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Abstract 

Detection of regions of interest (e.g. mitosis or histologic primitives) in Whole Slide Images in a 

clinical setting is a highly subjective and labor-intensive task. In this thesis we explore recent 

developments in Machine Learning and Computer Vision algorithms to assess their possible usage 

and performance in tasks such as the above, in order to enhance and accelerate healthcare 

procedures. A state-of-the-art Deep Learning framework (Detectron2) is trained on the TUPAC16 

dataset for object detection, and on the JPATHOL dataset for instance segmentation. We evaluate 

its predictions against competing models and discuss further possible improvements. 

 

Keywords: Machine Learning, Deep Learning, Convolutional Neural Networks, Digital Pathology, 

Image classification, Object Detection, Instance Segmentation, Tumor Proliferation, Breast Cancer, 

Nuclei Segmentation, Epithelium Segmentation, Tubule Segmentation 
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Chapter 1: Introduction 

This thesis shall examine the feasibility of using a state-of-the-art Deep Learning 

framework to segment instances of tumor in breast cancer histopathological WSIs, as well as its 

performance. The two fields that shall be explored are Digital Pathology from the medical side 

where the problem lies, and Machine Learning/Computer Vision from the IT side, which offers us 

the techniques for a cost- and time-effective solution. 

Thematic Area 

The massive amounts of data gathered in the medical field has allowed experts to access 

enormous volumes of data about individual patients, but the sheer amount of it would simply forbid 

any human to process, use or understand it. As a response to that challenge, Statistical, Machine 

& Deep Learning techniques are being used (with the help of Big Data frameworks) to detect 

patterns and trends in all that raw data and produce understandable insights useful to experts.  

The applications of ML techniques are spread across most of the medical fields and, while 

specialized software and algorithms have been around for some time, the differences are 

substantial. Until recently, the recommendation (or feature extraction) algorithm was hard coded 

and had a rigid nature, and the decision criteria were usually based on external research that could 

not be representative of the actual use cases as environment and populations could differ. On the 

other hand, ML algorithms can dynamically update with newer data provided by the expert that 

consults the software, providing an increased accuracy on the produced diagnosis. 

The tasks that ML is applied to are numerous and wide-ranging. Identifying potential drug 

combinations, assisting the health practitioner’s diagnosis using the available symptoms data, or 

classifying medical images to the correct disease classes are some of the challenges ML is tasked 

to overcome.  
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The development of information systems for the automated diagnosis of medical images 

constitutes a field of ever-growing scientific research in the last decade. Digital medical images 

are present in most diagnostic labs, providing easy manipulation through various information 

systems. The digital processing of medical images by multiple feature extraction techniques can 

lead to the accumulation of numerous features in a reliable and reproducible way. The analysis of 

biomedical images through the values of extracted features is a process that can be carried out by 

Machine Learning algorithms (through use of various classifiers) and ultimately augment the 

decision making processes of medical experts by providing automated diagnosis insights. The 

information gain of such systems is significant as it enhances the timely and reliable identification 

of important patient cases. Systems like that can be incorporated in local information systems at 

diagnostic centers but can also be a part of a telehealth information system. 

Structure 

The present thesis will follow the following structure: 

The second chapter presents previous work in the field, and relevant background theory 

concerning the problem from a medical perspective. 

The third chapter gives a brief description of Machine Learning, and traditional and state-

of-the-art Computer Vision approaches to Image Analysis. 

The fourth chapter introduces the image datasets (TUPAC16 & JPATHOL) we will train 

our models on, as well as various related research that will facilitate our own research. 

The fifth chapter presents the experimentation procedure followed, the DL framework used, 

and the prediction results achieved. 

In the final two chapters we compare our results to other similar work, discuss 

improvements and draw our conclusions.  
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Chapter 2: Background & Related Work 

Breast Cancer 

Breast cancer is cancer that develops from breast tissue. Signs of breast cancer may include 

a lump in the breast, a change in breast shape, dimpling of the skin, fluid coming from the nipple, 

a newly inverted nipple, or a red or scaly patch of skin. In those with distant spread of the disease, 

there may be bone pain, swollen lymph nodes, shortness of breath, or yellow skin. 

Risk factors for developing breast cancer include being female, obesity, a lack of physical 

exercise, alcoholism, hormone replacement therapy during menopause, ionizing radiation, an early 

age at first menstruation, having children late in life or not at all, older age, having a prior history 

of breast cancer, and a family history of breast cancer. About 5–10% of cases are the result of a 

genetic predisposition inherited from a person's parents, including BRCA1 and BRCA2, among 

others. Breast cancer most commonly develops in cells from the lining of milk ducts and the 

lobules that supply these ducts with milk. Cancers developing from the ducts are known as ductal 

carcinomas, while those developing from lobules are known as lobular carcinomas. There are more 

than 18 other sub-types of breast cancer. Some, such as ductal carcinoma in situ, develop from pre-

invasive lesions. The diagnosis of breast cancer is confirmed by taking a biopsy of the concerning 

tissue. Once the diagnosis is made, further tests are done to determine if the cancer has spread 

beyond the breast and which treatments are most likely to be effective. 

The balance of benefits versus harms of breast cancer screening is controversial. A 2013 

Cochrane review found that it was unclear if mammographic screening does more harm than good, 

in that a large proportion of women who test positive turn out not to have the disease. A 2009 

review for the US Preventive Services Task Force found evidence of benefit in those 40 to 70 years 

of age, and the organization recommends screening every two years in women 50 to 74 years of 
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age. The medications tamoxifen or raloxifene may be used to prevent breast cancer in those who 

are at high risk of developing it. Surgical removal of both breasts is another preventative measure 

in some high-risk women. In those who have been diagnosed with cancer, several treatments may 

be used, including surgery, radiation therapy, chemotherapy, hormonal therapy, and targeted 

therapy. Types of surgery vary from breast-conserving surgery to mastectomy. Breast 

reconstruction may take place at the time of surgery or later. In those in whom the cancer has 

spread to other parts of the body, treatments are mostly aimed at improving quality of life and 

comfort. 

The five-year survival rates in England and the United States are between 80 and 90%. In 

developing countries, five-year survival rates are lower. Worldwide, breast cancer is the leading 

type of cancer in women, accounting for 25% of all cases. In 2018 it resulted in 2 million new 

cases and 627,000 deaths. It is more common in developed countries and is more than 100 times 

more common in women than in men. 

Diagnosis 

Most types of breast cancer are easy to diagnose by microscopic analysis of a sample 

(biopsy) of the affected area of the breast. Also, there are types of breast cancer that require 

specialized lab exams.  

The two most used screening methods, physical examination of the breasts by a healthcare 

provider and mammography, can offer an approximate likelihood that a lump is cancer, and may 

also detect some other lesions, such as a simple cyst. When these examinations are inconclusive, 

a healthcare provider can remove a sample of the fluid in the lump for microscopic analysis (a 

procedure known as fine needle aspiration, or fine needle aspiration and cytology, FNAC) to help 

establish the diagnosis. A needle aspiration can be performed in a healthcare provider's office or 
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clinic. A local anesthetic may be used to numb the breast tissue to prevent pain during the procedure 

but may not be necessary if the lump is not beneath the skin. A finding of clear fluid makes the 

lump highly unlikely to be cancerous, but bloody fluid may be sent off for inspection under a 

microscope for cancerous cells. Together, physical examination of the breasts, mammography, and 

FNAC can be used to diagnose breast cancer with a good degree of accuracy.  

Other options for biopsy include a core biopsy or vacuum-assisted breast biopsy, which are 

procedures in which a section of the breast lump is removed; or an excisional biopsy, in which the 

entire lump is removed. Very often the results of physical examination by a healthcare provider, 

mammography, and additional tests that may be performed in special circumstances (such as 

imaging by ultrasound or MRI) are sufficient to warrant excisional biopsy as the definitive 

diagnostic and primary treatment method. 

One of the main problems found in the medical field, and which is being mitigated by help 

of Machine Learning, is the huge amount of medical data that has to be processed in order to reach 

conclusions about e.g. patient treatment, diagnosis, drug efficacy, pandemic prevention, and 

general research. Initially, medical experts had to manually sort through this data in its multitude 

of forms (images, text, numerical, etc.) in order to reach a conclusion. However, with the great 

advances in computational power during the last decade, Machine Learning (ML) and Deep 

Learning (DL) have placed this power at the feet of the experts who can reach their desired 

conclusions with great savings in time and cost, and, in some cases, greater accuracy than what 

any human could achieve. 

Digital Pathology 

Over the last decade, the nature of diagnostic healthcare has changed rapidly owing to an 

explosion in the availability of patient data for disease diagnosis (Madabhushi, 2009). Traditional 
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methods of analysis of cancer samples were limited to a few variables, usually stage, grade, and 

the measurement of a few clinical markers, such as estrogen receptor, progesterone receptor, HER2 

for breast cancer and prostate specific antigen for prostate cancer (CaP). The pathologist was 

trained to synthesize this information into a diagnosis that would help the clinician determine the 

best course of therapy. These data were also used to try to understand the molecular basis of cancer 

with the goal of improving therapy. With the recent advent and cost-effectiveness of whole slide 

digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. 

With the availability and analysis of a much larger set of variables combined with sophisticated 

imaging and analysis techniques, the traditional paradigm of a pathologist and a microscope could 

rapidly be replaced with a digital pathologist relying on a large flat screen panel to view and rapidly 

analyze digitized tissue sections. 

Diagnosis: Dramatic increases in computational power and improvement in image analysis 

algorithms have allowed the development of powerful computer assisted analytical approaches to 

biomedical data. Just as with digital radiology over two decades ago, digitized tissue 

histopathology has now become amenable to the application of computerized image analysis and 

machine learning techniques for accurate diagnosis. In the context of CaP, for example, of the 

approximately 1 million biopsies performed in the USA every year, only 20% are found to be 

positive for cancer. This implies that pathologists are spending a large fraction of their time looking 

at benign tissue, which in most cases is easily distinguishable from cancer. This represents a huge 

waste of time and resources that might be better spent analyzing patients who indeed have CaP, or 

to focus on the cases where the disease is difficult to identify/classify or presents with nonstandard 

features. Consequently, several researchers have begun to develop computer aided diagnosis 

methods by applying image processing and computer vision techniques to try and identify spatial 
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extent and location of diseases such as breast cancer, CaP, neuroblastomas and meningiomas on 

digitized tissue sections. 

One of the principal challenges in analysis of digital histopathology data is the enormous 

density of data that the algorithms must contend with, compared with radiological and other 

imaging modalities. For instance, the largest radiological datasets obtained on a routine basis are 

high-resolution chest CT scans comprising approximately 512 × 512 × 512 spatial elements or 

approximately 134 million voxels. A single core of prostate biopsy tissue digitized at 40× 

resolution is approximately 15,000 × 15,000 elements or approximately 225 million pixels. To put 

this in context, a single prostate biopsy procedure can comprise anywhere between 12 and 20 

biopsy samples or approximately 2.5–4 billion pixels of data generated per patient study. Thus, 

unlike computer-aided detection (CAD) algorithms previously proposed for radiology, 

histopathology CAD algorithms are typically constructed within a multiresolution framework for 

them to be rapid, efficient, and accurate. 

Prognosis: A second important role of computerized image analysis of Digital Pathology 

(DP) is to identify prognostic markers and to predict disease outcome and survival. For instance, 

in both breast cancer and CaP, cancer grade is known to be highly correlated to patient outcome 

and long-term survival. One of the issues with grade determination by a pathologist is the high 

degree of inter- and intra-observer variability. Since pathologist grade is reflected in tissue 

architecture and nuclear arrangement, graph-based algorithms have been proposed to 

quantitatively characterize spatial arrangement and distribution of histological structures such as 

cancer nuclei, lymphocytes, and glands. It is conceivable that these image-based predictors may 

in the future become powerful and accurate enough to be able to rival more expensive molecular 

prognostic assays in predicting disease outcome.  
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Theragnosis: It has always been accepted that cancer is a complex disease that we do not 

yet fully understand. In the clinic, the same treatment applied to two patients with diseases that 

look very similar have vastly different outcomes. A part of this difference is undoubtedly patient 

specific, but a part must also be a result of our limited understanding of the relationship between 

disease progression and clinical presentation. There is a consensus among clinicians and 

researchers that a more detailed approach, using computerized imaging techniques to better 

understand tumor morphology, combined with the classification of diseases into more meaningful 

molecular subtypes, will lead to better patient care and more effective therapeutics. The variables 

that can be used in such an analysis are the molecular features of a tumor (as measured by gene 

expression profiling or real-time PCR and FISH), results from the imaging of the tumor cellular 

architecture and microenvironment (as captured in histological imaging), the tumor 3D tissue 

architecture and vascularization (as measured by dynamic contrast enhanced MRI) and its 

metabolic features (as seen by metabolic or functional imaging modalities e.g., magnetic resonance 

spectroscopy or PET).While digital pathology offers very interesting, highly dense data, one of the 

exciting challenges in the future will be in the area of multimodal data fusion for making therapy 

recommendations (theragnosis), especially as it pertains to personalized medicine.  

Role of the pathologist: While image analysis methods for digital pathology are rapidly 

finding application in the clinic, both imaging, computer scientists and pathologists alike need to 

appreciate that the primary purpose of these tools is to complement the role of the pathologist. 

They will not in the short or medium term be able to replace the vast domain of expertise that a 

pathologist brings to the table; a lesson that we can appreciate from radiology where the 

availability of commercial CAD systems over the last two decades has not in any way diminished 

the role of the radiologist. Most histopathology image analysis researchers are computer vision 
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researchers. As such, it is important to maintain a constant collaboration with clinical and research 

pathologists throughout the research process. There are unique challenges to analysis of 

histopathology imagery, particularly in the performances required for eventual use of the technique 

in a clinical setting. It is the pathologist who can best provide the feedback on the performance of 

the system, as well as suggesting new avenues of research that would provide beneficial 

information to the pathologist community. Additionally, it is the pathologist that is best equipped 

to interpret the analysis results considering underlying biological mechanisms which, in turn, may 

lead to new research ideas. 

Outlook: We are living in an exciting time when disease diagnostics and treatment are 

becoming more accurate and patient specific. Computerized imaging methods are beginning to 

assist the pathologist and radiologist in making an accurate diagnosis of disease and identify 

morphological features correlated with prognosis. Molecular profiling of disease promises to help 

the clinician understand the underlying biology of the disease and suggest new and more effective 

therapeutics. We stand at the threshold of an era when predictive, preventive, and personalized 

medicine will transform medicine by decreasing morbidity in cancer. We believe this 

transformation will be driven by the integration of multiscale heterogeneous data. The goal of the 

research of many scientists is aimed at a future when disease diagnostics will involve the 

quantitative integration of multiple sources of diagnostic data, including genomic, imaging, 

proteomic and metabolic data acquired across multiple scales/resolutions that can distinguish 

between individuals or between subtle variations of the same disease to guide therapy. Quantitative 

crossmodal data integration will also allow disease prognostics, enabling physicians to predict 

susceptibility to a specific disease as well as disease outcome and survival. Finally, the analysis 

will provide theragnostic; the ability to predict how an individual will react to various treatments. 
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Such a theragnostic profile would be a synthesis of various biomarkers and imaging tests from 

different levels of the biological hierarchy. It would be used as the ‘signature’ of an individual 

patient, useful in predicting her/ his response to drug treatment. A collection of these profiles, 

followed up over time, would provide insights into the disease process and be useful for 

improvements in developing future treatment options. 

Existing approaches vs Deep Learning 

Digital pathology is becoming increasingly common due to the growing availability of 

whole slide digital scanners. These digitized slides afford the possibility of applying image analysis 

techniques to DP for applications in detection, segmentation, and classification. Algorithmic 

approaches have shown to be beneficial in many contexts as they have the capacity to not only 

significantly reduce the laborious and tedious nature of providing accurate quantifications, but to 

act as a second reader helping to reduce inter-reader variability among pathologists. Several image 

analysis tasks in DP involve some sort of quantification or tissue grading and invariably require 

identification of histologic primitives (e.g., nuclei, mitosis, tubules, epithelium, etc.). As a result, 

there is a strong need to develop efficient and robust algorithms for analysis of DP images. 

While there have been a few papers in the area of computational image analysis of DP 

images for the purposes of object detection and quantification in the last few years, there appear 

to be two main drawbacks to existing approaches. First, the development of task specific 

approaches tends to require long research and development cycles: an algorithmic scheme needs 

to be developed which can account for as many of the variances as possible while not being too 

general as to result in false positive results or too narrow as to result in false negative errors. This 

process can become quite unwieldy as it is often infeasible to view all the outlier cases a priori, 

and thus an extensive iterative trial and error approach needs to be undertaken. The second 



DIGITAL IMAGING PATHOLOGY AND MACHINE LEARNING 18 

drawback with existing approaches is the required but limited implicit knowledge of how to find 

or adjust optimal parameters often resides solely with the developers of the algorithms and thus 

are not intuitively understood by external parties. Together, these create a strong hindrance for 

researchers to leverage or extend the available technology to investigate their clinical hypothesis. 

Deep learning is an example of the machine learning paradigm of feature learning; wherein 

it iteratively improves upon learned representations of the underlying data with the goal of 

maximally attaining class separability. There are no preexisting assumptions about any task or 

dataset in the form of encoded domain-specific insights or properties which guide the creation of 

the learned representation. The DL approach involves deriving a suitable feature space solely from 

the data itself. This is a critical attribute of the DL family of methods, as learning from training 

exemplars allows for a pathway to generalization of the learned model to other independent test 

sets. Once the DL network has been trained with an adequately powered training set, it is usually 

able to generalize well to unseen situations, obviating the need of manually engineering features. 

DL is suited to analyze big data repositories where employing a feature engineering or 

approach would require several algorithmic iterations and substantial effort to capture a similar 

range of diversity. Many manually engineered or feature-based approaches are not implicitly 

poised to manipulate and distil large datasets into classifiers in an efficient way. DL approaches, 

on the other hand, function well under these circumstances: they have the potential to become the 

unifying approach for the many tasks in DP, having previously been shown to produce state-of-

the-art results across varied domains. As such, the focus of this manuscript is to discuss the usage 

of a single framework which can be marginally tweaked to apply to a diverse set of unique use 

cases. 

  



DIGITAL IMAGING PATHOLOGY AND MACHINE LEARNING 19 

Chapter 3: Machine Learning & Computer Vision 

Machine Learning 

Machine Learning is a research field in computer science and engineering. As a branch of 

Artificial Intelligence it allows the extraction of meaningful patterns from examples, just as human 

intelligence allows us to do (Erickson, 2017). A computer that performs repetitive and well-defined 

tasks can cover a variety of use cases as it will perform a given task consistently and efficiently, 

unlike humans. In the last decades, computers have demonstrated the ability to learn and even have 

become proficient in tasks that were thought to be too complex for machines, showing that ML 

algorithms can be critical components of computer-aided diagnosis and decision support systems. 

An intriguing finding is that in some instances computers may be able to discern patterns that are 

imperceivable to humans. This discovery has naturally led to strong and heightened enthusiasm in 

the field of ML, especially along with the latest substantial increases in computational performance 

and available data. 

Of great interest is how ML could be applied to medical imaging. Using ML algorithms to 

perform computer-aided detection and diagnosis can help medical experts interpret medical 

imaging findings and reduce analysis times. Examples of challenging tasks where these algorithms 

have been used are: pulmonary embolism segmentation with computed tomographic (CT) 

angiography, polyp detection with virtual colonoscopy or CT in the setting of colon cancer, breast 

cancer detection and diagnosis with mammography, brain tumor segmentation with magnetic 

resonance (MR) imaging, and detection of the cognitive state of the brain with functional MR 

imaging to diagnose neurologic diseases (e.g., Alzheimer disease). 

A broadly accepted definition of ML is: If an ML algorithm is applied to a dataset and some 

knowledge (ground truth) related to that, then the algorithm system can learn from the training 
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data and apply what it has learned to make a prediction. An example would have medical images 

of tumors as data, classification of benign or malignant per instance as knowledge, and whether a 

new image is depicting benign or malignant tumor tissue as the output prediction. The algorithm 

is considered to be learning a task as the system optimizes its variables in such a way that its 

performance metrics improve, meaning more test cases are diagnosed correctly. 

Machine Learning now has many areas of application outside of medicine, with a central 

role in tasks such as language translation, speech recognition, product recommendations, and 

autonomous vehicle navigation. Even though some of those were unattainable up to a while ago, 

recent advances have made them feasible. Older ML algorithms demanded structured input, and 

some techniques would fail learning if any point of data were missing, but newer algorithms can 

accommodate omissions in data and, in some instances, purposefully create data omissions to make 

the algorithm more robust. 

Four branches of machine learning 

Machine Learning algorithms generally fall into four broad categories, as described in the 

following sections: supervised, unsupervised, self-supervised and reinforcement learning.  

Supervised learning: This is the most common case and consists of learning to map input 

data to known targets (annotations), given a set of examples (often annotated by humans). 

Examples of supervised learning algorithms include support vector machine, decision tree, linear 

regression, logistic regression, naive Bayes, k-nearest neighbor, random forest, AdaBoost, and 

neural network methods. Generally, almost all applications of DL that are in the spotlight these 

days belong in this category, such as optical character recognition, speech recognition, image 

classification, and language translation. Although supervised learning mostly consists of 

classification and regression, there are more exotic variants as well, including:  
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Sequence generation: Given a picture, predict a caption describing it. Sequence generation 

can be reformulated as a series of classification problems (e.g. repeatedly predicting tokens). 

Syntax tree prediction: Given a sentence, predict its decomposition into a syntax tree. 

Object detection: Given a picture, draw a bounding box around certain objects inside the 

picture. This can also be expressed as a classification problem (given many candidate bounding 

boxes, classify the contents of each one) or as a joint classification and regression problem, where 

the bounding-box coordinates are predicted via vector regression. 

Image segmentation: Given a picture, draw a pixel-level mask on a specific object. In a 

related example of a brain tumor classification problem (malignant vs benign vs normal), 

supervised learning involves gaining experience by using images of brain tumor examples that 

contain important information (benign vs malignant labels) and applying the gained expertise to 

predict benign and malignant neoplasia on unseen new brain tumor images (test data).  

Figure 1: ML model development and application model for medical image classification tasks. 
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Unsupervised learning: This branch of ML consists of finding interesting transformations 

of the input data without the help of any targets, for the purposes of data visualization, data 

compression, or data denoising, or to better understand the correlations present in the data at hand. 

Unsupervised learning is the main means of Data Analytics and it is often a necessary step in better 

understanding a dataset before attempting to solve a supervised-learning problem. Dimensionality 

reduction and clustering are well-known categories of unsupervised learning. Examples of 

unsupervised learning algorithm systems include K-means, mean shift, affinity propagation, 

hierarchical clustering, DBSCAN (density-based), Gaussian mixture modeling, Markov Random 

Fields SODATA (iterative self-organizing data), amongst others. 

In the Digital Pathology field, a common task is where data are processed in order to 

separate the images into groups - for example, benign and malignant tumors - without providing 

the algorithm with information regarding what the groups are; the algorithm determines the group 

count and the approach of separation.  

Self-supervised learning: Self-supervised learning is supervised learning without human-

annotated labels. There are still labels involved (because the learning must be supervised by 

something), but they are generated from the input data, typically using a heuristic algorithm. 

For instance, autoencoders are a well-known instance of self-supervised learning, where 

the generated targets are the unmodified input. In the same way, trying to predict the next frame in 

a video, given past frames, or the next word in a text, given previous words, are instances of self-

supervised learning (temporally supervised learning, in this case: supervision comes from future 

input data). Note that the distinction between supervised, self-supervised, and unsupervised 

learning can be blurry sometimes, as these categories are more of a continuum without solid 

borders. Self-supervised learning can be reinterpreted as either supervised or unsupervised 
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learning, depending on whether you pay attention to the learning mechanism or to the context of 

its application. 

Reinforcement learning: Long overlooked, this branch of ML recently started to get a lot 

of attention after Google DeepMind successfully applied it to learning to play Atari games. In 

reinforcement learning, an agent receives information about its environment and learns to choose 

actions that will maximize some reward. For instance, a neural network that “looks” at a 

videogame screen and outputs game actions in order to maximize its score can be trained via 

reinforcement learning. Currently, reinforcement learning is mostly a research area and has not yet 

had significant practical successes beyond games. In time, however, reinforcement learning is 

expected to take over an increasingly large range of real-world applications: self-driving cars, 

robotics, resource management, education, and so on.  

In this thesis, we focus on supervised learning, since it is the most common training style 

applied to medical images.  

Feature Extraction and Selection 

The primary action in ML is to retrieve the features that contain the information on which 

insights will be based. Even though feature learning visually is easy for humans, e.g. during 

medical training, computing and representing a feature is a complex task. A usual approach is 

assigning a numeric value to an optical texture. Visual features must be robust enough to overcome 

morphological variations, the most common of whom observed in medical imaging data being 

rotations, noise, and intensity differences. 

It is possible to retrieve a great number of features from a given image, but too many 

features can stunt the learning of the true characteristics of a decision and lead to overfitting. In 

order to make the best possible predictions, a subset of the features has to be selected; this process 
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is known as feature selection. A popular feature selection technique is looking for correlations 

amongst features: large numbers of correlated features may mean that some features may be 

omitted, and their number can be reduced with minimal information loss. Nonetheless, depending 

on the case, a complex relationship may exist and evaluating an isolated feature may be unsound.  

For example, let us imagine a binary classification list with people’s weights, where each 

weight indicates obesity or absence thereof. By adding a heights attribute, the accuracy would 

likely improve: a high weight value together with a low height value are more probable to indicate 

obesity than a high weight value together with a high height value. 

Training and Testing 

Supervised ML takes its name from the need for available samples from each class to be 

learned. Too few samples will prevent a model from recognizing the needed features of an object 

that will allow it to discern between the various classes. The required number of samples for every 

class to be learned depends mainly on the discreteness of each class. 

The cross-validation technique is a popular approach to evaluating the accuracy of an ML 

model when there is a limited dataset available. Using cross-validation on a given dataset, a split 

is made on the dataset, using its major partition of samples for training, and designating the 

remainder for testing purposes. After training of the model has completed on the training subset, 

the learned model is tested on the testing subset. The process is repeated multiple times, but with 

a different split of training and testing samples from the full dataset of samples. The most extreme 

version would call removing just one sample for testing and using the rest for every training 

iteration, which is known as leave-one-out cross-validation. Despite being considered a good 

method for accuracy evaluation, cross-validation is limited in that each training and testing 

iteration results in a separate model, not providing a single final model ready for use. 
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Types of Machine Learning Algorithms 

There is a great variety of ML algorithms available for obtaining the optimum weights for 

features, based on differing assumptions concerning the data and depending on different methods 

for adjusting the feature weights. Some of the most used algorithms are described below. 

Neural Networks: The archetypal ML method is neural networks, whose learning schema 

is divided in three functions: (a) the error function that quantifies the output quality for a given set 

of inputs, (b) the search function that defines the derivative (direction and magnitude of change) 

needed to minimize the error function, and (c) the update function that determines how the weights 

of the network are refined based on the search function values. During training, as samples are 

presented to the neural network, the error for each is computed, and the total error is measured. 

For each iteration, the search function determines the gradient according to the total error, and the 

update function uses this to adjust the weights. The weights are continuously updated until the 

error is steadily minimized. 

Figure 2: Example neural network with input nodes, hidden layers, and an output layer. 
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Let us take as an example a neural network with n-input nodes, two hidden layers, and an 

output layer with several output nodes (Figure 2). The output nodes are summed and compared 

with the desired output by the error function, returning a loss metric, with which the weights in the 

neural network are updated. Real-world neural networks generally are built with multiple hidden 

layers and utilize more complex functions. 

k-Nearest Neighbors: With k-nearest neighbors we classify a collection of features for an 

unknown sample by assigning it to the most related classes. We define neighbors as the nearest 

samples that determine the classes our sample object may belong. If the neighbor count is 1, then 

the unknown sample is directly attached to the class of that single neighbor. It is crucial the 

normalization of the feature vectors is implemented properly, so that the similarity function, which 

determines the distances amongst the samples, can return valid results. This function is usually 

defined as a Minkowski or Euclidean. 

Support Vector Machines: SVMs transform input data so that maximum separation 

between the classes is achieved, by splitting them with the widest possible plane or support vector. 

They allow flexibility in setting the tradeoff point between widest plane of separation and the 

number of misclassified points. SVMs were developed in the ‘90s, but gained traction in the most 

recent years thanks to the addition of functions that can map points to other dimensions by using 

nonlinear relationships, thus allowing classification of non-linearly separable samples, which is 

considered an important advantage over the other ML methods.  

Decision Trees: Compared to many other ML methods described, decision trees have the 

significant advantage that the rules they generate can be understood by humans, with regard to 

classification of samples. They are recognizable to most people and use the yes/no scheme, e.g. 

whether a feature value is above a threshold. Another advantage of decision trees is the ability to 
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rapidly search through the many possible combinations to find the one that will form the simplest 

and most accurate tree. When run, two parameters need to be set: maximal depth (number of 

decision points) and maximal breadth, which establish the tradeoff between accurate results and 

more decision points.  

In some cases, an ensemble method can be used to improve results, where multiple decision 

trees are constructed, the most common of whom are random forest and boosting with aggregation 

techniques. When boosting with aggregation (bagging), multiple decision trees are generated by 

repeatedly resampling the training data through replacement, and voting on them to reach a 

consensus. The random forest technique uses a few decision trees to improve accuracy without 

resampling the data, and, unlike bagg ing where all features are considered for splitting nodes, 

only a subset of those is selected at random and each node is split using the best split feature from 

the subset.  

Naive Bayes Algorithm: According the Bayes theorem, which is one of the oldest ML 

methods, the probability of an event is a function of related events as defined by its formula: 

P(y|x)  =  
P(y)×P(x|y)

P(x)
. In ML, wherever multiple input features are available, the probabilities of 

each feature must be chained together to calculate the probability of a class, given the provided 

array of features. The NBA is different from most ML algorithms in that a single computation is 

defines the relationship between an input and an output feature set. Therefore, unlike most other 

ML methods, this one does not involve an iterative training process, but other training/testing data 

issues still do apply. The “Naïve” reference emphasizes that all features are assumed to be 

independent amongst themselves, even though this may lead to inaccurate results in real-life 

problems. Still, even when this assumption is breached, useful estimates of performance can be 

obtained. 
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Finally, the NBA often leads to better results with fewer available samples or possibilities. 

These factors highlight the importance of having reliable prior probabilities, apart from accuracy 

alone, when measuring performance metrics. 

Deep Learning 

Deep Learning (DL) is a novel and rapidly developing research area yielding very 

interesting results. Due to limitations in computing power and difficulties in the backpropagation 

process, primitive neural networks had mostly less than 5 layers (shallow nets); by the current 

definition, DL concerns neural networks typically deeper than 20 layers. These challenges have 

been overcome through leveraging the parallel computing power of game-oriented GPUs, mostly 

developed by NVidia. Different DL NN architectures have been developed for varying purposes, 

such as speech recognition, language translation, classification and segmentation on images, etc. 

Some of the available DL algorithms are stacked auto encoders, Boltzmann machines, Deep Neural 

Networks (DNNs), Recurring Neural Networks (RNNs), and Convolutional Neural Networks 

(CNNs).  

This thesis will concentrate on CNNs as these networks are typically used for problems 

involving images (photos, medical and scientific imaging, etc.). The main point of CNNs is that 

they assume that the input arrays have some sort of localized geometric relationship between their 

Figure 3: Example neural network with two hidden layers 
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rows and columns of pixels. The input layer nodes of a CNN are set to produce a moving 

convolution of a matrix (called kernel) over the input image, computing an output value at each 

location.  

Other layers found in a CNN apart from the convolution kernels are activation layers and 

pooling layers. Activation layers initially implemented functions designed to simulate the 

sigmoidal activation function of neurons, but modern ones are much simpler, typically 

implementing a rectified linear unit (ReLU) which returns zero value for negative input values, 

otherwise returns the positive input value. The pooling layer implements a max-pool function: it 

takes the output of a convolution kernel and outputs only its greatest value, rewarding so the 

optimal convolution function that derives the most significant features of an image. 

During training of DNNs, it is crucial to implement regularization, where weights between 

layers are rescaled to a more efficient range. One regularization approach is application of 

Dropout: random weights between nodes of layers (typically more than half) are set to zero with 

each learning round (epoch). Dropout may improve performance by preventing overfitting. 

Through enough iterations, if random weights are set to zero and a number of samples are passed 

for training, then only the important weights will have a significant effect on performance and will 

be preserved until the end of training. 

Concerning the DNN’s architecture, there are no set rules to define the correct number, 

type, size or ordering of layers for a given problem – it is still a trial and-error process. Some DNN 

architectures that have been successful in ML competitions (e.g. the ImageNet Challenge) are 

LeNet, GoogleNet, AlexNet, VGGNet, and ResNet.  

In comparison with traditional ML techniques, CNN DL algorithms have the important 

benefit of not needing to compute initial features. The CNN can efficiently extract the important 
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features during training. eliminating the testing bias, computational overhead, and selection 

procedure of features that a human believes to be of importance. 

Deep Learning in Computer Vision 

Rapid progressions in DL and improvements in device capabilities including computing 

power, memory capacity, power consumption, image sensor resolution and optics have improved 

the performance and cost-effectiveness of vision-based applications. Compared to traditional CV 

techniques, DL enables CV engineers to achieve greater accuracy in tasks such as image 

classification, semantic segmentation, object detection and Simultaneous Localization and 

Mapping (SLAM) (O’Mahony, 2019). Since neural networks used in DL are trained rather than 

programmed, applications using this approach often require less expert analysis and fine-tuning 

and exploit the tremendous amount of video data available in today’s systems. DL also provides 

superior flexibility because CNN models and frameworks can be re-trained using a custom dataset 

for any use case, contrary to CV algorithms, which tend to be more domain specific. Taking the 

problem of object detection as an example, we can compare the two types of algorithms for 

computer vision, traditional vs DL.  

The traditional approach is to use well-established CV techniques such as feature 

descriptors (SIFT, SURF, BRIEF, etc.) for object detection. Before the emergence of DL, a step 

called feature extraction was carried out for tasks such as image classification. Features are small 

descriptive or informative patches in images. Several CV algorithms, such as edge detection, 

corner detection or threshold segmentation may be involved in this step. As many features as 

practicable are extracted from images and form a definition (a bag-of-words) of each object class. 

At the deployment stage, these definitions are searched for in other images. If a significant number 

of features from one bag-of-words are in another image, the image is classified as containing that 
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specific object (i.e. chair, horse, etc.). The difficulty with this traditional approach is that it is 

necessary to choose which features are important in each given image. As the number of classes 

to classify increases, feature extraction becomes more and more cumbersome. It is up to the CV 

engineer’s judgment and a long trial and error process to decide which features best describe 

different classes of objects. Moreover, each feature definition requires dealing with a plethora of 

parameters, all of which must be fine-tuned by the CV engineer.  

DL introduced the concept of end-to-end learning where the machine is just given a dataset 

of images which have been annotated with what classes of object are present in each image. 

Thereby a DL model is ‘trained’ on the given data where neural networks discover the underlying 

patterns in classes of images and automatically works out the most descriptive and salient features 

with respect to each specific class of object for each object. It has been well-established that DNNs 

perform far better than traditional algorithms, albeit with trade-offs regarding computing 

requirements and training time. With all the state-of-the-art approaches in CV employing this 

methodology, the workflow of the CV engineer has changed dramatically where the knowledge 

and expertise in extracting hand-crafted features has been replaced by knowledge and expertise in 

iterating through DL architectures as depicted in Figure 4: 

Figure 4: (a) Traditional Computer Vision workflow vs. (b) Deep Learning workflow. 
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The development of CNNs has had a tremendous influence in the field of CV in recent 

years and is responsible for a big jump in the ability to recognize objects. This burst in progress 

has been enabled by an increase in computing power, as well as an increase in the amount of data 

available for training neural networks. The recent explosion in and wide-spread adoption of various 

DNN architectures for CV is apparent in the fact that the seminal paper ImageNet Classification 

with Deep Convolutional Neural Networks (Krizhevsky, 2012) has been cited over 63,000 times. 

Neural Networks 

A Neural Network is a graph constructed by artificial neurons called a perceptrons. 

Perceptrons were developed in the 1950s and 1960s by the scientist Frank Rosenblatt, inspired by 

earlier work by Warren McCulloch and Walter Pitts (Rosenblatt, 1958). Today, it is more common 

to use other models of artificial neurons like the sigmoid neuron. A perceptron takes several binary 

inputs and produces a single binary output, as seen in Figure 5. 

In the example shown, the perceptron has three inputs, but, in general, it could have more 

or fewer inputs. Rosenblatt proposed a simple rule to compute the output where he introduced real 

numbers as weights expressing the importance of the respective inputs to the output. The neuron's 

output, 0 or 1, is determined by whether the weighted sum is less than or greater than some 

threshold value. Like the weights, the threshold is a real number which is a parameter of the neuron.  

Figure 5: Perceptron with three inputs and one output 
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A perceptron is a device that makes decisions by weighing up evidence, and it should seem 

plausible that a complex network of perceptrons could make quite subtle decisions. In the 

following network, the first column of perceptrons is making three very simple decisions, by 

weighing the input evidence. Each of the second layer perceptrons is making a decision by 

weighing up the results from the first layer of decision-making. In this way a perceptron in the 

second layer can decide at a more complex and more abstract level than perceptrons in the first 

layer. Even more complex decisions can be made by the perceptron in the third layer. In this way, 

a multi-layer network of perceptrons can engage in sophisticated decision making. 

Sigmoid neurons are similar to perceptrons but modified so that small changes in their 

weights and bias cause only a small change in their output, which is the crucial fact that will allow 

a network of sigmoid neurons to learn. Just like a perceptron, the sigmoid neuron has inputs, but 

instead of being just 0 or 1, these inputs can also take on any values between 0 and 1. Also just 

like a perceptron, the sigmoid neuron has weights for each input and an overall bias. However, the 

output is not 0 or 1; instead, it is σ(w⋅x+b), where σ is called the sigmoid function. One important 

difference between perceptrons and sigmoid neurons is that sigmoid neurons don't just output 0 or 

1 but can have as output any real number between 0 and 1. This can be useful, for example, if we 

Figure 6: Multilayer Perceptron with input, two hidden, and output layers 
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want to use the output value to represent the average intensity of the pixels in an image input to a 

neural network.  

The leftmost layer in this multilayer perceptron (despite being made up of sigmoid neurons) 

is called the input layer, and the neurons within the layer are called input neurons. The rightmost 

or output layer contains the output neurons, or, as in this case, a single output neuron. The middle 

layer is called a hidden layer since the neurons in this layer are neither inputs nor outputs.  

 This network where the output from one layer is used as input to the next layer is called a 

feedforward neural network. This means there are no loops in the network - information is always 

fed forward, never fed back. However, there are other models of artificial neural networks in which 

feedback loops are possible and these are called Recurrent Neural Networks (RNNs). The idea in 

these models is to have neurons which fire for some limited duration of time, before becoming 

quiescent. That firing can stimulate other neurons, which may fire a little while later, also for a 

limited duration, and so over time we get a cascade of neurons firing.  

RNNs have been less influential than feedforward networks, in part because the learning 

algorithms for recurrent nets are usually less powerful, but they are still extremely interesting. 

They are much closer in spirit to how our brains work than feedforward networks and it is possible 

that RNNs can solve important problems which can only be solved with great difficulty by 

feedforward networks. 



DIGITAL IMAGING PATHOLOGY AND MACHINE LEARNING 35 

Convolutional Neural Networks 

Convolutional Neural Networks are very similar to ordinary neural networks: they are 

made up of neurons that have learnable weights and biases. Each neuron receives some inputs, 

performs a dot product and optionally follows it with a non-linearity. The whole network still 

expresses a single differentiable score function: from the raw image pixels on one end to class 

scores at the other, and they still have a loss function on the last (fully connected) layer. The main 

difference is ConvNet architectures make the explicit assumption that the inputs are images, which 

allows us to encode certain properties into the architecture. These then make the forward function 

more efficient to implement and vastly reduce the number of parameters in the network. 

Unlike a regular Neural Network (Figure 7), the layers of a ConvNet have neurons arranged 

in 3 dimensions: width, height, depth (Figure 8). The neurons in a layer will only be connected to 

a small region of the layer before it, instead of all the neurons in a fully connected manner. 

Moreover, the final output layer would for e.g. CIFAR-10 have dimensions 1x1x10, because by 

the end of the ConvNet architecture the full image will be reduced into a single vector of class 

scores, arranged along the depth dimension. 

Figure 7: A regular 3-layer Neural Network 

Figure 8: A ConvNet arranges its neurons in three dimensions (width, height, depth), as visualized in one 

of the layers. Every layer of a ConvNet transforms the 3D input volume to a 3D output volume of neuron 

activations. 
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Layers used to build ConvNets: A simple ConvNet is a sequence of layers, and every 

layer of a ConvNet transforms one volume of activations to another through a differentiable 

function. Three main types of layers are stacked to build ConvNet architectures: Convolutional 

Layer, Pooling Layer, and Fully Connected Layer. In this way, ConvNets transform the original 

image layer by layer from the original pixel values to the final class scores.  

Convolutional Layer: The Conv layer is the core building block of a CNN that does most 

of the computational heavy lifting. Its parameters consist of a set of learnable filters. Every filter 

is small spatially (along width and height) but extends through the full depth of the input volume. 

During the forward pass, we convolve each filter across the width and height of the input volume 

and compute dot products between the entries of the filter and the input at any position. As we 

slide the filter over the width and height of the input volume, we will produce a 2-dimensional 

activation map that gives the responses of that filter at every spatial position. Intuitively, the 

network will learn filters that activate when they see some type of visual feature such as an edge 

of some orientation or a blotch of some color on the first layer, or eventually entire honeycomb or 

wheel-like patterns on higher layers of the network. Now, we will have an entire set of filters in 

Figure 9: The activations of an example ConvNet architecture. The initial volume stores the raw image 

pixels (left) and the last volume stores the class scores (right). Each volume of activations along the 

processing path is shown as a column. 
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each CONV layer, and each of them will produce a separate 2-dimensional activation map. We 

will stack these activation maps along the depth dimension and produce the output volume. 

When dealing with high-dimensional inputs such as images, as we saw above it is 

impractical to connect neurons to all neurons in the previous volume. Instead, we will connect 

each neuron to only a local region of the input volume. The spatial extent of this connectivity is a 

hyperparameter called the receptive field of the neuron (equivalently this is the filter size). The 

extent of the connectivity along the depth axis is always equal to the depth of the input volume.  

Three hyperparameters control the size of the output volume: the depth, stride and zero-

padding. We can compute the spatial size of the output volume as a function of the input volume 

size (WW), the receptive field size of the Conv Layer neurons (FF), the stride with which they are 

applied (SS), and the amount of zero padding used (PP) on the border. Calculating how many 

neurons fit is given by (W−F+2P)/S+1(W−F+2P)/S+1.  

Figure 11: An example input volume in red, and an example volume of neurons in the first Convolutional 

layer. Each neuron in the convolutional layer is connected only to a local region in the input volume 

spatially, but to the full depth. 

Figure 10: Example filters learned by Krizhevsky et al. Each of the 96 filters shown here is of size 

[11x11x3], and each one is shared by the 55*55 neurons in one depth slice. 
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Pooling Layer: It is common to periodically insert a Pooling layer in-between successive 

Conv layers in a ConvNet architecture. Its function is to progressively reduce the spatial size of 

the representation to reduce the number of parameters and computation in the network (Figure 12), 

and hence to also control overfitting. The Pooling Layer operates independently on every depth 

slice of the input and resizes it spatially, using the MAX operation (Figure 13). The depth 

dimension remains unchanged. It is worth noting that there are only two commonly seen variations 

of the max pooling layer found in practice: A pooling layer with F=3,S=2F=3,S=2 (also called 

overlapping pooling), and more commonly F=2,S=2F=2,S=2. Pooling sizes with larger receptive 

fields are too destructive. 

Figure 12: Pooling layer downsamples the volume spatially, independently in each depth slice of the 

input volume - the volume depth is preserved. 

Figure 13: The most common downsampling operation is max (pooling), here shown with a stride of 2. 
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Fully connected layer: Neurons in a fully connected layer have full connections to all 

activations in the previous layer, as seen in regular neural networks. Their activations can hence 

be computed with a matrix multiplication followed by a bias offset. 

ConvNet Architectures: The most common form of a ConvNet architecture stacks a few 

CONV-RELU layers, follows them with POOL layers, and repeats this pattern until the image has 

been merged spatially to a small size. At some point, it is common to transition to fully connected 

layers. The last fully connected layer holds the output, such as the class scores. In other words, the 

most common ConvNet architecture follows the pattern: INPUT -> [[CONV -> RELU]*N -> 

POOL?]*M -> [FC -> RELU]*K -> FC where the * indicates repetition, and the POOL? indicates 

an optional pooling layer. Moreover, N >= 0 (usually N <= 3), M >= 0, K >= 0 (usually K < 3).  

It should be noted that the conventional paradigm of a linear list of layers has recently been 

challenged in Google’s Inception architectures and in state-of-the-art ResNets from Microsoft 

Research Asia. Both feature more intricate and different connectivity structures. In practice we use 

whatever works best on ImageNet: in 90% or more of applications the same structure can be 

applied. Instead of rolling our own architecture for a problem, we could look at whatever 

Figure 14: The neurons of a CNN compared to a regular Neural Network chapter remain unchanged: 

They still compute a dot product of their weights with the input followed by a non-linearity, but their 

connectivity is now restricted to be local spatially. 
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architecture currently works best on ImageNet, download a pretrained model and finetune it on 

our data. Rarely is there a need to train or design a CNN from scratch. The most common CNN 

architectures used are: LeNet, AlexNet, ZF Net, GoogLeNet, VGGNet, ResNet (Kayalibay, 2017) 

(Kraus, 2016). 

Computational Considerations: The largest bottleneck to be aware of when constructing 

CNN architectures is the memory bottleneck (CS, n.d.). There are three major sources of memory 

use to keep track of: 

• The intermediate volume sizes: These are the raw number of activations at every 

layer of the CNN, and their gradients (of equal size).  

• The parameter sizes: These are the numbers that hold the network parameters, their 

gradients during backpropagation, and commonly also a step cache. Therefore, the memory to 

store the parameter vector alone must usually be multiplied by a factor of at least 3 or so.  

• Miscellaneous: Every implementation must maintain memory for various objects, 

such as the image data batches, their augmented versions, etc.  

Once a rough estimate of the total number of values (for activations, gradients, and misc.) 

is calculated, the number should be converted to size in GB. If the network does not fit, a common 

heuristic to force it is to decrease the batch size, since most of the memory is usually consumed by 

the activations. 

Computer Vision 

Computer Vision is an interdisciplinary field that deals with how computers can be made 

to gain high-level understanding from digital images or videos (Ballard & Brown, 1982) (Huang, 

1996). From the perspective of engineering, it seeks to automate tasks that the human visual system 

can do. Computer vision is concerned with the automatic extraction, analysis and understanding 
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of useful information from a single image or a sequence of images. It involves the development of 

a theoretical and algorithmic basis to achieve automatic visual understanding. As a scientific 

discipline, CV is concerned with the theory behind artificial systems that extract information from 

images. The image data can take many forms, such as video sequences, views from multiple 

cameras, or multi-dimensional data from a medical scanner. As a technological discipline, CV 

seeks to apply its theories and models for the construction of CV systems.  

Computer Vision was meant to mimic the human visual system, as a stepping stone to 

endowing robots with intelligent behavior. What distinguished computer vision from the prevalent 

field of digital image processing was a desire to extract three-dimensional structure from images 

with the goal of achieving full scene understanding. Studies in the 1970s formed the early 

foundations for many of the CV algorithms that exist today, including extraction of edges from 

images, labeling of lines, non-polyhedral and polyhedral modeling, representation of objects as 

interconnections of smaller structures, optical flow, and motion estimation. 

Later, studies were published based on more rigorous mathematical analysis and 

quantitative aspects of computer vision. Researchers also realized that many of these mathematical 

concepts could be treated within the same optimization framework as regularization and Markov 

random fields. By the 1990s, some of the previous research topics became more active than the 

others. Research in projective 3-D reconstructions led to better understanding of camera calibration. 

At the same time, variations of graph cut were used to solve image segmentation. This decade also 

marked the first time that statistical learning techniques were used in practice to recognize faces 

in images (cf. Eigenface). Toward the end of the 1990s, a significant change came about with the 

increased interaction between the fields of computer graphics and CV. This included image-based 
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rendering, image morphing, view interpolation, panoramic image stitching and early light-field 

rendering. 

Recent work has seen the resurgence of feature-based methods, used in conjunction with 

ML techniques and complex optimization frameworks (Sonka, Hlavac, & Boyle, 2008). The 

advancement of DL techniques has brought further life to the field of CV. The accuracy of DL 

algorithms on several benchmark CV data sets has allowed significant progress in tasks including, 

and not limited to: 

Image Classification: Classify an image based on the dominant 

object inside it.  

Example datasets: MNIST, CIFAR, ImageNet 

 

Object Localization: Predict the image region that contains the 

dominant object. Then image classification can be used to recognize object 

in the region.  

Example dataset: ImageNet 

Object Recognition: Localize and classify all objects appearing in 

the image. This task typically includes proposing regions (ROIs), then 

classify the object inside them.  

Example datasets: PASCAL, COCO 

Semantic Segmentation: Label each pixel of an image by the object 

class that it belongs to.  

Example datasets: PASCAL, COCO 
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Instance Segmentation: Label each pixel of an image by the object 

class and object instance that it belongs to.  

Example datasets: PASCAL, COCO 

 

Keypoint Detection: Detect locations of a set of predefined 

keypoints of an object, such as keypoints in a human body, or a human face.  

Example dataset: COCO 

 

CV is being used today in various real-world applications (Szeliski, 2010): 

Optical Character Recognition: Reading handwritten postal codes on letters and automatic 

number plate recognition 

Machine inspection: Rapid parts inspection for quality assurance using stereo vision with 

specialized illumination to measure tolerances on aircraft wings or auto body parts or looking for 

defects in steel castings using X-ray vision 

Retail: Object recognition for automated checkout lanes 

Photogrammetry: Fully automated construction of 3D models from aerial photographs  

Automotive safety: Detecting unexpected obstacles such as pedestrians on the street, under 

conditions where active vision techniques such as radar or lidar do not work well  

Match move: Merging CGI with live action footage by tracking feature points in the source 

video to estimate the 3D camera motion and shape of the environment 

Medical imaging: Registering pre-operative and intra-operative imagery or performing 

long-term studies of people’s brain morphology as they age. 
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The principles of computer vision are like ML tasks. The first step is to find a suitable 

representation of the content of a digital image so that features can be extracted and use them as 

an input for the algorithm. The next step is to train the algorithm on those features and produce a 

prediction on the content. Traditionally, there have been multiple techniques for feature extraction, 

such as Eigenfaces or Histograms of Oriented Gradients (HOG). After obtaining the feature vector, 

a classifier like Support Vector Machines (SVMs) can be trained on those structures and predict 

the class of an image or perform object detection by checking the existence or absence of them. 
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Chapter 4: Use Cases 

Introduction 

Τhe focus of this thesis is to discuss the usage of a single DL framework which can be 

tweaked and applied to a diverse set of unique use cases. 

The use cases examined in this project, Object Detection of mitotic figures in TUPAC16 

(Veta M. H., 2016) and Instance Segmentation of histologic primitives (Nuclei, Epithelium, 

Tubules) in JPATHOL (Janowczyk, 2016), demonstrate how DL can be applied to a spectrum of 

the most common image analysis tasks in DP. We shall leverage the open source DL framework 

Detectron2 running on PyTorch, using the Mask R-CNN architecture pretrained on the COCO 

dataset. 

We examine if a single training and model-building paradigm can be applied to each task, 

solely by determining and modifying its hyperparameters, and yet generate results that are 

comparable to competing DL solutions, or better than handcrafted approaches. This convergence 

to a unified approach not only allows for a low maintenance overhead, but also implies that image 

analysis researchers or DP users face a minimal learning curve, as the overall learning paradigm 

and hyperparameters remain constant across all tasks. 

Object Detection on TUPAC16 

Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer 

patients. Patients with high tumor proliferation have worse outcomes compared to patients with 

low tumor proliferation (van Diest, 2004). The assessment of tumor proliferation influences the 

clinical management of the patient – patients with aggressive tumors are treated with more 

aggressive therapies and patients with indolent tumor are given more conservative treatments that 

are preferred because of fewer side-effects (Fitzgibbons, 2000). 
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Tumor proliferation in a clinical setting is traditionally assessed by pathologists. The most 

common method is to count mitotic figures (dividing cell nuclei) on hematoxylin & eosin (H&E) 

histological slides under a microscope. The pathologists will assign a mitotic score of 1-2-3, where 

a score of 3 represents high tumor proliferation. Although mitosis counting is routinely performed 

in most pathology practices, this highly subjective and labor-intensive task suffers from 

reproducibility problems (Veta M. H., 2016). One solution is to develop automated computational 

pathology systems to efficiently, accurately and reliably detect and count mitotic figures on 

histopathological images. Mitosis detection in WSIs is currently an active field of research 

(Albarqouni et al., 2016; Chen et al., 2016; Li et al., 2018; Tellez et al., 2018).  

Description 

This interest was in large part supported by the availability of public datasets in the form 

of medical image analysis challenges. The first challenge on the topic of mitosis detection was 

MITOS 2012 hosted at the International Conference of Pattern Recognition (ICPR) (Roux L. R., 

2013). In 2013, Veta et al. organized AMIDA13 in conjunction with the International Conference 

on Medical Image Computing and Computer Assisted Intervention (MICCAI) (Veta M. V.-R., 

2015). Mitosis detection was also one of the tasks of the MITOS-ATYPIA-14 challenge, organized 

as part of ICPR 2014, with the other task being scoring of nuclear atypia (Roux L. , 2014). 

A large limitation of all previous challenges was that they focused solely on mitosis 

detection in predetermined tumor regions of interest (ROIs). However, in a real-world scenario, 

automatic mitosis detection is performed in WSIs and an automatic method should ideally be able 

to produce a breast tumor proliferation score given a WSI as input. To address the above problem, 

(Veta M. H., 2016). organized the Tumor Proliferation Assessment Challenge 2016 on prediction 

of tumor proliferation scores from WSIs. 
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The challenge had three main tasks to predict tumor proliferation: 

1. Predict Mitotic Scores: Reproduce the most common method of assessing tumor 

proliferation by a pathologist.  

2. Predict Gene Expression Based PAM50 Proliferation Scores: Determine whether 

molecular scores can be predicted from tissue morphology/WSIs. 

3. ROI & Mitosis Detection: Design of a WSI tumor proliferation scoring system by 

following a two-step approach to emulate how a pathologist would assess a slide for tumor 

proliferation: identify ROIs followed by mitotic counting. This is the task and dataset we will 

examine. 

The mitosis detection dataset consists of WSIs from 73 breast cancer cases from three 

pathology centers with annotated mitotic figures by consensus of three observers.  

Of the 73 cases, 23 were previously released as part of the AMIDA13 challenge (Veta M. 

V.-R., 2015). These cases were collected from the Department of Pathology at the University 

Medical Center in Utrecht, The Netherlands. Each case was represented with varying number of 

HPFS extracted from WSIs acquired with the Aperio ScanScope XT scanner at 40× magnification 

with a spatial resolution of 0.25 μm/pixel. The remaining 50 cases previously used to assess the 

inter-observer agreement for mitosis counting were from two other pathology centers in The 

Netherlands (Symbiant Pathology Expert Center, Alkmaar and Symbiant Pathology Expert Center, 

Zaandam) (Veta M. H., 2016). Each case was represented by one WSI region with an area of 2 

mm2. These WSIs were obtained using the Leica SCN400 scanner (40× magnification and spatial 

resolution of 0.25 μm/pixel).  

The annotated mitotic figures are the consensus of at least two pathologists, similar to the 

AMIDA13 challenge. In total, the mitosis detection auxiliary dataset contained 1552 annotated 
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mitotic figures. Of the 656 provided images, only the 587 of those that contained the annotated 

mitotic figures mentioned previously were used for training and validation; these images contained 

between 1 and 67 mitotic figures each. 

The ROI & Mitosis Detection task was and related to the AMIDA13 challenge. The top 

scoring method for the third task had an F-score of 0.652 on mitosis detection. This is a slight 

improvement over the top scoring method of AMIDA13 challenge which had an F-score of 0.612. 

Figure 15: Example from the mitosis detection auxiliary dataset with annotated mitotic figures (blue 

bounding boxes). These annotated mitotic figures are the consensus of at least two pathologists. 
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Instance Segmentation on JPATHOL 

 The JPATHOL paper (Janowczyk, 2016) presents 7 use cases that represent the ensemble 

of critical components necessary for most of the pertinent pathology tasks and thus span the current 

challenges in the DP image analysis space split in 3 main task categories, each with their 

corresponding datasets. Our focus shall be on the segmentation tasks, where the delineation of 

accurate boundaries for histologic primitives (nuclei, epithelium, tubules) is required to extract 

precise morphological features. 

The ground truth annotations are usually done by an expert delineating object boundaries 

or annotating pixels corresponding to a region or tissue of interest. In computational approaches, 

this level of annotation precision is critical so that supervised classification systems can be 

optimized. Generating these annotations, though, is often an arduous task due to the large amount 

of time and effort needed. Pathologists are typically not available to perform the large amounts of 

laborious manual annotations at the high resolutions needed for training and evaluating supervised 

object detection and classification algorithms. As a result, annotations are rarely pixel level precise, 

usually done at a lower magnification, and tend to contain numerous false positives and negatives. 

Our goal is to tune a DL framework for three segmentation use cases (nuclei, epithelium, 

tubules), using all three datasets both separately and simultaneously, as seen in Table 1. 

Figure 16: The flowchart shows a typical workflow for digital pathology research. Histologic primitives 

are identified, after which biologically relevant features are extracted for use in higher order research 
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Table 1: Digital Pathology task descriptions 

Task Biological motivation Dataset 

Nuclei segmentation Pleomorphism is used in current 

clinical grading schemes 

141x2000x2000 @40× ROIs of 

ER+ BCa, containing subset of 

12000 annotated nuclei 

Epithelium segmentation Epithelium regions contribute to 

identification of tumor 

infiltrating lymphocytes (TILs) 

42x1000x1000 @20× ROIs from 

ER+ BCa, containing 1735 

regions 

Tubule segmentation Area estimates in high power 

fields are critical towards BCa 

grading schemes 

85x775x522 @40× ROIs from 

Colorectal cancer, containing 

795 delineated tubules 

Nuclei segmentation is an important problem because nuclei configuration is correlated 

with outcome, and nuclear morphology is a key component in cancer grading schemes. Manually 

annotating all of the nuclei in a single hematoxylin and eosin (H&E) stained estrogen receptor 

positive (ER+) breast cancer image is laborious and does not generalize to all of the other variances 

present by other patients and their stain/protocol variances. As a result, time is better invested 

annotating sub-sections of each image, even though this creates a challenging situation for 

generating training patches. Typically, one would use the annotations as a binary mask created for 

the positive class, and the negation of that mask as the negative class, randomly sampling from 

both to create a training set. In this case, though while one can successfully randomly sample from 

the positive mask, the randomly sampling from the complement image may or may return 

unmarked nuclei belonging to the positive class. To compensate, the standard approach is extended 

with intelligently sampled challenging patches for the negative class training set. Using a basic 

color deconvolution thresholding approach to select random negative patches further segmented 

nuclei are obtained, even though the network is unable to accurately identify nuclear boundaries. 

To enhance these boundaries, an edge mask is produced by morphological dilation and negative 

training patches are selected, which are inherently difficult to learn due to their similarity with the 
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positive class. This patch selection technique results in clearly separated nuclei with more accurate 

boundaries. 

Epithelium identification is significant since regions of cancer are typically manifested 

there. Work by (Beck, 2011) suggest that histologic patterns within the stroma might be critical in 

predicting overall survival and outcome in breast cancer patients. Thus, from the perspective of 

developing algorithms for predicting prognosis of disease, the epithelium-stroma separation 

becomes critical. This task is unique in that it is less definitive than the more obvious tasks of 

mitosis detection and nuclei segmentation where the expected results are quite clear. Epithelium 

segmentation, especially the subcomponent of identifying clinically relevant epithelium, is 

typically done more abstractly by experts at lower magnifications. Due to discrepancies which can 

cause training and evaluation difficulties, an additional expert evaluation metric is considered to 

validate the results. 

Given that the AlexNet approach constrains input data to a 32 × 32 window, the task is 

scaled to fit into this context. The principle is that a human expert should be able to make an 

educated decision based solely on the context present in the patch supplied to the DL network. 

This implies that an appropriate magnification must be selected a priori from which to extract the 

patches and perform the testing. Networks with larger patch sizes could use higher magnifications, 

at the cost of longer training times. Similar to the nuclei segmentation, the aim is to reduce the 

presence of uninteresting training examples in the dataset, which can be done by applying a 

threshold of 0.8 to the grayscale image, thus removing fat/background pixels from the patch 

selection pool. In addition, to enhance the classifier’s ability to provide crisp boundaries, samples 

are taken from the outside edges of the positive regions. 
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Tubule segmentation can facilitate automation of the area estimation with decreasing inter-

/intra-reader variances, and greater specificity, which can potentially lead to better stratifications 

associated with prognosis indication. Tubules are complex structures that not only consist of 

numerous components (e.g., nuclei, epithelium, lumen), but also their boundaries are determined 

by them. There is a large variance in the way tubules present given the underlying aggressiveness 

and stage of cancer. In benign cases tubules show in a well-organized fashion with similar size and 

morphological properties making their segmentation easier, while in cancerous cases the 

organization structure breaks down and accurately identifying the boundary becomes challenging 

even for experts. Also, tubules as an entity are much larger compared to the individual components, 

thus requiring a greater viewing area to provide sufficient context to make an accurate assessment. 

In this use case, (Janowczyk, 2016) introduce the concept of using cheap preprocessing to 

help identify challenging patches: per image, a random selection of pixels belonging to both classes 

to act as training samples is made, and a limited set of texture features (i.e., contrast, correlation, 

energy, and homogeneity) is computed. Next, a naive Bayesian classifier determines posterior 

probabilities of class membership for all the pixels in the image. This way, pixels which would 

potentially produce false positives and negatives are identified and the training set is improved by 

removing trivial samples, without requiring any additional domain knowledge. Finally, knowing 

that benign cases are easier to segment than malignant cases, patches are disproportionally selected 

from malignant cases to further help with generalizability. 
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Figure 17 shows that benign sections of tissue do well as a result of being able to generalize 

well from the dataset. Malignant tubules, on the other hand, are far more abstract and tend to have 

the hallmarks of a tubule, such as clear epithelial ring around a lumen, less obvious making them 

harder to generalize to. This is potentially one of the downfalls of machine learning techniques, 

which make inferences from training data; when insufficient examples are provided to cover all 

cases expected to be viewed in testing phases the approaches begin to fail. On the other hand, in 

this case, especially these challenges could be addressed by providing a larger database of 

malignant images. 

Network Architecture 

The DL network used for each of the individual tasks outlined in (Janowczyk, 2016) was a 

stock AlexNet architecture, identical to the one provided by Caffe. Its configuration is presented 

Figure 17: Benign tubules (a), outlined in red, are more organized and similar, as a result the model can 

provide clear boundaries (b). Malignant tubules (c) are abstract and detection is difficult (d). 
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in Table 2 and its hyperparameters shown in Table 3 were held constant for all tasks to illustrate 

how parameter tweaking and tuning was not important in achieving good quality results. 

Experiments using dropout showed no improvement in the results, and lack of overfitting evidence 

dissuaded an approach using dropout. 

Table 2: AlexNet configuration 

Layer Type Kernels Kernel Size Stride Activation 

0 Input 3 32x32   

1 Convolution 32 5x5 1  

2 Max Pool  3x3 2 ReLU 

3 Convolution 32 5x5 1 ReLU 

4 Mean Pool  3x3 2  

5 Convolution 64 5x5 1 ReLU 

6 Mean Pool  3x3 2  

7 Fully Connected 64   Dropout + ReLU 

8 Fully Connected 2   Dropout + ReLU 

9 SoftMax     

 

Table 3: AlexNet hyperparameters 

Variable Setting 

Batch size 128 

Learning rate 0.001 

Learning rate schedule Adagrad 

Rotations 0, 90 

Num Iterations 600,000 

Weight decay 0.004 

Random minor Enabled 

Transformation Mean-centered 
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Chapter 5: Experiment Results 

The problem we are examining, the use of DL frameworks to run Object Detection and 

Instance Segmentation tasks on separate medical datasets with as limited configuration changes as 

possible, is split in the following subprocesses: framework selection, data wrangling, training & 

validation, and results evaluation. 

Deep Learning Framework 

Selection Process  

Initially, given the two different medical datasets and tasks to be accomplished, and in order 

to familiarize with different DL frameworks and CNN architectures for educational purposes, it 

was decided to use TensorFlow (TensorFlow.org, n.d.) with MobileNet for the TUPAC16 object 

detection task, and PyTorch with Mask R-CNN-benchmark (FBAI, n.d.) for the JPATHOL instance 

segmentation task. Unfortunately, despite great effort to operate them concurrently but separately, 

issues with the Python environments and CUDA drivers made them virtually incompatible and 

were abandoned.  

During the search for a single DL framework that could run both required tasks, Facebook 

AI Research released Detectron2 (Yuxin Wu, 2019), a next-generation platform for object 

detection and segmentation. Detectron2 is a ground-up rewrite of Detectron (originating from 

Mask R-CNN-benchmark), is powered by PyTorch, trains faster, and includes features such as 

Panoptic Segmentation, Densepose, R-CNN, rotated bounding boxes, and more. 

Network Specs 

The model utilized by Detectron2 is based on Mask R-CNN (He, 2017), a DL framework 

for instance segmentation. Instance segmentation combines elements from the classical CV tasks 

of object detection, where the goal is to classify individual objects and localize each using a 
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bounding box, and semantic segmentation, where the goal is to classify each pixel into a fixed set 

of categories without differentiating object instances. Mask R-CNN extends Faster R-CNN (Ren, 

2015) by adding a parallel branch for predicting segmentation masks on each RoI, in parallel with 

the existing branch for classification and bounding box regression, adds only a small 

computational overhead, and surpasses all previous state-of-the-art single-model results on the 

COCO object detection and instance segmentation tasks. 

Initially, the Region-based CNN approach was to attend to a manageable number of RoIs 

and evaluate CNNs independently on each of them. Fast R-CNN extended this to allow attending 

to RoIs on feature maps using RoIPool (Girshick, 2015), and Faster R-CNN advanced this by 

learning the attention mechanism with a Region Proposal Network (RPN). Faster R-CNN consists 

of two stages: a Region Proposal Network (RPN) which proposes candidate object bounding boxes 

and a Fast R-CNN that extracts features using RoIPool from each candidate box and performs 

classification and bounding box regression. The features used by both stages can be shared for 

faster inference. Mask R-CNN adopts the same two-stage procedure, with an identical first RPN 

stage, and in the second stage, in parallel to the class and box offset prediction, a binary mask for 

each RoI is also output, contrary to most recent systems where classification depends on mask 

predictions. 

Mask R-CNN is comprised of two sections, the convolutional backbone architecture used 

for feature extraction over an entire image, and the network head for bounding box recognition 

and mask prediction that is applied separately to each RoI. The backbone architecture used in our 

implementation is called a Feature Pyramid Network (FPN) and employs a top-down architecture 

with lateral connections to build an in-network feature pyramid from a single-scale input. Faster 

R-CNN with an FPN backbone extracts RoI features from different levels of the feature pyramid 
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according to their scale, but otherwise the rest of the approach is similar to vanilla ResNet. Using 

a ResNet-FPN backbone with a depth of 50 layers for feature extraction with Mask R-CNN gives 

excellent gains in both accuracy and speed. For the network head we extend the Faster R-CNN 

box heads from the ResNet and FPN papers, as shown in Figure 18.  

The ResNet (Residual Network) is a CNN architecture most popularly used for image 

classification, is easy to optimize, and can gain accuracy from considerably increased depth. It was 

designed to ease the training of networks that are substantially deeper than older architectures 

using explicitly reformulated layers for learning residual functions with reference to the layer 

inputs, instead of learning unreferenced functions. It tackles the vanishing gradient and 

degradation problems of learning by using residual mapping modules to form complete CNN 

networks, as shown in Figure 19 and Figure 20. 

Figure 18: Heads for the ResNet-FPN backbone, with added mask branch. Numbers denote spatial 

resolution and channels. 

Figure 19: Residual learning: a building block. 
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The Detectron2 framework can be run within a Docker container, but due to the nature of 

the current problems involving CV and image processing, it was preferred to run it within Jupyter 

Notebooks in a separate Python 3.6 environment on a dedicated Linux 18.04 installation. The 

system running the setup is comprised of 6-core 3.00 GHz CPU, 16 MB 3000MHz DDR4 RAM, 

M.2 SSD and Nvidia RTX2070 8GB GPU.  

Data Processing & Consumption 

For standard tasks such as object detection or instance segmentation the standard 

representation for a dataset to be consumed by Detectron2 has a specification similar to COCO’s 

JSON annotations. This means that apart from the folder with images to be processed, a JSON file 

with a list of dictionaries (one per image) must be provided, one for each subset of training, 

validation and testing data. The fields each image dictionary contains are the image file path, 

dimensions, a unique ID, and a list of annotations for every instance featured in the image. Each 

annotation contains the bounding box coordinates, the label and the segmentation mask of the 

Figure 20: Example network architectures with plain (upper) and residual (lower) modules 
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instance, either as a list of polygons or as a per-pixel bitmap segmentation mask in COCO’s RLE 

format, as is our case. These JSON files are created after organizing and preprocessing the images, 

and arranging them into training, validation and test subsets. 

TUPAC16: This dataset contains 73 WSI images in PNG format, annotated by a list of text 

files containing the coordinates of the central points of each mitosis figure present in each of the 

images. In total, the dataset contains 1552 mitotic figures.  

Since we are performing object detection, but the annotations are coordinate tuples instead 

of bounding boxes or polygons, we created bounding boxes around each mitotic figure with side 

dimensions of 80px. This value was initially set roughly by viewing many images with their 

annotations overlaid and ensuring the bounding boxes contained a significant portion of the mitotic 

figures. At a later stage, the bounding box dimension was used as a hyperparameter for the model 

to be tuned for maximum accuracy. 

Another phase of preprocessing was the splitting of images into smaller parts. As the input 

window for the model is 224 x 224 px, the initial image dimensions (2000 x 2000 px) would cause 

every image fed to the model to be resized leading to significant loss of information and detail due 

to antialiasing. All images with dimensions greater than the CNN window were contiguously split 

into 224 x 224 px subimages and saved separately in JPEG format, along with their corresponding 

annotations. After training/prediction, the subimages may be rejoined to recreate the original image 

along with their annotations, if needed (Figure 21). 

Figure 21: Subimage splitting process 
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Any resulting subimages smaller than the CNN window were padded with black pixels to 

conform with the dataset. Subimages with no annotations were removed from the dataset, as they 

would not be used for training by the model by default, and the rest were split into training, 

validation and testing subsets with a 0.6:0.2:0.2 ratio. To facilitate formation of the JSON file, a 

CSV file was created during this phase containing info on all subimages and annotations. 

Figure 22: Sample subimage (224 x 224 px) resulting from splitting original image into CNN-window 

dimensions. It is apparent a much greater degree of detail is retained for training. 
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Figure 23:(Up) Sample image of the initial dataset with original dimensions (2000 x 2000 px). Bounding 

boxes (blue) are centered around the mitotic figure coordinates to contain its greatest portion possible. 

(Down) Same image resized to CNN window dimensions (224 x 224 px). Note the loss of detail. 
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JPATHOL: This dataset is comprised of three separate medical datasets featured in 

(Janowczyk, 2016), prepared for experimentation with nuclei, epithelium and tubule segmentation 

tasks. Each dataset is comprised of images of different count, format, dimensions, and 

magnification, as found in Table 1. The first stage in preprocessing this dataset is to ensure all 

datasets are of the same magnification, so the epithelium images were zoomed in 2×, resulting in 

their new dimensions 2000 x 2000 px. Also, since the images in the tubule dataset do not have the 

same height as width, they are padded with black pixels in order to make them rectangular without 

affecting their aspect ratio or magnification, changing from 775 x 522 px to 775 x 775 px. The 

bitmap annotations undergo the same process in order to retain correct ground truth format. 

The second phase, as with the TUPAC16 dataset, is splitting the images into smaller 

subimages analogous to the CNN window dimensions, in order to avoid excessive resizing and 

information loss. In this case, however, we shall resize to 261 px as the least common denominator 

of the three data sets’ dimensions to reduce cases of subimages consisting of mostly black padding. 

The final phase, before the JSON file formulation, is to prepare the segmentation masks 

for each instance and image. The ground truth for all three datasets is provided as 1- or 3-channel 

bitmap files of dimensions equal to their corresponding images, which are transformed into single 

channel binary arrays and are encoded into COCO RLE format with the Pycocotools library. 

After this process, the imageset consisting of subimages of the three datasets is randomly 

split into training, validation and testing subsets with a 0.6:0.2:0.2 ratio. As before, subimages with 

no annotations are discarded. For each subset, a JSON file is prepared containing all necessary 

metadata outlined previously. 
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Parameterization & Training 

After the images have been preprocessed and registered, they can be consumed by 

Detectron2 to train and evaluate an instance segmentation model. This model is based on Mask R-

CNN with a ResNet R50-FPN backbone, pretrained on the COCO dataset (trained on Train2017 

and evaluated on Val2017). In order to train the model on our datasets with the maximum possible 

accuracy, we must tune the model’s hyperparameters. The hyperparameters tuned in our research 

are presented in Table 4, along with the range of values they were tested with, their initial values, 

and their final values. 

 

Figure 24: Sample image from the nuclei dataset in its original dimensions. The nuclei are annotated with 

yellow pigment – not all of them are annotated 
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Table 4: Detectron2 hyperparameter values 

Hyperparameter Tuning Range Starting Value Optimum Value 

Number of workers [2, 8] 2 8 

Images per batch [2, 8] 2 4 

Learning Rate [0.00025, 0.1] 0.00025 0.025 

Max iterations [300, 12000] 300 9000 

Batch size per image [128, 1024] 128 512 

Testing threshold [0.01, 0.7] 0.7 0.07 

Bounding box dimension [40, 120] 80 80 

Subimage split dimension [224, 1000] 1000 500 

 

Finding the optimum values is a process that can be done either manually or automatically. 

For the automatic approach, a script is prepared that iteratively trains models using all the 

consecutively or randomly chosen points in the hyperparameter grid, whose limits are suggested 

values found in the documentation, or just arbitrary within a logical scope. The downsides of this 

approach are the time cost, as many models far from the optimum values are needlessly trained, 

and there is limited overview concerning script errors. With the manual approach we start training 

models using random or suggested initial hyperparameter values and we try to follow a fashion of 

gradient descent towards the optimum values by changing only one or two values for every 

iteration. The downside of this approach is the possibility of getting stuck in a local minimum in 

the hyperparameter space. 

During the hyperparameter tuning phase, the resulting models are evaluated with the 

validation subset exclusively. For each hyperparameter value combination we train and evaluate 

the same model multiple times so that we can get more precise mean and standard deviation values 

of each model’s accuracy, mitigating the variance caused by the CNN’s stochastic nature. The 

evaluation stage returns 12 performance metrics, as used by COCO; our decision process is based 

on Average Precision for the whole area (AP), traditionally called Mean Average Precision (mAP): 
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TUPAC16: One of the major hurdles in histopathology image analysis is the variability of 

tissue appearance. The staining color and intensity can be significantly different between WSIs 

due to variation in tissue preparation, staining and digitization processes. To address this, for most 

similar tasks staining normalization is performed as a preprocessing step. The most used method 

is the one proposed by (Macenko, 2009), where an unsupervised method heuristically estimates 

the absorbance coefficients for the H&E stains for every image and the staining concentrations for 

every pixel; afterwards, normalization is performed by recomposing the RGB images from the 

staining concentration maps using common absorbance coefficients.  

We attempted to approximate this method by normalizing the 3-channel RGB histograms 

of the images jointly and separately. This greatly distorted the color balance and distorted the visual 

features, resulting in significantly lower accuracy compared to the initial unprocessed images. This 

method was rejected after some trial runs on the TUPAC16 dataset. 

JPATHOL: Given the size and complexity of this dataset, the Detectron2 hyperparameters 

for this task were taken directly from the previous task, as they are a good baseline and the datasets 

are of similar structure. Normalization was not performed as it was found to not offer any 

improvements in accuracy. Dropout during training was also not performed as in JPATHOL 

 Average Precision (AP) IoU=0.50:0.95 | area= all   | AP 

 Average Precision (AP) IoU=0.50      | area= all   | AP50 

 Average Precision (AP) IoU=0.75      | area= all   | AP75 

 Average Precision (AP) IoU=0.50:0.95 | area= small | APs 

 Average Precision (AP) IoU=0.50:0.95 | area=medium | APm 

 Average Precision (AP) IoU=0.50:0.95 | area= large | APl 

 Average Recall  (AR)   IoU=0.50:0.95 | area= all   | AR 

 Average Recall  (AR)   IoU=0.50:0.95 | area= all   | AR50 

 Average Recall  (AR)   IoU=0.50:0.95 | area= all   | AR75 

 Average Recall  (AR    IoU=0.50:0.95 | area= small | ARs 

 Average Recall  (AR)   IoU=0.50:0.95 | area=medium | ARm 

 Average Recall  (AR)   IoU=0.50:0.95 | area= large | ARl 
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experiments showed no improvement in metrics and (Srivastava N, 2014) requires a smaller 

optimal dataset. 

The important element of this dataset is the experimentation it requires concerning patch 

generation. The generation of annotations for a dataset such as this is a cumbersome process, due 

to the large amount of time and effort needed. For example, the nuclei annotation dataset used in 

this work took over 40 hours to annotate 12,000 nuclei, and yet represents only a small fraction of 

the total number of nuclei present in all images. Unfortunately, this creates a challenging situation 

for generating training patches. Typically, one would use the annotations as a binary mask created 

for the positive class, and the negation of that mask as the negative class, randomly sampling from 

both to create a training set. In this case, however, while one can successfully randomly sample 

from the positive mask, the randomly sampling from the complement image may or may return 

unmarked nuclei belonging to the positive class. 

Consequently, extended image patches need to be generated to more fully represent the 

available but unannotated ground truth in the training and validation sets. This stage requires 

modest domain knowledge in order to ensure a good representation of diversity in the training set. 

Selecting appropriate image patches for the specific task could have a dramatic effect on the 

outcome. Especially in the domain of histopathology, there can be substantial variance present 

within a single target class, such as nuclei. This is especially pronounced in breast cancer nuclei, 

where nuclear areas can vary upwards of 200% between nuclei. Ensuring that a sufficiently rich 

set of exemplars is extracted from the images is perhaps one of the most key aspects of effectively 

leveraging and utilizing a DL approach.  

For each of the three classes of images in JPATHOL a detailed description of approaches 

is suggested that allows for tailoring of training sets towards improving the specific detection tasks. 
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Nuclei Segmentation: A standard approach involves selecting patches from the positive class and 

using a threshold on the color-deconvolved image to determine examples of the negative class. 

This rationale is based on the fact that non-nuclei regions tend to weakly absorb hemotoxin. The 

resulting network has very poor performance in correctly delineating nuclei since these edges are 

underrepresented in the training set. 

To compensate, the above approach is extended with intelligently sampled challenging 

patches for the negative class training set. Through identifying positive pixels and the basic color 

deconvolution thresholding approach to select random negative patches, the segmented nuclei are 

obtained. However, the network may be unable to accurately identify nuclear boundaries, so an 

edge mask is produced by morphological dilation where negative training patches are selected. A 

small proportion of the stromal patches is still included to ensure that these exemplars are well 

represented in the learning set. This patch selection technique results in clearly separated nuclei 

with more accurate boundaries. 

Epithelium Segmentation: Similar to the nuclei segmentation task, the presence of 

uninteresting training examples in the dataset has to be reduced, so that learning time can be 

dedicated to more complex edge cases. Epithelium segmentation can have areas of fat or the white 

background of the stage of the microscope removed by applying a threshold at conservative level 

of 0.8 to the grayscale image, thus removing those pixels from the patch selection pool. In addition, 

to enhance the classifiers ability to provide crisp boundaries, samples are taken from the outside 

edges of the positive regions, as discussed for the nuclei segmentation task. 

Tubule Segmentation: In this use case, a form of primitive preprocessing is used to help 

identify challenging patches. Per image a number of pixels belonging to both classes is randomly 

selected to act as training samples and compute a limited set of texture features (i.e., contrast, 
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correlation, energy, homogeneity). Next, a naive Bayesian classifier determines posterior 

probabilities of class membership for all the pixels in the image, and pixels are identified which 

would potentially produce false positives and negatives and would benefit from additional 

representation in the training set. These pixels are selected based on their magnitude of confidence, 

such that false positives with posterior probabilities closer to 1.0 are selected with greater 

likelihood than those with 0.51. This approach further helps to bootstrap our training set, by 

removing trivial samples, without requiring any additional domain knowledge. Finally, knowing 

that benign cases are easier to segment than malignant cases, patches are disproportionally selected 

from malignant cases to further help with generalizability. 

For experimental purposes, the problem was not treated as individual single-class instance 

segmentation tasks but as a combined multi-class instance segmentation task, where the detector 

would have to both classify the input image to the correct class and detect and segment their 

instances. Unfortunately, different focus did not allow implementation of the above processing 

suggestions on any of the subtasks at this time. The expected model performance would be very 

low, given that the ground truth available had limitations. However, as this part was more of an 

implementation for proof of concept, the performance is considered not as important as having a 

functioning model. Implementation of those suggestions, with or without use of additional 

knowledge, is expected to dramatically increase the performance of the model to a level where it 

could raise interest for further research. 

Results 

Here we present the performance results for the final (and some intermediate) models 

trained for the two different datasets and tasks. All the results presented are Average Precision 

metrics run on the validation subset, which was chosen to be 20% of the whole initial dataset. The 



DIGITAL IMAGING PATHOLOGY AND MACHINE LEARNING 69 

first experiments with low AP were run just a few times, but as AP improved multiple runs were 

made (up to 12 runs) per hyperparameter combination in order to achieve a more precise average 

value and standard deviation. Outliers were discarded, and it was found that at least 5 runs were 

required per hyperparameter combination to achieve a stable result. For each of the two final 

models only, a separate testing subset (also 20% of the whole initial dataset) was used to compute 

their Average Precision and performance on previously unseen data. 

TUPAC16 

Table 5: Results for object detection task on TUPAC16 

Images/ 

batch 

Learning 

Rate 

Max 

iterations 

Batch/ 

image 

Split 

dimension 

Train Time 

(H:M:S) 

AP 

(%) 

STDEV 

(±%) 

4 0.025 600 512 1000x1000 0:04:56 43.32 6.58 

4 0.025 600 1024 1000x1000 0:05:23 40.11 8.65 

8 0.025 600 1024 1000x1000 0:11:35 43.79 5.69 

6 0.010 9000 1024 1000x1000 2:02:55 55.74 3.26 

4 0.025 9000 512 1000x1000 1:13:18 58.11 2.96 

4 0.025 9000 512 500x500 1:11:49 65.02 4.05 

In Table 5 a few key hyperparameter value combinations are displayed, along with the AP 

their model achieved on the validation set. Also mentioned is the average training time spent for 

each. In all, more than 40 hyperparameter combinations were used to train an equal number of 

models, and more than 170 runs were done to validate these models. 

The optimum combination of hyperparameters that resulted in the model with the highest 

Average Precision is the last row of Table 4. The training time required is around 70 mins and the 

Average Precision achieved on the validation set was 65.02 ± 4.05%. On the unseen testing subset 

the Average Precision is 65.14%, which shows overfitting was avoided. The average F-score for 

this model is 𝐹1 = 2
𝐴𝑃∙𝐴𝑅

𝐴𝑃+𝐴𝑅
=0.628. 
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Image Predictions: In Figure 25 are presented a few random images from the test set, with 

the ground truth bounding boxes (left), juxtaposed to bounding boxes predicted by the model 

(right): 

Figure 25: Sample WSIs from the test set with annotated ground truth (left) and predictions (right) 
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JPATHOL 

Table 6: Results for instance segmentation task on JPATHOL 

Dataset AP (%) STDEV (±%) 

Nuclei  19.53 1.68 

Epithelium  5.15 3.21 

Tubule  35.22 5.16 

Nuc/Epi/Tub  8.03 2.09 

 

Table 6 presents the performance of the models trained on each of the 

Nuclei/Epithelium/Tubule datasets separately, as well as of the model trained on all of them 

simultaneously. All models were trained on the optimum hyperparameters found from the 

TUPAC16 task (Table 4), apart from max iterations which had to be tuned for each independently 

to avoid cases of disappearing gradients. Since significant hyperparameter tuning was not needed, 

only around 20 hyperparameter value combinations were evaluated. Run count was also limited to 

less than 50 due to lack of substantial performance improvement. 

The metrics in Table 6 are based on evaluation of the model on the validation subsets. On 

the unseen testing subset the model’s metrics are: 

Image Predictions: In Figure 26 are presented a few randomly selected images of the test 

set with the ground truth segmentation masks (left), juxtaposed to segmentation masks predicted 

by the model (right): 

  

'AP'       : 14.41 

'AP50'     : 23.72 

'AP75'     : 15.31 

'APs'      :  5.16 

'APm'      : 22.42 

'APl'      : 17.67 

'AP-Nuc'   : 15.26 

'AP-Epi'   :  2.06 

'AP-Tub'   : 25.91 

'F1-score' : 0.220 
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Figure 26: Sample WSIs from the test set with annotated ground truth (left) and predictions (right) 
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Chapter 6: Discussion 

State of the Art 

TUPAC16: All teams that performed mitosis detection as part of the Tumor Proliferation 

Assessment Challenge used CNNs (IMAG/e, 2016). Most teams trained a two-class classification 

model with patches centered at a mitotic figure, and background patches. On the testing dataset, 

the model evaluated every pixel location and produced a mitosis probability map that could be 

further processed to identify mitotic figures and/or produce a mitotic score for a ROI. The neural 

network architectures applied to this problem vary from relatively shallow with only a few 

convolutional layers to deep ResNets. Team results for the challenge are shown in Table 7. 

Table 7: TUPAC16 Mitosis Detection team entries & results vs. ours 

Team F-score Additional data 

HUST, Wuzhen, China 0.669 No 

Lunit Inc., Korea 0.652 No 

IBM Research, Zurich and Brazil 0.648 ICPR 2012/14 

University of Warwick, UK 0.640 No 

University of Piraeus, Greece 0.628 20% less data 

Chinese University of Hong Kong 0.620 ICPR 2012/14 

Contextvision, Sweden 0.616 No 

IBM CODAIT, USA 0.601 ICPR 2012/14 

Microsoft Research Asia, China 0.596 ICPR 2012/14 

PIEAS, Pakistan 0.571 ICPR 2012/14 

Radboud UMC, The Netherlands 0.541 No 

University of Alberta, Canada 0.487 No 

University of Heidelberg, Germany 0.481 No 

University of South Florida, USA 0.440 No 

Shiraz University of Technology, Iran 0.330 No 

Inha University, Korea 0.251 No 

Instituto Politécnico Nacional, Mexico 0.135 No 

IIT Madras, India 0.017 No 

 

Since mitoses are generally rare events, the mitosis detection problem is very unbalanced. 

Two main strategies were used to mitigate this: data augmentation by geometric transformations 
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and hard negative mining. The mitosis detection problem is invariant to rotations, flipping and 

small translation and scaling, so can be exploited to create new plausible training samples to enrich 

the training data. The other strategy was hard negative mining (Cireşan, 2013) which is  a boosting-

like technique where an initial mitosis detection method is trained with random sampling for the 

background class, and then used to detect difficult negative instances that are used to train a second 

method. In practice, models trained with random sampling for the background class result in many 

false positives since all hyperchromatic objects are detected as mitoses. The output of the initial 

mitosis detection method can be used to sample such difficult background samples and train a 

second mitosis detection method, which can lead to improvements of the mitosis detection 

accuracy. 

JPATHOL: For the three instance segmentation tasks described in JPATHOL, its authors 

provided some initial processing methodologies to promote further research on their datasets. 

Nuclei Segmentation: Using the procedure outlined in Chapter 4 and an AlexNet Network 

structure, the authors developed a 5-fold cross-validation set of about 100 training and 28 testing 

images. Qualitatively, the network returns crisper results at 40× magnification, rather than at 20×. 

Quantitatively, the detection rate, i.e., the ability to find nuclei in the image, is very high, with the 

network identifying 98% of all nuclei at the 40× magnification, and dropout appears to negatively 

impact the metrics, as presented in Table 8. 

Table 8: Nuclei Segmentation results 

Method Detection F-score 

20× 0.95 0.80 

20× + Dropout 0.90 0.79 

40× 0.98 0.83 

Our model - 40× 0.14 0.220 
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Epithelium Segmentation: Five folds of 34 training and 8 test images are preprocessed as 

mentioned above and are passed through the same AlexNet framework as with the previous task. 

The threshold is used as a hyperparameter for each fold in search of the best possible F-score. 

Pathologists often treat this task as a higher-level abstraction instead of a pixel level classification, 

without removing white background pixels. The approach followed by (Janowczyk, 2016) can 

identify smaller regions ignored by pathologists because they are considered clinically irrelevant. 

After review of their results by a clinical collaborator, they were found to be suitable for use in 

conjunction with other classification algorithms, for example prognosis prediction. This is one of 

the first attempts at direct segmentation and quantification of epithelium tissue in breast tissue. 

The mean F-score for 5-fold cross-validation is 0.84. 

Tubule Segmentation: Each of the 5-fold cross validation sets has about 21 training images 

and 5 test images. The mean F-score, using a threshold of 0.5, was 0.827 ± 0.05. When optimized 

with threshold on a per fold basis this measure rose slightly to 0.836 ± 0.05. Combining all the test 

sets together, the p-value equals 0.33, indicating that there was no significant difference between 

the expected clinical grade associated with our approach versus and expert's ground truth 

annotation. Two other state-of-the-art approaches claim 86% accuracy and 0.845 object-level dice 

coefficient. 

Further research for use of similar DL techniques on this dataset could not be found. 

Discussion of our results 

TUPAC16: Our object detection model results can be considered satisfactory when 

examined on their own. An F-score of 0.628 gives us a good baseline for further fine-tuning and 

improving the model. Training and inferring with this model is fast; acceptable models can be 

obtained within an hour, and prediction results are near instantaneous. Average accuracy is also 
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satisfactory with limited data preprocessing and fine-tuning. Even examining the prediction 

images shows that many false predictions can be considered to resemble human-like mistakes, 

especially acknowledging that part of the ground truth mitoses may not have been annotated at all, 

conceivably generating several false negatives. 

JPATHOL: Unfortunately, our instance segmentation model could only be judged as a 

first-stage proof of concept. The data pipeline with preprocessing, training and inferring is 

functioning, but the final model performance metrics are mediocre, both for the three datasets 

separately, as well as jointly. The image predictions corroborate our numerical performance 

metrics, demonstrating our model’s difficulty in detecting particularly the Epithelium class, and 

any smaller instances in general. Also, they present multiple overlapping bounding box predictions 

from different classes, which should not be a possible outcome with these datasets.  

Comparison with SOTA 

TUPAC16: Compared to the challenge entries presented in Table 7, the performance of 

our model is found to be more than adequate, giving it fourth place in the challenge standings. Our 

model’s performance stands out even more if we consider the technical limitations, the lack of 

experience and unavailability of domain knowledge we had to overcome. Given that the entries 

with better F-scores are close to ours, it is hopeful that with a better process and the improvements 

outlined below we might be able to gain at least a couple of places in the challenge. 

A further fact to be considered is that the other entries were evaluated with an external 

unpublished testset, whereas our model was evaluated with a subset of the published dataset, 

giving us a ~20% smaller training subset. Also, some entries used external datasets to further 

augment their training subset and help with generalization, while we selected to focus on technical 

specifications and settings. Last, our approach used an off-the-shelf, easily set and tuned DL 
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framework, instead of custom ANN architectures intertwined with complex non-DL CV 

procedures. 

JPATHOL: A direct comparison between our approach and the presented methods in 

JPATHOL would be an unproductive effort. The methods presented for each of the three datasets 

are focused on a preliminary experimentation to arrive at a basic process for training single-class 

instance segmentations models using partially annotated data and non-exhaustive tuning. Our goal 

was to create a multi-class instance segmentation model, which, though functioning, could not 

reach nearly the performance of the above methods, mainly due to lack of experience and domain 

knowledge.  

The tasks examined are solutions for different sets of problems, and the presented methods 

should only be viewed as facilitators in the development and improvement of our model, not as 

competing proposals. As a functioning proof of concept, our model can be used as a testbed for 

further improvements suggested below and its class performance could be methodically evaluated 

using the JPATHOL results as benchmarks. 

Future Work 

TUPAC16: The trained model has been found to be a good base for further 

experimentation, despite some oversights during its development. Improvements to be considered: 

• Data augmentation: The primary oversight, due to wrongful assumptions, was the 

omission of a data augmentation process. As the TUPAC16 dataset is invariant to rotation, flipping 

and scaling, it would be beneficial to incorporate this in our process and enlarge our training subset. 

• Hyperparameter grid: Instead of a manual path of gradient descent in the 

hyperparameter grid, and given the short training duration of most models, automated scan of a 
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hyperparameter grid in either a randomized or sequential fashion could help dodge local minima 

during training, or give us a tighter range of hyperparameter values to be tested more thoroughly. 

• Different CNN models: Detectron2 has many pretrained models available for 

testing, some of which may retrieve faster or more accurate predictions. Thanks to its structure, 

swapping different models is a very straightforward process.  

• Staining normalization: Due to variability in tissue appearance and lack of 

standard staining processes, different staining normalization methods could be tested to diminish 

these differences. This could help with working on training data from different sources and 

annotators. 

• Full annotations: The annotations of this dataset do not cover all instances of 

mitosis, which will weaken our model’s training ability and performance. Therefore, steps should 

be taken, as previously shown, to extract as accurately and as thoroughly possible any other mitosis 

instances present in the dataset. This could be undertaken as an unsupervised learning problem 

with non-DL techniques, such as SVM or boosting. 

• Domain knowledge: A medical expert would be invaluable in inspecting our initial 

dataset and annotations, as well as visually evaluating our annotation extraction process and 

predictions. 

• Evaluation on external dataset: Our best model can be retrained using the current 

testing subset along with the training subset for training. The final evaluation can be done by 

submitting it to the TUPAC16 organizers who will run it on a separate unseen test set. This will 

both slightly improve its performance and give us an official place in the challenge standings. 

• Evaluation of training process: Tensorboard will allow us to track, visualize and 

log any parameters or metrics of the CNN in real time. 
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• Rejoining images: As an operational feature, prediction subimages could be joined 

with the rest of the related subimages to form the initial full-resolution image. 

JPATHOL: The main problem that encumbered the development of an adequate model is 

the backwards process we followed. In retrospect, we should have started with development of 

three separate instance detection models trained on each of the sub-datasets separately, then three 

single-class models on all three sub-datasets, and, eventually, the one multi-class model. This way, 

the necessary preprocessing for each dataset could be determined more exactly, any deficiencies 

in the datasets could be rectified earlier, and any possible performance loss due to instance class 

or size can be examined more systematically. 

Further improvements would be the same as those mentioned for the TUPAC16 challenge, 

but the one that would bring the greatest performance enhancement in this case is the refinement 

of separate preprocessing schemes for each class of data. Our approach made minimal use of class-

specific processing, which hindered its training capability. Starting with the suggestions stated in 

the JPATHOL article, we should create processes that can extract accurate and thorough 

annotations and reduce uninteresting training features. Also, for instances like Epithelium and 

Tubule, which as entities are much larger compared to individual components, a greater viewing 

area than 261 x 261 px may be needed to provide sufficient context to make an accurate assessment. 

These improvements would not necessarily make it a useful framework for medical staff 

in real-world applications, but the proof of concept will stand and could lead to further advances 

in multi-class classification and detection tasks in the Digital Pathology field. 
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Chapter 7: Conclusions 

The main goal of this thesis was to gain valuable knowledge and experience in the domain 

of Deep Learning, especially where it may be applied to the field of Digital Pathology. Two 

separate medical image datasets were chosen for that objective, and two different problems were 

formulated around them, one for object detection and one for instance segmentation.  

We selected an open source and easily customizable DL framework specialized in 

Computer Vision tasks, Detectron2, which proved to be a solid choice. Its flexibility and tunability 

allowed quick training/evaluation cycles which led to a very competent model for the TUPAC16 

challenge. Using that model as a starting point for the JPATHOL instance segmentation task, we 

managed to develop a functioning, though performance lacking, multi-class segmentation model. 

A range of improvements has been suggested, most of which are straightforward, that are expected 

to significantly boost our model’s performance. 

Summarizing, we have successfully developed a baseline model for single-class object 

detection tasks, as well as a proof-of-concept model for multi-class instance segmentation tasks 

based on WSI/medical histology slide datasets. 
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