$ and at the end of the day it is down to
27.05$. Price gradually decreaces till it reaches the lowest point of all time 24 $, then
it has a slight rise to 29$ and ends up at 27.05$.

Figure 4.1: How price change during the execution. Steps(n) in millions.

Best Strategy

To calculate the Regret, we compare the performance of our framework withA opposed to the
Strategy that performs better during the execution of our experiments. The strategy which
performs better is the one with window size ws = 0.7. With this Strategy the Agent perfoms
with an Average Reward of 1.20. Also at the end of execution the Agent holds Cfinal = 11000$
and Hfinal = 34 stocks. We can see the exact performance of the Agent at the following
figures 4.2.
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(a) Rewards (b) Cash

(c) Holdings

Figure 4.2: Rewards, Cash and Holding of the Strategy with ws = 0.7 during the execution)

4.3 Window based Strategies with En-greedy

We used A = εn-Greedy algorithm with c = 3 and d = 0.6. At each T , εn-Greedy chooses a
Strategy and at the end of T , it receives the reward and it updates the reward of that action.
The algorithm performs with an Average Reward of 1.39. Also at the end of the experiment
the Agent holds Cfinal = 11030.7$ and Hfinal = 53 stocks.

Rewards R As we observe in Figure 4.4a, Agent’s Reward with E-greedy fluctuates much
at some periods and at other periods it is close to 0. The most common range where Reward
lays at is [-100,100]. On the first day (steps 0-400), the reward lays at between [-100,100]
and Agent has not any extreme outcomes. On the second day (steps 400-800), on the first
half (steps 400-600) Agent receives some extreme values. That happens because the price
has some mild ups and downs so the Agent wants to make more orders. On the second half
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(steps 600-800) the Reward is very small, due to large price drop. When price drops that
much, the environment is very unstable for the Agent so it can place many orders. On the
third day (steps 800-1200), the Reward fluctuations rise gradually as the Agent adapts to
the previous days price drop and the environment is more stable. On the fourth day (steps
1200-1600), the reward outcomes are low at start, due to another price drop. Then price
becomes more stable and rises so the Agent places some orders.

Cash C Agent’s cash on the first day (figure 4.4b, steps 0-400) is most of the time slighly
below starting cash C0, around 9000$ and only in the middle of the day C drops at 6000 $.
At the end of the first day, the Agent ends up with C400 8100$. On the second day (steps
400-800), C rises drammatically and stays most of the day over C0 and reaches 11000 at its
peak. That happened because of the huge drop of price at the start of that day. In the end,
the price rises so the Agent might benefit from that by selling stocks which has been bought
at a lower price. On day three (steps 800-1200), there is a huge drop on the C (it reaches
7500$) and that might happen because price had a mild drop so he bought some stocks. On
day four (steps 1200-1600), C is stable over 11000 most of the day. In the middle of that day
,when C dropped to 8000$ ,because the price started drop so Agent started buying stocks .
That day finished with the Agent having 10650$.

Holdings H with εn-Greedy (figure 4.4c), during the period of four days , have many fluc-
tuations. The largest H which is observed is 150 stocks and the most common range of
its H is between [18,60]. On the first day (steps 0-400), the Agent buys and sells stocks
constantly. The highest number of stocks it has held that day is 90 and it has not managed
to have less than 20 stocks most of the time. On the second day (steps 400-800), H does not
dropped under 18 stocks and it exceeds 45 very few times. That happens because at first
price drops, so the Agent can not sell last day’s stocks but can only buy, and when price
increases a little, it sells very few stocks. On the third day (steps 800-1200), H increased
very much and sometimes it exceeds 100, due to a mild price drop and then the stabilization
of the environment. On the fourth day (steps 1200-1600), H reaches maximum (152 stocks)
after the middle of the day. The Agent’s holdings at the end of the day are 53.

Regret As we can see at Figures 4.4d, 4.4e, on the first day (steps 0-400), the cumulative
Regret has an almost linear increase and finishes at 1850. On the first half of the second
day (steps 400-600), the cumulative Regret increases very fast (Regret=4050) due to the large
price fall. On the second half (steps 600-800), on the other hand, when the environment is
more stable, the Agent performs much better and at the end of that day cumulative Regret
finishes at 4100. Then on third day (steps 800-1200) the cumulative Regret increases until
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step 1050 to 6600. Then from step 1050 to step 1350 on the fourth day, it is stable. Finally
on the second half of the fourth day and until the end, the cumulative Regret is again on
increase and it finishes at 11000. In figure 4.4e mean Regret starts with a huge increase and
then it drops very quickly to 5 and stays as it is till the end of the execution.

Avg
Reward

Max
Reward

Min
Reward

Max
Cash

Min
Cash

Max
Holdings

Min
Holdings

Day 1
(0-400)

0.65 149.9 -112.5 10000 5950 90 0

Day 2
(400-800)

3.45 749.7 -342.1 11000 7900 52 18

Day 3
(800-1200)

1.49 392.5 -212.7 11000 7500 142 20

Day4
(1200-1600)

-0.03 340.8 -322.5 11500+ 7900 150 20

Figure 4.3: Reward,Cash and Holdings information at each day with εnGreedy

4.4 Window based Strategies with UCB1

We used A = UCB1 algorithm. At each T , UCB1 selects a Strategy and at the end of T , it
receives the reward and it updates the bounds of the actions. The algorithm performs with an
Average Reward of 0.92. Also, at the end of the execution, the Agent holds Cfinal = 10635.7$
and Hfinal = 30 stocks.

RewardsR As we observe in Figure 4.6a, Agents Reward with UCB1, The Reward fluctuates
in the same way as with Egreedy but gradually the range of fluctuations decreases. Also
maximum and minimum Reward outcomes are smaller than the outcomes observed with
Egreedy. On the first day (steps 0-400), the reward lays between [-100,100] and there are
not any extreme reward outcomes observed. On the second day (steps 400-800), on the
first half (steps 400-600), the Agent receives some extreme values. That happens because
the price has some mild ups and downs so the Agent wants to make more orders. On the
second half (steps 600-800), the Reward is very small, due to large price drop. When price
drops that much ,the environment is very unstable for the Agent so it can not place many
sell orders. On the third day (steps 800-1200), the Reward fluctuations rise gradually as the
Agents adapts to the previous days price drop and the environment is more stable. On the
fourth day (steps 1200-1600) the environment is stable for the Agent so we can observe some
mild fluctuations with no extreme outcomes.
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(a) Rewards (b) Cash

(c) Holdings (d) Cummulative Regret

(e) Average Regret

Figure 4.4: εn Rewards, Cash, Holdings, Cummulative and Mean Regret during the execution
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Cash C Agent’s cash with UCB1, on the first day (figure 4.6b, steps 0-400),starts with a
huge drop (that means Agent bought many stocks) C<4000$. Then C rises and for the rest
of the day it fluctuates between [8500$,9500$]. On the second day (steps 400-800), C rises
over 10000$ and the rest of the day it fluctuates around 10500$. That happens because
price drops dramatically so the Agent does not buy, due to the price drop. During the third
day (steps 800-1200) C drops below 8000$ and at the end of the day it rises up to 11000$.
Then on the fourth day C drops to 8000$. That happened because price drops in the middle
of the day so Agent buys some stocks. The day finishes with Agent having 10635.7$.

Holdings H Agent’s Holdings with UCB1 (figure 4.6c) during the four days period, have
many fluctuations. The largest H observed is 82 stocks and the most common range of his
H is between [18,25]. At the start of the first day (steps 0-400), Agent holds a large amount
of stocks H>60 and the rest of the day its holdings do not exceed 40. At the end of the day,
it remains with 32 stocks. On the second day (steps 400-800), Agent’s holdings fluctuate
between [17,33]. It bought many stocks because a large price drop happens. On the third day
(steps 800-1200), and after the price stabilizes a bit, H reaches the maximum number(84
stocks). On the fourth day (steps 1200-1600), H reaches another pick (50 stocks) in the
middle of the day. The Agent’s holdings at the end of the day are 30.

Regret As we observe in 4.6d, the cumulative Regret with UCB1 starts on the first day
(steps 0-400) with an increase and in the middle of the day it stabilizes at 500. Similarly on
the second day (steps 400-800) till step 570 it increases abruptly to 1400 but then it becomes
stable. On the third day (steps 800-1200), cumulative regret is stable at start but at step
1000 it increases abruptly to 2000. From step 1100 to 1200 it remains stable at 2000. On
the fourth day (steps 1200-1400), the first half of the day cumulative regret is stable and
then it has a linear increase to 2500. As we observe in figure 4.6e mean Regret starts with a
huge rise and then it drops very quickly to around 2.5 and stays as it is.
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Avg
Reward

Max
Reward

Min
Reward

Max
Cash

Min
Cash

Max
Holdings

Min
Holdings

Day 1
(0-400)

0.57 108.2 -102.5 10100 3000 74 0

Day 2
(400-800)

2.18 504.9 -226.9 10500 8800 37 16

Day 3
(800-1200)

0.79 225.1 -73.8 11000 8800 83+ 16

Day4
(1200-1600)

0.14 151.9 -108.6 11100 10000 50 16

Figure 4.5: Reward,Cash and Holdings information at each day with UCB1
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(a) Rewards (b) Cash

(c) Holdings (d) Cummulative Regret

(e) Mean Regret

Figure 4.6: UCB1 Rewards, Cash, Holdings, Cummulative and Mean Regret during the
execution
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4.5 Window based Strategies with EXP3

We use A = EXP3 algorithm. At each T , EXP3 selects a Strategy and at the end of T ,
it receives the reward and it updates the average reward of those actions. The algorithm
performes with an Average Reward of 0.82. Also at the end of the execution the Agent holds
Cfinal = 10302.69$ and Hfinal = 32 stocks.

Rewards R As we can see in figure 4.8a, Reward fluctuates pretty similar with EXP3 as
for Egreey and UCB. The only difference is that on the first two days the reward has many
fluctuations, and some large Reward outcomes are also observed, and on the last two days
the fluctuations are significally small. On the first day (steps 0-400), the reward lays between
[-60,100] and there are not any extreme reward outcomes observed. On the second day (steps
400-800), on the first half (steps 400-600), the Agent receives some extreme values. That
happens because the price has some mild ups and downs so the Agent wants to make more
orders. The second half (steps 600-800) the Reward is very small, due to large price drop.
When price drops that much ,the environment is very unstable for the Agent so he can place
many orders. On the third day (steps 800-1200), the Reward fluctuations rise gradually as
the Agent adapts to the previous days price drop and the environment is more stable. On
the fourth day (steps 1200-1600) , the reward lays between [-50,120] and there are not any
extreme reward outcomes observed.

Cash C The Agent’s Cash with EXP3 on the first day (figure 4.8b, steps 0-400) starts with
a huge drop C<7000$ and for the rest of the day it ranges around 9000$ with some mild
droppings. At the end of the day it is C=8550$. On the second day (steps 400-800), C rises
up to 10000$ and stays there. That is because of a large price drop which occurs in the
middle of the second day. The Agent does not want to do any buys because of the instability
of the environment. On the third day (steps 800-1200), C has only some small fluctuations,
only drops twice below 10000$. That means that Agent does not make many buys, except for
the two situations that are mentioned above. On the fourth day (steps 1200-1600), C drops
a little bit in the middle of that day due to some mild price dropping that occurs then.

Holdings H The Agent’s Holdings with EXP3 during the four days period have many fluctu-
ations (figure 4.8c). The largest H observed is 56 stocks and the most common range of his
H is between [18,40]. On the first day (steps 0-400), the Agent’s holdings have many fluctu-
ations from 50 to 0. On the second day (steps 400-800), H again has many fluctuations but
less extreme than the previous day and it ranges between [18,40]. On the third day (steps
800-1200), a large spike occurs (55 stocks) and that happens because of the stabilization of
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the price after the drop of the previous day. On the fourth day (steps 1200-1600), the Agent’s
holding are most of the day H>30. The Agent’s holdings at the end of the day are 32.

Regret As we observe in figure 4.8d, the cummulative Regret with EXP3 increases linearly
on the first day (steps 0-400) and it finishes at 500. Then a huge increase occurs to 2500
from the start of the first day until the middle of that day. Then from the start of the third
day (steps 800-1200) till the end (step 1600), the cummulative regret is gradually increasing
linearly till it finishes at 3900. Similarly, in figure 4.8e mean Regret starts with a huge rise
and then it drops very quickly to 1 in the middle of the first day. At the end of the second
day, another small rise to 4 observed and it drops again quickly to around 3.

Avg
Reward

Max
Reward

Min
Reward

Max
Cash

Min
Cash

Max
Holdings

Min
Holdings

Day 1
(0-400)

0.45 97.2 -69.1 10100 7000 55 0

Day 2
(400-800)

2.07 581.4 -305.4 10400 8500 42 18

Day 3
(800-1200)

0.71 252.1 -71.4 10700 9500 55 18

Day4
(1200-1600)

0.03 130.2 -92.5 10700 10050 44 18

Figure 4.7: Reward,Cash and Holdings information at each day with EXP3
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(a) Rewards (b) Cash

(c) Holdings (d) Cummulative Regret

(e) Mean Regret

Figure 4.8: EXP3 Rewards, Cash, Holdings, Cummulative and Mean Regret during the exe-
cution
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4.6 Summary

As for the Rewards εn-greedy gives the best Average Reward (1.39) compared to UCB1(0.92)
and EXP3(0.82), throughout the experiments. As we can observe from the respective figures
(4.4a,4.6a,4.8a) that show the Reward at every step during the execution, εn-greedy gives
some extreme outcomes at some steps, so it has an impact on the Average reward to be slighly
higher than the other two algorithms. εn-greedy has also a better average Reward than the
Best Strategy(1.20).

Again with εn-greedy the Agent remains with the best Porfolio V 12464.35$ with C=11030.7$
and H=53 stocks. It also performs better than the Best Strategy which has V 11919.7$ with
C=11000$ andH=34 stocks. Next best porfolio is UCB1 with V=11447.2$ ,C=10635.7$,H=30
and final portfolio is the EXP3 with V=11168.29$ ,C=10302.69$,H=32.

As we observe from Figures (4.4c,4.6c,4.8c) about how much stocks the Agent holds at every
step, with εn-greedy, the Agent holds large positions most of the time, which is dangerous,
in the sense that it might not be able to sell the stocks or he migh sell them in a lower price.
The Holdings of UCB1 and EXP3 are pretty much the same during the execution and no
extreme values are observed.

Average
Reward

Final
Cash
($)

Remaining
stocks

Portfolio
($)

Best Strategy 1.20 11000 34 11919.7
En-Greedy 1.39 11030.7 53 12464.35
UCB1 0.92 10302.69 30 11447.2
EXP3 0.82 10302.69 32 11168.29

Figure 4.9: Comparing Algorithms on Reward, Cash, Holdings and Porfolio

The UCB1 Algorithm gives the best cumulative Regret=2500. It also finds the best strategy
very quickly at each time period as we can see at mean Regret 4.6e. As we observe in figure
4.6d, after some increases of the cumulative Regret, there is always a large period where
the cumulative Regret remains stable, which means that it follows the best strategy at that
period. EXP3 performs a little bit worse than UCB1 with final cumulative Regret=3900. It
also has less periods where cummulative Regret remains stable while it does not have extreme
increases. En-greedy ends up with the worst performance of cummulative Regret=11000. It
has some small periods where the cummulative Regret is stable, but most of the time it has
large increases and that means it cannot easily find the best Strategy. Also the mean Regret
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of En-greedy.

Average Regret
EnGreedy

Average Regret
UCB

Average Regret
EXP3

Day 1
(0-400)

4.04 1.29 1.14

Day 2
(400-800)

6.44 2.20 5.06

Day 3
(800-1200)

8.42 1.44 1.54

Day4
(1200-1600)

8.55 1.37 2.03

Figure 4.10: Comparing Algorithms on Average Regret at each day

Cummulative Regret
En-Greedy 11000
UCB1 2500
EXP3 3900

Figure 4.11: Comparing Algorithms on Cummulative Regret

Figure 4.12: Comparison of mean Regret for Egreedy, UCB1 and EXP3
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Chapter 5

Conclusions

In this thesis, an automated Agent has been developed in order to trade stocks. Furthermore,
we proposed a class of window based strategies, inspired from Abernethy and Kale [1], based
on which, the Agent tries to profit from the price changes.

The basic goal of the Agent is to explore which is the most profitable strategy at any given
time period, and use it, as long as it remains profitable. For that reason, we applied a class
of Online learning Algorithms (εngreedy, UCB1 and EXP3) drawn from the bandit problem,
in contrast to Abernethy and Kale [1] which used Online Algorithms based on expert advice.

In the conducted experiments, we compared these Algorithms with each other, based on
Agent’s profitability i.e. Agent’s cash, holdings and the reward it receives after following a
certain strategy. A further comparison of these Algorithms has been made, based on the
notion of regret. More precisely, the performance of the algorithm is compared to the way it
would have performed if the best strategy was known and followed in advance.

In order to simulate the whole trading process, we created a custom Limit Order Book from
scratch, in which the Agent buys and sells stocks, as well as an order generator which
generates fake orders. We also analysed the data of Algorithmic trading dataset [6] in order
to create a more realistic flow of orders.

Our results proved that in terms of the Regret, all the algorithms converge quickly to the
performance of the best strategy 4.12. The mean regret of εngreedy is slightly worse than the
UCB and the EXP3. The same parameter, drops really quickly near to 5 and then it remains
stable with some mild ups and downs. Overall, the UCB1 and the EXP3 perform better than
εngreedy. Now, as far as EXP3 and UCB1 are concerned, the EXP3 does not start with such
extreme values, as UCB1 does, while during the remaining execution period they are both
near 3, with UCB1 performing slightly better.
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Even though all three algorithms along with the strategies have been profitable for the Agent,
it would have been more beneficial if the experiments had been performed with real data, in
an effort to investigate whether those algorithms would be suitable for realistic problems. In
future work, it would be interesting to compare how the bandit Algorithms we studied will
perform against online expert advice algorithms in terms of regret.
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Appendix A

Additional results

(a) Price (b) Mean Regret

Figure A.1: 2nd Comparison of mean Regret for Egreedy, UCB1 and EXP3
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(a) Price (b) Mean Regret

Figure A.2: 3rd Comparison of mean Regret for Egreedy, UCB1 and EXP3

(a) Price (b) Mean Regret

Figure A.3: 4th Comparison of mean Regret for Egreedy, UCB1 and EXP3
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