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Abstract

The 21st Century is the reflection of the Big Data Era since 90% of the available data have been created 
over the recent years1. Several frameworks and approaches are made available towards facilitating 
analysis of the aforementioned datasets in order to extract useful information, decode hidden patterns, 
discover trends and insights in various domains such as medical science, economics, biology, physics, 
and social sciences. To this end, data scientists initially aim at problem comprehension / formulation, 
which is one of the most important steps because being able to understand the business logic is part of the 
key to ensure the success. Following the problem formulation step, data preprocessing is performed, 
referring to data collection and organization, as well as the selection of the most suitable strategy to 
achieve the optimal transformation, and adopt useful knowledge from the statistics field to extract 
insights as a first overall view. In the real world, data are generally inadequate, noisy, and inconsistent, 
so for reasons mentioned above, analysts spend a lot of time using various techniques to manipulate, 
reformatting, and finally merging them in order to be consumed for analysis. The data preparation 
includes methods such as cleaning, integration, transformation, and reduction. The preprocessing part 
is vital as it has an effective role in the production of accurate and not misleading results. The main 
target of preprocessing is to define a well-modified dataset that is ready to be processed to enhance its 
reliability. More concretely, methods such as elimination of noisy data, handling missing values, 
label encoding in categorical data, normalization, standardization, dimensionality reduction are 
widely used from data scientists to get a step closer to the problem solvation. As the preprocessing 
procedure concludes, the selection of the most suitable machine learning algorithm is performed. 
Machine learning algorithms enable the actual transformation of the datasets into valuable 
information. Subsequently to the problem (regression, classification, etc.), the available computing 
resources and the nature of the data, the analysts choose typically from a range of different machine 
learning algorithms to address the given problem, apply each one of them in their data and ultimately 
select the one that will bring the best and most reliable result. Traditional machine learning 
algorithms such as logistic regression, decision trees, support vector machines, and neural 
networks, are common choices for classification problems in view of the fact that the community of 
data analysts make wide usage of them and perform evaluation metrics (e.g., accuracy, loss, precision, 
recall, AUC-ROC, etc.) for the final selection.  
The above steps are the baseline in order to gain the first level of experience in data science, but how this 
valuable knowledge can be consolidated with the giant state of the art technologies? Cloud computing 
offers core services such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a 
Service (SaaS), and extended ones based on this SPI model such as Storage as a service (STaaS), Security 
as a service (SECaaS), Data as a service (DaaS). As a core offering and with the goal to further 
abstract the offerings and serve the users needs (including data scientists), serverless computing has 
emerged. Serverless computing is a cloud computing model that aims to abstract server management and 
low-level infrastructure decisions. In  this model, the allocation of resources is managed by the 
cloud provider instead of the application architect.

1 B. Marr, "How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should Read," Forbes Business 
Magazine, 21 May 2018 [Online]. Available: https://www.forbes.com/sites/bernardmarr/2018/05/21.
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Serverless allows applications to be developed without anxieties for implementing, tweaking, or 
scaling a server from the user’s perspective. This innovation brings to light the concept of Function as 
a Service (FaaS). FaaS is a novel paradigm that is fully adopted by innovative companies like Amazon, 
Google, IBM, providing a means to realize serverless offerings. The developers are able to develop 
their applications as microservices without dealing with the administration of the resources since the 
latter is performed by the cloud providers. FaaS can also be offered over edge computing 
resources, addressing cases such as low-latency applications or data exhaust challenges. Initial FaaS 
implementations have been made available, including AWS Lambda2, Google Functions3, IBM 
Cloud Functions4, and Microsoft Azure Functions5.  
Based on the above, the goal of this thesis is to deliver an innovative, beyond the state of the art solution 
that combines data analytics, machine learning, and serverless computing in order to build a set of 
microservices (as a pipeline of Functions as Services) that turns a baseline data analysis logic to a fully 
innovative application. The solution has been realized through the utilization of the Apache OpenWhisk 
serverless platform6 to build the pipeline of Functions as Services, while it has been evaluated through a 
specific analytics use case to predict fraudulent e-commerce transactions. Notwithstanding the idea 
mentioned above, the proposed logic can be applied more generally to different kinds of business tasks 
depending on the target to be implemented. Regarding the approach mentioned above, we split the business 
goal into two main phases: (i) the offline phase (source code creation and implementation in local 
machine) that includes the data collection, preprocessing, transformation, training, and final machine 
learning model selection, and (ii) the online phase that addresses the implementation of the pipeline of 
functions as services through Apache OpenWhisk. The concluding result returns a pipeline of 
microservices in which new data concerning an e-commerce transaction, are obtained as input, utilize 
the appropriate transformation and supply a pre-trained custom machine learning model, and finally 
deliver the outcome if the prediction constitutes a fraudulent or a legitimate transaction. In the scope of 
the offline phase, three sub-phases have been envisioned. The first one concerns the collection of a real-
world dataset – for the specific use case, it refers to e-commerce transactions provided by the world’s 
leading payment service company Vesta Corporation7. The second sub-phase of the offline phase, 
address the data preprocessing and the preparation aspects, and consequently, the third sub-phase 
includes the selection of the most suitable machine learning classifier for the dataset. Regarding the 
online phase, it consists of two sub-phases. In the first one, deployment of Apache OpenWhisk 
serverless platform under the control of the Docker Compose Orchestrator has been performed, while 
in the second sub-phase the offline phase outcomes have been ported in the serverless platform. 
Moreover, in the second sub-phase of the online phase, we created three functions that are 
interconnected. Each one of these is dedicated to a specific task and follows a predetermined 
workflow. Each function receives an input, executes a procedure and produces an output, which is the 
input to the next function until the last one produces the final result. The first function acquires new data 
(e.g. from the consumer), runs specific processes in order to transform the data into a suitable shape 
and attaches new features according to the implemented feature engineering technique in the Offline 
phase. The second function applies -on testing data- the label encoding and the normalization procedure. 

2  "AWS Lambda Run code without thinking about servers. Pay only for the compute time you consume.," Amazon.com, 
Inc., [Online]. Available: https://aws.amazon.com/lambda/. 
3 "Cloud Functions," Google Inc., [Online]. Available: https://cloud.google.com/functions. 
4 "IBM Cloud Functions," IBM Computer hardware company, [Online]. Available: https://www.ibm.com/cloud/functions. 
5 "Azure Functions," Microsoft Corporation, [Online]. Available: https://azure.microsoft.com/en-us/services/functions/.
6 "Apache Openwhisk: An Open Source Serverless Cloud Platform," Apache Foundation, [Online]. Available: 
https://openwhisk.apache.org/. 
7 https://trustvesta.com/
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The last one performs the invocation of the pre-trained model - built during the offline phase - to make the 
final prediction. As selected model has emerged an artificial neural network that was implemented with 
the open-source high-level API Keras8 and achieved 84% sensitivity in fraudulent transaction detection.  
Our proposed approach is strong evidence that the serverless computing model provides a lightweight 
solution to build innovative artificial intelligent applications executed only in a few milliseconds; thereby, 
we can focus on our business goal without managing the allocation resources. 

Keywords
Serverless Computing, Function as a Service -FaaS-, provisioning, framework, Apache 
OpenWhisk, structured data analysis, Machine Learning, imbalanced dataset classification, e-commerce 
transactional data

8 "Keras: The Python Deep Learning library," [Online]. Available: https://keras.io/.
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  Chapter 1 

Data Analysis and Machine Learning 
Methodology- A typical approach

1.1 An Overview to Machine Learning scientific field 

As the technology is evolving rapidly, the definition of data obtained a priceless valuation and 
became the trend of the century due to the fact that social networking has an enormous community of 
supporters, Internet of things gained a significant reputation because of innovated systems like smart 
homes and smart cities and the high percentage of online e-commerce transactions. The worldwide 
web has a powerful impact on our lives. It is a sophisticated multidisciplinary decentralized 
mechanism enabling individuals to communicate with one another, annihilating the geographical 
distance and bringing users together in topic-based communities that are not tied down to any specific 
place. We are living in an all the way networked, globalized society connected by new technologies. 
We use the Internet to interact with one another, which accordingly poses new challenges to privacy 
and security. The Internet is the most vital source for data generation. A remarkable volume of new 
data is transmitted unintentionally and invisibly to the most significant percentage of the users directly 
as a result of Internet-connected devices communicating with each other once they are powered up. 
People interact beyond the Internet, generate data, giving as a result of new trends, covering 
necessities, and as a consequence, new products, and services are created. The last three years, the 
definition of data obtained a priceless valuation and became the trend of the century due to the fact 
that social networking has an enormous community of supporters, Internet of things gained a 
significant reputation because of innovated systems like smart homes and smart cities, the percentage 
of online transactions has been remarkably raised, smartphones and mobile devices become the lifeline 
of our society, new web-based applications are launching day by day improving users life. This giant 
data diffusion caused the necessity for utilization and manipulation of them in order to extract useful 
information, discover trends, make predictions, and -at a higher level- aid business decision making. 
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Major companies and organizations use data analytics to build business strategies, create new 
challenges and opportunities, provide new advertisement campaigns, design new applications, and 
elevate the marketing section. Data analytics have become, without any doubt, the most notorious 
scientific field finding semantic support from Academic researchers. Data Analytics is based on the 
framework, which is called Machine Learning. 

Machine Learning has a leading role in data extraction knowledge; it is a research field 
considered as a crossroads of statistics, artificial intelligence, and computer science and is also known 
as predictive analytics or statistical learning. The application of machine learning methods has become 
a part of users' life. Known artificial intelligence applications such as recommendation systems for 
Products and Services, even many modern applications concerning face, speech and hand-written 
recognition, sentiment-analysis applications, spam filtering, are built under the guidance of machine 
learning scientific field. The most attractive part is that Machine Learning makes computers learn 
nearly as well as people, and as a result, by using the power and the utilities of computer resources, 
designs automate decision-making processes. According to the type of the problem, Machine Learning 
introduces two definitions of learning a) Supervised Learning and b) Unsupervised Learning. 

1.2 Supervised Learning 
Supervised Learning is the machine learning task of learning a function that maps an input to 

an output based on example input-output pairs. A supervised learning algorithm learns from already 
labeled data and helps to make decisions and predictions for unforeseen data. Supervised Learning 
allows us to collect data, or produce a data output from the previous experience, optimize performance 
criteria using experience, aids in solving a wide range of real-world computation problems. The below 
scheme depicts the entire procedure that a supervised Machine Learning Algorithm follows to fulfill 
its purpose: 

Figure 1 Supervised Learning Procedure 

According to the above figure, the procedure begins with the collection of the appropriate historical 
data. Eventually, the data analyst performs transformation techniques in order to reshape the structure 
of the data to feed the algorithm. The final step includes the determination of the suitable machine 
learning algorithm to be trained with the mentioned data. 
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As the training has been finished, the analyst evaluates its performance. If the evaluation metrics 
have high quality, formerly the model is ready to make predictions in new unseen data; otherwise, 
endeavors to find the correct algorithm which will bring the best results to achieve the best 
performance. 

Supervised Learning according to the business problem can be divided into two subtypes which 
are: a) Regression and b) Classification. 

Regression is a statistical approach to identify the correlation between variables obtained from 
the dataset. For regression tasks, the goal is to predict a continuous number (a real number). 
Regression task is -for instance- the prediction of a person’s annual income according to his education, 
experience, and age. Another example is the prediction of the price in stock exchange in line with 
financial circumstances. Even the prediction of weather temperatures or the price of a house according 
to its location and the year of construction constitute regression problems.  

On the other hand, in classification, the main target is the prediction of the class label, which is 
a choice from a prebuilt set of possibilities. Classification sometimes is separated into binary 
classification and multiclass classification. Binary classification is the particular case of distinguishing 
between exactly two classes in contrast with multiclass, which is the classification between more than 
two categories (classes). According to the type of supervised Learning, many machine learning 
algorithms can approach the problem. 

The below table presents the most popular machine learning algorithms in supervised Learning:    

   Table 1 Popular Supervised ML Algorithms 

• Simple Linear Regression (approaches Regression Problems).

• Decision Trees (approaches Classification Problems).

• Support Vector Machines – SVM (approaches both Classification and Regression Problems).

• Multilayer Perceptron Neural Network – MLP (approaches both Classification and Regression
Problems).

• Convolution Neural Networks (approaches Classification Problems, enlisted in Deep Learning
Techniques).

• Logistic Regression (approaches Classification Problems).

• Naïve Bayes (approaches Classification Problems).

• Regressor Trees (approaches Regression Problems).

• K-Nearest Neighbours (approaches both Classification and Regression Problems).

• Random Forest (approaches Classification Problems).
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1.3 Unsupervised Learning 

The second section of the Machine Learning field is described as Unsupervised Learning. 
Unsupervised learning encompasses all kinds of machine learning where there is no known output, no 
guidance to the learning algorithm. It is unsupervised because we do not provide to the model any 
labels. In unsupervised learning, the learning algorithm is just shown the input data and required to 
extract knowledge from these data.  

A well-known type of unsupervised learning is Clustering. Cluster analysis is a procedure of 
grouping data in clusters based their common characteristics. Clustering has a plethora of uses in 
ordinary life. Real world application including social networking analysis, customer segmentation, 
image segmentation anomaly detection. The beneath table depicts the clustering procedure:      

Figure 2 Unsupervised Learning Procedure 

The above diagram depicts a group of raw scatter data, which supplies a clustering algorithm, performs 
the processing, and eventually are separated in clusters based on their common characteristics. There 
are different types of clustering methods, such as Hierarchical Clustering, Density-Based Clustering, 
and Model-based clustering. 

 The most popular machine learning algorithms for Clustering with wide usage from Data 
Scientists are K-means and Density-Based Spatial Clustering of Applications with Noise (DBSCAN). 

1.4  Τhe affection of Data Preparation in Machine Learning Operations 

Beyond doubt, Machine Learning is a powerful weapon that helps in several cases to overwhelm 
the given problem. Before the utilization of Machine learning methods, a data scientist aspires to 
understand the data adequately rather than as a component of a more comprehensive automatic system. 
Data preprocessing is an indispensable step in Machine Learning as the quality of data - and the useful 
information that can be derived from it directly- affects the ability of the selected model. One of the 
most essential and crucial procedures in Data Analysis is the selection of the most effective strategy 
to clean, modify, fill, and transform the given -under construction- dataset. A well-defined 
preprocessing action ensures the quality of data providing a more robust structure for them in order to 
achieve a successful result for the project. Unluckily, a wide range of datasets do not always have the 
expected structure; usually, these are incomplete, inconsistent, without the correct format, having 
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useless information, and they cannot be sent without the proper modification into a machine learning 
model. In this section will dive into and expand on the typical steps performed during an analysis. 

1.4.1 Data preparation procedures 

After the problem has been defined, the goal is determined, and the dataset is selected, the 
analyst must execute a set of procedures that constitutes the data preparation. The below table presents 
the typical and most famous data preparation steps, which will be discussed more in detail. 

         Table 2  Typical Data Preparation procedures 

• Exploratory Data Analysis – EDA.

• Dimensionality reduction (i.e. Principal Component Analysis).

• Data cleaning – (Imputation of missing values, removing outliers).

• Feature engineering.

• Encoding categorical data.

• Feature Scaling

1.4.1.1 Exploratory Data Analysis – EDA 

Before starting to apply various methods and techniques concerning the data preprocessing 
procedure, the data analyst follows a typical approach to analyze the dataset, extract useful information 
of it, discover insights and summarize its characteristics with the support of visual statistics tools. The 
method mentioned above is introducing as Exploratory Data Analysis (EDA).  Every machine learning 
problem starts with EDA. Commonly, datasets are provided in the form of tables, and when these have 
a vast size, it is impossible to comprehend data.  According to the above situation, EDA methods come 
to answer essential questions by plotting various graphs to understand the hidden patterns. Some of 
the typical plots used for Exploratory Data Analysis are Histograms, Distribution Plots, Scatter plots, 
Box plots, and Pie charts. 

• Histograms: Histograms are providing a sharp understanding of density of underlying distribution
of data more accurately probability distribution of data.

• Distribution Plots: These plots are utilized to identify distribution of attributes whether they are
normally or skewed distributed.

• Scatter Plots: A scatter plot is a type of plot which uses X and Y coordinates on a two-dimensional
space to illustrate points. It is a popular plotting technique to examine the interdependence of one
variable over other.
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• Pair plots: When the data is more than two – dimension, Pair Plots investigate the behavior of all
variables along every other variable.

• Box Plots: Box plots are based on percentiles and provide a quick way to visualize the distribution
of data. They also have lines extending vertically from the boxes indicating the variance outside the
upper and lower quartile. The Space between different parts of the box indicate the variance (spread)
of the data. It also helps in detection of outliers.

• Pie charts: Are commonly used to give an overview glimpse in categorical data, to show differences
within groups based on one variable.

1.4.1.2 Dimensionality Reduction 

In several cases, datasets have a plethora of features. As the number of features increase, the 
dataset becomes more complicated. Some features are advantageous, providing semantic information 
for the analysis overlapping the greatest part of the dataset’s variance, and some of them are entirely 
useless. A high-dimensional dataset in classification problems can cause overfitting problems. When a 
machine learning model is trained on a large number of features, gets increasingly dependent on the 
data which was trained on, becomes overfitted giving; as a result, a poor performance on new unseen 
data, beating the generalization purpose. The application of the dimensionality reduction technique 
ensures the reliability of the information, cutting its worthless components, reducing the size of the 
dataset becoming more eligible for manipulation. Also, the most common motivation for 
dimensionality reduction is visualization, which achieves the compression of the data giving them a 
representation that is more informative for further processing. 

One of the simplest and most widely applied algorithms for dimensionality reduction is Principal 
Component Analysis (PCA). PCA is a statistical tool that tries to obtain a possible correlation between 
variables, with the support of orthogonal transformation. The result that PCA introduces is a subset of 
new features, in a new sub-space according to how important they are for explaining the data. The 
methodology of PCA is based on a compound of linear algebra and matrix operations concerning matrix 
multiplication, matrix transposition, inverses, decomposition, calculation of eigenvectors and 
eigenvalues and statistical definitions such as variance, covariance. 

In data analysis language, a basic strategy of PCA begins with the calculation of a square 
symmetric matrix, the covariance matrix; which portrays how the particular dataset’s variables all relate 
to one another. Consequently, the procedure proceeds with the computation of eigenvectors and 
eigenvalues from the covariance matrix, distributing eigenvalues in descending order and the selection 
of the top k Eigenvectors that correspond to the k largest eigenvalues. The eigenvectors and eigenvalues 
of a covariance matrix represent the “essence” of a PCA due to the fact that Eigenvectors (principal 
components) define the directions of the new feature space, and the eigenvalues determine their 
magnitude. In other words, the eigenvalues describe the variance of the data onward the new feature 



Chapter 1. A typical Machine Learning Approach 

23

axes. It means the corresponding eigenvalue informs how much variance is included in that new 
modified feature. 

Subsequently, the projection matrix W from the chosen k Eigenvectors is assembled, and as the 
last step, it remains the transform the original data set X via W to obtain the new k-dimensional feature 
subspace Y. 

This top final top-k feature subspace corresponds to those k feature space with the largest 
percentage of variance, which is enough to describe the data set. 

1.4.1.3 Preprocessing procedure 

After the PCA technique is completed by keeping the most important features, the analyst 
proceeds to the next step, which is the preprocessing procedure. As was mentioned, one of the most 
arduous procedures is to transform the given data having a comprehensible appearance. The 
preprocessing phase follows a variety of strategies like a) Imputation of missing variables, b) Label 
Encoding, c) Feature scaling, d) Feature Engineering. 

Data Science confronts obstacles in the analysis procedure because of the presence of missing 
values. It has been observed that various datasets, mainly structured datasets, have a generous 
percentage of undefined values, commonly named missing values. Missing data arise in nearly all 
severe statistical analyses. Usually, appear as NaN values, and it may create problems for the selected 
machine learning algorithm leading to misleading results or even cause errors to the chosen model 
functionality. Moreover, the cumulative impact of missing data in several variables usually heads to 
the exclusion of a substantial proportion of the initial sample, which in turn creates a significant loss of 
precision and mastery. In a given structure dataset, missing values can be replaced with: a) the most 
common value according to the values of its feature, b) the zero value, c) the mean value, d) the median 
and e) even to delete the entire feature if it consists more from missing values rather than typical values. 

While EDA visual techniques are performed, it is usual to observe data points that are quite 
different from the rest. In respect to the Statistics field, an outlier is defined as the observation point 
that is distant from other observations. Those irregular data points can lead to trouble for scaling 
techniques and affect the performance of the machine learning model. The outliers can be a 
consequence of a mistake throughout data collection, or it may simply be evidence of variance in the 
given data. Analysts can ignore outliers or detect and remove them. Visualization method, which was 
described in the above section with detail like boxplots and scatterplots, affords an easy way to 
recognize outliers, removing, or replace them with different values. 

Another chapter in the data preprocessing procedure is the Feature Engineering technique. This 
technique constitutes the process of mining specialty information of the data to produce new features 
that improve the performance of the selected machine learning algorithms. Feature engineering is 
crucial to the application of the machine learning field and is both challenging and expensive. 
Discovering new valuable information from the already existing features leads to the most precise 
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results, representing the underlying structure of the data and therefore performing the best model. 
Features can be masterminded by decomposing or splitting features, from external data sources, or 
aggregating or combining features to create new features. Feature engineering techniques can be 
beneficial when the analyst has to deal with datasets having various decoded features. 

It has been observed that structure datasets consist of a wide range of categorical qualitative data. 
These types of data are not providing numerical values, are measures of 'types,' and maybe represented 
by a name, symbol, or a number code. A real-world dataset would have a combination of continuous 
and categorical variables. Many Machine Learning algorithms, like tree-based methods, can naturally 
deal with categorical variables. Nevertheless, algebra-based algorithms such as linear/logistic 
regression, Support Vector Machines, K-Nearest Neighbours accept only numerical features as input. 
As a result, it is required to transform the categorical variables present on the given dataset into 
numbers. It is not appropriate to drop them from the dataset as they are known to hide much interesting 
information. The most well-known encoding methods, such as Label Encoding and One-hot Encoding, 
are widely used from data analysts to transform their data. The label encoding method converts non-
numerical labels into numerical labels. Each category is assigned in a unique label starting from 0 and 
going on till N categories – 1 per feature. Label encoders are suitable for encoding variables where 
alphabetical alignment or numerical value of labels is essential. On the other hand, One-hot encoding 
works by building a column for each category present in the feature and assigning a 1 or 0 to indicate 
the appearance of a category in the data. 

Normalizing data encourage many models to perform more beneficial after this is done. 
Especially those that depend on a distance metric to determine similarity. In numerous cases, a 
standardizing process is applied to the collected data so that it has a mean value of zero and a standard 
deviation of one. The purpose of normalization is to modify the values of numeric columns in the 
dataset to a standard scale, without changing differences in the ranges of values. As a note, Tree 
algorithms treat each feature on their own without needing the normalization procedure. On the other 
hand, neural network models have been proved that are working with normalized data. 
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1.5 An overview strategy to approach a classification problem 

According to the methods as mentioned above concerning data transformation in combination 
with the essence of Machine Learning techniques, we are capable to design an overall business 
workflow logic to approach the given problem.   

This thesis approaches a classification problem concerning structured data (Supervised 
Learning) by using the fundamental knowledge of the Machine Learning field in combination with 
data analytical skills. Our proposed workflow strategy of the entire procedure is introduced in the 
below scheme and will be discussed in the next chapter: 

Figure 3 Our proposed business logic to approach a problem solvation 
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  Chapter 2 

  Serverless Computing

2.1 Overview 

In this chapter, we are working on emphasizing the valuation of cloud-based tools with respect 
to those, which propose an entire solution in order to perform our custom web-services without an 
extreme effort to control their vital components. Mainly, we are expanding in definitions of Serverless 
computing, its characteristics, and the concept Function as a Service (FaaS). At the end of this chapter, 
we are introducing Apache Openwhisk, a serverless distributed event-driven platform, since the entire 
business logic -concerning a classification problem- in this thesis- has been split and transferred into 
it. Before we begin to dive into core definitions, we are going to present the evolution of the creation 
and implementation of web-based applications. Starting from monolithic web application 
architectures, proceeding with cloud microservices, and conclude with serverless models and the 
deployment and configuration of Openwhisk (in a local machine). 

2.2 An introduction to Monolithic Application Architecture 

A web application acts as a special kind of client-server logic, where a large percentage of the 
functionality is launched back to the server-side even though the Web does not define what is behind 
the server. The Web relies heavily on the client-server model, and it uses popular languages such as 
HTML and XML, to transfer and represent data/content. Under this representation, there are various 
programming and scripting languages that can explosively process, transform, and produce data or 
provide a user's interface. In this manner, the development of Web applications can be implemented 
under the guidance of software engineering, which also needs to be extended. Web applications are 
versatile because they combine knowledge concerning software engineering, network computing, 
database modeling techniques, and conclusive interface design. Web applications are built in a 
continuously changing environment, confronting combability obstacles, where requirements are 
unstable, and the user community is more extensive than before. Web applications manage 
information from various sources dealing with structuring, processing, storing, and presenting this 
information. In particular, a typical web application consists of layers, in other words, three tiers 
including a) the User Interface (Presentation) level, b) the Business Logic level, and c) the Data Layer. 
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• The presentation layer: concerns what is needed to be seen from the user's perspective and gives
the mechanisms for interaction. The specific kind of interaction depends on the custom
application. Not all the applications have the same scope; one web app can be created in order to
show just information without any user's interaction. In that case, not an advanced and
sophisticated architecture is needed. The most well-used practical applications (have the logic to
give data as an input, send it for processing, and then receive feedback, which can be the final
result or a step for further progress. This layer combines user interface development processes
(HTML scripts, CSS stylesheet language) with client-side scripts (JavaScript, Python -recently-
). All the knowledge above can provide a productive ecosystem for user interaction and content
performance. Definitely, it can be assumed that server-side scripts can be utilized to generate
content, but at the ultimate level these scripts generate the HTML that will be shown to the final
user through the browser, so this role of the development can be partitioned in two phases: first,
the content generation which is created by the business logic layer and second, the presentation
content to the view layer, sustaining the logical division of the application. As an overall, this
layer interacts with the business logic layer beneath, transferring the information from the user
and controlling it, then outcomes back any response it generates without leaving any decisions of
the application's logic to be resolved by the user interface.

• The business logic layer is the essential tier in the application since it is the skeleton of the entire
program. This level receives data from the "higher" level (UI) and modifies it, applying internal
application logic. It also reclaims data from the most profound data level and uses it to the logics.
Moreover, by integrating these two processes, it can perform modifications in both levels as well.
The business logic layer is practically the leading manager of the entire workflow. The obscurest
level in the layered architecture is the data layer (data tier), which deals with data retrieval from
its sources.

• The data layer contains the database/data storage system and data access layer.

Considering those mentioned above, we proceeded to the conclusion that the construction and 
deployment of a monolithic application forms the necessity of a full-stack development 
background (front and back end decisions). The architecture, as mentioned above, indubitably, is 
extremely useful in many cases providing various benefits. Still, on the other hand, it gives limits 
to scalability, high rate of expense, and deep complexity. Moreover, the construction of a 
monolithic application may cause problems in the performance because in case it has a big size, 
it is difficult to make changes fast and correctly. Another obstacle with monolithic applications 
is the reliability; a confusion in any module can probably overthrow the complete process.  
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Furthermore, since all instances of the application are indistinguishable, that confusion will affect the 
availability of the entire application.  Also, the adoption of new technologies, due to the fact that 
changes in frameworks or languages will affect an entire application, it is costly in both time and 
price. 

2.3 Microservices 

2.3.1  Definition –Architecture – Characteristics 

Because we are living in the Cloud epoch, the necessity for agility and scalability begat virtual 

machines, and the demand for technology tools, services, and platforms brought in the scenery the 

concept of microservices. Microservices described as an architectural approach to optimize resources 

that give compute, storage, and networking for at-scale services and software on modern, fast, 

distributed infrastructure; more formally, microservice architectural style is an approach to developing 

an entire application as a group of small services, each running in its own process and communicating 

with lightweight mechanisms, often an HTTP resource API. These services are built around business 

capabilities and independently deployable by fully automated deployment machinery. There is a bare 

minimum of centralized management of these services, which may be written in different 

programming languages and use different data storage technologies (James Lewis and Martin Fowler 

-2014 -)
9
. Microservices constitutes the logic of an extensive application, which is formed as a series

of modular services; this logic groups application parts into nodes of logically related elements

according to the business concern. Microservices architecture is described by the below

characteristics:

• Each service is autonomous.

• It is independent as it concerns the code, managed, and developed by a small team.

• Each service is adjustable as it concerns the technological framework. It can choose the best

technology stack for its use cases.

• Each service is responsible for a particular part of the functionality (business capability),

ensuring its reliability and correctness.

• Each service has its DevOp program (testing, release, deployment, scaling, integration, and

control)

• Each service is deployed in a self-contained (isolate) environment, without affecting the rest

services.

• Vices parts communicate with each other by applying well-defined APIs (smart endpoints)

and simple protocols like REST over HTTP.

9 https://martinfowler.com/microservices/ 



Chapter 2. Serverless Computing 

30

• Each service is responsible for persisting its data and keeping external state (Only if multiple

services consume the same data, such situations are handled in a common data layer).

Figure 4 The difference between the monolithic and microservices architecture 

According to the previous figure and the characteristics mentioned above, we can make a 

synopsis that brings as a result that in the microservices architecture, each service owns its business 

logic task in contrast with monolithic architecture in which the business logic tier is constructed as a 

unique solid component. Additionally, instead of sharing a single database like in Monolithic 

application, each microservice has its database. The owning of a database by service is essential 

because it guarantees the interconnection of service components. Furthermore, a service can use a 

type of database that is best suited to its needs. Microservice architecture ensures, better testability 

due to the fact that services are smaller and faster to test; better deployability because each service can 

be deployed independently, furthermore since its size is small (at least smaller than monolithic 

architecture component) significant changes to an existing service is more comfortable procedure, and 

it can be rewritten it using an all the way new technology stack. 

2.4 Serverless computing and its impact to microservices architecture 

Although the cloud providers offered -via virtualization and containerization- resources for 
building microservices and “self-service” services (IaaS, PaaS, SaaS, etc.,), developers desired to  
make their life more comfortable by building their applications - in the concept of microservice 
architecture- concentrating undividedly on business logic and the source code without care about the 
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allocation of resources providing horizontal scalability, and the ability for the real-time consumption 
of services. This necessity introduced the definition of Serverless computing. First, was introduced 
-in 2014- from Amazon, as “An introduction to Lambda architecture,” and afterward, vendors like
Google and Microsoft developed their serverless models (Google Cloud Functions, or Microsoft 
Azure Functions, respectively). 

Definition of Serverless Computing10: 

Serverless architectures are application designs that incorporate third-party “Backend as a 
Service” (BaaS) services, and/or that include custom code run in managed, ephemeral containers 
on a “Functions as a Service” (FaaS) platform. By using these ideas, and related ones like single-
page applications, such architectures remove much of the need for a traditional always-on server 
component. Serverless architectures may benefit from significantly reduced operational cost, 
complexity, and engineering lead time, at a cost of increased reliance on vendor dependencies and 
comparatively immature supporting services. 

The serverless computing model assigns tasks, both developers and cloud providers. As it 
concerns developers, serverless computing offers a full concentration in building code and business 
logic, and as it concerns the provider, it assigns the entire management of the resources.
Serverless does not mean that servers are canceled; but eliminates the server management from the 
user/developer perspective; In the serverless framework, the user never needs to take care of, or even 
be aware of, any single machines — the infrastructure is entirely abstracted away. In serverless 
models, the cloud provider is managing the allocation resources and takes care of the infrastructure 
by debugging, maintaining, and monitoring it. Below, are introduced the most important 
characteristics of serverless computing:  

a) The serverless environment is most proper for applications needing processing in the cloud
because it allows splitting the application into multiple, more straightforward services 
(microservices architecture),  
b) The serverless model offers the “pay-as-it-is requested” method (price is based mostly on the on-
demand instantaneously scalability); this indicates that the cost for using the service is calculated 
according to original consumption rather than pre-purchased services based on guesswork. It is one 
of the significant advantages since, for years, the cost of provisioning servers and maintaining was 
"twenty-four seven (24/7)" causing high pricing,  
c) Serverless computing focused on building Functions (Function as a Service -FaaS),

10 https://martinfowler.com/articles/serverless.html 
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d) Serverless constitutes a multilanguage environment by supporting a wide variety of programming
languages including Node.js, Java, Python, JavaScript, .NET, Ruby and Swift. Furthermore, some 
serverless platforms can use out-of-the-box programming languages with the support of Docker pre-
build images.  
e) Presently, serverless platforms typically execute a single main function that takes a dictionary (a
JSON object) as input and produces a dictionary as a result. 
f) Provides the capability to build a chain of connected microservices (functions).
g) Every serverless platform has its custom debugging way by using print statements that are
recorded in the execution logs. Also provides capabilities to help developers find bottlenecks, trace 
errors, and better understand the circumstances of function execution. 

Figure 5 The evolution of Serverless Computing 

Serverless technology is not an entirely new model in the cloud world because it is based on 
virtual machines and containers. Several serverless platforms live under the hood of the cloud, and 
their core components approach the philosophy of containerization. Serverless upgraded the level of 
the building and deploying an application (a service).  

First, there were Physical servers that offered excellent performance but provided the slightest 
flexibility for consolidation of workloads; Bare metal servers cannot separate the applications from 
the underlying hardware. The appearance of virtualization allowed bare-metal resources to be 
partitioned into multiple operating system instances. Virtual machines enabled to decouple multiple 
workloads from a physical machine, thereby decreasing the concern for infrastructure implementation. 

Next, Docker containers provided a light-weight alternative to VMs by abstracting out the 
operating system in addition to the bare metal hardware. Therefore, containers encapsulated only the  
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application and its dependencies and presented as a light-weight alternative to virtual machines. With 
the support of Docker containers, developers could bundle their artifacts (code + app and their 
dependencies) effectively and be confident that what runs on their machine would run in dev/test and 
production. Functions reduce the work required from the developer to get the code running even more 
than containers. 

2.5 Function as a Service – FaaS 

The serverless computing brought in the prospect of the Function concept; A function is the 
most important part of the serverless model due to the fact that the entire business logic of an 
application is stored in pieces inside functions (a chain of functions). Its task concerning the execution 
of a specific and custom computation, which is defined by the developer according to his business 
logic. Typically, a function is a piece of code that receives data as input, makes the appropriate 
computation, and returns an output as a result, nothing more and nothing less. Functions are strongly 
connected with the definition of Function as a Service since the last one provides the ability to deploy 
(onto the cloud) a single function or part of an application or even series of functions as an entire 
application. Furthermore, an essential feature of the serverless model is that its functions are stateless; 
this means that after each function process is completed, the lifecycle of the specific task that the 
function executes is destroyed. Stateful functions - in contrast with stateless functions - are expensive 
because they need external storage to save their data and also limit the scalability. 

Figure 6 The growth of Serverless11 

11 CB Insights Market Sizing Tool-Research and Markets; https://www.cbinsights.com/research/serverless-cloud-
computing/ 



Chapter 2. Serverless Computing 

34

According to a recent report CB Insights Market Sizing Tool, the serverless computing industry 
expected to have a tremendous grow up from ($)1.8B (2016) to ($)7.72B (2021) with 33% Compound 
annual growth rate (CAGR). Serverless computing can serve all types of applications, regardless of 
the industry or its custom case. Furthermore, it can improve the growth of the process overall and not 
only the functionality encountered by the end-user. 

2.5.1 The Available Serverless Frameworks and the selection of Openwhisk 
platform  

As we mentioned, in 2014, the pioneer company -cloud vendor Amazon released its serverless 
model called Lambda. After this introduction, in 2017, Microsoft Azure12, Google Cloud13, IBM 
Bluemix introduced their own Functions as a Service serverless models to run event-driven code 
written in many programming languages. The first three services are provided by its own cloud 
provider except the Apache’s serverless model called Openwhisk. Apache OpenWhisk was initially 
developed by IBM but later was donated to the Apache Software Foundation and released under a 
commercially robust open source license, the Apache License 2.0; this makes it open source, 
independent from limitations, friendly to commercial ventures (or users/researchers/developers) 
adopting it, and maintained in the long run.  

2.5.2 Why Openwhisk? 

We chose Openwhisk because any Apache project has a working code base as well as an active 
community, adopters of Apache software can trust they will not be alone in using it. Also, Apache 
Foundation supported software, has a detailed list of compliance rules allowing everyone to use the 
released software without risking getting caught in the non-commercial traps that some other open-
source licenses have. Additionally, to those benefits of adopting an Apache project, Openwhisk also 
is used in production and powers via IBM's BLUEMIX Cloud Services. 

2.5.3 Apache Openwhisk 

According to the official Apache’s Foundation website14, Openwhisk is an open-source, 
distributed Serverless platform that executes functions (fx) in response to events at any scale. In this 
subchapter, we are focused on explaining the Openwhisk user’s visible components in its architecture 
and its main core components to understand its powers and weaknesses and the platform’s limitations. 

12 https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview 
13 https://cloud.google.com/functions/docs/release-notes 
14 https://openwhisk.apache.org/ 
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The serverless platform Openwhisk operates by executing stateless functions (which in its language 

are called actions) in response to events; this means that the entire procedure utilized when data from 

various sources (databases, message queues, IoT devices, websites) are passing into functions. That 

is why we called Openwhisk an event-driven platform. OpenWhisk supports source code, which is 

given as input that provisions executing a single command with its Unix-based command-line 

interface (CLI) and then delivers services through the web to multiple consumers, such as other 

websites, mobile applications, or services based on REST APIs.  

2.5.3.1 Openwhisk main components 

As we mentioned before, functions that the serverless platform executes must be stateless due 
to the fact the being stateful creates the necessity for external storage, decrease the limit of scalability 
and demands reliable synchronization between invocations which increases the load, the state-keeping 
infrastructure and as a result restricts the ability to grow. It is essential to know that stateless status is 
maintained only in the level of function construction, not in the entire Openwhisk environment. 
Openwhisk provides the management in infrastructure, and the developer writes the source code to 
create the actions that responds correctly when an event is coming.  

Openwhisk provides a variety of components which are can be handled by the developer but 
the most well used are the below: 
• Actions
• Triggers
• Rules
• Packages
• Namespaces
• Activations
• APIs

Action component corresponding to the construction of a function; Openwhisk support various 

programming languages to write the functions; these programming languages are Python, Node.js, 

Java,.NET, Ruby, PHP, Swift, also gives the capability to use out-of-the-box languages (i.e Scala, Go, 

C/C++) with the support of docker container as prebuild image. Each action receives data in JSON 

format, completes its tasks, and produces a JSON string similarly as a result (i.e., if the developer 

writes his source code in Python, he must provide as input a dictionary structured object and receive 

likewise, as a result, a dictionary). Furthermore, each action can be performed as web action in order 

to build web-based applications; this feature allows the developer to program backend logic in which 

his custom web application can be accessed anonymously by anyone user without requiring 

authentication. In addition, the action can be a zip including the file with the source code (according 
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 to the chose runtime i.e., Java, Python), and the necessary files (or virtual environments including 

necessary libraries) which, are important for the execution. Action can also be performed and as a 

ready-made docker container, but it must implement the specific action’s interface. Openwhisk also 

gives the vital capability to connect each action with another. Pipeline actions use as input the output 

of the previous actions. Initially, the first action of a sequence will accept the parameters (in JSON 

format), and the last action of the sequence will provide the final result as a JSON string.  

Triggers and Rules components add event-driven capabilities to the serverless platform. Events from 

outside and inside event sources are forwarding through a trigger, and rules allow the actions to react 

to these events. Triggers can be fired either by a user either by an external event source. Triggers and 

rules are strongly connected; A trigger is just an Openwhisk component without producing nothing 

by itself; in order to be activated (fired), it needs to be associated with a rule. The rule is the component 

that associates a trigger with an action, with every activation of the trigger forces the corresponding 

action to be invoked along with the trigger event as input. 

Packages provides the ability to gather a set of related actions and share them with others; Packages 

including actions and feeds; Feeds is the mechanism which connects the data source with the trigger 

(and the rule) to be fired.  

Namespaces also concludes Openwhisk entities (actions, triggers, rules) 

Activation component heads into the platform’s log data. Each Openwhisk action -when completes 

its task- produces log data; each action’s log data are available via an activation ID. This component 

provides the ability to the developer to view the execution time for each function and detect analytical 

his possible errors.  

API corresponds to the automated construction of a REST API endpoints, which will be associated 

with specific actions or a chain of actions. It is common to access the service through a REST API, 

which is the request’s first responder for testing purposes. The preceding components are visible and 

manageable from the user side in order to create an application or a part of it; actually, the entire 

process is all straightforward from the user’s point of view, but in reality, Openwhisk follows a series 

of procedures for an action to be executed.  

2.5.3.2 Openwhisk Architecture 

Openwhisk has been constructed with the support of popular open-source tools in combinations 

with its own custom core components, which are packaged as containers. These components are: 

NGIX server as a high-performance webserver and reverse proxy, CouchDB a document-oriented 
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NoSQL Database, Kafka a distributed, high-performing publish/subscribe messaging system and 

Openwhisk’s custom components Controller, Load Balancer, Invoker, and action execution container. 

The above picture describes precisely the entire procedure for an action execution which will 

be discussed in detail: 

Figure 7 Openwhisk’s entire procedure for an action execution15 

Each of the components mentioned above completes a task in order to fulfill the process for the 

action execution. It is essential to mention that the user can make his request (bypassing his data 

parameters) into an action -usually- via Web when the action has been performed as a web action, via 

Openwhisk’s custom CLI, through a REST API and, when a trigger is fired (with a rule) and initializes 

the action which is associated with. The first responder of the request is the NGIX server; every user’s 

request is translated into an HTTP request and hits the webserver NGIX. The main target of NGIX is 

to perform support for the HTTPS secure web protocol by enriching the request with all the certificates 

required for secure processing. After this task is completed, the request is passing to the next 

component, which is Controller; the Controller checks if the request is capable of being executed; an 

action is executed if only if the request is authenticated. Once the request is authorized, it must be 

enriched with additional parameters as part of the action’s configuration. This step is performed along 

15 Learning Apache OpenWhisk by Michele Sciabarrà (O’Reilly). Copyright 2019 Michele Sciabarrà, 978-1-492-
04616-5, p. 38. 
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with the support of Couch DB, which stores the parameters and metadata for the specific request. 

After this step is completed, the request is passing to the load balancer, which checks if there are 

available instances to execute the action; in case that there are not available actions, then create new 

ones.  

Afterward, the request must be pass to the invoker in order to initialize the action to be executed, 

but sometimes, invokers may be busy by executing another action, or maybe an invoker is not 

responding or the entire system having a problem and restarting. For that reason, Openwhisk uses 

Kafka to control and adjust the invocations. Kafka is a high performing publish and subscribe 

messaging system that the requests can be stored until they are ready to be executed. The initial HTTP 

request transformed into a Kafka message addressed for the action execution. Each Kafka message 

(each request) is sent to the invoker in order to take an ActivationID which is unique and corresponds 

to the specific request, then the invoker passes the request to the action container -which supports 

specific programming language runtime-, completes the action execution and stores the result to the 

CouchDB plus it returns it to the user. The action container, in reality, is a docker container that is 

initialized, execute its custom computation in an isolated environment, and it is terminated (stateless 

status). Openwhisk provides both asynchronous and synchronous processing. In the case of the 

asynchronous procedure, the user can make his request without expecting the answer directly. 

Openwhisk for each invocation is providing -as we mentioned- an Activation ID which is associated 

with and stores it in CouchDB along with the result, so the user can retrieve the specific result by 

checking the specific activation log. From the other side, in the synchronous procedure, the connection 

stays open until the user gets the result. 

The above-mentioned components concerning Openwhisk architecture, are not visible for the 

user/developer due to the fact that he is entirely concentrated in writing source code to build actions. 

On the other hand, Openwhisk actions have some constraints and limitations which must be taken in 

mind when the developer builds his business logic. The below table represents the most important 

action execution restrictions. All constraints have some significance in terms of time or space (timeout, 

frequency, memory); some of them are configurable, and others are difficult to be modified. Typical 

constraints are:  
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Table 2 Openwhisk’s action constraints16 

timeout a container is not allowed to run longer 
than N milliseconds 

per action milliseconds 60000 

memory a container is not allowed to allocate 
more than N MB of memory 

per action MB 256 

logs a container is not allowed to write more 
than N MB to stdout 

per action MB 10 

concurrent no more than N activations may be 
submitted per namespace either 

executing or queued for execution 

per namespace number 100 

minuteRate no more than N activations may be 
submitted per namespace per minute per namespace number 120 

codeSize the maximum size of the action code configurable, limit 
per action MB 48 

parameters the maximum size of the parameters 
that can be attached 

not configurable, 
limit per 

action/package/trigger 
MB 1 

result the maximum size of the action result not configurable, 
limit per action MB 1 

According to the above table, an action must complete its process in a range of sixty seconds. 

Although the execution time can be modified by the developer of the action using annotations. The 

same holds for the memory size. An important action limitation is concerning the code size; the 

developer must provide his source code without exceeding the size of 48 MB. An action can be a zip 

file that includes the primary function (including its source code), which will be executed from the 

Openwhisk action container along with other files which are essential for the execution, but the 

developer has to remember that the size of the entire function cannot be up to 48 MB. As it concerns 

actions implemented in Python, popular libraries like requests and Beautifulsoup are available as 

global packages. Additional packages can be imported using virtualenv during invocations. Python 

external packages can be used by building virtual environments.  Developers install the packages 

locally and include the virtual folder in the archive for deployment. Openwhisk also gives the ability 

16 https://github.com/apache/openwhisk/blob/master/docs/reference.md 
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to execute one hundred and twenty action invocations per minute, but from the other side, limits the 

size of the given input parameters which it must not exceed 1 MB As it concerns the other constraints, 

they cannot be configured by the user, but the system administrator of Openwhisk can configure them. 

2.5.3.3 Openwhisk Installation and Configuration 

In this subchapter, we are explaining the entire procedure for the installation and deployment 

Openwhisk platform in our local machine to test our custom services. 

Openwhisk community offers - via its official repository in GitHub
17

-various ways to install the 

entire platform in a local machine. The users can follow the instructions for a native development in 

order to deploy the platform in their local machine (MacOS, Ubuntu), as a standalone jar file, or with 

the support of Kubernetes (Deployment in Kubernetes cluster), or with the support of Docker-

Compose
18

.  

For this thesis, we chose to deploy Openwhisk with the support of Docker-Compose. Before 

starting to describe the entire procedure, we must refer that we selected to install the VMWARE 

Fusion (edition 11.5 professional) workstation, a tool for virtualization, and ran an Ubuntu (16.04 LTS 

Xenial) image with 4GB RAM. The entire installation was held into Ubuntu OS. In all over the 

procedure of the installation, we captured snapshots (copies) in each step in order to avoid failure or 

possible system errors. VMWARE allow customizing settings through a friendly web interface. For 

that reason, we selected (through UI) to adjust networking settings in NAT mode because we wanted 

our virtual machine to share the external network with our OS. 

Openwhisk (for the installation in a ubuntu machine) requires various tools before building and 

deploying it; these are a) the programming language JAVA
19

 (version 8) along with JDK, b) Docker
20

 

(edition 1.13 +), and c) Docker Compose
21

 (edition 1.6 +). After the installation of the tools as 

mentioned above, we cloned the target repository into a new directory of our OS including all 

Openwhisk core components (NGIX, controller, invoker, Kafka, etc.) as docker containers that are 

orchestrated by Docker Compose. Docker Compose is a mechanism for establishing and managing 

multi-container applications; actually, acts like an orchestrator for all the components that synthesize 

an application, it builds a stack of applications to run a complete service by using a YML configuration 

file that  is broken into sections, each section represents a single container which, when combined 

with the other containers, create the service.  

Also, the directory folder includes a Makefile, which defines a set of tasks to be executed. The 

Makefile includes a bash script which the OS must execute in order to install all the appropriate 

17 https://github.com/apache/openwhisk 
18 https://github.com/apache/openwhisk-devtools/blob/master/docker-compose/README.md 
19 https://www.java.com/en/download/ 
20 https://docs.docker.com/v17.09/engine/installation/linux/docker-ce/ubuntu/ 
21 https://docs.docker.com/compose/install/ 
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Openwhisk components. Serverless development is performed initially at the terminal using a 

CLI. The analytical steps for Apache Openwhisk’s installation is described in Appendix_A

After the installation is completed, we had to download and compile Openwhisk’s CLI in order to

interact with the entire serverless platform and its components. The executable file for the CLI’s

installation is in a subdirectory of the folder mentioned above, which must be established as a global

variable in the OS. Openwhisk is initialized with the command wsk as it follows:

       Figure 8 Openwhisk installation and configuration in a local machine 

As we observe from the above figure, currently Openwhisk does not provide a graphical 

interface; all the interactions implemented via its custom Unix-Based CLI; therefore, the 

developer/user has the ability to manipulate all Openwhisk components by using native commands 

built by the Openwhisk creators. As we already mentioned, Openwhisk supports various programming 

languages as runtimes, but for this thesis, we selected the programming language Python (version 

3.6.1) to build our custom actions. The supported Openwhisk runtimes are provided through the 

official Docker repository
22

 that includes pre-build images for Openwhisk. In order to integrate the 

python runtime into Openwhisk, we had to pull the specific docker container, including the python 

environment, to execute actions. 

22 https://hub.docker.com/r/openwhisk/python3action
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2.5.3.4 Openwhisk CLI and native commands 

Generally, the developer can interact with the user’s visible components (actions, triggers, API, 

etc.) through the abbreviation wsk. The wsk command is composed of many commands, each with 

many subcommands. The general format is this: 

wsk <COMMAND> <SUBCOMMAND> <PARAMETERS> <FLAGS>23
 

There are various examples for implementing actions in Openwhisk serverless environment are 
described in the official Openwhisk repository in GitHub24, but we will present the general structure 
in order to create and invoke an action or a sequence of functions in python and trace the activation 
logs. 

Table 3 Creation-Update-Invocation-Removal commands for an action in Openwhisk 

Table 4 Retrieval of activation logs for each action/or sequence of actions 

1 wsk -i activation list -- -- 

2 wsk -i activation get activationID --logs 

Table 5 REST API creation command to invoke an action/sequence of actions 

wsk -i api create /api name get 
action/seque

nce name 

--response-

type json 

23 <PARAMETERS> and <FLAGS> are different for each <SUBCOMMAND>, and for each <COMMAND> there are various 
subcommands
24 https://github.com/apache/openwhisk/blob/master/docs/samples.md

1 wsk -i action create action name 
Written 

code-file 

--kind python3, 

--web true 

2 wsk -i action update action name -- --web true 

3 wsk -i action delete action name -- -- 

4 wsk -i, -r action invoke action name -- --param name 
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Table 6 Creation-Update-Invocation-Removal commands for a sequence in Openwhisk 

2.5.3.5 Additional information 

According to the below tables, we provide some guidance coming from the Openwhisk 
inventors to describe some of the previous components. If the developer uses a local OpenWhisk 
deployment with a self-signed SSL certificate, he can use the –insecure (-i) flag to bypass certificate 
validation. The -r flag represents the direct appearance of the result/response according to the request. 
The global flag –web true, makes the action as web action that is accessible from any user without 
requesting an authentication. Furthermore, each invocation produces an ActivationID, which 
practically is a number and it is stored in CouchDB, therefore in order to access the logs from the 
specific action invocation, we follow the second command from Table 5. After the OpenWhisk 
environment is enabled, the developer can use OpenWhisk with his web apps or mobile apps with 
REST API calls. All the abilities in the Openwhisk’s system are accessible via a REST API. There 
are collection and entity endpoints for actions, triggers, rules, activations, and namespaces. 

• https://$APIHOST/api/v1/namespaces
• https://$APIHOST/api/v1/namespaces/{namespace}/actions
• https://$APIHOST/api/v1/namespaces/{namespace}/triggers
• https://$APIHOST/api/v1/namespaces/{namespace}/rules
• https://$APIHOST/api/v1/namespaces/{namespace}/packages
• https://$APIHOST/api/v1/namespaces/{namespace}/activations

1 wsk -i actionA create/update action name 
Written 

code-file 
--web true 

2 wsk -i actionB create/update action name 
Written 

code-file 
--web true 

3 wsk -i actionC create/update action name 
Written 

code-file 
--web true 

4 wsk -i action create/update 
action (sequence) 

name 
-- 

--sequence 

actionA, actionB, 

actionC, --web 

true 

5 wsk -i, -r action invoke 
action (sequence) 

name 
-- --param name 

6 wsk -i action delete 
action (sequence) 

name 
-- -- 
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The $APIHOST is the Openwhisk API hostname (in our use case is 192.168.111.128). The 

namespace and activation endpoints support only GET requests. The actions, triggers, rules, and 

packages endpoints support GET, PUT, and DELETE requests. The endpoints of actions, triggers, 

and rules also support POST requests, which are used to invoke actions and triggers and enable or 

disable rules. 

2.5.3.6 Serverless vulnerabilities 

Whilst, the serverless computing has been evolved rapidly offering from developer’s 

perspective: zero system administration, easier operational management, encouraging of adoption of 

Nanoservices, Microservices, SOA Principles, faster set up, scalability without worry about the 

number of concurrent requests, monitoring out-of-the-box, innovation and from business perspective: 

cost-based specific criteria, process agility, lower cost for hiring backend infrastructure engineers and 

reduced operational costs, still has some sensitive spots. Serverless reduces the complete control, so 

it is more difficult to monitor the entire procedure, acquires entirely trust to cloud providers (cloud 

vendors that control the infrastructure), is more susceptible to security risks and disaster recovery 

risks, and unpredictable as it concerns the cost due to the fact that the requests cannot be predefined. 

Nevertheless, all the mentioned situations can be mitigated with the benefits that the serverless 

computing provides. 
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Chapter 3 

A Proposed ML-FaaS Business-Intelligence 
model 

3.1 Overview 

In a previous chapter, we presented the entire ordinary procedure to approach a problem (such 
as classification, regression) with the implementation of methods and techniques related to Data 
Analytics and Machine Learning; also, we introduced the Serverless Computing model along with 
Function as a Service concept (FaaS) as one of the most successful innovations that has evolved into 
the cloud promoting the automation. As we already referred in a preceding chapter, building an entire 
application demands a full-stack development knowledge, which in most of the cases acquires an 
entire group of hard-working, skilled employees in order to be implemented. What if we want to 
approximate a classification problem, create a model, and make it visible to third-users as an entire 
application avoiding massive effort? How can a developer elaborate his business logic and strategy in 
combination with cloud-offered-services without the support of backend infrastructure engineers to 
construct his application as a meaningful power service reducing the overall cost at the same time? 
Our proposed approach in this thesis answers those questions with the construction of a Machine 
Learning Model with the support of Data Analysis tools and visualization techniques in order to 
approach a specific use-case classification problem. The critical part of this thesis is that we split the 
entire logic into functional pieces that have been integrated into a serverless ecosystem, becoming an 
entire application visible from users and available for test purposes. In the next sections of this chapter, 
we will introduce our proposed approach to solve a classification problem, all the procedure steps -in 
detail - and the final deployment of the proposed logic as series of Openwhisk actions that synthesize 
the entire application, which is accessed by ordinary users.
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3.2 The proposed approach 

Our proposed approach is an experiment that consolidates data analytics skills and machine 
learning, along with the Apache Openwhisk Serverless platform. In particular, we selected to examine 
a dataset with labeled fraud and authorized e-commerce transactions due to the fact that online card 
fraud reported cases to constitute a crucial problem that has dramatically occupied the Financial 
Sector, Law Enforcement Agencies, and consumer society. The target was to build a machine learning 
classifier that can sharply recognize whether an e-commerce transaction is fraudulent or legitimate. 
For that reason we selected a dataset with historical e-commerce transactional data in order to train 
our classifier giving, as a result, the opportunity to an ordinary user to provide as input new unseen 
data concerning a unique transaction and finally predicting if his input data constitutes a fraud or an 
authorized transaction; The above-mentioned business logic has been transmitted into the selected 
Openwhisk serverless platform as an entire application which consists of a pipeline of three -3- 
microservices (functions) which each of these executes a specific task concerning the new unseen data 
that the user-provided as input. The related work was implemented in two phases the Offline phase 
and the Online Phase.  

The Offline phase was held in our local machine and concluded the entire data analytics and 
machine learning procedure to manipulate the selected dataset started from the problem definition, the 
data collection and its explanation, an EDA Analysis in order to discover useful patterns and insights, 
the crucial part of preprocessing concerning imputation of missing values, the dropping of useless 
features, dimensionality reduction with PCA technique, implementation of feature engineering 
process, label encoding concerning categorical data, scaling and normalization process, the 
enrichment of dataset to improve the performance due to the fact that we dealt with imbalanced labeled 
data (the vast majority of transactions was not fraudulent), the selection of various machine learning 
algorithms that were fitted to the dataset, the training procedure with the support Stratify K-fold cross-
validation model validation technique, and the final machine learning model selection according to 
best performance of Recall, Area Under Curve -AUC- and Confusion Matrix metrics. As it concerns 
the selection of the most suitable machine learning algorithm, we tested models like Logistic 
Regression, Decision Trees, Random Forest, and Artificial Neural Networks, the last one implemented 
with Keras framework in four -4- different cases. Especially we tested the chosen algorithms with four 
different techniques concerning the data manipulation:  a) Raw dataset without any enrichment 
technique, b) by giving weight to minority class samples (fraudulent transactions), c) with the 
implementation of a simple oversampling technique and d) with the implementation of Synthetic 
Minority Oversampling technique -SMOTE- in combination with TOMEK-LINK undersampling 
technique.  At the end of the Offline phase, we saved the best pre-trained model in the local disk in 
order to use it Online phase. 

The Online phase entails the creation and development of the source code (in python 
programming language), corresponding to the building of functions (connected actions) inside 
Openwhisk. More particular, we decided to build three connected Openwhisk actions (a sequence of 
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microservices) with python runtime. As we said in the previous chapter, each Openwhisk action 
accepts as input parameters in a python dictionary structure (a JSON format) and returns a result 
likewise the input's structure. When we deal with a sequence of actions, the first input is passing into 
the first action, an execution is implemented, and an output is produced, which will be the input for 
the second Openwhisk function and so forth until the last action give the final result. All of the three 
constructed functions concerning new unseen data; The first function receives the parameters (JSON 
format), undertakes to transform their structure in order to make data analysis fast and easy, checks if 
missing values are appeared and does the appropriate imputation according to the strategy that we 
followed in Offline phase, also, adds external features according to the feature engineering procedure 
that we followed similarly in Offline phase and forms capitalization to categorical data in order to 
maintain a consistent format for the given data. The second action receives as input the transformed 
data from the computations of the first function; its main task is to perform label encoding to these 
values that constitute categorical variables and do the normalization according to the normalization 
that we applied in Offline phase. The modified parameters from the second function pass as input in 
the third and final function. In the third action, we used the pre-trained model from the Offline phase, 
which becomes part of the mentioned action, and it is used to make the final prediction if the given 
data (parameters) constitutes a fraudulent or authorized transaction. The final action’s output produces 
a message that refers to if the transaction is fraud or not.  

As it concerns the construction of functions, taking mind the constraints and limitations that we 
referred in the previous chapter; OpenWhisk supports creating actions from archive files containing 
source files and project dependencies; but in our system, we used external docker containers 
mechanisms, which includes the appropriate machine learning libraries that we needed to complete 
each action's task, due to the fact that most of the third-party python packages which help to improve 
data performance are exceeding the limitation of the function's source code (48MB).  

As we already know, Python is a popular language for machine learning and data science; public 
libraries like pandas, scikit-learn, and NumPy provide all the necessary tools to manipulate the given 
data in order to fulfill our target. Although, popular libraries like flask, requests, and Beautifulsoup 
are concluded in the Openwhisk supported runtimes as global packages. Any additional packages can 
also be imported using the construction of a virtual environment, which will be included along with 
the source code for the specific action during invocations. Nevertheless, Machine Learning libraries 
often use numerous shared libraries and compile native dependencies for performance; this can lead 
to hundreds of megabytes of dependencies. Setting up a new virtualenv folder and installing, for 
example, Pandas library leads to an environment with nearly 100MB of dependencies. Bundling these 
libraries within an archive file will not be possible due to the file size limit. We can overcome this 
limit by using a custom runtime image. The runtime will pre-install additional libraries during the 
build process and make them available during invocations. OpenWhisk uses Docker for runtime 
containers. Source files for the images are available through the official repository GitHub. Using 
custom runtimes with private source files is a fantastic feature of OpenWhisk because it enables 
developers to run larger applications on the platform but also enables lots of other use cases. Almost 
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any runtime, library, or tool can now be used from the platform. In our related work, we used and 
configured prefixed docker images, including libraries with specific editions such as Pandas, Scikit-
learn, Keras, and NumPy, in order to create and run our custom Openwhisk actions.  

When new data are inserted as input (because Openwhisk is an event-driven serverless 
platform), an HTTP request is created and is passing to all of the Openwhisk’s core components 
(NGIX Server, Controller, CouchDB, LoadBalancer, Action Container) and produce the response. 
The user practically, in Openwhisk language, makes an HTTP request through a REST API endpoint, 
which is passing into the pipeline of functions and follows the procedure mentioned above to fulfill 
the request and produce a result. 

According to the information mentioned above, we introduce the graphical representation of the 
entire proposed architecture that constitutes the construction of an alert system for card fraud detection 
in a Serverless ecosystem: 

    Figure 9 Proposed ML-FaaS Approach 

In the next sections of this chapter, we will present each phase separately; first, the Offline Phase, 
which includes all the above steps starting from Problem Definition, continue with the Dataset 
Collection, Data Analysis Strategy, the training phase with the selected machine learning algorithms) 
and afterward in the Online phase (deployment), we will present the entire business logic for the 
construction of the functions inside Openwhisk. 
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3.3 Offline Phase

3.3.1 Definition of the problem 

One of the most indispensable innovations that the Internet provides is automated online e-
commerce systems, which enables to consumers to interact directly with vendors in order to make 
online transactions globally, ensuring speed, reliability, and a high level of security. On the other side, 
the Internet favors the criminals who invent day by day new methods and techniques in order to act 
illegally without performing physical appearance. More precisely, we are concentrated on card Thefts 
who are using various methods to capture data, including card skimming at ATMs or ticket machines 
and phishing. People are often unsuspicious that their credential card data has been stolen until it is 
too late. These data can be used to create fake-clone cards or used subsequently for Card-Not-Present 
fraud (CNP). Mainly, Fraudsters use this information to purchase goods or services in the name of 
victims or obtain unauthorized funds from the victim’s accounts. Compromised card data may also put 
up for sale on Darknet markets. In numerous cases, the data stolen in one country is used elsewhere, 
making it harder to trace.  

According to the Official Central’s Bank Website (Eurosystem)25, in 2016 the total value of CNP 
fraud increased by 2.1% compared with the previous year, reaching € 1.32 billion furthermore, CNP 
was the most common type of fraud in 2016 by accounting for 76% of the total value of frauds. 

Due to the Official Federal Trade Commission Website26, people reported losing $1.48 billion 
to fraud last year – an increase of 38% over 2017. The most reports in 2018 were about imposter scams, 
debt collection, and identity theft. Additionally, in 2018 the 43% of people who reported fraud is in 
the age of 20s, while only 15% of people in their 70s did. 

Data analysts, according to their skills, knowledge, and experience, contribute to combatting 
card fraud crime by producing models that can detect fraud transactions with a high level of success. 
Machine learning can be meaningful in order to extract valuable information and help face this grown-
up crime activity due to the fact that it uses algorithms, statistical, and mathematical models that 
computer systems use to accomplish specific tasks without using explicit instructions, relying on 
patterns and inference instead. Machine learning models by using historical data, are capable of making 
predictions or decisions without being explicitly programmed to perform the task.  

According to the sections, as mentioned above, we decided to introduce our solvation in the 
above problem using extensive Data Analytics in order to gather all the necessary information we need, 
extract insights, implement visualization techniques, discover useful patterns in combination with 
machine learning algorithms in order to recognize fraudulent transactions with the highest sensitivity. 

25 https://www.ecb.europa.eu/pub/cardfraud/html/ecb.cardfraudreport201809.en.html#toc5 
26 https://www.consumer.ftc.gov/blog/2019/02/top-frauds-2018 
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3.3.2 Dataset Collection 

Thus, the problem and business goal are defined; the typical data analysis logic starts with the 
determination of historical data for studying in order to build our business model. After that, the 
mentioned data feed the chosen machine learning algorithm in order to predict the result.  

We collected our appropriate dataset concerning fraud e-commerce transactions from the official 
data repository Kaggle -purchased by Google in 2017- which is an online community for data scientists 
providing various projects for all kinds of analysis. The chosen dataset was published from Kaggle for 
competition due to the fact that the ability to identify fraud e-commerce transactions is a big challenge 
for the data science community, and it can semantically improve the security of consumers banking 
activity. Vesta Corporation, which is a world’s leading payment service company, provided the dataset 
for this competition. Vesta Corporation is the forerunner in guaranteed e-commerce payment solutions. 
Founded in 1995, Vesta pioneered the process of fully guaranteed card-not-present (CNP) payment 
transactions for the telecommunications industry. Since then, Vesta has firmly expanded data science 
and machine learning capabilities across the globe and solidified its position as the leader in guaranteed 
e-commerce payments.

3.3.3 Dataset explanation 

The chosen dataset was downloaded through Kaggle’s official repository27, it is structured with 
a comma-separated values format and consists of two parts. The data are broken into two files identity 
and transaction, which are joined by the column TransactionID. A piece of additional information is 
that not all transactions have corresponding identity information. The size of the aforementioned files 
are 26,5 MB and 683,4 MB, respectively. Due to the fact that consumers transactions constitute 
sensitive personal data, the competition hosts, according to the Law, provided them fully anonymized. 
Dataset’s features are masked and are corresponding to a pairwise dictionary, which was not provided 
for privacy protection and contract agreement. The identify dataset consists of forty (40) columns and 
one hundred forty-four thousand two hundred thirty-three (144233) rows. The transaction dataset 
consists of three hundred ninety-three (393) unique features and five hundred ninety thousand five 
hundred forty (590540) rows. Each row corresponds to one unique consumer’s transaction. Based on 
competition instructions, both of datasets have numerical and categorical features.  Specifically, as it 
concerns the identity dataset, the first thirty-eight (38) features are called ids and follow a numerical 
order from id_01 up to id_38 and the rest two features are named ‘DeviceType’ and ‘DeviceInfo’. 
According to instructions, the competition hosts defined that the first eleven id features correspond to 
numerical variables, and the features from id_12 up to id_38 and ‘DeviceType’ and ‘DeviceInfo’ form 
categorical data by taking a limited, and a fixed number of possible values. Also, the variables in the 
mentioned dataset concern consumers identity information, network connection information (i.e., IP, 

27 https://www.kaggle.com/c/ieee-fraud-detection/data 
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ISP, Proxy), and digital signature (UA/browser/Operation System/version) associated with 
transactions. 

From the other hand, the transaction dataset has a plenty of both numerical and categorical 
features which according to competition hosts are described below along with their definitions:

Table 7 Main Features of transaction dataset 

• TransactionDT: timedelta from a given reference datetime (not an actual timestamp).

• TransactionAMT: transaction payment amount in USD.

• ProductCD: product code, the product for each transaction.

• card1 - card6: payment card information, such as card type, card category, issue bank, country, etc.

• addr1-add2: address.

• dist1-dist2: distance.

• P_ and (R__) emaildomain: purchaser and recipient email domain.

• C1-C14: counting, such as how many addresses are found to be associated with the payment card,
etc. The actual meaning is masked.

• D1-D15: timedelta, such as days between previous transaction, etc.

• M1-M9: match, such as names on card and address, etc.

• Vxxx: Vesta engineered rich features, including ranking, counting, and other entity relations.

According to the above table, the features ProductCD, card1 up to card6, addr1, addr2, 
P_emaildomain, R_emaildomain and M1 up to M9 corresponds to categorical variables. 
Below, we collocate subsamples from the aforementioned files to provide a short view of them. 
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Table 8 Subsample of the file transaction.csv 

TransactionID is 
Fraud TransactionDT TransactionAmt ProductCD card1 card2 P_emaildomain card4 M4 M5 addr1 C3 C4 dist2 V199 V200 M5 M6 

2987000 0 86400 68.5 W 13926 NA discover M2 F 315.0 0.0 0.0 NA NA NA F T 

2987001 0 86401 29.0 W 2755 404.0 gmail.com mastercard M0 T 325.0 0.0 0.0 NA NA NA T T 

2987002 0 86469 59.0 W 4663 490.0 outlook.com visa M0 F 330.0 0.0 0.0 NA NA NA F F 

2987003 0 86499 50.0 W 18132 567.0 yahoo.com mastercard M0 T 476.0 0.0 0.0 NA NA NA T F 

2987004 0 86506 50.0 H 4497 514.0 gmail.com mastercard NA 420.0 0.0 0.0 NA 1.0 1.0 NA NA 

2987005 0 86510 49.0 W 5937 555.0 gmail.com visa M1 F 272.0 0.0 0.0 NA NA NA F T 

2987006 0 86522 159.0 W 12308 360.0 yahoo.com visa M0 F 126.0 0.0 0.0 NA NA NA F F 

2987007 0 86529 422.5 W 12695 490.0 mail.com visa M0 F 325.0 0.0 0.0 NA NA NA F F 

2987008 0 86535 15.0 H 2803 100.0 anonymous.com visa NA NA 337.0 0.0 0.0 NA 1.0 1.0 NA NA 

2987009 0 86536 117.0 W 17399 111.0 yahoo.com mastercard M0 T 204.0 0.0 0.0 NA NA NA T T 

2987010 0 86549 75.887 C 16496 352.0 gmail.com mastercard M0 NA NA 0.0 1.0 NA 1.0 1.0 NA NA 

2987011 0 86555 16.495 C 4461 375.0 hotmail.com mastercard M0 NA NA 0.0 1.0 30.0 1.0 1.0 NA NA 

2987012 0 86564 50.0 W 3786 418.0 verizon.net visa M1 F 204.0 0.0 0.0 NA NA NA F F 

2987013 0 86585 40.0 W 12866 303.0 aol.com visa NA NA 330.0 0.0 0.0 NA NA NA NA F 

2987014 0 86596 10.5 W 11839 490.0 yahoo.com visa M0 F 226.0 0.0 0.0 NA NA NA F F 

2987015 0 86618 57.95 W 7055 555.0 NA visa NA NA 315.0 0.0 0.0 NA NA NA NA NA 

2987016 0 86620 30.0 H 1790 555.0 aol.com visa NA NA 170.0 0.0 0.0 NA 1.0 1.0 NA NA 

2987017 0 86668 100.0 H 11492 111.0 yahoo.com mastercard NA NA 204.0 0.0 0.0 NA NA 1.0 NA NA 

2987018 0 86725 47.95 W 4663 490.0 gmail.com visa NA NA 184.0 0.0 0.0 NA NA NA NA F 

2987019 0 86730 186.0 W 7005 111.0 gmail.com visa M1 F 264.0 0.0 0.0 NA NA NA F F 

2987020 0 86761 39.0 W 7875 314.0 gmail.com mastercard M0 F 299.0 0.0 0.0 NA NA NA F F 

2987021 0 86769 159.95 W 11401 543.0 gmail.com mastercard NA NA 204.0 0.0 0.0 NA NA NA NA F 

2987022 0 86786 50.0 H 1724 583.0 gmail.com visa NA NA 299.0 0.0 0.0 NA NA NA NA NA 

2987023 0 86808 107.95 W 2392 360.0 gmail.com mastercard NA NA 126.0 0.0 0.0 NA NA NA NA F 
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   Table 9 Subsample of the file identity.csv 

TransactionID id_01 id_02 id_03 id_04 id_05 id_06 id_07 id_08 DeviceType DeviceInfo id_11 id_12 id_13 id_14 id_15 id_31 id_32 id_33 

2987004 0.0 70787.0 NA NA NA NA NA NA mobile 
SAMSUNG 
SM-G892A 

Build/NRD90M 
100.0 NotFound NA -480.0 New Samsung 

browser 6.2 32.0 2220x1080 

2987008 -5.0 98945.0 NA NA 0.0 -5.0 NA NA mobile iOS Device 100.0 NotFound 49.0 -300.0 New mobile safari 
11.0 32.0 1334x750 

2987010 -5.0 191631.0 0.0 0.0 0.0 0.0 NA NA desktop Windows 100.0 NotFound 52.0 NA Found chrome 62.0 NA NA 

2987011 -5.0 221832.0 0.0 -6.0 NA NA desktop NA 100.0 NotFound 52.0 NA New chrome 62.0 NA NA 

2987016 0.0 7460.0 0.0 0.0 1.0 0.0 NA NA desktop MacOS 100.0 NotFound NA -300.0 Found chrome 62.0 24.0 1280x800 

2987017 -5.0 61141.0 3.0 0.0 3.0 0.0 NA NA desktop Windows 100.0 NotFound 52.0 -300.0 Found chrome 62.0 24.0 1366x768 

2987022 -15.0 NA NA NA NA NA NA NA NA NA NA NotFound 14.0 NA NA NA NA NA 

2987038 0.0 31964.0 0.0 0.0 0.0 -10.0 NA NA mobile NA 100.0 Found -300.0 Found chrome 62.0 32.0 1920x1080 

2987040 -10.0 116098.0 0.0 0.0 0.0 0.0 NA NA desktop Windows 100.0 NotFound 52.0 NA Found chrome 62.0 NA NA 

2987048 -5.0 257037.0 NA NA 0.0 0.0 NA NA desktop Windows 100.0 NotFound 52.0 NA New chrome 62.0 NA NA 

2987049 -5.0 287959.0 NA NA 1.0 -11.0 NA NA desktop Windows 100.0 NotFound 52.0 NA New chrome 62.0 NA NA 

2987057 0.0 88525.0 NA NA NA NA NA NA mobile SM-G930V 
Build/NRD90M 100.0 NotFound NA -300.0 New chrome 62.0 

for android 32.0 1920x1080 

2987066 -5.0 54927.0 0.0 0.0 0.0 -1.0 NA NA desktop Windows 100.0 NotFound 52.0 -360.0 Found chrome 62.0 24.0 1680x1050 

2987069 0.0 69542.0 0.0 0.0 2.0 -4.0 NA NA desktop NA 100.0 Found NA -300.0 Found chrome 62.0 32.0 1920x1080 

2987070 0.0 132356.0 NA NA 1.0 -6.0 NA NA mobile iOS Device 100.0 NotFound NA -300.0 New mobile safari 
11.0 32.0 1136x640 

2987072 0.0 275611.0 NA NA 0.0 0.0 NA NA mobile BLADE A602 
Build/MRA58K 100.0 NotFound 20.0 NA New chrome 62.0 

for android NA NA 

2987074 -5.0 419136.0 NA NA 0.0 0.0 NA NA desktop Windows 100.0 NotFound 52.0 NA New chrome 62.0 NA NA 

2987084 -5.0 436352.0 NA NA 0.0 0.0 NA NA desktop Windows 100.0 NotFound 52.0 NA New chrome 62.0 NA NA 
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As a first view of the datasets, and their components, it is clear that we have to deal with raw 
decoded data that were extracted without any transformation or modification from Vesta Corporation 
Systems; also we observe that we have to deal with a plenty of missing values; Indeed in a well-
designed and controlled study, missing data happens in almost all research. Missing data can reduce 
the statistical power of a study and can produce biased estimates, heading to invalid outcomes. 

3.3.4 Fundamental instructions for data manipulation 

Before starting to apply our strategy to approach the datasets mentioned above, we must provide 
some vital information concerning the dataset’s handling, such as the programming language to build 
the source code, and its third packages. In order to fulfill our target, we used the programming 
language Python (version 3.7); Python enables developers to roll out programs and get prototypes 
running, making the development process much faster.  It has become the most preferred machine 
learning tool in the way it allows aspirants to do mathematical computations easily. 

Because we had to deal with structured data, we used python specific packages which helped 
us to handle the datasets mentioned above; More particular, we mainly used the pandas library which 
is the supreme package for data structures, data analysis, and time-series, giving us the capability to 
allocate our data in a Dataframe structure, also we used NumPy package for extensive data 
transformation since it provides fundamental utilities for arrays computation and arguably we used 
the packages Matplotlib and Seaborn for statistical data visualization. 

3.3.5 Exploratory Data Analysis - EDA 

As we have already introduced to the first chapter of this thesis, before starting to apply various 
methods and techniques concerning the data preprocessing procedure, the data analysts must follow 
a typical approach to analyze the dataset, extract useful information from it, discover insights and 
summarize its characteristics with the support of using visual and quantitative methods without 
making any assumptions about its contents. The aforementioned method is introducing as Exploratory 
Data Analysis (EDA). As a benefit, EDA often leads to insights that the business stakeholder or data 
scientist would not even consider investigating, but that can be hugely enlightening about the 
business. 

Considering our datasets, the first step that we followed was to join them according to their 
common key, which is the TransactionID column, in order to have a sufficient overview. 

The first step towards the visualization was to investigate the number of observations 
corresponding to both classes. According to the figure below, we noticed how abnormal is our original 
dataset; Most of the transactions are non-fraud; in particular, only 3,5% of the entire observations 
constitute fraud transactions. The valuable information from this visualization was to understand that 
if we have used the Dataframe as it was along with our predictive models and analysis, we might get 
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many errors, and our chosen algorithms will possibly overfit since it will "assume" that most 
transactions are authorized. Thus, our dataset is imbalanced; Imbalanced means that the number of 
data points available for the different classes is much different. 

  Figure 10 Imbalance Dataset – Fraud/Authorized Transactions 

Thereinafter, we observed that our datasets have a high percentage of missing values. Nearly 
all of the real-world datasets have missing values, and it is not just a minor nuisance; it is a severe 
problem that we need to taking mind; Missing data — is a hard problem, and, unfortunately, there is 
no best way to deal with it. In the following figure, we visualized the percentage of missing values of 
the merged dataset. 
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Figure 11 Percentage of Missing Values in datasets train and identity 

Features such as id21 up to id27, V321 up to V339, dist2 have missing values at their most 
significant percentage. This information is beneficial due to the fact that in the preparation procedure, 
we must define the greatest strategy to deal with them in order to have satisfactory results.   
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Furthermore, we observed that in our dataset, we have the Transaction Time in Timedelta28  
format. We thought of converting it in DateTime format because it will be more understandable, and 
may we could identify useful insights concerning the timer of the fraudulent transactions. Then, from 
DateTime format we broke the value into two new features: Day and Time, and we defined in which 
day and hour of the week the transaction corresponding. Thereby, we visualized the below 
components: 

28 A timedelta object represents a duration, the difference between two dates or times. class 
datetime. timedelta ([days[, seconds[, microseconds[, milliseconds[, minutes[, hours[, weeks]]]]]]]) All arguments 
are optional and default to 0
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       Figure 12 Countplots from dataset features concerning the fraud transactions 

We visualized the frequency of fraudulent transactions (countplots) along with our newly 
constructed features Day and Time, and we observed that in the given dataset, the most fraudulent 
transactions took place during Saturday and Sunday, and as it concerns the time in the early afternoon.  
This pattern seems logical due to the fact that the perpetrators/thieves usually commit fraud at 
weekends because it is more difficult for Bank Sector and Law Enforcement Agencies to react fast 
and effectively. 

Furthermore, we noticed that thieves and hackers prefer to break debit cards rather than credit 
or charge cards, and as it concerns the company, they prefer Visa cards rather than MasterCard and 
Discover. These insights can lead to useful information such as possible vulnerabilities concerning 
debit cards or the appearance of a weak security and fraud prevention department of that company, 
which gathers the most fraud transactions.  
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As the features card1, card2, card3, card5 addr1, and addr2 are numerical; we visualized the 
distribution of them: 

Figure 13 Distribution plots for features card1, card2, card3, card5, addr1, addr2 

The distribution plot is proper for comparing range and distribution for groups of numerical 
data. Data are plotted as value points along an axis. According to the above figures, we have an  
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overview for the values of features card1, card2, card3, card5, addr1, addr2.  We observed that card3, 
card5 and addr2 have few values in contrast with card1 and card2 features. In addition, we observe 
that almost all entries in Addr2 feature are in the same value. 

Interested approach would be to plot the features card1, card2, card3, card5 according to each 
transaction status (fraudulent and legitimate): 

         Figure 14 Distribution of both transactional status (features card1, card2, card3, card5) 
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The most meaningful information that we can extract from the above figures is that we noticed 
that the values of card5 feature, which indicates a fraud transaction is around two hundred and twenty-
five -225- value. For the card3 feature, the values that indicate a fraud transaction is around on 
hundred and fifty -150- value. 

Another useful information would be the performance of the mean of fraud transactions per 
day. By applying a time plot in our given data, we possess the below graphical overview: 

Figure 15 Time-series fraud visualization 

The above graphical representation shows the mean value of the fraud transaction; this kind of 
plot constitutes a time-series (time plot) visualization. A time series, as the name suggests, is a series 
of data points with respect to time. The data points are indicators of some activity that takes place in 
a given period of time. Plots of the raw sample data can provide valuable diagnostics to identify 
temporary structures like trends, cycles, and seasonality that can affect the selection of models. 

As a first overview, we noticed that the first day of March had been recorded a lot of fraudulent 
transactions due to the value of the mean; Also, we can recognize a seasonality pattern; because the 
first days of each month, we observe a low mean of fraud transactions. If we had a more representative 
sample with fraud and legitimate transactions, we could have traced more phenomena, and maybe we 
will be able to make valid, future forecasts of fraudulent transactions over time. 
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According to the above insight, we extracted a boxplot graphical representation to visualize the 
feature “card company” concerning the first of March, which had been recorded most of the fraud 
transactions. 

      Figure 16 Transactional components for the first day of March 

According to the above figure, we noticed that the day that recorded the most of fraud e-
commerce transactions, thieves/hackers, preferred to broke Visa and MasterCard cards, and hardly 
American express and Discover company cards. Additionally, we observed that in fraud status, Visa, 
and Mastercard had many outlier values. The most significant fraudulent transaction that took place 
on the first of March performed with a Mastercard card, and the financial loss was approximately nine 
hundred 900$ USD. Furthermore, we observed that the range of values in fraud transactions was 
almost equal for Visa and Mastercard; Mastercard’s median was higher than Visa’s, Visa’s boxplot 
had greater max value and higher min value concerning the financial loss than the Mastercard’s, and 
also, Visa had more outlier values than Mastercard. 



Chapter 3. A Proposed ML-FaaS Business Intelligence System 

63 

Concerning the financial loss, we created a scatterplot to have an overview for overall 
transactions of the given dataset concerning both fraud and authorized e-commerce transactions: 

Figure 17 Scatterplot - Amount of transaction by hour 

We clearly recognize that the financial loss of fraudulent transactions is lower than legitimate 
transactions. Also, we can distinguish some outlier values concerning fraud transactions, with the 
greatest of them being close to five thousand 5000$ USD as financial loss. 

Another interesting insight would be to identify the relationships between the values of various 
features of the given datasets; a useful technique to quickly examine correlations among dataset's 
features is by visualizing the correlation matrix as a heatmap. Heatmaps are graphical depictions of 
data that utilize systems coded by specific colors. The principal purpose of Heatmaps is to adequately 
visualize the volume of events within a dataset and support in directing the observers towards areas 
on data visualizations that matter the most. Heat Maps can be used for various data visualizations. 
Because of their dependence on color to communicate values, Heat Maps are possibly the most useful 
visualization to display a more generalized view of numeric values. In our problem, we used heatmaps 
to represent the relationships between Cs, Ds, and between mixed dataset’s features. 
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   Figure 18 Correlation Heatmaps for various features 
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Heatmaps are based in hot and cold color zones on a map; The brighter the palette is, the 
higher is the correlation between variables and respectively, the darkest the shade, the weaker is the 
correlation.  

According to the figures below, except for Cs and Ds, most of the remainder features are not 
linearly correlated since the biggest part of the heatmap has the same color, which is corresponding to 
correlation values around zero -0-. The C features correlation matrix presents many areas that depict 
a strong correlation between them; especially, we noticed that C1 is at the most strongly correlated 
with the other Cs features except C3, C5, and C9. Also, we observed that the C3 has a negative 
association with the rest of C features due to the low correlation values. The D feature correlation 
heatmap has few associations; particularly, their associations are in a medium-scale because the 
correlation values fluctuate between 0.4 and 0.6.  

According to the above data visualizations, we have come to the conclusion that EDA is an 
endless and custom-made procedure that requires a lot of experience and knowledge to extract the 
most vital insights that can help the data analyst to approach his problem and determine the appropriate 
strategy to bring the most valuable result. Every analyst shapes his own strategy to apply EDA analysis 
according to his point of view. EDA procedure encourages the analyst to think critical questions about 
the given problem such as what he is trying to solve, what kind of data he has, and how to treat the 
different types of them, what is missing from the data, and how does it deal with this, where are the 
outliers, and why should they care about them, how can he append, change, or remove features to get 
more out of his data. 

3.3.6 Dimensionality Reduction – PCA 

Our given data sets, which have been merged consist of four hundred and thirty-five -435- 
columns each of them represents a feature of a unique e-commerce transaction, except the “label” 
column which concerns the status of transaction (fraud/legitimate); The abundant quantity of features 
ascribes a high dimensional data set which is hard to plot it effectively. Also, the more dimensions the
data set has, the harder it is to process it. Thus, we thought to reduce the dimensions of the given 
dataset without losing the information of it. The method that we implemented for dimensionality 
reduction was Principal Component Analysis – PCA. PCA is a method of extracting essential variables 
from a large set of variables available in a data set. It extracts a low dimensional set (a subset) of 
features from a high dimensional data set an into a new coordinate system with a purpose to capture 
as much information as possible before running a machine learning algorithm on the data. Thus, with 
fewer variables, visualization also enhances much more significant. The main target of the PCA 
method is the discovery of the directions of the maximal variance of data.      

Generally, as we referred in a preceding chapter, Principal Components Analysis is a statistical 
technique based on linear algebra and matrices computations, and it used to explain data in high  
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dimension using a smaller number of variables called the principal components. Principle Components 
obtain the linear combinations of the original variables in the data set. The first principal component 
implies a linear combination of the original variables. In the new coordinate system, the first axis 
corresponds to the first principal component; it is the component that describes the highest amount of 
the variance in the data; the second principal component is selected such that it sprawls vertical to the 
first principal component. According to the procedure of the PCA method, we need to compute the 
covariance matrix, eigenvalues, and eigenvectors, as we already referred to in the first chapter of this 
thesis. 

Specifically, as we mentioned, our dataset has about four hundred and thirty-three -433- features 
or variables (we do not include the TransactionID which is unique for each transaction, the label which 
corresponds to the status of the transaction and the exact DateTime that the transaction was executed); 
or -explaining it better- 433 dimensions in matrix algebra and one -1- target vector determines the 
transaction status (fraud/legitimate) dependent to the features mentioned above. Hence, the problem 
is in 433 -Dimensional. 433D is much; therefore, we reduce it to 2D for the illustration of PCA. Below 
we represent the steps concerning the PCA method that we applied in our given data: 

• Load the dataset

We have loaded the data to a matrix having 590540 samples (x-axes) and 433 features (y-axes)
for each sample. 

• Standardize the dataset

The principal components are supplied with a normalized version of original features. It is an
unavoidable procedure to implement the normalization process in the data before applying the PCA 
method. Different variables in the data set may be having different units of measurement (different 
scale). The PCA calculates a new projection of the data set, and the new axis is based on the standard 
deviation of the given variables. Performing PCA on un-normalized variables will lead to insanely 
high loadings for variables with high variance; thus, a variable with a high standard deviation will 
have a higher weight for the calculation of axis than a variable with a low standard deviation. If the 
analyst normalizes his data, all variables will have the same standard deviation. So, we standardized 
our data (e.g., subtracting the mean of each variable from the values), making the mean of each 
variable equal to zero. 

• Calculation of Covariance Matrix

The next step was to calculate the covariance matrix of our dataset; the Covariance matrix is
merely a square and symmetrical matrix of covariance of features (dimensions). Covariance is the 
variance of 2 features; more illustratively, how two -2 features vary from each other.  
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A large covariance value (positive or negative) indicates that the variables have a strong linear 
relationship with one another. Covariance values close to 0 indicate a weak or non-existent linear 
relationship. The below table is depicting a subsample of the calculation of the covariance square 
matrix in python: 

Table 10 Subsample of the calculation of covariance matrix 

Covariance matrix 
[[ 1.00000169e+00  1.47910106e-01 -5.76480669e-03 ...  1.07813773e-01 
   1.06280180e-01  5.76065917e-02] 
 [ 1.47910106e-01  1.00000169e+00  2.82995930e-04 ...  8.43293982e-01 
   8.08135824e-01  4.47703738e-01] 
 [-5.76480669e-03  2.82995930e-04  1.00000169e+00 ...  7.47245030e-04 
   2.36442205e-03  3.09804596e-04] 
 ... 
 [ 1.07813773e-01  8.43293982e-01  7.47245030e-04 ...  1.00000169e+00 
   8.71211804e-01  5.04005854e-01] 
 [ 1.06280180e-01  8.08135824e-01  2.36442205e-03 ...  8.71211804e-01 
   1.00000169e+00  3.58788489e-01] 
 [ 5.76065917e-02  4.47703738e-01  3.09804596e-04 ...  5.04005854e-01 
   3.58788489e-01  1.00000169e+00]] 

• Calculation of Eigenvalues and Eigenvectors

Due to the fact that the covariance matrix is square and symmetrical, it is also diagonalizable, 
which signifies that an eigendecomposition can be calculated on the matrix; this is where PCA 
pronounces Eigenvectors and Eigenvalues for the data set. Eigenvalues and eigenvectors are the 
essential components of PCA; Eigenvalues and Eigenvectors are strongly connected components, 
which constitute the root characteristics of a matrix equation. An Eigenvector is a vector whose 
direction prevails unchanged when a linear transformation is applied to it. The principle components 
are the eigenvectors of the covariance matrix of the original dataset. They correspond to the direction 
(as it concerns the original n-dimensional space) with the highest variance in the data. Each 
eigenvector has an analogous eigenvalue. From the other side, the Eigenvalue is corresponding in a 
number that indicates how much variance there is in the data along that eigenvector (or principal 
component). There are three -3- simple features we need to know about them: a) we can only calculate 
eigenvalues/eigenvectors of a square matrix (n x n, the covariance of the matrix), b) eigenvectors are 
perpendicular/orthogonal to each other. If we have an n-dimensional matrix, so we have n 
eigenvectors in n-space, and all of them are perpendicular; this makes sense because all of them 
constitutes the data they represent c) the length of eigenvectors is exactly one -1- and each has a 
corresponding eigenvalue which represents the power of the vector. Hence, we calculated with the 
suitable Python’s NumPy modules, the eigenvectors, and eigenvalues, and a subsample of them is 
presented below: 
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Table 11 Subsample of the calculation of Eigenvectors from covariance matrix 

Eigenvectors  
[[-1.26902518e-02 -7.42380172e-03  1.02379417e-02 …  2.17587044e-07 
   1.07278943e-06 -6.71045874e-08] 
 [-9.43025359e-02 -4.08208742e-02  3.94083910e-02 … -1.08162976e-05 
-3.40592692e-06  2.57668248e-05]

 [ 1.29372445e-03 -6.75051869e-03 -2.46557385e-03 … -1.05934670e-06 
-5.07661566e-07 -1.41012925e-06]

 … 
 [-9.82708243e-02 -2.99403157e-02  8.65830445e-03 …  3.15493783e-06 
-4.73531456e-06 -3.17792559e-06]

 [-9.90404630e-02 -2.66086934e-02 -1.55544894e-02 …  1.57180466e-05 
   1.10242411e-05 -5.99375950e-06] 
 [-5.27608921e-02 -2.41181444e-02 -3.78015587e-02 …  2.98306828e-06 
-2.15904627e-06  1.57734907e-06]]

Table 12 Subsample of the calculation of Eigenvalues from covariance matrix 

Eigenvalues  
[8.00995308e+01 5.84139858e+01 3.41868776e+01 1.66944065e+01 
 1.12746484e+01 1.04126294e+01 1.02321753e+01 9.04548667e+00 
 8.72757540e+00 8.34451918e+00 8.05894126e+00 7.82796514e+00 
 3.02036502e+00 2.91582854e+00 2.64813771e+00 2.58393442e+00 
 2.23942022e+00 2.17485699e+00 2.11786031e+00 2.02436181e+00 
 1.98839264e+00 1.83278451e+00 1.77526310e+00 1.74082695e+00 
 1.60651721e+00 1.58382110e+00 1.52247432e+00 1.49456512e+00 
 1.41717021e+00 1.39176773e+00 1.33566644e+00 1.27757045e+00………] 

• Sorting Eigenvectors in a descending order according to their Eigenvalues

Now that we have calculated the eigenvectors and eigenvalues, we hold an eigenvalue for each 
dimension in data and a corresponding eigenvector in results as listed above. What we need to do is 
to perform a descending order in each value of eigenvalues. Afterward, we choose k eigenvectors with 
the largest eigenvalues to form a d×k dimensional matrix.  

• Choosing the number of k components

A vital part of using PCA in practice is the ability to estimate how many components are needed 
to describe the data. This can be determined by looking at the cumulative explained variance ratio as 
a function of the number of components. It is more efficient for us to visualize the variance of the data 
along with their original features and conclude which are the most important of them and how many 
retain the most significant part of the information of the data. 
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Figure 19 Dataset’s Feature importance 

This curve quantifies how much of the total, 433-dimensional variance is contained within the 
first N components. We conclude that around 98% of the variance of the data is included in the first 
180 features. In other words, the first 180 features of the given dataset synthesize the 98% of the entire 
information from the data. Thus, the rest features involve only the last 2% of the aggregate information 
of the data. Our strategy oriented to keep these features that perform 85% of the entire information of 
the data because they have a low percentage of missing values, and they are more understandable from 
the other features. The idea behind the selection is that by choosing top k we have already decided 
that the variance which corresponds to those k feature space is enough to describe the data set. 
Furthermore, from the other side by losing the remaining variance of those not selected features will 
not cost the accuracy much, or we are prepared to drop that much accuracy that costs because of 
neglected variance. Hence, we worked the entire preparation with the features: 'ProductCD', 'card' 
features, 'addr1', 'addr2', 'dist1', 'dist2','P_emaildomain', 'R_emaildomain', 'C' features, 'D' features, 
and ‘M' features. Regarding back our case study, we dropped columns like TransactionAmt and 
TransactionID and TransactionDT due to the fact that they were not valuable for the construction of 
the fraud alert model. 
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3.3.7 Feature Engineering 

Proceeding with the features mentioned above, we possess the ability to extract some valuable 
knowledge and use them to interpret easier and more effectively our data. Here, the need for feature 
engineering arises. Feature Engineering efforts mainly have two purposes a) Preparing the proper 
input dataset, compatible along with the machine learning algorithm requirements, and b) Improving 
the performance of machine learning models. Feature Engineering demands a lot of experience and  
practice to discover insights and useful information which can contribute to the effectiveness of the 
machine learning model process. 

In our case study, we focused on features P_emaildomain and R_emaildomain. According to 
dataset’s instructions, these two features constitute the purchaser and recipient email domain. We 
thought to create four -4- new columns concerning emails suffix, and email’s host company. Thus, 
our new features are 'P_emaildomain_bin', 'R_maildomain_bin', 'P_maildomain_suffix' and 
'R_maildomainsuffix'. The first two features constitute the company that hosts the Purchaser and 
Recipient email addresses (i.e. Google Inc, Microsoft Corporation), and the last two features indicate 
the suffix of the Purchaser and Recipient email addresses according to the country (com, us, es, fr). 

Thereby, according to real information and our logic, we created one python dictionary, which 

helped as to create the features mentioned above:  

Table 13 Custom-made dictionary for implementation of feature engineering technique 

{'gmail': 'google', 'att.net': 'att', 'twc.com': 'spectrum', 'scranton.edu': 'other', 'optonline.net': 'other', 

'hotmail.co.uk': 'microsoft', 'comcast.net': 'other', 'yahoo.com.mx': 'yahoo', 'yahoo.fr': 'yahoo', 

'yahoo.es': 'yahoo', 'charter.net': 'spectrum', 'live.com': 'microsoft', 'aim.com': 'aol', 'hotmail.de': 

'microsoft', 'centurylink.net': 'centurylink', 'gmail.com': 'google', 'me.com': 'apple', 'earthlink.net': 

'other', 'gmx.de': 'other', 'web.de': 'other', 'cfl.rr.com': 'other', 'hotmail.com': 'microsoft', 

'protonmail.com': 'other', 'hotmail.fr': 'microsoft', 'windstream.net': 'other', 'outlook.es': 'microsoft', 

'yahoo.co.jp': 'yahoo', 'yahoo.de': 'yahoo', 'servicios-ta.com': 'other', 'netzero.net': 'other', 

'suddenlink.net': 'other', 'roadrunner.com': 'other', 'sc.rr.com': 'other', 'live.fr': 'microsoft', 

'verizon.net': 'yahoo', 'msn.com': 'microsoft', 'q.com': 'centurylink', 'prodigy.net.mx': 'att', 

'frontier.com': 'yahoo', 'anonymous.com': 'other', 'rocketmail.com': 'yahoo', 'sbcglobal.net': 'att', 

'frontiernet.net': 'yahoo', 'ymail.com': 'yahoo', 'outlook.com': 'microsoft', 'mail.com': 'other', 

'bellsouth.net': 'other', 'embarqmail.com': 'centurylink', 'cableone.net': 'other', 'hotmail.es': 'microsoft', 

'mac.com': 'apple', 'yahoo.co.uk': 'yahoo', 'netzero.com': 'other', 'yahoo.com': 'yahoo', 'live.com.mx': 

'microsoft', 'ptd.net': 'other', 'cox.net': 'other', 'aol.com': 'aol', 'juno.com': 'other', 'icloud.com': 'apple'} 
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By creating the features as mentioned earlier, we noticed that useful patterns are shaping 
concerning fraud transaction; hence, we visualized their values and are depicted below: 

Figure 20 New features for both transaction status 

According to preceding figures, we noticed that fraud transactions follow a specific pattern as 
it concerns the Purchaser and Recipient email address. Particularly, at most of the fraudulent 
transactions, the thief works with an email address, which belongs to the Google Company; the same 
is applicable for the Recipient email address. These new features, which are produced by feature 
engineering method, are necessary to adequately use machine learning algorithms and thus build 
predictive models, giving robust information about fraud and legitimate transactions. Generally, 
understanding the meaning of the features leads to the most significant gains in performance. Knowing 
the role of these features is vital to understanding machine learning. Mostly, performing feature 
engineering techniques constitutes a crucial procedure, but it can drive to excellent results. This is 
what data scientists focus on the majority of the time along with the data cleaning, which is introduced 
in-depth in the next subchapter that follows. 
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3.3.8 Data Cleaning 

The most frequent phenomenon in data analysis is the appearance of missing values. Almost in 
any data case study, the analyst faces problems concerning the scarcity of data values, which can affect 
his entire analytical procedure. The concept of missing values is essential to understand in order to 
manage data successfully. If the researcher does not appropriately handle the missing values, then he 
probably ends up drawing an inaccurate inference about the data. Due to incorrect manipulation, the 
result obtained by the researcher will vary from one where the missing values are present. Missing 
data may come in a variety of ways; usually, missing values are indicating with symbols like N/A, 
nan, inf, or with a blank cell without any value. The best way to prepare for dealing with missing 
values is to understand the data which analyst has: to understand how missing values are represented, 
whence the data was collected, where missing values are not assumed to be, and where are explicitly 
used to represent the absence of data. Domain knowledge and data understanding are the most critical 
factors to deal with missing data successfully; moreover, these factors are the most important in any 
part of the data science project. 

According to the research performed officially by Donald Rubin, the missing data mechanism 
was introduced. Missing data mechanism describes the underlying mechanism that generates missing 
data and can be categorized into three -3- types a) missing completely at random (MCAR), b) missing 
at random (MAR), and c) missing not at random (MNAR). MCAR indicates that the occurrence of 
missing values is entirely at random, not related to any variable. MAR implies that the missingness 
only relates to the observed data, and NMAR refers to the case that the missing values are related to 
both observed and unobserved variables, and the missing mechanism cannot be ignored. Researchers 
suggest various ways to manipulate efficiently and effectively the missing data problem, but the 
crucial process is the selection of the most appropriate strategy for data cleaning. In order to 
understand how to deal with missing data, the analyst needs to understand what types of missing data 
he has to deal with, and it might not be straightforward to grasp their differences. 

According to our case study, and as we saw previously on EDA Analysis, we had to deal with 
a high percentage of missing values. We considered that our case's missing values indicate to MCAR 
type since the Vesta's Systems have provided us the given data completely unprocessed and hence 
some of their features are stated by the consumers plus possibly were not real or perhaps were reported 
mistakenly, and some of them did not match to the corresponded contextual case. According to our 
given data, and the competition's host guidance, we separated the features based on the type of them 
(numerical and categorical). In proceeding, we explored various methods in order to  handle our 
missing values such as  the removal of the columns which the 80% of them include missing values, 
or to test suitable machine learning algorithms to estimate the values; we believed that no one of the 
techniques mentioned above were effective for our case study, so we ended up by applying the below 
data imputation strategies by data type: 
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• As it concerns numerical variables, we tried various imputation and estimation techniques such
as filling missing values with mean, median, mode or -999, but we end up filling the missing
values with the most frequent value based on each column.

• As it concerns categorical variables, the first step was to convert all values with lower-case letters
and then we filled missing values with the string “unknown”.

3.3.9  Label encoding for categorical variables 

Αrguably, most of the Machine learning algorithms cannot manipulate categorical variables 
unless they are converted to numerical values, and many algorithms performance varies based on 
whereby Categorical variables are encoded. There are plenty of methods that we can encode those 
categorical variables as numbers and use them in the algorithm, but the most well-known techniques 
are a) one-hot encoding and b) label encoding. In our case, we used the label encoding method. In 
label encoding, each category is assigned a value from 1 through N (where N is the number of category 
for the feature. One major issue with this approach is that there is no relation or order between these 
classes, but the algorithm might consider them as some order, or there is some relationship. With the 
appropriate source code and with the support of the scikit-learn 29python package, we implemented 
Label Encoding technique to our categorical data; especially, with the usage of specific modules from 
the package as mentioned above, we read the entire set of categorical data, and nested dictionaries 
have been created in which each key indicated to a  specific dataset's feature including all the 
numerical values that were corresponding to the real values. 

Table 14 Dictionary for implementation of label encoding technique 

{'ProductCD': {'c': 0, 'h': 1, 'r': 2, 's': 3, 'w': 4}, 'card4': {'american express': 0,'discover': 1, 'mastercard': 

2,'unknown': 3, 'visa': 4}, 'card6': {'charge card': 0,'credit': 1,'debit': 2,'debit or credit': 3,'unknown': 4}, 

'P_emaildomain': {'aim.com': 0,'anonymous.com': 1,'aol.com': 2,'att.net': 3,'bellsouth.net': 4, 

'cableone.net': 5, 'centurylink.net': 6,  'cfl.rr.com': 7, 'charter.net': 8, 'comcast.net': 9, 'cox.net': 10, 

'earthlink.net': 11, 'embarqmail.com': 12,'frontier.com': 13, 'frontiernet.net': 14,……}, 'M1': {'f': 0, 't': 1, 

'unknown': 2}, 'M2': {'f': 0, 't': 1, 'unknown': 2}, 'M3': {'f': 0, 't': 1, 'unknown': 2}, 'M4': {'m0': 0, 'm1': 1, 

'm2': 2, 'unknown': 3},  'M7': {'f': 0, 't': 1, 'unknown': 2}, 'M8': {'f': 0, 't': 1, 'unknown': 2}, 'M9': {'f': 0, 't': 

1, 'unknown': 2}, ''R_emaildomain_suffix': {'com': 0,'de': 1, 'es': 2,'fr': 3,'jp': 4,'mx': 5,'uk': 6,'unknown': 

7, 'us': 8}…..} 

29 Scikit-learn is a free third-party package -ML library for the Python language. It includes various classification,
regression and clustering algorithms and is designed to interoperate with well-known Python numerical and scientific 
libraries like NumPy and SciPy. 
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3.3.10 Dealing with imbalanced dataset 

Another huge problem that analysts face during classification procedures concerns the 
imbalanced annotation of the datasets. Notably, the main field of this type of classification problem is 
that the examples of one class overcome the examples of the other one significantly. In current years, 
the imbalanced learning problem has received much attention from the machine learning community, 
and various techniques have been developed to face the problem as mentioned above. Concerning 
real-world domains, the importance of the imbalanced learning problem is increasing, since it is a 
recurring issue in various applications. Because most of the standard learning algorithms consider a 
balanced training set, this may generate suboptimal classification models, for example, good coverage 
of the majority examples, whereas the minority ones are misclassified frequently. Generally, the most 
painful spot for machine learning models that have been trained with unbalanced datasets is the 
appearance of low sensitivity, i.e., the lack of separability. 

Therefore, those algorithms, which obtain a normal behavior in the framework of standard 
classification, do not significantly achieve the best performance for imbalanced datasets. The logic 
constitutes that many problems are tough to be solved with the support of machine learning because 
of the lack of samples. For example, problems concerning human disease diagnosis, terrorist attacks, 
online fraud cases, transportation accident occurrence are hard to be resolved due to the fact that we 
do not have adequate capacity of samples, which are annotated as favorable to the problem situation. 
The weakness to predict rare events constituting the minority class, plus the misleading accuracy 
detracts from the predictive models we build. The algorithm learns from the majority class at the most, 
making it “natural” for there to be a greater tendency towards it. The algorithm is then prone to 
overfitting the majority class. Just by predicting the majority class, models would score high on their 
loss-functions. In these instances, the phenomenon of high accuracy rate appears. Notably, in many 
paradigms, we have been seen that model which have been trained with imbalanced datasets achieves 
high scores of accuracy, which is normal since the model classifies new unseen test samples as being 
in majority class which is more reasonable to have appeared. From the other side, by using other 
evaluation metrics such as recall and Under the Area Curve - AUC- we have been observed that the 
mentioned model returned poor performance. Hence, in these cases, we have to choose evaluation 
metrics that provide guarantee and effective results and describes the real generalization performance 
of the model. 

In our case study and according to the preliminary implementation EDA analysis, we captured 
as the first insight the unbalanced class that our given dataset constitutes. Fundamentally, we 
established that from 590540 e-commerce transactions, only 20663 had been annotated as fraud, i.e. 
the 3,50% of the entire datasets constitutes illegal transactions. Thus, according to the above 
information, we considered that possibly our approach for the card fraud detection would perform a 
poor performance concerning the evaluation of the machine learning models when they have to 
generalize since our algorithms will have been trained with a considerable amount of authorized 
transactions and a small collection of fraud transactions.  
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3.3.10.1 Proposed strategies for data transformation to test machine learning models 

Because of the appearance of the above-mentioned problem, we decided, before trying to 
implement machine learning algorithms, to apply various techniques to enrich our dataset with 
minority class samples. Principally, in this thesis, we developed three -3- different approaches to face 
this situation and also to test the effectiveness of the chosen machine learning models that we used 
afterward. We chose to implement some very interested methods for datasets enrichment, which are 
widely used from the machine learning community.  

• Oversampling technique:

The first one method constitutes the dataset’s enrichment with the support of the random
resampling technique. Practically, the oversampling technique increases the weight of minority class 
samples by producing replicas of these samples until we have a balanced dataset.  It is essential to 
mention that this technique does not increase the data information; it has been proved that it possibly 
causes overfitting issues, which make the chosen model being extremely specific. It may be the case 
that the accuracy for the training set is high, yet the performance for new datasets is genuinely worse. 
Also, possibly this technique bypasses useful data with essential information due to the fact that it 
chooses random samples. However, we decided to test this method along with our selected machine 
learning algorithms in order to comprehend its attitude to our given dataset.   

• Synthetic Minority Oversampling Technique – SMOTE and TOMEK LINK

Another suggested proposal to increase the minority class - fraudulent samples, which is widely
used from the machine learning community- is the combination of an undersampling technique named 
TOMEK-LINK along with the above-mentioned oversampling technique SMOTE because it can 
perform better classifier performance rather than using solely one technique. The second technique 
(SMOTE) was motivated by data augmentation technique for handwritten character recognition. The 
main scope of the SMOTE technique was to increase the decision boundaries as to concerns the 
minority class samples by producing synthetic examples rather than by over-sampling with 
replacement achieving, as a result, the increase of classifier sensitivity. The minority class is 
oversampled by using each minority class sample and injecting synthetic examples along the line 
portions joining any or all of the k minority class nearest neighbors. Depending upon the amount of 
over-sampling ordered, neighbors from the k nearest neighbors are randomly chosen.  

According to the proposers of SMOTE, the technique follows typical algorithm steps to be 
implemented. The first step constitutes the calculation of the difference between the feature vector 
(sample) under consideration and its nearest neighbor; it follows the multiplication of the above 
difference by a random number between 0 and 1 and the sum with the feature vector under 
consideration; this procedure indicates the determination of a random point along the line segment 
between two specific features; this proposed approach efficiently pushes the decision region of the 
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minority class to become more general. The generated synthetic examples cause the classifier to create 
more extensive and less specific decision regions, which is the main scope of this technique, as we 
referred before. 

Figure 21 SMOTE representation in 2D feature space with 3 nearest neighbor parameter 

The preceding figure represents an example of enrichment of minority instances with the 
support of the SMOTE Technique in 2-Dimension feature space. Particularly, given k=3 as the nearest 
(closest) neighbors, SMOTE acts like drawing lines between existing minority instances, taking mind 
the three closest neighbors, which in reality are the distances between spots. Then the method proceeds 
by creating synthetic minority instances somewhere on these lines.  

In python, the SMOTE technique is implemented with the SMOTE() function which is involved 
in imblearn.over_sampling package and operates principally with two parameters: K and dup_size; K 
parameter represents the k-nearest neighbor; i.e., how many neighbor minority instances the algorithm 
will take in mind to implement the above method (the algorithm provides by default k=5). From the 
other side, the dup_size parameter responds to the question of how many times SMOTE() should loop 
through the existing, real minority instances. The above parameter symbolizes the percentage for 
sampling strategy; this parameter matches to the desired proportion of the number of observations in 
the minority class over the number of observations in the majority class after resampling, for instance, 
the value 0.70 means that the SMOTE algorithm will create 70%samples beside majority samples 
percentage. However, this method can be combined with an undersampling technique for majority 
class samples because, according to previous use-case experiences of analysts dealing with 
imbalanced datasets, it operates more effectively and achieves better evaluation performance without 
overfitting. 
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Our approach oriented to use TOMEK-LINK undersampling technique for majority class TOMEK-
LINK, which is an effective method that can be used for the reduction of the majority by considering 
samples near the borderline. Notably, the method states that given two instances a and b belonging to 
different classes and are separated by a distance d(a,b), the pair (a, b) is called a Tomek link only if 
there is no other instance c such that:  d(a,c) < d(a,b) or d(b,c) < d(a,b).  

Instances participating in Tomek links are either borderline or noise, so both are removed. Thus, 
the implemented method calculates the distances between all instances belonging to different classes 
and considers as TOMEK-LINK pairs all these that ensures the above conjecture. Then, the user can 
choose to remove either entire pairs or only, for instance, the instances belonging to the majority class 
(according to his strategy). 

Figure 22 Implementation of TOMEK-LINK technique for majority class sample reduction 

For the thesis case study, the SMOTE technique was used to enrich the given imbalanced dataset 
semantically with minority class samples along with the TOMEK-LINK undersampling technique for 
majority class. At first, a reduction of the given dataset was implemented by removing the border 
majority class samples with TOMEK-LINK, and afterward, the SMOTE technique was used to enrich 
the dataset with synthetic minority class samples, which includes the 40% of the entire dataset 
observations. With the adoption of this undersampling strategy, any observations from the majority 
class are removed for which a Tomek's link is identified. Depending on the dataset, the technique, as 
mentioned above, will not actually achieve a balance among the classes - it will merely "clean" the 
dataset by removing some noisy and border majority class observations, which may result in a more 
natural classification problem. 

• Weight Balancing method

Another suggestion for approaching the problem with the imbalanced dataset is the assignation
of weight to the minority class. Weight balancing method balances data by altering the weight that 
each training example carries when computing the loss. According to the above suggestion, the user 
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can assign weight to the classes by merely multiplying the loss of each example by a particular factor 
depending on their class.  

For the thesis given dataset, a dictionary -with two -2- key-pair values- was created that includes 
the weights that should have assigned to each class (legitimate and fraud status) according to the 
number of their samples; in particular, each weight was calculated as the fraction of 1 divided by the 
amount of each class samples. With the adoption of this method, a weight balancer was integrated into 
each observation in order to make both classes contribute equally to our loss. The assignation of class 
weight transfuses bias to the minority class samples causing higher sensitivity by giving more 
emphasis in these observations that constitute fraud transaction. This approach will cause the model 
to "pay more attention" to examples from an under-represented class. 

As a synopsis, imbalanced data classification is an inherently challenging task considering there 
are so few samples to learn from. The analyst should always begin with defining the data first, then 
make a tremendous effort in order to gather as many samples as possible and provide substantial 
thought to what features may be relevant; thus, the model can get the most out of datasets minority 
class. At some point, the constructed model may strive to improve and yield the results that the analyst 
desire; thereby, it is essential to keep in mind the context of each custom problem and the trade-offs 
between different types of errors. 

3.3.11 Machine Learning chosen models for card fraud detection 

According to the above-suggested methods for the transformation of the given dataset with a 
scope to achieve the most efficient results concerning the fraud detection, we ended by using four -4- 
different approaches to handle our dataset which already have mentioned: a) Raw imbalanced dataset 
as it was provided from the Kaggle repository, b) by assigning weight to minority class samples, c) 
by using the random oversampling method to enrich the dataset with replication minority class 
samples and finally d) by applying the TOMEK-LINK and SMOTE techniques to similarly to enrich 
the minority class observations. 

In this phase of the procedure, we are moving across to the machine learning part; this section 
mainly involves the most crucial task for building the fraud detection model, which is the training 
procedure of the chosen algorithmic models with the historical e-commerce transaction data. This 
chapter ends by testing four -4- different kinds of machine learning, and the model with the highest 
rank is selected to be deployed in the Openwhisk serverless platform. 
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3.3.11.1 Dataset’s separation & the chosen Validation method 

However, in the machine learning part, the "learning" phase, which is a crucial task, should be 
preceded by another typical procedure that constitutes the dataset's separation. In particular, the typical 
procedure includes the segregation of training and test sets and the adoption of a validation method 
named Stratify K-fold cross-validation, which constitutes a resampling procedure that is used to 
evaluate the performance of the ML models on a limited data sample. Since our data have been 
transformed and are ready to be fed into ML algorithms, we should consider splitting them into two -
2- groups for training and testing the chosen models. The first and most important group of data is the
training set which establishes the sample of data that is used to fit the model, from the other side, the 
test data constitutes the sample of data used to provide an unbiased evaluation of a final model fit on 
the training dataset; The test dataset provides the gold standard used to evaluate the model. It is solely 
used once a model is thoroughly trained. Concerning the dataset's split ratio, the proportion to be 
divided is utterly dependent on each user's strategy and the task he has to face. 

For this thesis case study, we followed a typical separation ratio and randomly chose the 80% 
of the given dataset to be the actual train set and the remaining (100-80) % to be the test set. 
Concerning the training set, which is the essential group of data for the chosen ML algorithm in order 
to achieve the generalization, we chose to use in our - case-study- a particular validation method 
named stratified k-fold cross-validation. In Machine learning, the datasets split approach may cause 
problems; in particular, due to sample variability between training and test set, the model gives a better 
prediction on training data but fail to generalize on test data; this situation leads to a low training error 
rate but a high test error rate. Also, when we separate the dataset into training and test sets, we use a 
subset of data solely, and we comprehend when we train on fewer observations, the model will not 
perform adequately and overestimate the test error rate for the model to fit on the entire dataset. 
Thereby, to solve the two-issue, we adopted the approach called cross-validation. Cross-validation, as 
we already mentioned, is a statistical procedure that involves partitioning the data into k subclasses, 
training the data on a subset, and work with the other subset in order to evaluate the model's 
performance. Our strategy oriented to select a particular type of cross-validation specified as Stratified 
cross-validation with ten -10- number to be the k parameter; Stratification is a technique in which we 
reconstruct the data in a way that each fold has a reliable description of the entire dataset. It forces 
each fold to have at least n instances of each class. This approach guarantees that one class of data is 
not overrepresented, mainly when the target variable is unbalanced, i.e., in our case-study, the 
technique, as mentioned before, ensures that each fold has a percentage of legitimate e-commerce 
transactions and a percentage of fraudulent transactions. This method constitutes the avoidance of 
both bias and variance.  



Chapter 3. A Proposed ML-FaaS Business Intelligence System 

80 

3.3.11.2 Chosen ML models for the classifier’s construction 

Hence, since we defined the manipulation of the training set, we are proceeding with the 
selection of the ML algorithms. The idea was to choose well-known algorithms which are widely used 
for binary classification problems; we ended by choosing: a) Logistic Regression, b) Random Forests, 
c) Extra Trees Classifier, and d) Artificial Neural Networks. Consequently, each of these selected
models has followed the training procedure along with each one of the techniques mentioned above 
for data transformation, and in the end, evaluation metrics were calculated to select the most 
appropriate model-classifier. Below we introduce each algorithm and the hyperparameters that we 
chose to accompany each model: 

• Logistic Regression:

The logistic regression arises from the statistics field; it is delineated by a logistic function to 
model the conditional probability of the label Y30 according to variables X31.  
In our case, Y indicates the transactional status, and X represents the rest of the features that 
accompany the Y variable (e.g., card features, M features. The difference between the linear regression 
and the logistic is that the first one estimates continuous numbers to be the value of the dependent Y 
variable, in contrast with logistic, in which the output value which being modeled is a binary value (0 
or 1) rather than a numeric value.  The logistic regression classifier can be derived by analogy to the 

linear regression hypothesis which is:  !" = "$%, however, the logistic regression hypothesis

generalizes from the linear regression hypothesis in that it uses the logistic function:	!" = '("$%),

where g(x)=	 *
*+,-.

, according to the above mentioned formulas !"(%) =
*

*+,"/%
 . The function g(z) is

the logistic function, also known as the sigmoid function which shapes an S-curve, has asymptotes at 
0 and 1, and it crosses the y-axis at 0.5 point called “threshold”; sigmoid function can take any real-
valued number and map it into a value between 0 and 1, but never exactly at those limits; in machine 
learning terms the sigmoid function calculates the probability for the Y variable indicating a binary 
classification problem.  An example of a logistic regression equation is: 

0 = ,(-1231*∗%)

*+,(-1231*∗%)
 

where y is the predicted output (dependent value), b0 is the bias or intercept term and b1 is the 
coefficient for the single input value (x). Each column (feature) in the input data has an associated 
b coefficient (a constant real value) that must be learned from the training data. Logistic regression 
models the probability of the default class (e.g. the first class). In our case-study, we are modeling the 
execution status for e-commerce transactions according their transformed features which derived from 
PCA, then the first class (1) could be the fraud status and the logistic regression model could be written 

30 Y is indicating the dependent variable, the one that is predicted. 
31 X is indicating the independent variables i.e the features. 
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as the probability of fraud transaction given its transformed features, or more formally: 5(6) =

578 = 1:6;, 6=, 6>,…..6AB, where Y=1 indicates the fraud status and Xs indicating the features, so the

above equation is transformed: 

0 =
,(C12+1*∗%*+1D∗%D+1E∗%E+⋯+1G∗%G)

* + ,(C12+1*∗%*+1D∗%D+1E∗%E+⋯+1G∗%G)

Concerning the b coefficients (Beta values b) of the logistic regression algorithm as we already 
referred, must be estimated from the training data, a task that it must be done by using maximum-
likelihood estimation; the maximum-likelihood estimation is a standard learning algorithm used by a 
variety of machine learning algorithms. The conception for the maximum likelihood for logistic 
regression is a search procedure that seeks values for the coefficients (Beta values) aiming to minimize 
the error in the probabilities predicted by the model to those in the data. Once, the Beta coefficients 
have been calculated; we can use them to calculate the probability for the Y label; thus, when Y takes 
value under the threshold 0.5, then the transaction is legitimate due to the fact that we defined the first 
class to be the fraudulent transactions, from the other side, if the probability has been estimated with 
a value more than 0.5 then the Y belongs to the first label which represents the fraud status. This logic, 
in python terms, can be represented as one module derived from the third-party package “scikit-learn” 
named LogisticRegression(); this module initializes the logistic regression algorithm automatically, 
and the only thing we can do is to insert the data in order to train (fit) the model. We tested the logistic 
regression model four -4- times, each of them with one of the cases mentioned above a) raw data, b) 
weighted as it concerns the minority class, c) with applying the random oversampling technique and 
d) by applying TOMEK-LINK and SMOTE techniques. The evaluation metrics are represented in the
next chapter. 

• Random Forest:

The main logic of decision tree algorithms is that they build blocks of "forests"; Breiman, 2001
introduced Random forest model; it is a special kind of decision tree algorithm, and, like its name, 
intimates it represents a group of individual decision trees that operate as a group. Actually, a random 
forest is a collection of decision trees which are splitting according to the optimal feature (decision 
workflow), where each tree is slightly altered from the others. Random forest logic inherits benefit 
from decision trees, and the central concept behind random forests is that each tree might do a 
relatively good job of predicting but will likely overfit on the part of the data. We chose the random 
forest algorithm because we wanted to avoid the overfitting phenomenon. Notably, if we build many 
trees, all of which work well and overfit in different spots; in this manner, the amount of overfitting 
is decreasing by using the average of their results. In order to implement this procedure, many decision 
trees must be built with each of them to do an acceptable job of predicting the target and should also 
be different from the other trees. Random forests received their names from introducing randomness  
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into the tree building for ensuring each tree's difference. Random forests for regression and 
classification problems are currently among the most widely used machine learning methods; they are 
compelling, and they are working efficiently without heavy parameter tuning, plus they do not demand 
to scale the data. In python, we can execute a module named RandomForestClassifier(), which is 
involved in scikit-learn library, and it implements the building of the random forest algorithm. In order 
to implement a random forest model, the number of trees to build indubitably must be defined; the 
n_estimators parameter implements this procedure. These trees will be built entirely independently 
from each other, and the algorithm will make different random choices for each tree to make sure the 
trees are distinct. In our case, we defined the n_estimators parameter to be one hundred -100-. Thus, 
the above algorithm was implemented by building ten -10- forests (according to 10 stratified k-fold 
cross-validation method) with each of them involving one hundred -100- individual trees. As we 
already mentioned in logistic regression implementation, we executed random forests for four -4- 
times for the different approaches concerning the amount of data. 

• Extra Trees Classifier:

Extra Trees Classifier is an ensemble learning method which is based on decision trees; the
algorithm name originates from Extremely Randomized Trees; Extra Trees Classifier, just like the 
Random Forest logic, randomizes individual decisions and subsets of data to minimize over-learning 
from the data and overfitting. The Extra Trees classifier model performs similarly to the Random 
Forest with a kind of difference that chooses the cut-off spots ultimately in random independently of 
the target variable; At each specific tree node, a random selection of a certain number of attributes 
among which the best of them is determined. In the extreme case, the method picks a single attribute 
as cut-point randomly at each node and hence builds completely randomized trees whose structures 
are autonomous of the target variable values of the learning sample. Another main difference with 
random forest is the measurement of variance; in machine learning terms, variance is a measure of 
how much the prediction would change if the classifier’s training was implemented with different 
data. Thus, Random Forests ascribe medium variance and Extra Trees low variance.  

For the given data, we used via python’s scikit-learn library -similarly-, the module which 
initializes the Extra Trees Classifier model and it represented as ExtraTreesClassifier(); we chose to 
define one hundred -100- n_estimators parameter just like Random Forest model and letting the rest 
of the algorithm’s parameter with its default values.  The algorithm tested -similarly- for the four cases 
of data manipulation with the stratified 10-fold cross-validation method. 

• Artificial Neural Networks:

Machine learning is controvertibly a semantic component of the Artificial Intelligence family; 
also, Deep Learning is. Deep Learning constitutes the fast “learning” similar to the human brain; it  
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encourages scalability in the training phase and excellent performance even in more complicated 
problems, including image and speech recognition. The Deep Learning is mainly based on Neural 
Networks, which adopted their philosophy from the human neurons. Due to the fact that the Deep 
Learning Chapter is too large to be discussed, we will be concentrated on ANN for structured data 
and especially how their architectures can be combined with our given data. In particular, we 
performed the well-known architecture for handling structured data called Multilayer Perceptron – 
MLP- but implemented with the high-level API named Keras.  

MLP implemented with the Back-propagation Algorithm : A classical approach

Concerning the architecture, an MLP is composed of one input layer, one or more internal layers 
named hidden layers, and the final layer named the output layer, which defines the outcome. Every 
layer, except the output layer, introduces a bias neuron and is fully connected to the next layer.  

An efficient way for an MLP to be trained is the backpropagation algorithm; it is just a Gradient 
Decent procedure trying to achieve optimization as it concerns the prediction’s error reduction. The 
backpropagation algorithm is capable of computing the gradient of the network’s error with regards 
to every single model parameter. In other words, the backpropagation can find out how each 
connection weight and each bias term should be adjusted in order to reduce the error. Once it has these 
gradients, it just performs a regular Gradient Descent step, and the whole process is iterated until the 
network converges to the solution.  

In more detail, the algorithm operates in subsamples of the whole dataset named mini-batches, 
it manipulates one mini-batch at a time, and it goes through the full training set multiple times; each 
pass of the dataset is called an epoch (one -1- epoch).  

The skeleton of the steps are introduced: a) Each mini-batch is transmitted to the network’s 
input layer and then sends it to the first hidden layer, b) The algorithm then computes -through the 
activation function- the output of all the neurons in this layer (for every instance in the mini-batch). 
Due to the fact that we desire the MLP to learn non-linear decision boundaries, we need to introduce 
non-linearity into the network. We achieve the task as mentioned above by introducing non-linearity, 
adding an activation function. Several kinds of activation function which can be used, but usually we 
use Rectified Linear Units -ReLu- which is one of the most widespread activation functions; ReLU 
function is a simple function which is zero for any input value under zero and the same value for 
values greater than zero, c) the procedure is continuing by passing the result to the next layer, its 
output is calculated and passed to the next layer, and so forth till we receive the outcome of the last 
layer, the output layer. The procedure mentioned above constitutes the forward pass; it is precisely  

like making predictions, all the results are preserved – except the intermediates - since they are 
essential for the backward pass, d) As a next step, the algorithm estimates the network’s output error; 
in particular, it operates with a loss function (MSE, categorical cross-entropy, binary cross-entropy) 
that compares the aspired output and the calculated output of the network and returns some measure 
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of the error; e) in the following step, it computes how much each output connection contributed to the 
error. The task mentioned above is done analytically by merely applying the chain rule, which makes 
this step fast and precise, e) Then the algorithm estimates how much of those error contributions grew 
from each connection in the previous layer, using the chain rule again—and so forth until the algorithm 
reaches the input layer. As we explained first, this reverse pass efficiently measures the error gradient 
across all the connection weights in the network by propagating the error gradient backward through 
the network, f) eventually, the algorithm performs the Gradient Descent procedure to tweak all the 
connection weights in the network, using the error gradients which are just computed.  As a summary, 
for each training instance the backpropagation algorithm first makes a prediction (the forward pass 
procedure), measures the error, then goes through each layer in reverse to measure the error 
contribution from each connection (reverse pass), and finally slightly adjusts the connection weights 
to reduce the error.  

MLP is appropriate for binary classification problems, like our case study; the MLP needs a 
single output neuron using the activation function: the output is the estimated probability, which is a 
number between 0 and 1.  

Keras API contribution for building our MLP 

For our classification problem, we constructed an MPL with the support of Keras; Keras is a 
high-level Deep Learning API that allows users to efficiently build, train, evaluate and perform all 
sorts of neural networks. The model type that we used was Sequential()32. Sequential is the most 
comfortable way to build a model in Keras. It allows the user to build a model layer by layer. Mainly, 
each layer has weights that correspond to the layer the follows it; then, we used the add()33 function 
in order to add layers to the constructed model. The function mentioned above comes with the 
parameter ‘Dense’34. Dense is a typical layer type that operates in most cases. In a dense layer, all 
nodes in the previous layer connect to the nodes in the current layer. The add() function accepts various 
parameters, which will be explicitly discussed in our case study. Below we introduce the constructed 
ANN architecture to approach our card fraud classification problem:  

32 https://keras.io/models/sequential/ 
33 https://keras.io/layers/merge/#add_1 
34 https://keras.io/layers/core/#dense 
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           Table 15 Implemented ANN architecture 

    #build the model 
    model = Sequential () 
    model.add (Dense(500, input dim=n, activation='relu')) 
    model.add (Dense(256, activation='relu')) 
    model.add (Dropout(0.3)) 
    model.add(Dense(256, activation='relu')) 
    model.add(Dropout (0.3)) 
    model.add(Dense (1, activation='sigmoid')) 
    # Compile model 
    model.compile(loss='binary_crossentropy', optimizer='adam') 
    # Fit the model 
    model.fit(train_features[train], train_labels[train], epochs=90, batch_size=900, verbose=1) 

According to the above snippet, we built an ANN model with three -3- core layers and one -1- 
output label, which defines the final result. Concerning the first three -3- layers, we choose with trial 
and error method to define five hundred -500- units in the first layer and two hundred and fifty-six -
256- units in the rest two layers; By Increasing the number of nodes in each layer, the model capacity 
is increasing. Furthermore, we used as an activation function for the first three -3- layers the ReLu 
function to take into account nonlinear relationships for our model, and also we used the Dropout() 
function that supports the overfitting's reduction. Dropout35 consists of randomly setting a fraction 

rate of input units to 0 at each update during training time, which helps prevent overfitting. By 
setting the hyperparameter of the Dropout () function to 0.3, we are dropping randomly out 30%of 
nodes during training. Concerning the output layer, we used the Sigmoid36 activation function 
because it is more suitable for our binary classification problem; the sigmoid function takes any 
range real number and returns the output value (probability), which falls in the range of 0 to 1.

After a model is created, we must call its compile()37 method to specify the loss function and 
the optimizer to use. Compiling the model receives two -2- parameters: “optimizer” and “loss”. The 
optimizer controls the learning rate. We used ‘Adam’38 to be our optimizer because it is generally a 
good optimizer to use for many cases. The Adam optimizer adjusts the learning rate throughout the 
training. As the loss function, we decided to use the binary cross-entropy to calculate the loss due to 
the fact that we had to deal with a binary classification problem and the labels corresponding to binary 
values (legitimate=0, fraud=1).  

35 https://keras.io/layers/core/ 
36 https://keras.io/activations/#sigmoid 
37 https://keras.io/models/model/#compile 
38 https://keras.io/optimizers/#adam 
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After the definition of the above functions and their parameters, the model is ready to be trained; 
also it is important to mention that the data must be normalized in order to achieve better performance; 
For this task, we merely need to call its fit()39 method. We insert it the input features and the target 
classes, as well as the number of epochs to train which we chose to be ninety -90- i.e., the algorithm 
sees the entire train data for ninety -90- times, also we defined the size of each mini-batch to be nine 
hundred -900- i.e., the model takes sub-samples of nine hundred -900- observations for its training. 

The training was conducted for -4- times, each of them for a different data manipulation case, 
as it was implemented for the already mentioned ML algorithms. Its score and evaluation metrics are 
represented in the next chapter, along with the performance of the rest of the chosen ML algorithms. 

39 https://keras.io/models/model/#fit 
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3.4 Online Phase 

The preceding procedure constitutes the entire business logic that we developed in order to build 
a system for detecting e-commerce fraud transactions according to the data provided by Vesta Systems 
Company. The second scope of this thesis was to make the entire procedure as a serverless application 
by integrating the strategy mentioned above into the Apache Openwhisk serverless platform building 
a pipeline/chain of functions as a service that receives the data, makes a transformation of them 
according to our implemented source code and finally, call the best model with the most significant 
results to make the prediction if the new unseen data (provided by the Vesta System) constitutes a 
fraud transaction by printing the result as a message in JSON format. For this procedure, we created 
three -3- connected functions with each of them to execute a specific pre-defined task that we chose 
and analytically will be discussed one by one in the mentioned section; also, we composed all of the 
functions in python programming language just like our implemented source code in the Offline phase, 
and of course, we point out the decisive role of docker containers that semantically contributed in the 
implementation of each custom-made function. 

3.4.1 Fundamental instructions-guidance for Openwhisk functions 

Below we present you the basic instruction that we followed in order to integrate the above-mentioned 
logic into Openwhisk: 

• As we already mentioned in the previous chapter, Openwhisk receives the input data in a JSON
format. Mainly, the function accepts a dictionary as input and produces a dictionary as output.
The input and output dictionaries are key-value pairs, where the key is a string, and the value is
any valid JSON value. The dictionaries are canonically represented as JSON objects when
interfacing to action via the REST API or the wsk CLI. Furthermore, the function must be called
main or otherwise must be explicitly exported to identify it as the entry point. The mechanics
may vary depending on the choice of language, but in general, the entry point can be specified
using the --main flag when using the wsk CLI. Thus, all of the constructed functions, in our case
study, were named __main__.py.

• Concerning the parameters passing, actions may receive parameters as input, and the wsk CLI
makes it convenient to pass parameters to the actions from the command line. Briefly, this is done
with the flag --param key-value where the key is the property name, and the value is any valid
JSON value. Thus, the new unseen data was provided once in the first action but not via CLI but
via the constructed REST API since the serverless application was constructed to be used from
users, not only developers and Openwhisk’s handlers.
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• Also, all the functions were accompanied by a docker container, which includes fundamental
machine learning libraries that are not including in the pre-fixed Openwhisk’s python runtime
(libraries like scikit-learn, NumPy, Pandas, and Keras). The mentioned docker containers
contributed to the function construction because of the code and dependencies limitation (48MB).

• Furthermore, the second and the third constructed functions were included in zip files, which
contain fundamental files in order to be operational.

• After the construction of all functions, we created the sequence (chain) of them in order to be
connected as an entire serverless microservice.

• In addition, first invocations of functions have a cold start latency. That is the effect of the very
first invocation of an action taking a bit long.

• The last operation was to create, through Openwhisk native commands- a REST API for
providing the new data (parameters).

3.4.2 Defining the usage of supported Openwhisk Docker containers 

Due to the fact that our entire service needed Machine Learning libraries to work, we tested if 
several of these are exceed the maximum limit that Openwhisk indicates. Notably, we ascertained that 
almost all the Machine Learning libraries use numerous shared libraries and compile native 
dependencies for performance, which can lead to hundreds of megabytes of dependencies. Indeed, we 
find that for example, that the pandas library needs at least 84M of dependencies. In order to overcome 
this problem, we made use of a fundamental benefit that Openwhisk provides; constructed custom-
made runtime containers. Simply that means that the user can build his own custom-made docker 
container and integrate it along with the constructed function without affecting the limitation of the 
size. However, the construction of a suitable docker container for Openwhisk usage must follow a 
specific process; Custom runtime images must implement the Action interface; this is the protocol 
used by the platform to pass invocation requests to the runtime containers. Containers are expected to 
expose an HTTP server (running on port 8080) with /init and /run endpoints. In our case, we used pre-
defined Docker containers which are made by other Openwhisk users; practically the entire procedure 
for a docker container creation is the below: 

The first operation is the creation of a directory in our OS, which will include all the fundamental 
files needed for the construction of the appropriate docker container. Thus, inside the new directory, 
we create a new Dockerfile40 which installs additional packages into the OpenWhisk Python runtime. 
Below we present a typical Dockerfile structure for the construction of an Openwhisk container: 

40 A Dockerfile is a text document that contains all the commands a user could call on the command line to assemble 
an image. 
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Table 16 Dockerfile contents

1 FROM openwhisk/python3action 
2 RUN echo "@community http://dl-4.alpinelinux.org/alpine/edge/community" >> 

/etc/apk/repositories 
3 RUN apk add --no-cache \ 
4       g++ \ 
5       lapack-dev \ 
6       gfortran 
7 RUN pip install \ 
8 numpy pandas scipy sklearn 

A valid Dockerfile must start with a FROM instruction. The FROM42 native command 
initializes a new build stage and sets the Base image for subsequent instructions. The new docker 
image inherits features from the Base image (in our case openwhisk/python3action). The image can 
be any valid image – a base image can be pulled from the Docker Hub public repository.  

The RUN43 instruction will execute any commands in a new layer on top of the current image 
and commit the results. The resulting committed image will be used for the next step in the Dockerfile. 
Thus, with the RUN command we can install the chosen libraries along with their dependencies. 

After the Dockerfile has been defined, we are running (in our OS terminal) the Docker BUILD44 
instruction to create a new image with these extra dependencies. 

It is essential to mention that custom runtime images -for Openwhisk usage- must be available 
on Docker Hub. Docker Hub is the only container registry currently supported; this means all custom 
runtime images will need to be publicly available.  Hence, we must execute specific commands to 
integrate the fixed docker container to the Docker Hub platform to be ready for Openwhisk usage. 
After the Docker's building, with the TAG45 instruction - command in terminal- we can target the 
specific source image, and then with the PUSH46  docker command we make it available in the Docker 
Hub repository ready for usage. When the docker image has been published, is available to be used in 
Openwhisk. 

The above procedure constitutes the typical process to create and use a docker custom-made 
image for Openwhisk operations. In our case, we used prefixed docker images available in Docker 

41 http://jamesthom.as/blog/2017/08/04/large-applications-on-openwhisk/ 
42 https://docs.docker.com/engine/reference/builder/#from 
43 https://docs.docker.com/engine/reference/builder/#run 
44 https://docs.docker.com/engine/reference/commandline/build/ 
45 https://docs.docker.com/engine/reference/commandline/tag/ 
46 https://docs.docker.com/engine/reference/commandline/push/ 
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Hub/ Openwhisk branch47 with some custom-made configurations concerned the versions of machine 
learning libraries. To integrate the docker images into Openwhisk, we use -for every action 
construction- (in Openwhisk CLI) the flag parameter -docker which is accompanied with the name 
of the specific docker image that we want to use.  

3.4.3 Openwhisk functions (actions) 

After the detailed explanation concerning the significant usage of Docker container, we are 
introducing the three constructed functions to build our fraud alert system inside Openwhisk 
implemented with the support of data analysis tools and ML algorithms: 

First Openwhisk action: 

The first Openwhisk action implements the feature engineering and the missing data imputation 
procedures (from the Offline phase). As we already said, the function reads the new parameters like 
one value from a key-value pair; thus, we split the value, i.e., the new fifty-three -53- chosen by the 
PCA method features that constitute the transaction and we fed them into a data frame. In this phase, 
it is crucial to mention that we used the python’s third-party package Pandas built as a docker 
container, which was pulled by the Openwhisk Docker repository because it is the library that supports 
the data frame creation. By putting the features in a data frame, the next step was to replace the blanc 
features with the nan value in order to have an overview of our data; then according to the feature 
engineering procedure, we inserted the new features concerning the P_emaildomain and 
R_emaildomain, i.e., the P_emaildomain_bin, R_emaildomain_bin, P_emaildomain_suffix, and 
P_emaildomain_suffix as well as we did in the Offline phase. Next, we defined the categorical and 
the numerical values as well as we did in the Offline phase similarly, and we imputed the nan values 
according to our data imputation strategy, i.e., we filled the numerical features with the most frequent 
value and the categorical features with the string “unknown”. Then we had to define, again, the first’s 
action output by converting it in a key-pair value because Openwhisk receives data in a dictionary and 
produces a result similarly in the same format. After the development of the above-mentioned source 
code (in python), we save it in a file named. __main__.py. Then, in the directory which the source 
code was saved, we executed -in our OS terminal- the above native command to build the first 
function: 

Table 17 First action construction 

wsk -i action create first __main__.py --docker jamesthomas/openwhisk_python_ml --web true 

47 https://hub.docker.com/u/openwhisk/ 
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As we already mentioned in the previous chapter, wsk is the acronym of Openwhisk which 
establishes the command to interact with the Openwhisk serverless platform; action and create are 
native commands for the action creation accompanied by the given action’s name, the flag –-docker 
determines the specific docker container that will contribute to the function implementation and lastly 
the –web true flag makes the action accessible to third users without requesting authentication. 

Second Openwhisk action: 

The second Openwhisk action implements the label encoding and data normalization 
procedures. The construction of the mentioned action is a little different from the first because it was 
implemented as a zip file. Concerning the source code, we inserted the features -coming from the 
first’s action result- in a data frame, then we used the dictionary that we developed in the Offline 
phase, which includes the label encoding features, and we mapped it in the new features. Next, we 
implement the normalization process; for that reason, we applied the exact same scaling as for the 
training data in the Offline phase; hence we created -in the Offline phase- a binary file including the 
average and the standard deviation from entire features; when we bundle an action file with some 
extra files that we need, we deploy them together as a zip file. Thus, we created a zip file which 
contained the __main__.py source code as the second function and the binary file, which implements 
the normalization process. Same as the first action, the output must correspond to a dictionary format. 
As it concerns the action creation, we produced the above-mentioned zip file which included the 
binary file named scalar.sav to do the normalization procedure and the __main__.py source code. 
Then, we open a terminal running bash and we executed the specific command for the zip creation 
which was “zip second.zip __main__.py scalar.sav”. Then, and we executed the below command in 
order to build the second Openwhisk action: 

Table 18 Second action construction 

wsk -i action create second second.zip --docker jamesthomas/openwhisk_python_ml --web true 

As we observe, we used again the specific image which includes ML libraries and especially 
the Pandas library due to the fact that we used again the data frame structure. 

Third Openwhisk action: 

The third and final action includes the chosen saved machine learning model, which achieved 
the best performance, and it was designed to predict if the new unseen transaction features concern a 
fraud or a legitimate e-commerce transaction. The following chapter introduces the evaluation metrics 
for each one of the above ML models -for each data case- that we experimented in our given data, but 
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in this chapter, we can briefly mention that the best model was an ANN by applying weight in the 
minority class. The mentioned model named “model_ANN_weight.h5” and it was stored in an h548 
format, and it was included in a zip file since it was necessary in order to implement the third function, 
which gives the final prediction. The third action produces the message that informs the user for the 
transaction status. 

  Concerning the docker image, we needed a docker image, which includes the Keras ML 
library, because it is essential to import it for the third action implementation. The docker image that 
we used in the preceding two functions did not included the Keras Library; for that reason, we used 
another already-made image constructed by the Openwhisk developers, which included, among other 
ML libraries, the Keras framework (version 2.2). The mentioned docker image can be found in the 
official Docker Hub repository as well as in the Openwhisk’s official account in GitHub. The 
mentioned image included, except other fundamental files, a text file named requirements.txt with the 
versions of the third-party packages as well as Keras version 2.2.  However, in the Offline phase, we 
developed our model with a later version of Keras framework (v. 2.4) and in order to avoid any 
combability issues we re-configured the version of Keras from 2.2 to 2.4 inside the requirements.txt 
and we built, tag and pushed again the docker container in the Docker Hub in order to be available for 
usage. Then, we created the appropriate source code for the third function named similarly 
__main__.py for predicting the transaction and next, in a terminal running bash we executed the 
specific command for the zip creation which was “zip third.zip __main__.py 
model_ANN_weight.h5”. Then, in the directory which the source code was saved, we executed -in 
our OS terminal- the above native command to build the third and final function: 

Table 19 Third action construction 

wsk -i action create third third.zip --docker pepi1989/openwhisk_python3aiactions --web true 

Action chaining 

Actions can be combined in many ways. The simplest way is chaining them into sequences. 
Chained actions use as input the output of the previous actions. Of course, the first action of a sequence 
will receive the parameters (in JSON format), and the last action of the sequence will produce the final 
result as a JSON string. According to the above information, we chained the above-mentioned 
constructed functions to develop an entire serverless application, which in the first two actions 
completes the preprocessing of the new data and, in the third one, performs the final prediction. 

48 An H5 file is a data file saved in the Hierarchical Data Format (HDF). It contains multidimensional arrays of 
scientific data. 
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Openwhisk provides the ability to build a pipeline of actions using -again- native commands. 
Therefore, in order to connect the above three -3- actions, we used the below command: 

Table 20 Sequence of functions construction 

wsk -i action create sequence--sequence first,second,third --web true 

Notably, the commands for the sequence construction are not much different from the preceding 
commands except the global flag –sequence, which defines the development of the pipeline of 
Openwhisk actions.  

3.4.4 Using REST-API call with Openwhisk 

Since the OpenWhisk environment is enabled, we can use OpenWhisk with our implemented 
application with a REST API call. Openwhisk implements the construction of REST API by using -
again- native commands, which allows to associate it with the chosen actions. To create a REST API 
for our service we used the above command: 

Table 21 REST API construction 

wsk -i api create /fraud_system get sequence --response-type json 

As we can observe, we use -again- the wsk acronym; create and get are native commands for 
the REST-API creation accompanied by the given sequence name, the flag –-response-type 
determines the output format. When we execute the command as mentioned above, Openwhisk 
produces a unique REST-API for our service. 
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After executing the above relevant commands, we can test our service by feeding the 
implemented REST-API with the new data: 

Figure 23 Testing Openwhisk constructed pipeline via the REST API call 

By using the curl49 command tool, we call our REST-API along with the new transactional data; 
Then the REST-API calls the constructed pipeline of actions along with their connected dockers, feeds 
them with the associated data and produces the result which comes progressively from the execution 
of the action. 

The next chapter drives to the explanation of the results and the evaluation performance 
concerning the chosen ML models as well as the performance of the Openwhisk’s sequence execution. 
Concerning the Offline phase, we annotate performance metrics i.e., recall, confusion matrix, and 
AUC, which constitute crucial factors for choosing the best model to be used as the leading prediction 
model for Openwhisk service. Concerning the Online phase, we evaluate the time-based performance 
of our constructed service.

49 cURL, often just “curl,” is a free command line tool. It uses URL syntax to transfer data to and from servers. 
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Chapter 4 

Evaluation Performance

4.1 Overview 

Since in the preceding chapter, we described the implementation of the Offline and Online 
phases that combine the fraud alert system; in this section, we evaluate the tested ML models 
performance used in the Offline Phase by applying well-known measures which will be discussed in 
detail. From the other side, concerning the Offline phase, we evaluate the execution time of the 
constructed pipeline when a request is initialized.  
In the Machine Learning area, the most common metric to evaluate the classification performance of 
our constructed model is Accuracy, which is the most intuitive performance measure, and it is 
calculated as the ratio of correctly predicted observation to the total observations.  However, this is 
not the only way to summarize how well a supervised model performs on a given dataset. In practice, 
this Accuracy might not be the appropriate measure for the constructed application, and it is essential 
to choose the right metric when we are selecting between models and adjusting parameters. When we 
are selecting a metric, we should always consider the end goal of the machine learning application in 
mind; we are usually interested not just in making accurate predictions, but in using these predictions 
as a portion of a larger decision- making process. Before picking a machine learning metric, we should 
think about the high-level goal of the application. In our case study and due to the imbalanced dataset 
problem, we used measures like recall, AUC, and Confusion Matrix to evaluate the chosen Models. 
From the other side, as we already referred in a previous chapter, an Openwhisk function’s execution 
time is the lesser of sixty -70- seconds (with configuration); thus, we tested the constructed pipeline 
by making ten -10- requests and we kept execution times to evaluate the time reaction. 
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4.2 Offline Phase evaluation performance 

4.2.1 Evaluation measures description  

In the initial stages of the development, it is often almost impossible to place models into 
production just for testing purposes without evaluating them, because of the great business or personal 
risks that can be involved. A non-evaluated model in production can cause disastrous consequences. 
Thereby, we always use metrics that can help us define the final model for production. Concerning 
the classification problems, we introduce the most well-known measures (metrics), which influence 
the efficiency of the chosen ML model: 

• Accuracy: reflects the number of correct predictions made by the model over all kinds
predictions made. Accuracy is the ratio of number of correct predictions to the total number of
input samples, and it works efficiently only if there are equal number of samples belonging to
each class.

• Precision: Usually named specificity, it defines the number of correct positive results divided by
the number of positive results predicted by the classifier. Precision measures the percentage of
the samples which are classified to one class and were correctly classified.

• Recall: Usually named sensitivity, it defines the number of correct positive results divided by the
number of all relevant samples (all samples that should have been identified as positive). Mainly,
recall measures the percentage of how many samples found correctly classified.

• F1-Score: F1 Score defines the Harmonic Mean between precision and recall. The range for F1
Score is [0, 1]. F1-score attributes how precise the chosen classifier is (i.e how many instances it
classifies correctly), as well as how robust it is (it does not miss a significant number of instances).
Mainly, F1-Score tries to find the balance between precision and recall.

• Confusion Matrix:  Confusion Matrix as the name suggests gives us a matrix as output and
describes the complete performance of the model containing information about the actual
classifications and predicted classifications done by the classifier. In binary classification
problems the CM consist of four -4- terms: a) True Positives -TP-, which defines the case we
predicted as YES and the actual output was also YES, b) True Negatives -TN-, which defines the
case we predicted we predicted NO and the actual output was NO, c) False Positive -FP-, which
defines the case we predicted YES and the actual output was NO and d) False Negative -FN-,
which defines the case  we predicted NO and the actual output was YES. Thus, with the support
of the above-mentioned tasks, a CM is a 2D table giving a completely overview of the model’s
performance.

• AUC-ROC-Curve: it is a curve that indicates a performance measurement for classification
problem at various thresholds settings. ROC is a probability curve and AUC represent degree or
measure of separability. It tells how much model is capable of distinguishing between classes.
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Higher the AUC, better the model is at predicting 0s as 0s and 1s as 1s. By analogy, Higher the 
AUC, better the model is at distinguishing between two classes. An excellent model has AUC 
near to the 1 which means it has good measure of separability. A poor model has AUC near to 
the 0 which means it has worst measure of separability. In fact, it means it is reciprocating the 
result. It is predicting 0s as 1s and 1s as 0s. And when AUC is 0.5, it means model has no class 
separation capacity whatsoever. 

4.2.2 Chosen evaluation measures for the fraud detection classifier 

As we already referred, usually, we evaluate the performance of each chosen model with 
the accuracy measure; however, it is not always the appropriate measure to summarize how well 
a supervised model performs on a given dataset. Classification concerning data with imbalanced 
class distribution has confronted an essential disadvantage of the performance attainable by most 
standard classifier learning algorithms, which assume a relatively balanced class distribution and 
equal misclassification costs. In our case in which we deal with an imbalanced dataset  

In this thesis, the purpose is to choose the most suitable model, which exposes the fraud 
sharply from legitimate e-commerce transactions. Thus, we must select that model which 
provides the greatest separability in transactions. Types of errors play an important role when one 
of the two classes are much more frequent than the other one as our case.  Thus, we have an 
imbalanced dataset containing 3% of a minority class (fraud transactions) and 97% of the majority 
class (legitimate transactions), the algorithm can predict almost all cases as belonging to the 
majority class. The accuracy score of this algorithm will yield an accuracy of 99%, which seems 
impressive, but in reality, it is not. The minority class is ignored in that case, and the model is a 
total failure. 

Thereby, we decided to use metrics like recall, Confusion Matrix, and AUC providing a 
more reliable overview of the performance. 
Below, we present the calculated evaluation metrics for each chosen model with each one of the 
cases that concern the data manipulation that we discussed in the previous chapter and we chose 
the best model according to the highest percentage of the measures mentioned above, also we 
quote the calculated confusion matrices for each of the models. 
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Table 22 Evaluation Measures results 

Logistic Regression (raw dataset) 5,13% 52.54 % 

Logistic Regression (with applying weight to 
minority class samples) 72.85 % 73.42 % 

Logistic Regression (with oversampling 40% 
minority class) 58.24 % 71.43 % 

Logistic Regression (by applying SMOTE and 
TOMEK Link technique 40% minority class) 56.52 % 69.99 % 

Random Forest (raw dataset) 
56% 78% 

Random Forest (with applying weight to 
minority class samples) 55.26 % 77.39 % 

Random Forest (with oversampling 40% 
minority class) *Overfitting 63.46 % 81.37 % 

Random Forest (by applying SMOTE and 
TOMEK Link technique 40% minority class) 57.32 % 78.56 % 

Extra Trees Classifier (raw dataset) 61.07 % 80.42 % 

Extra Trees Classifier (with applying weight 
to minority class samples) 61.17 % 80.23 % 

Extra Trees Classifier (with oversampling 
40% minority class) *Overfitting 62.47 % 80.89 % 

Extra Trees Classifier (by applying SMOTE 
and TOMEK Link technique 40% minority 
class) *Overfitting 

69.32 % 84.18 % 

Keras ANN (raw dataset) 
54.25 % 76.9 % 

Keras ANN (with applying weight to 
minority class samples) 84% 85% 

Keras ANN (with oversampling 40% minority 
class)  72.1 % 84.84 % 

Keras ANN (by applying SMOTE and 
TOMEK Link technique 40% minority class) 67.99 % 82.97 % 
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According to the table mentioned above, we identified some cases which, in the training phase, 
revealed the overfitting phenomenon, such as the Random Forest by applying the technique  
oversampling, Extra Trees Classifier similarly by using the method oversampling and Extra Trees 
Classifier by applying SMOTE and TOMEK Link method, which practically means that the models 
had over-trained with the training dataset but failed to predict the new unseen data giving low rates on 
the collected measures.     

Figure 24 Barplots depicting Recall and AUC measures for the tested ML models 

The previous table, accompanying with the above barplot (which present the recall and AUC 
measures for each of the models - for each data case-) heads to the result that the ANN by applying 
weight in minority class achieved the most high-grade performance by finding the 85% of the test 
observations correct.  Furthermore, the same model achieved the highest percentage concerning the 
AUC Measure. Nevertheless, in our experiments, we recognized that the model mentioned above 
suffers from low precision by having a rate near 20%; this low rate implies that the constructed 
classifier sometimes classifies the legitimate transactions wrong, but we do not consider much about 
this, because it does not cost too much to examine again a valid e-commerce transaction which is 
classified as fraud in contrast with an actual fraud which classified as legitimate. Thereby, we chose 
the specific model because we do not mind sacrificing some legitimate test observations in order to 
have efficient separability in fraud and legitimate transactions. Below we perform the confusion 
matrices for each one of the models depicting how many of the test observations correctly classified. 
Due to the fact that we defined the fraud transactions as positive examples (is Fraud=1) and legitimate 
transactions as negative (isFraud=0), the confusion matrix has in its upper left-side position the True 
Positive -TP- samples, in its upper right-side position the False Positive -FP- samples, in its  bottom 
left hand side the false negative - FN - examples and in its  bottom right hand side the true negative - 
TN – samples. The diagonal entries represent correctly classified samples and the rest represent 
misclassifications. This enables us to visualize prediction results and related derived statistics in a 
class-wise manner from the data. 
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   Table 23 Confusion Matrix for Logistic Regression – all cases 

Logistic Regression (raw data) Actual 
Fraud Legitimate 

Predicted 
Fraud 212 3921 

Legitimate 64 113911 

Logistic Regression (weight to 
minority class) 

Actual 
Fraud Legitimate 

Predicted 
Fraud 3011 1112 

Legitimate 29658 84317 

Logistic Regression (random 
oversampling) 

Actual 
Fraud Legitimate 

Predicted 
Fraud 2407 1726 

Legitimate 17531 96444 

Logistic Regression (SMOTE 
and TOMEK-LINK) 

Actual 
Fraud Legitimate 

Predicted 
Fraud 2336 1797 

Legitimate 18845 95130 

Table 24 Confusion Matrix for Random Forest – all cases 

Random Forest (raw data) Actual 
Fraud Legitimate 

Predicted 
Fraud 2335 1798 

Legitimate 194 113781 

Random Forest (weight to 
minority class) 

Actual 
Fraud Legitimate 

Predicted 
Fraud 2284 1849 

Legitimate 551 113424 

Random Forest (random 
oversampling) 

Actual 
Fraud Legitimate 

Predicted 
Fraud 2623 1510 

Legitimate 815 113160 

Random Forest (SMOTE and 
TOMEK-LINK) 

Actual 
Fraud Legitimate 

Predicted 
Fraud 2369 1764 

Legitimate 219 113756 
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 Table 25 Confusion Matrix ExtraTrees – all cases 

ExtraTrees (raw data) Actual 
Fraud Legitimate 

Predicted 
Fraud 2524 1609 

Legitimate 264 113711 

ExtraTrees (weight to minority 
class) 

Actual 
Fraud Legitimate 

Predicted 
Fraud 2528 1605 

Legitimate 813 113162 

ExtraTrees (random 
oversampling) 

Actual 
Fraud Legitimate 

Predicted 
Fraud 2582 1551 

Legitimate 786 113189 

ExtraTrees (SMOTE and 
TOMEK-LINK) 

Actual 

Fraud Legitimate 

Predicted 
Fraud 2865 1268 

Legitimate 1087 112888 

Table 26 Confusion Matrix for ANN – all cases 

ANN (raw data) Actual 
Fraud Legitimate 

Predicted 
Fraud 2242 1891 

Legitimate 505 113470 

ANN (weight to minority class) Actual 
Fraud Legitimate 

Predicted 
Fraud 3337 796 

Legitimate 13142 100833 

ANN (random oversampling) 
Actual 

Fraud Legitimate 

Predicted 
Fraud 2980 1153 

Legitimate 2758 111217 

ANN (SMOTE and TOMEK-
LINK) 

Actual 
Fraud Legitimate 

Predicted 
Fraud 2810 1323 

Legitimate 2280 111695 
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The selected the ANN model by applying weight to minority class samples, identified correct 
three thousand thirty-seven test observation -3337- as fraud transactions and lost seven hundred ninety-
six -796- fraud transaction which classified as authorized. This model had the best performance from 
all the tests models in this thesis. 

4.3 Online Phase 

4.3.1 System’s time execution performance 

As the next level of the potential of cloud computing, Serverless provides significant benefits such 

as scalability, the pay-for-request method, smooth migration of individual features, or partial 

workloads to functions, neither debugging nor controlling allocation resources and beyond any doubt 

fast response to function requests.  Regarding our thesis, we performed several tests on our 

constructed service to monitor the response time for each request, which is passing in the pipeline. 

Especially, we performed ten -10- individual requests by transferring data -concerning e-commerce 

transactions- to the constructed pipeline. Below are pictured plots concerning the execution time of 

each of the custom-made functions and the entire pipeline’s response time in order to review the 

overall performance of the system. 

Figure 25 Boxplots for each action’s execution time (Duration in seconds-concerning only warm invocations) 
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We observed that each action – individually- is executing in a time range of seconds and 
milliseconds. For the first action the fastest execution time was 53 ms and the weakest 1.138 s. For the 
second function the fastest execution time was 19 ms and the weakest was 3.612 s.  The third function- 
the one that calls the saved ML model, achieves the best execution time in 185 ms and the weakest 
performance in 4.291 s.  

Figure 26 Time-plots for Openwhisk actions (Duration in seconds) 

Notably, the execution time of the pipeline does not exceed twenty-seven (27) seconds, which 
is actually a very fast response with regards to our constructed system and concerning the complexity 
that provides.  In addition, Openwhisk has a cold start spot; that is why the first request takes longer 
time to produce a response.
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Chapter 5 

Experience acquired from implementation 

5.1 Framework combability problem 

By closing with this performed approach, we expose the principal problem that we faced with 
the Openwhisk Serverless platform and the proposed solutions to overcome it.  The main problem is 
that Openwhisk is not compatible with TensorFlow API since it cannot understand implemented ANN 
models with TensorFlow .h5 format. 
Initially, in the Offline phase, we designed the proposed approach by using ANN models implemented 
with Tensorflow’s latest update (version 2.0); because it is the most famous library used in production 
for deep learning models; also, it has a vast and impressive community. Furthermore, Tensorflow is 
used as a backend framework (in most cases) to the Keras API, which is more user-friendly and easier 
to use. Notably, Keras can perform as a standalone API, and the user can use it uniquely to construct 
deep learning models.  
Recently50, Tensorflow’s developers community produced its latest stable version ready to be used 
from third users (developers – data scientists). Specifically, there are multiple changes in TensorFlow 
2.0 to make users more productive; they made more consistent APIs and removed the redundant ones; 
performed better integration with the Python runtime and refactored the modules in order users to 
create smaller functions. Also, the newest version supports distributed computing, enabling portions 
of the graph to be computed on different processes, which may be on entirely different servers. Also, 
this can be used to distribute computation to servers with powerful GPUs, and have other computations 
done on servers with more memory, and so forth. 

According to the information mentioned above, we chose -initially- to construct our ANN 
model with Keras API and TF (v 2.0) framework as a backend. Also, in order to save time from 
the training phase, we selected to rent allocation resources from AWS. AWS Deep Learning AMI 
constitutes pre-configured environments to build deep learning applications quickly. 

50 https://www.tensorflow.org/guide/effective_tf2 
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Specifically, we chose spot AWS instance because it is cheaper than a default EC2 
instance; in particular, a spot instance is an unused EC2 instance that is available for less than the 
On-Demand price; because Spot Instances are enabled to request unused EC2 instances at steep 
discounts, by lowering Amazon EC2 costs significantly. Thus, -for our goal - we selected an EC2 
(p2.large ) spot instance along with a Deep Learning AMI (Ubuntu 16.04), which comes pre-built 
and optimized for deep learning on EC2 with NVIDIA CUDA, cuDNN, and Intel MKL-DNN, 
and also includes popular frameworks such as TensorFlow.  

5.2 The proposed solutions to defeat the problem 

After the determination of the most suitable ANN model, we saved it in a TF .h5 file format to 

deploy it into Openwhisk’s third function. Therefore, we developed the source code of the third 

function, we integrated the saved model, as mentioned in the third chapter of this thesis, we created 

the sequence of functions and the REST API, and we attempted to test the constructed fraud alert 

system. Unfortunately, we discovered that when we tried to call the REST-API, along with the new 

unseen data, the entire OS was not responding.  After a detailed examination of the problem, we 

thought the solutions mentioned below: 

• To save the model in a protobuf format (.pb) since we assumed that Openwhisk does not

understand tf .h5 format. The saved_model.pb file stores the actual TensorFlow model, and a

set of named signatures and variables that uses, each identifying a function that accepts tensor

inputs and produces tensor outputs.

• To construct a new docker container with the latest TensorFlow image (v2.0), including Keras

specific version (2.4) and use it as a support along with the implementation of the third

function.

• To use AWS S3 object storage in order to save our constructed TF model and afterward, to

call it inside the third Openwhisk function. (This option constitutes a massive complexity

because it demands advanced level knowledge concerning AWS S3 object storage and possibly

it would acquire a hard system configuration).

• To construct the same model using Keras model .h5 format.
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We tested all the above -mentioned solutions except the third one. Unfortunately, neither the 

first nor the second worked with success, causing the same initial problem again. The last one was the 

key to implement our system effectively. Therefore, as we already referred to the third chapter of this 

thesis, we constructed the ANN with the support with the Keras API, and we deployed it -successfully- 

inside Openwhisk.  

In the light of all the preceding chapters, we conclude our approach, and we are available for 

any contribution, optimization, or a higher-level proposal concerning the implemented fraud alert 

system in a serverless environment. 
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Appendix_A

Installation and Configuration Apache Openwhisk 
Serverless Platform in a Local Machine (with Docker 

Compose) 

- Prerequisites

1) Install the VMWare Fusion (our version 11.5 pro - paid)

• Download and import OS Linux Ubuntu 16.04 LTS Xenial
• Install VMWare tools
• Set VMware workstation’s networking options to NAT

2) Install JAVA (version 8)

• Install the “Main” repository with apt: sudo apt-get update
• Install OpenJDK 8: sudo apt-get install openjdk-8-jdk
• Verify that Java and the Java compiler have been properly installed:  java -version / javac -ver

sion
• Set Java Home Environment: To set the variable for your system:

echo "JAVA_HOME=$(which java)" | sudo tee -a /etc/environment

• Reload your system’s environment variables: source /etc/environment

• Verify the variable was set correctly: echo $JAVA_HOME

3) Install Docker CE Engine (Version: 19.03.1)

• Navigate to https://docs.docker.com/install/linux/docker-ce/ubuntu/ and perform the installation
steps according the chosen OS

4) Install Docker Compose (version 1.24.1)

• Navigate to https://docs.docker.com/compose/install/ and perform the installation steps
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- Main Installation steps for Openwhisk

1) Install the Openwhisk Serverless Platform

• Navigate to GitHub repo: (https://github.com/apache/openwhisk/blob/master/README.md#q
uick-start)

• Create a directory in the OS and perform the next command: git clone https://github.com/ap
ache/incubator-openwhisk-devtools.git

• Execute the command: cd incubator-openwhisk-devtools/docker-compose
• Execute:  docker pull openwhisk/action-nodejs-v10:nightly
• Because we used python runtime we also executed the command: docker pull openwhisk/actio

n-python-v10:nightly or latest
• Then, in order to begin the full installation of Openwhisk, execute: make quick-start

2) Set and configure the Openwhisk’s CLI and wsk abbreviation as a global
variable

• Copy: copy in the .bashrc : export WSK_CONFIG_FILE='/home/devops/incubator-openw
hisk-devtools/docker-compose/.wskprops'

• To set wsk acronym global in entire OS, navigate to .bashrc and execute the command: export
PATH="$PATH:/home/<your host machine name>/incubator-openwhisk-devtools/docke
r-compose/openwhisk-src/bin/"
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