
 

 

 

 

 

 

UNIVERSITY OF PIRAEUS 

DIGITAL SYSTEMS DEPARTMENT 

MSc SECURITY IN DIGITAL SYSTEMS 

 

STUDENT 

VOULGARIS IOANNIS MTE 1803 

PIRAEUS, GREECE, FEBRUARY 2020 

 

 

 

 

INFORMATION AND SECURITY EVENT 

MANAGEMENT SYSTEM 

 

 

 

 

 

 

 

 

 

SUPERVISOR 

PROF. KONSTANTINOS LABRINOUDAKIS  

 
 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Table of contents 
ABSTRACT .................................................................................................................................... 11 

ACKNOWLEDGEMENTS ............................................................................................................ 12 

1. Security Operation Center and Log Files .................................................................................... 13 

1.1. General idea ......................................................................................................................... 13 

1.2. Importance of Log Analysis ................................................................................................. 14 

1.3. Efficient log analysis ............................................................................................................ 15 

1.4. Problems with log analysis................................................................................................... 16 

1.5. Security Operation Center (SOC) ........................................................................................ 18 

2. Elastic Stack .................................................................................................................................. 0 

2.1. The present and future of monitoring with Elastic stack ........................................................ 0 

2.2. Components ........................................................................................................................... 1 

2.2.1. Elasticsearch .................................................................................................................... 1 

2.2.2. Kibana ........................................................................................................................... 20 

2.2.3. Logstash ........................................................................................................................ 27 

2.2.4. X-Pack ........................................................................................................................... 29 

2.2.5. Beats .............................................................................................................................. 32 

2.2.6. Common choices of architecture ................................................................................... 33 

2.4. Installation and Configuration Guides for Windows, Locally ............................................. 37 

2.4.1. Elasticsearch .................................................................................................................. 38 

2.4.2. Kibana ........................................................................................................................... 42 

2.4.3. Logstash ........................................................................................................................ 49 

2.4.4. Beats .............................................................................................................................. 53 

2.4.5. X-Pack ........................................................................................................................... 57 

2.5. Elastic Stack and GDPR ...................................................................................................... 61 

2.5.1. General .......................................................................................................................... 61 

2.5.2. Preparation for Personal Data handling (1st Set of processes) ...................................... 62 

2.5.3. Protection of Personal Data (2nd Set of processes) ........................................................ 63 

2.5.4. Privacy processes and maintenance of rights (3rd Set of processes) .............................. 63 

2.5. Companies that use it ........................................................................................................... 64 

3. Document Management ................................................................................................................ 0 

3.1. Creating an index ................................................................................................................... 0 

3.2. Adding documents in an index ............................................................................................... 0 

3.3. Document retrieval ................................................................................................................. 2 

3.4. Document supplanting ........................................................................................................... 3 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

3.4.1. Original replacing and updating ...................................................................................... 3 

3.4.2. Updates with scripts ........................................................................................................ 5 

3.4.3. Document upsert ............................................................................................................. 6 

3.5. Deleting .................................................................................................................................. 8 

3.5.1. Documents ...................................................................................................................... 8 

3.5.2. Indices ........................................................................................................................... 10 

3.6. Processing multiple documents ............................................................................................ 10 

3.7. Observing how the cluster works ......................................................................................... 13 

4. Mapping ........................................................................................................................................ 0 

4.1. Preface .................................................................................................................................... 0 

4.2. Dynamic ................................................................................................................................. 0 

4.3. Meta-fields ............................................................................................................................. 3 

4.4. Data types ............................................................................................................................... 4 

4.4.1. Core data types ................................................................................................................ 4 

4.4.2. Complex data types ......................................................................................................... 6 

4.4.3. Specialized data types ..................................................................................................... 7 

5. Wazuh ........................................................................................................................................... 0 

5.1. General idea ........................................................................................................................... 0 

5.2. Components ........................................................................................................................... 0 

5.3. Required ports ........................................................................................................................ 1 

5.4. Archiving data storage ........................................................................................................... 2 

5.5. Common use cases ................................................................................................................. 2 

5.5.1. Signature-based log analysis ........................................................................................... 3 

5.5.2. Rootkit detection ............................................................................................................. 4 

5.5.3. File integrity monitoring ................................................................................................. 6 

5.6. Rulesets .................................................................................................................................. 6 

5.6.1. Introduction to Wazuh Rulesets ...................................................................................... 6 

5.6.2. Decoders.......................................................................................................................... 7 

5.6.3. Rules ............................................................................................................................... 4 

5.6.4. Regex .............................................................................................................................. 8 

6. Monitoring and Log Analysis Case Scenario ................................................................................ 0 

6.1. Installing tools on Linux ........................................................................................................ 0 

6.1.1. Elasticsearch and Kibana ................................................................................................ 0 

6.1.2. Logstash .......................................................................................................................... 1 

6.1.3. Filebeat ............................................................................................................................ 1 

6.1.4. Wazuh (scenario) ............................................................................................................ 3 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

6.1.5. Beats (scenario) ............................................................................................................. 16 

6.4. Elastic SIEM ........................................................................................................................ 26 

6.4.1. Security Information and Event Management............................................................... 26 

6.4.2. Introduction ................................................................................................................... 26 

6.4.3. Components .................................................................................................................. 27 

6.5. Elastalert .............................................................................................................................. 34 

6.5.1. Installing and configuration .......................................................................................... 34 

6.5.2. Elastalert rules ............................................................................................................... 38 

7. Concluding Remarks – Empirical Findings ..................................................................................... 0 

8. Bibliography ................................................................................................................................. 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Table of figures 

 

Figure 1: Log data examples ........................................................................................................... 13 

Figure 2: Steps in traditional Log Analysis....................................................................................... 14 

Figure 3: Efficient Log Analysis steps .............................................................................................. 16 

Figure 4: Tomcat Log file example .................................................................................................. 17 

Figure 5: Apache Server Log file example ....................................................................................... 17 

Figure 6: How decentralization works ............................................................................................ 18 

Figure 7: Basic Elastic Stack structure ............................................................................................... 1 

Figure 8: JSON Object for Elasticsearch ............................................................................................ 3 

Figure 9: Index and document relation ............................................................................................. 3 

Figure 10: How REST API works ........................................................................................................ 3 

Figure 11: DBMS and JSON format ................................................................................................... 4 

Figure 12: Inverted index format storing .......................................................................................... 5 

Figure 13: Concurrency Control Part 1 .............................................................................................. 6 

Figure 14: Concurrency Control Part 2 .............................................................................................. 7 

Figure 15: Cluster and nodes relation ............................................................................................... 8 

Figure 16: Shard resilience Part 1 ................................................................................................... 10 

Figure 17: Shard resilience Part 2 ................................................................................................... 11 

Figure 18: Shard resilience Part 3 ................................................................................................... 11 

Figure 19: Synchronization of replica shards .................................................................................. 13 

Figure 20: Elasticsearch. How data searching works ...................................................................... 14 

Figure 21: Queries handling ............................................................................................................ 15 

Figure 22: Shard number calculation .............................................................................................. 16 

Figure 23: Add and search document requests .............................................................................. 16 

Figure 24: Counting of shards ......................................................................................................... 18 

Figure 25: Indexing in Apache Lucene ............................................................................................ 19 

Figure 26: Updating and re-indexing in Apache Lucene ................................................................. 20 

Figure 27: Elastic Cloud prerequisites ............................................................................................. 22 

Figure 28: Instances of Elastic Cloud (AWS) .................................................................................... 22 

Figure 29: Instances of Elastic Cloud Google Cloud Platform ......................................................... 23 

Figure 30: Region choosing ............................................................................................................. 23 

Figure 31: Elastic Stack version used .............................................................................................. 24 

Figure 32: Final deployment info part 1 .......................................................................................... 24 

Figure 33: Final deployment info part 2 .......................................................................................... 24 

Figure 34: Final deployment info part 3 .......................................................................................... 25 

Figure 35: Elastic Cloud credentials ................................................................................................ 25 

Figure 36: Elastic Cloud ID ............................................................................................................... 25 

Figure 37: Node receiving the request ............................................................................................ 26 

Figure 38: Accessing Elasticsearch raw data ................................................................................... 26 

Figure 39: Changing the instance-node .......................................................................................... 27 

Figure 40: Kibana dashboard in Elastic Cloud ................................................................................. 27 

Figure 41: Logstash place in ELK ..................................................................................................... 29 

Figure 42: Stages of Logstash .......................................................................................................... 29 

Figure 43: Common architecture part 1.......................................................................................... 33 

Figure 44: Common architecture part 2.......................................................................................... 34 

Figure 45: Common architecture part 3.......................................................................................... 35 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Figure 46: Common architecture part 4.......................................................................................... 36 

Figure 47: Common architecture part 5.......................................................................................... 37 

Figure 48: Checking java version on Windows ................................................................................ 38 

Figure 49: Elasticsearch directory (Windows) ................................................................................. 39 

Figure 50: Starting Elasticsearch (Windows) ................................................................................... 39 

Figure 51: Accessing Elasticsearch via port ..................................................................................... 40 

Figure 52: Configuring Elasticsearch on Windows part 1 ............................................................... 41 

Figure 53: Configuring Elasticsearch on Windows part 2 ............................................................... 42 

Figure 54: Kibana directory on Windows ........................................................................................ 43 

Figure 55: Starting Kibana (Windows)............................................................................................. 43 

Figure 56: Accessing Kibana via port ............................................................................................... 44 

Figure 57: Configuring Kibana on Windows part 1 ......................................................................... 44 

Figure 58: Configuring Kibana on Windows part 2 ......................................................................... 45 

Figure 59: Configuring Kibana on Windows part 3 ......................................................................... 45 

Figure 60: Posting data with curl on Elasticsearch.......................................................................... 46 

Figure 61: Index patterns in Kibana part 1 ...................................................................................... 47 

Figure 62: Index patterns in Kibana part 2 ...................................................................................... 47 

Figure 63: Console tool ................................................................................................................... 48 

Figure 64: Console syntax part 1 ..................................................................................................... 49 

Figure 65: Console syntax part 2 ..................................................................................................... 49 

Figure 66: Logstash directory on Windows ..................................................................................... 50 

Figure 67: Testing if Logstash is up ................................................................................................. 50 

Figure 68: Proof Logstash is up and running ................................................................................... 50 

Figure 69: Importing custom messages inside Logstash ................................................................. 51 

Figure 70: Apache log example ....................................................................................................... 51 

Figure 71: Apache logs configuration file ........................................................................................ 52 

Figure 72: Using apache.conf by Logstash ...................................................................................... 52 

Figure 73: Proof that apache.conf has loaded ................................................................................ 52 

Figure 74: Results with Logstash index ........................................................................................... 53 

Figure 75: Number of documents indexed through Logstash ........................................................ 53 

Figure 76: Filebeat enabling Apache ............................................................................................... 53 

Figure 77: installing Filebeat through PowerShell .......................................................................... 54 

Figure 78: Configuring apache.conf for Filebeat ............................................................................. 54 

Figure 79: Logstash configuration ................................................................................................... 55 

Figure 80: Loading in Logstash the new apache.conf ..................................................................... 55 

Figure 81: Proof that Filebeat ingests data in Logstash .................................................................. 55 

Figure 82: Filebeat index results ..................................................................................................... 56 

Figure 83: Metricbeat installation through PowerShell .................................................................. 56 

Figure 84: Metricbeat index results ................................................................................................ 57 

Figure 85: Visualize things with Kibana example ............................................................................ 57 

Figure 86: Installing X-Pack (Windows) part 1 ................................................................................ 58 

Figure 87: Steps to install X-Pack .................................................................................................... 58 

Figure 88: Installing X-Pack (Windows) part 2 ................................................................................ 58 

Figure 89: Enabling X-Pack in Elasticsearch conf file ...................................................................... 59 

Figure 90: All passwords for the suite ............................................................................................. 59 

Figure 91: Installing Kibana steps .................................................................................................... 60 

Figure 92: Kibana configuration file ................................................................................................ 60 

Figure 93: Kibana login screen ........................................................................................................ 60 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Figure 94: Logstash installation steps ............................................................................................. 61 

Figure 95: How GDPR works with personal data according to Elastic ............................................ 61 

Figure 96: Which steps does Elastic cover ...................................................................................... 62 

Figure 97: PUT request to show a specific index .............................................................................. 0 

Figure 98: POST request to add a new object ................................................................................... 1 

Figure 99: Proof that version changed .............................................................................................. 1 

Figure 100: Adding a new object with ID example ........................................................................... 2 

Figure 101: GET request to retrieve an object .................................................................................. 3 

Figure 102: Updating an object. Single argument (Version proof) ................................................... 4 

Figure 103: Updating an object. Multiple argument (Version proof) ............................................... 5 

Figure 104: Update an object’s value that already exists ................................................................. 6 

Figure 105: Proof that the value changed ......................................................................................... 6 

Figure 106: DELETE request and proof ............................................................................................. 7 

Figure 107: Upsert example part 1 (POST request) .......................................................................... 7 

Figure 108: Upsert example part 2 (proof) ....................................................................................... 8 

Figure 109: Adding new documents example ................................................................................... 8 

Figure 110: DELETE multiple documents example ............................................................................ 9 

Figure 111: DELETE multiple documents proof ................................................................................ 9 

Figure 112: DELETE request for an index ........................................................................................ 10 

Figure 113: Proof that index was deleted ....................................................................................... 10 

Figure 114: Adding values on multiple documents at once ............................................................ 11 

Figure 115: Proof for multiple document processing ..................................................................... 12 

Figure 116: Update and delete documents on the same query ..................................................... 13 

Figure 117: Cluster's health part 1 .................................................................................................. 13 

Figure 118: Cluster's health part 2 .................................................................................................. 14 

Figure 119: Node's health ............................................................................................................... 14 

Figure 120: Indices health part 1 .................................................................................................... 15 

Figure 121: Indices health part 2 .................................................................................................... 15 

Figure 122: Disk usage and shard allocation info part 1 ................................................................. 15 

Figure 123: Disk usage and shard allocation info part 2 ................................................................. 16 

Figure 124: Shard health and distribution part 1 ............................................................................ 16 

Figure 125: Shard health and distribution part 2 ............................................................................ 16 

Figure 126: Steps to dynamic mapping ............................................................................................. 1 

Figure 127: Mapping API example for behind the scenes mapping ................................................. 1 

Figure 128: GET request for mapping information over an index part 1 .......................................... 2 

Figure 129: GET request for mapping information over an index part 2 .......................................... 2 

Figure 130: Core data types with examples ...................................................................................... 5 

Figure 131: Complex data type structure example ........................................................................... 6 

Figure 132: Complex data type (geo_point) example ....................................................................... 7 

Figure 133: Specialized data types tool installation .......................................................................... 8 

Figure 134: Wazuh structure............................................................................................................. 1 

Figure 135: Data storage/ archive ..................................................................................................... 2 

Figure 136: Signature-based log analysis example ........................................................................... 3 

Figure 137: Alert example for Signature-based log analysis ............................................................. 4 

Figure 138: Rootkit detection example ............................................................................................. 5 

Figure 139: FIM example ................................................................................................................... 6 

Figure 140: File used to update rulesets ........................................................................................... 7 

Figure 141: Traditional decoder example ......................................................................................... 1 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Figure 142: Dynamic decoding example ........................................................................................... 1 

Figure 143: Decoder explained through a JSON output ................................................................... 2 

Figure 144: Decoder syntax part 1 .................................................................................................... 2 

Figure 145: Decoder syntax part 2 .................................................................................................... 3 

Figure 146: Decoder syntax part 3 .................................................................................................... 3 

Figure 147: Decoder syntax part 4 .................................................................................................... 4 

Figure 148: Storing options for rules and decoders .......................................................................... 5 

Figure 149: Steps for adding a decoder file on Wazuh-Manager ..................................................... 5 

Figure 150: Testing tool for logs ....................................................................................................... 6 

Figure 151: Log file to be decoded and tested.................................................................................. 6 

Figure 152: Decoding and testing result ........................................................................................... 6 

Figure 153: Rules syntax part 1 ......................................................................................................... 7 

Figure 154: Rules syntax part 2 ......................................................................................................... 7 

Figure 155: Rules syntax part 3 ......................................................................................................... 8 

Figure 156: Rules syntax part 4 ......................................................................................................... 8 

Figure 157: Traditional Regex syntax ................................................................................................ 9 

Figure 158: Wazuh Regex syntax part 1 .......................................................................................... 10 

Figure 159: Wazuh Regex syntax part 2 .......................................................................................... 10 

Figure 160: Wazuh Regex syntax part 3 .......................................................................................... 10 

Figure 161: Wazuh Regex syntax part 4 .......................................................................................... 11 

Figure 162: Wazuh Regex syntax part 5 .......................................................................................... 11 

Figure 163: Unzipping the Elasticsearch file on Linux ....................................................................... 0 

Figure 164: Starting Elasticsearch on Linux ....................................................................................... 0 

Figure 165: Install CURL tool command ............................................................................................ 0 

Figure 166: Showing with CURL tool the Elasticsearch cluster ......................................................... 1 

Figure 167: Unzipping the Kibana file on Linux ................................................................................. 1 

Figure 168: Starting Kibana on Linux ................................................................................................ 1 

Figure 169: Unzipping the Logstash file on Linux .............................................................................. 1 

Figure 170: Unzipping the Filebeat file on Linux ............................................................................... 2 

Figure 171: Starting Filebeat on Windows and proof part 1 ............................................................. 2 

Figure 172: Filebeat configuration on Linux part 1 ........................................................................... 2 

Figure 173: Filebeat configuration on Linux part 2 ........................................................................... 3 

Figure 174: Starting Filebeat on Windows and proof part 2 ............................................................. 3 

Figure 175: Install Wazuh-Manager with CURL tool ......................................................................... 4 

Figure 176: Starting Wazuh-Manager and proof .............................................................................. 4 

Figure 177: Install Wazuh API with CURL tool part 1 ........................................................................ 4 

Figure 178: Install Wazuh API with CURL tool part 2 ........................................................................ 4 

Figure 179: Proof that Wazuh API is up and running ........................................................................ 5 

Figure 180: All agents with their IDs ................................................................................................. 5 

Figure 181: Importing authentication key and proof ........................................................................ 6 

Figure 182: Proof that the new agent is added and active ............................................................... 6 

Figure 183: FIM example part 1 ........................................................................................................ 7 

Figure 184: FIM example part 2 ........................................................................................................ 7 

Figure 185: Rules and decoders directories ...................................................................................... 8 

Figure 186: Custom decoder example 1 ........................................................................................... 9 

Figure 187: Custom rule example 1 .................................................................................................. 9 

Figure 188: Testing the new ruleset from example 1 ....................................................................... 9 

Figure 189: Testing random logs part 1 .......................................................................................... 10 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Figure 190: Testing random logs part 2 .......................................................................................... 10 

Figure 191: Testing random logs part 3 .......................................................................................... 11 

Figure 192: Locating the rule that needs to be changed ................................................................ 11 

Figure 193: Copying and pasting the needed file (Rules) and changes .......................................... 12 

Figure 194: Copying and pasting the needed file (Decoders) ......................................................... 13 

Figure 195: Excluding a decoder ..................................................................................................... 13 

Figure 196: Syscheck debug logging enable .................................................................................... 14 

Figure 197: Creating test directories ............................................................................................... 14 

Figure 198: Properties of the test files ............................................................................................ 15 

Figure 199: Enabling syscheck FIM on Windows agent .................................................................. 15 

Figure 200: Proof of monitoring part 1 ........................................................................................... 15 

Figure 201: Proof of monitoring part 2 ........................................................................................... 16 

Figure 202: Metricbeat directory on Windows agent with installation .......................................... 17 

Figure 203: Configuring Metricbeat on Windows agent part 1 ...................................................... 17 

Figure 204: Configuring Metricbeat on Windows agent part 2 ...................................................... 18 

Figure 205: Configuring Metricbeat on Windows agent part 3 ...................................................... 18 

Figure 206: Auditbeat directory on Windows agent with installation ............................................ 19 

Figure 207: Configuring Auditbeat on Windows agent part 1 ........................................................ 20 

Figure 208: Configuring Auditbeat on Windows agent part 2 ........................................................ 20 

Figure 209: Winlogbeat directory on Windows agent with installation ......................................... 21 

Figure 210: Configuring Winlogbeat on Windows agent ................................................................ 21 

Figure 211: Winlogbeat runs as a service proof .............................................................................. 22 

Figure 212: Packetbeat directory on Windows agent with installation .......................................... 22 

Figure 213: Configuring Packetbeat on Windows agent ................................................................. 23 

Figure 214: Packetbeat runs as a service proof .............................................................................. 23 

Figure 215: Metricbeat visualization part 1 .................................................................................... 23 

Figure 216: Metricbeat visualization part 2 .................................................................................... 24 

Figure 217: Auditbeat visualization part 1 ...................................................................................... 24 

Figure 218: Auditbeat visualization part 2 ...................................................................................... 24 

Figure 219: Winlogbeat visualization part 1 ................................................................................... 25 

Figure 220: Winlogbeat visualization part 2 ................................................................................... 25 

Figure 221: Packetbeat visualization part 1 .................................................................................... 25 

Figure 222: Packetbeat visualization part 2 .................................................................................... 25 

Figure 223: Elastic SIEM structure .................................................................................................. 27 

Figure 224: Elastic SIEM components ............................................................................................. 28 

Figure 225: Elastic SIEM Overview visualization ............................................................................. 29 

Figure 226: Elastic SIEM Hosts visualization ................................................................................... 30 

Figure 227: Creating timelines example part 1 ............................................................................... 31 

Figure 228: Creating timelines example part 2 ............................................................................... 31 

Figure 229: Elastic SIEM Networks visualization ............................................................................. 32 

Figure 230: Elastic SIEM Timelines visualization ............................................................................. 32 

Figure 231: Using a custom timeline part 1 .................................................................................... 33 

Figure 232: Using a custom timeline part 2 .................................................................................... 33 

Figure 233: Installing Elastalert ....................................................................................................... 34 

Figure 234: Creating Elastalert's indices ......................................................................................... 35 

Figure 235: elastalert_status* visualization .................................................................................... 35 

Figure 236: elastalert_status_error* visualization ......................................................................... 35 

Figure 237: elastalert_status_silence* visualization....................................................................... 36 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Figure 238: elastalert_status_status* visualization ........................................................................ 36 

Figure 239: Examining a document with elastalert_status_status* index ..................................... 37 

Figure 240: Elastalert configuration ................................................................................................ 38 

Figure 241: Starting Elastalert ......................................................................................................... 38 

Figure 242: Elastalert rules directory .............................................................................................. 39 

Figure 243: Running a rule independently ...................................................................................... 39 

Figure 244: File that runs all rules in the background part 1 .......................................................... 40 

Figure 245: File that runs all rules in the background part 2 .......................................................... 40 

Figure 246: File that runs all rules in the background part 3 .......................................................... 40 

Figure 247: Elastalert example 1 configuration file ........................................................................ 41 

Figure 248: Group Policy Editor changes part 1 .............................................................................. 41 

Figure 249: Group Policy Editor changes part 2 .............................................................................. 42 

Figure 250: Group Policy Editor changes part 3 .............................................................................. 42 

Figure 251: Group Policy Editor changes part 4 .............................................................................. 43 

Figure 252: Group Policy Editor proof part 1 .................................................................................. 43 

Figure 253: Group Policy Editor proof part 2 .................................................................................. 44 

Figure 254: Group Policy Editor proof part 3 .................................................................................. 44 

Figure 255: Group Policy Editor proof part 4 .................................................................................. 45 

Figure 256: Proof that the rule works (Example 1) part 1 .............................................................. 45 

Figure 257: Proof that the rule works (Example 1) part 2 .............................................................. 46 

Figure 258: Elastalert example 2 configuration file ........................................................................ 46 

Figure 259: Proof that the rule works (Example 2) part 1 .............................................................. 47 

Figure 260: Proof that the rule works (Example 2) part 2 .............................................................. 47 

Figure 261: Elastalert example 3 configuration file ........................................................................ 48 

Figure 262: Proof that the rule works (Example 3) part 1 .............................................................. 49 

Figure 263: Proof that the rule works (Example 3) part 2 .............................................................. 49 

Figure 264: Elastalert example 4 configuration file ........................................................................ 50 

Figure 265: Proof that the rule works (Example 4) part 1 .............................................................. 50 

Figure 266: Proof that the rule works (Example 4) part 2 .............................................................. 51 

Figure 267: Elastalert example 5 configuration file ........................................................................ 51 

Figure 268: Proof that the rule works (Example 5) ......................................................................... 52 

  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

ABSTRACT 
 

The cyber security field has evolved tremendously over the past decade. Cyber 

incidents and threats have been increasing rapidly both in figures as well as intricacy. 

As all fights, it is consisted by two or more participants; regularly an attacker and a 

defender. The defending is done by an organization while the attacker keeps changing 

the threat landscape by availing himself of the new exploits, weaknesses and possible 

security loopholes. These attackers usually have as an end goal to exfiltrate, alter or 

even delete valuable data. 

This Thesis proposes, analyzes and evaluates some cyber security solutions. It is 

based on the Elastic Stack (ELK), an enterprise grade logging suite of tools which 

provides active threat hunting in a corporate environment. In the market it is mainly 

used as a search engine. Scenarios are presented with it being used alone as it is with 

Beats or combined with the Wazuh platform. The initial phases of this Thesis focus 

on what a SOC center, how important efficient log analysis is, how GDPR is affected 

by ELK and how Elasticsearch can be used as a search engine. Afterwards, some 

scenarios are presented followed by a detailed manual for these technologies. Lastly, 

from just this handful of scenarios and examples an opinion is presented about how 

these technologies can be effectual in an enterprise environment.  

 

 

Keywords 

Elastic Stack, BEATS, SOC, GDPR, search engine, threat hunting 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

ACKNOWLEDGEMENTS 
 

I would like to thank my professor and advisor Mr. Konstantinos Lamprinoudakis for 

his continuous support and encouragement throughout my MSc Thesis. He instilled in 

me the spirit of pursuing real-world cyber security problems and guided me with 

perseverance during my studies. I am also thankful to him for providing opportunities 

to work on a wide spectrum of cyber security problems beyond my MSc Thesis.  

I would like to thank Mr. Georgios Vassios and Mr. Christos Anagnostou for their 

guidance on the use of technical methods. Their insightful suggestions helped me 

immensely in carrying out this highly interdisciplinary work.  

Finally, I would like to thank the members of the Hellenic Army Information Support 

Center for the many fruitful discussions and for a memorable military service and 

MSc experience. 

 

 

 

 

 

 

 

 

 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

 

 

1. Security Operation Center and Log Files 
 

1.1. General idea 
 

Millions of people at this moment produce logs, even without realising it. They are 

basically a stream of events regardless their usefulness. These logs are full of 

performance and usage indicators called Metrics. Two basic examples of log’s data 

being emitted into readable format are presented below. 

 

Figure 1: Log data examples 

 

At the first example is the traditional way of reading logs by humans. It is clear that it 

is a request and its method is “get”. Furthermore, it is shown clearly that the route is 

“ping” the response code and how long it took in milliseconds. The bottom one on the 

other hand is structured in JSON format. It is debatable, if someone who is not 

familiar with this structure to read it. The important part though is that machines can 

read them without needing a resident regular expression user. It is of high significance 

to realise that parsing logs requires effort. Logs in each and every application are 

written out in their own manner so it is the first thing which the administrator should 

learn; reading and analysing the logs.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

There are a number of universal truths in cybersecurity. One of those is that an expert 

will have a lot of log files. These may include log files from systems, switches or even 

routers. Simplified, every device that exists on a network has multiple log files 

associated with it. From these log files there is an amazing amount of intelligence and 

certainly a lot of history that the expert may have to go back and reference in those 

log files. One of the most common challenges a cybersecurity expert has is keeping it 

all straight by analysing them without pouring through countless pages of logs. This is 

a necessity since it’s ludicrous for a human being to read through all of those logs. So, 

there are systems in place that help in analysing logs on his behalf. These systems are 

designed to take multiple, different log files and then consolidate them together, so 

that they are humanly readable. These log files as stated already countless times are 

incredibly useful if there happens to be a breach or if someone wants to find out what 

happened inside a specific time frame.  

Log analysis can be either centralized or decentralized. Decentralized is something 

where the logs are generated on each and every web server. This has a result the 

administrator to log into each one of them to troubleshoot and drill down the issue. Of 

course, this is not an ideal scenario neither a good approach because it is time 

consuming therefore the solution of the issue is delayed. That’s why it is 

recommended to store the logs at a central place for analysis.   

1.2. Importance of Log Analysis 
 

 

Figure 2: Steps in traditional Log Analysis 

 

Whenever the user comes across an issue in the production scenarios, in order to 

debug the issue, he must read the logs. This is the importance of analysing the logs 

since it helps to debug the issue (Issue Debugging). Moreover, if the expert keeps on 

reading logs in a regular interval the occurrence of a certain issue or error can be 

reduced (Predictive Analysis). A case study that is interesting is suppose that the 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

expert reads across the logs and finds out that there is some error that can bring down 

the server or the web application (Predictive Analysis). 

If there is any attack going on in the application, it will be captured in the logs. So, in 

the servers, logs that are called Access Logs exist. These logs are a huge part of a 

sysadmin’s job since it in his jurisdiction. By doing that a sysadmin can find with ease 

if a DDoS attack or a penetration attack was or is at the moment executed (Security 

Analysis).  

The logs help experts to analyse the performance as well because an idea is given 

about how efficiently an application is operating. An expert can find for example, by 

going through the logs, what is actually provoking the lethargic performance or the 

degradation in terms of performance regards the application (Performance Analysis).  

Furthermore, Internet of Things is something which is more relevant to the 

application part. This happens because the data is collected from a receiver or from a 

sensor and sent across to the cloud for analysis and routine check-ups. Subsequently, 

this data is stored as logs that are used for debugging purposes (IoT & Debugging). 

1.3. Efficient log analysis 
 

Efficient analysis of log information is often the most difficult aspect of log 

management, but it also normally the most significant. Although analysing log 

information is sometimes perceived by administrators as boring and ineffective -small 

amount for some effort- getting strong log organization infrastructures is crucial. 

Furthermore, the automation of the analysis process, at best effort, will change the 

analysis procedure significantly by reducing time while producing more important 

results.  

Though logging is not an entirely new idea, it has soon become the epitome of 

management and observation with the most used feature being remote monitoring. 

The most significant point of logging is that you learn about matters as and when they 

happen, even before users themselves begin realising it.  

In real time it becomes a little more difficult. It is really challenging to be able to do 

any type of real time analysis on the huge amounts of log files that are streaming into 

these devices. There are tools out there however that can parse these logs and try to 

keep track of things at least in near real time. It is off high importance, for the security 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

expert to be able to be alerted and identified as quickly as possible should something 

odd be happening. Concluding, the real key when dealing with a vast amount of log 

files is just to find a way to automate the above-mentioned procedure. 

Log analysis as stated earlier, includes the collection of log data, the cleaning of that 

data, the conversion into a structured form and analysing them to obtain results. Logs 

are always unstructured data so they must be collected in a place to extract the 

important information from them to do a successful conversion.   

 

Figure 3: Efficient Log Analysis steps 

 

This is the general flow that is followed for getting information that is relevant to the 

company’s purpose. So rather than wasting time in reading from top to bottom it is 

not a common secret among administrators to drill down certain key-phrases and then 

analyse the data needed.  

1.4. Problems with log analysis 
 

The first challenge with log analysis is the lack of consistency in log and time format. 

Each application has its own way to produce logs. This can be easily seen between 

two different web applications; Apache server and Tomcat, since they use their own 

syntax. Below there is a demonstration for Tomcat and Apache server accordingly. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 4: Tomcat Log file example 

 

Figure 5: Apache Server Log file example 

 

It is of high importance to understand the syntax that is used, to be able to read a log 

file of a particular application. These are some of the challenges which occur in a 

heterogeneous environment of multiple applications. This problem also happens when 

an application has a different configuration to describe time. In more detail, an 

application might have the UTC format while another might have the Eastern Time 

zone. Noteworthy is the fact that many log formats are unique and proprietary to a 

certain company’s technology. As a result, many times the company to force the 

collecting organisation to use their technology since a decent log management system 

is of vital importance. 

Moreover, every single server has its own log directories which are stored in a 

decentralized way. This is a discomfort for the expert since he has to log into each 

server to troubleshoot.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 6: How decentralization works 

 

Concluding, each user inside a team or company will not have access to those log 

directories to visualize the logs. This problem also includes the fact that common folk 

might not have technical expertise to understand the information and this can slow 

down the whole analysis procedure. 

1.5. Security Operation Center (SOC) 
 

It is essentially a facility that combines applications, databases, servers, rulesets and 

analyst tools put together to identify network and infrastructure threats. So basically, 

it is a centralized unit that deals with security issues on an organizational and 

technical level. Noteworthily, SOC is traditionally a physical facility which houses an 

information security team. SOC teams are made up of management, security analysts 

and sometime security engineers. It works with development and IT operations teams 

within the company.  

The objective of a SOC is related mainly to the people, technologies and processes 

that provide situational awareness through the detection, containment and remediation 

of IT threats. A SOC will handle, on behalf of a company or institution any 

threatening IT incident, and will ensure it is properly investigated, analysed and 

reported. Lastly, it also monitors applications to identify and prevent a possible cyber-

attack or event.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Building an efficient SOC requires organizing internal resources in a way that 

improves communication and increases efficiencies. Aside from the staff, which is 

fairly hard to find, it is imperative for the company to have the latest tools to keep up 

to date with threats.   

A Security Operations Center is often referred to as Security Defence Center (SDC), 

Security Analytics Center (SAC) or even Network Security Operations Center 

(NSOC). 

 

 

 

 

 

 

 

 

 

 

 



 

2. Elastic Stack 
 

2.1. The present and future of monitoring with Elastic stack 
 

Being proactive as opposed to reactive is the key component in the cyber security 

space. Since the importance of log analysis is analysed before, now the most 

commonly used -open-source- combination of projects will be analysed. 

The Elastic Stack is the most popular log analytics method in the contemporary IT 

world. It gathers logs from all applications, services, networks, instruments, servers 

and more from the environment into a single, centralized place for process and 

investigation. It is utilized for analysis purposes (e.g. to troubleshoot issues, monitor 

services, and decrease the time it takes to resolve operating issues). Another purpose 

for this instrument is for security and auditing (e.g. to observe changes in groups -

security wise- and changes in privileges). After getting alerts on these subjects, it is 

simple to pursue unauthorized users and suspicious actions. Elastic Stack is also 

commonly used for business for supervising users and their behaviour. It is important 

to mention that Elastic Stacks often are expensive but at the same time very efficient 

in giving users the power to quickly mine and chart logs. 

Often used with its former name “ELK Stack”, is the acronym of three open source 

projects; Elasticsearch, Logstash and Kibana. Elasticsearch is the searching and 

analytics engine. Logstash is the server-side information processing line that ingests 

information from multiple sources simultaneously, transforms it, and afterwards 

transmits it to the “stash” like Elasticsearch. Kibana allows users to visualise 

information with charts and graphs at Elasticsearch. Despite each one of these three 

technologies being a separate project, they have been developed to work exceptionally 

and harmonically together. ELK Stack was re-branded as Elastic Stack since the Beats 

project was introduced, which made the acronym ELKB impossible to pronounce 

effortlessly. Beats are light agents that are established on hosts to gather various type 

of information for forwarding into the other components of the stack. Although it is 

an open source engine for searching and analysis, it is also based on the Apache 

Lucene web search engine, mainly referring to the Elasticsearch component. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Elastic Stack is actually really reliable and good even though it’s an open source 

assemblage of projects. Multiple companies and organisations now rely on this 

technology to perform necessary tasks that will be later described thoroughly.  

 

 

Figure 7: Basic Elastic Stack structure 

 

2.2. Components 
 

2.2.1. Elasticsearch 
 

2.2.1.1. General idea 

 

To begin with Elasticsearch, it is an open-source analytics and full-text search engine 

and the main building block of Elastic Stack. It is often used for enabling search 

functionality for applications. A great example could be that someone has an online 

store for which he wants customers to be able to explore the product selection that it 

offers. That could be categories, standalone items and so on. Complex search 

functionality is possible with Elasticsearch, like what someone can see on a search 

engine. This includes auto-completion, correcting typographic mistakes, highlighting 

matches and adjusting relevance etc. 

By taking further the case study of the online store, suppose it has implemented a 

searching feature. Besides searching through product names and other full-text fields, 

it is highly advisable to take several aspects into consideration when sorting the end 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

results. If the products have ratings, it is probably a good idea to boost the relevance 

of a product that is best rated. Filtering and sorting options for possible clients is 

highly desirable such as price range, brand or even sex. To simplify things, 

Elasticsearch can do everything that is needed for developing a powerful search 

engine. Full-text searches though, are not the only thing Elasticsearch is capable of, as 

already stated before. 

Queries can be made for structured data much like numbers and use Elasticsearch as 

an analytics platform. These queries can may well be for data and then the results 

contribute in making charts. It is of highly importance that Elasticsearch must not be 

confused with a business intelligence solution. Despite not being one, Elasticsearch 

can indeed provide the user a plethora of valuable information out of the data that is 

stored inside it.  

Apropos of considerable amount of data analysing, Elasticsearch is really great. An 

example on what can be done, is to use machine learning to forecast sales based on 

historical data. This is an addition provided by X-Pack which will be described in 

detail later on this thesis. Another great example of usage could be a capacity 

management one. To be more precise if an internet service provider’s support group 

integrates this technology to its infrastructure it will be simplified to manage 

personnel. This can happen with keeping track of how many phone calls are made and 

then forecasting and deciding with ease how much staff the company will need in the 

future. 

In Elasticsearch, data is stored as documents, which is essentially just a unit of 

information. A document in Elasticsearch corresponds to a row in a relational 

database and can represent any entity imaginable. This document contains fields, 

which correspond to columns in a relational database. A document is essentially just a 

JSON object, so to add a car as a document, all that’s needed is to send a JSON object 

describing a car to Elasticsearch, such as the example in the image below. More 

precisely, an object is added with a ‘’brand’’, a ‘’CC’’ and a ‘’extra’’ property. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 8: JSON Object for Elasticsearch 

 

 

Figure 9: Index and document relation 

 

Documents have IDs assigned to them either automatically by Elasticsearch, or by the 

user when they are added to an index. So, it only logical to uniquely identify 

documents by the index they are included in and their ID. 

Moreover, to query documents in Elasticsearch, a REST API is used. A RESTful API 

as shown in the dictionary is just a way of designing HTTP APIs. The queries that are 

sent to Elasticsearch are also in JSON format.  

 

 

Figure 10: How REST API works 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Elasticsearch is written in Java and is built on top of Apache Lucene. It has gained a 

lot of popularity, due to its relative ease of use and the fact that it exceptionally good 

at scaling. While it is easy to get started with simple things, it is still a very complex 

technology if an organisation wants to make use of its full potential. Since it is 

distributed by design, it scales very well in terms of increasing data volumes and 

query throughput. So even if the search must be executed through countless 

documents, searches are still going to be almost instantaneous.  

It is of high significance, that Elasticsearch is a near real time search platform. This 

means that there is a slight latency -normally one second more or less- from the time a 

document is indexed until the time it becomes searchable. In other words, 

Elasticsearch is sort of a distributed database with lots of extra capabilities. 

2.2.1.2. DBMS and Elasticsearch 
 

In a common Database Management System, data is presented in tables as shown in 

the figure below. It is clear that these tables consist of columns and rows while on the 

other hand, as stated earlier in Elasticsearch, the JSON format is used. So, it is clear 

that one row in a DBMS is equal to one document in the Elasticsearch. 

 

 

Figure 11: DBMS and JSON format 

 

To continue, an index in Elasticsearch is similar to a database in a Relational 

Database Management System. More precisely, an index is a collection of documents 

that have somewhat similar characteristics. A RDBMS consists of a number of tables, 

which hold a number of records. Similarly, in A RDBMS, Tables are used which are 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

referred as Types in Elasticsearch. Distinguishing between indices and types is often 

very difficult for beginners, and understanding when to use each, is often a challenge. 

A Type is a logical category/ partition of the index whose semantics is completely up 

to the expert. It is important that one or more Types can defined within an index. 

Types although being important they got somewhat removed from Elasticsearch 

gradually.  

So, it works as shown in the figure below. Any given document, in any format, hosts 

data that are afterwards ingested by Elasticsearch. On this application all the 

individual words are scripted and stored in an inverted index format. It is very helpful 

that way for when data is fetched through a quick search or even for analytical 

purposes.  

 

 

Figure 12: Inverted index format storing 

 

2.2.1.3. Concurrency issues 
 

When the topic of discussion is distributed systems, sometimes really weird problems 

with concurrency pop up. The question is, what really happens when two different 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

clients are trying to do the same thing at the exact same time and who actually wins. 

Elasticsearch deals with these issues.  

The use case as already stated is about two clients that are running a web application 

on a big distributed site and they are maintaining page counts for given documents 

that are viewed. These documents will be called pages on this website. So, two people 

are viewing the same page at an exact moment through two different web servers. 

Basically, at this point two clients exist for Elasticsearch, retrieving a view count for a 

page from Elasticsearch. Since they are both asking at the same time at this point, 

they are just trying to get the current count for that page. Let’s say that it comes back 

with a number ten. So, ten people look to this page so far. Now both of these clients 

want to increment that at the same time.  They will eventually go ahead and increment 

the view count for that page and figure out that a new update for this document must 

be written, for a view count of eleven. Subsequently, they will both in turn write a 

new document update with a new view count of eleven, but it should have been 

twelve.  

It is obvious that there is a brief window of time between retrieving the current view 

count for the page and writing the new view count of the page during which things 

went wrong due to this concurrency issue. This is a very real problem if a lot of 

people are hitting a specific website or the Elasticsearch service at the same time.  

 

Figure 13: Concurrency Control Part 1 

 

The solution is called Optimistic Concurrency Control. It is important to understand 

that whenever a request for Elasticsearch is given, it returns back the version number 

for that document. So, for this use case, the view count of ten is associated explicitly 

with a given version number of that document. Just for sake of this example the 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

version will be called ‘’_version: 7”. Eventually, when an update occurs the version 

must be also specified to see if two or more people try to update the same version at 

the same time. This has a result only for one of them to be successful. Elasticsearch 

could then change the version to “_version: 8” and announce that the second client is 

basing this update on the wrong information. At that point the client tries to reacquire 

the current view count for that page.  

 

Figure 14: Concurrency Control Part 2 

 

To avoid doing this by hand there is another parameter called retry_on_conflicts (use 

retry_on_conflicts = N to automatically retry) that will allow you to automatically 

retry if this happens so that’s kind of a nifty feature.  

 

2.2.1.4. Scaling 

 

2.2.1.4.1. Architecture  
 

2.2.1.4.1.1. Nodes and clusters 
 

By cluster of computers, it is meant, a collection of one or more nodes that together 

hold all the data and provides federated indexing and search capabilities across all 

nodes. Therefore, the collection of nodes contains the entire data set for the cluster.  A 

node on the other hand, is a single server that is part of the cluster that stores the data 

and participates in the cluster’s indexing and search capabilities. This means that a 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

node will participate in a given search query by searching the data that it stores. 

Usually a master node exists which is responsible for lightweight cluster-wide actions 

such as creating or deleting an index, tracking which nodes are part of the cluster, and 

deciding which shards to allocate to which nodes. So basically, it is the cluster 

coordinator and the component that is responsible for updating the state of the cluster. 

Each node can be assigned as being the master node by default. It is important for 

cluster viability to have a stable master node. It is perfectly valid to have a cluster 

with only one node.     

 

 

Figure 15: Cluster and nodes relation 

 

Apart from that, it is worth mentioning that every node within the cluster can handle 

HTTP requests for clients that want to send a request to the cluster. This is done by 

using the HTTP REST API that the cluster exposes. A given node then receives this 

request and will be responsible for coordinating the rest of the work. Also, a given 

node within the cluster knows about every node in the cluster and is able to forward 

requests to a given node by using a transport layer, while the HTTP layer is 

exclusively used for communicating with external clients, such as an application, for 

instance.  

Both clusters and nodes are identified by unique names. For clusters, the default name 

is elasticsearch in all lowercase letters and the default name for nodes is a Universally 

Unique Identifier also referred to as a UUID. This can be changed according to the 

expert’s needs. It is worth knowing that the names of nodes are important because that 

is the way to identify which physical or virtual machines correspond to which 

Elasticsearch nodes. By default, nodes join a cluster named elasticsearch, but the 

nodes can be configured to act differently. If no cluster already exists with that name, 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

it will be formed. Therefore, in a production environment it is a good idea to change 

the default name, to make sure that no nodes accidentally join a production cluster.  

Lastly as with documents and their corresponding IDs, indices are identified by names 

which must be in all lowercased letters. These names are then used when searching 

for documents, in which case the index must be specified to search through for 

matching documents. The same applies for adding, removing and updating 

documents.  

 

2.2.1.4.1.2. Shards 
 

One of the most common questions that occur when discussing about Elasticsearch is 

how well it scales itself out to run on an entire cluster of computers. The main trick is 

that an index is split into shards. Every shard is a self-contained instance of Lucene 

and of itself. This means that it is just a logical partition of the index. So, the idea is 

that if a cluster of machines exist, these shards can be spread across them. If more 

capacity is needed though, simply more computers can be introduced to the cluster 

and more shards added to the entire index for a more efficient spread of the load. 

Every time a given server in the cluster is used, once it figures out in what document 

the user is interested in, it hashes the document to a particular shard ID. As a result, a 

mathematical function will be used to find expeditiously which shard owns the given 

document and then redirect the user to the appropriate shard on the cluster. So simply, 

index is distributed among many different shards and a shard can live on different 

machines within a cluster.  

 In order for Elasticsearch to maintain resiliency to failure, shards are divided into two 

categories: primary and replica ones. A primary shard and its replicas are referred to 

as a replication group. A big problem that occurs when a cluster of computers exist, is 

that those computers can fail sometimes, and something must be done in order to 

prevent or countermeasure it. An example is present in the figure below where an 

index is presented that has two primary shards and two replicas. So, in this example 

three nodes will be used, where each node is an installation of Elasticsearch. Usually 

one node is installed per physical server in a cluster. The design is such that if any 

given node in the cluster goes down, the end user will not even realise its absence. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Primary shards, in this example, are basically the primary copies of the index data and 

that’s where write requests are going to be routed to initially. Then that data will be 

replicated to the replica shards which can also handle read requests whenever it is 

desired by the user. Elasticsearch figures everything automatically in behalf of the 

user, so if the user wants two primaries with two replicas, in three given nodes, the 

end figure will be as described. 

 

 

Figure 16: Shard resilience Part 1 

 

The case scenario is that Node 1 suddenly fails for some unspecified reason (the 

power supply burned out, disk failure etc). So, in this case primary shard 1 and replica 

shard 0 will be lost. This is a minor problem since a replica shard 1 exists both in 

node 2 and 3. Elasticsearch would figure that out and it would elect one of the replica 

nodes on 2 or 3 to be the new primary. Since the shards are there, they can keep on 

accepting new data and servicing read requests because now there are only down to 

one primary and one replica. This will happen until the lost node is restored. 

Similarly, if node 3 collapses, Elasticsearch would pick a new primary shard 0 from 

node 1 or 2. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 17: Shard resilience Part 2 

 

By using a scheme like the above mentioned, a fault—tolerant system is created. In 

fact, it can even support the system even if it loses multiple nodes at the same time. 

According to this example, two nodes can collapse at the same time with them being 

node 2 and node 1. Since in node 3 a primary shard 0 exists all there is to be done is 

for Elasticsearch to elect the replica shard 1 into primary shard 1. For this sort of 

resiliency, it is recommended to use an odd number of nodes.  

 

 

Figure 18: Shard resilience Part 3 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

To conclude the idea is that the system will round-robin requests as an application 

among all the different nodes in the cluster so that the initial traffic load will be spread 

out evenly. It is only logical for this procedure to be efficient that a replica node 

should never be stored on the same node as its primary shard. 

 

2.2.1.4.2. Replica shards synchronization 

 

It is clear enough that replicas need to be kept in sync, because otherwise problems 

would popup. These problems occur mainly when deleting or updating a document 

since it duplicated across nodes. This has a result for queries to become unpredictable, 

mainly because the result would depend on which particular replica shard is read 

from. To deal with this Elasticsearch uses a model named primary backup for its data 

replication. This means that the primary shard in a replication group acts as the entry 

point for indexing operations. More specifically, all operations that affect the index- 

such as adding, updating or removing documents- are sent to the primary shard. The 

primary shard is then responsible for validating the operations and ensuring that 

everything is good. This involves checking if the request is structurally invalid, such 

as trying to add a number to an object field or something equivalent. When the 

operation has been accepted by the primary shard, the operation will be performed 

locally on the primary shard itself. Afterwards, at the time of completion, the 

operation will be forwarded to each of the replica shards in the replication group. If 

the shard has multiple replicas, the operation will be performed in parallel on each of 

the replicas. Eventually, if the operation is completed successfully on every replica 

and responded to the primary shard, the primary shard will respond to the client that 

the operation was a success.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 19: Synchronization of replica shards 

 

A simple case study would be a client/ server that communicates with the cluster. The 

cluster is consisted of two nodes, which are parted off one primary shard and the 

replicas of the other node’s primary shard. Firstly, a document from the index is to be 

deleted. At this point, Elasticsearch needs to find the correct replication group, and 

thereby also the primary shard. With correct routing the client finds the corresponding 

replication group and its primary shard. The operation is then routed to the primary 

shard where it is validated and subsequently executed. Once the operation completes 

on the primary shard itself, it is sent to the replica shards in the replication group. In 

this case that means that the delete operation is sent to Replica 1a and Replica 1b. 

When on both of these replicas the operation completes, the primary shard 

acknowledges that the request was successful to the client. If there were no replicas 

the operation would have just been executed directly on the shard. 

2.2.1.5. Data searching 
 

Below a figure is presented, with what a developer would typically see when running 

search queries towards an Elasticsearch cluster. The client in reality can be often a 

server. That client communicates with the Elasticsearch cluster by sending search 

queries over HTTP. Afterwards, the cluster handles the procedure based on the index 

and query that is specified in the HTTP request. When the results are ready, the cluster 

responds with the results, and the client can then use the results for multiple purposes.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

Figure 20: Elasticsearch. How data searching works 

 

For deeper inspection a case study is used as well. As shown below, a cluster 

consisting of three nodes exists. It contains one index distributed across three shards; 

Shard 1, Shard 2, Shard 3. Each shard has two replicas, so each replication group 

consists of a primary shard and two replicas. The first thing that the client does is to 

send a search query to the cluster which ends up on the Node 2 containing Shard 2. 

This node is the so-called “coordinating node”, meaning that this node is responsible 

for sending queries to other nodes, assembling the results and responding to the client. 

So basically, coordinating the query, hence the name “coordinating node”. By default, 

every node may act as the coordinating node and may receive HTTP requests as 

aforementioned. Since the coordinating node itself contains a shard which should be 

searched, the node will perform the query itself. This may not be the case in other 

scenarios, but since there is only one index, this will always be the case. Afterwards, 

the coordinating node broadcasts the request to every other shard in the index, being 

either a primary shard or a replica shard. In this example the primary shards, Shard 1 

and Shard 3 receive the requests. When the other shards respond with each of their 

results, the coordinating node merges them together and sorts them, and lastly returns 

the results to the client.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 21: Queries handling 

 

It is noteworthy that the approach is different if a single document is retrieved by its 

ID. When doing this, the request is routed to the appropriate shard instead of being 

broadcasted to all of the index’s shards.  

 

2.2.1.6. Document distribution and routing 

 

Elasticsearch is capable of knowing on which shard to store a new document, and 

how to find it when retrieving it by ID. Documents should be distributed evenly 

between nodes by default, so that one shard will not contain way more documents 

than another. So, determining which shard a given document should be stored in or 

has been stored in, is call routing. To make Elasticsearch more user friendly and 

easier to handle, routing is handled automatically by default, and most users will not 

even need to manually deal with it. The way it works by default, is that Elasticsearch 

uses a simple formula for determining the appropriate shard. By default, the 

‘’routing’’ value will be equal to a given document’s ID. This value is then passed 

through a hashing function, which generates a number that can be used for the 

division. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 22: Shard number calculation 

 

The remainder of dividing the generated number with the number of primary shards in 

the index, will give the shard number. This is how Elasticsearch determines the 

location of specific documents.  When executing search queries (not looking a 

document with its ID), the process is fairly different, as the query is then broadcaster 

to all shards. This default behaviour ensures that documents are distributed evenly 

across shards. Since this is just a default configuration, it can be changed at will. To 

be more specific, when retrieving, deleting, or updating documents, a custom routing 

value can be specified to change the way documents are distributed.   

 

 

Figure 23: Add and search document requests 

 

An example of this could be if a document existed for each car, in which case the 

shard could be determined by the country that they are manufactured at. In that case, a 

potential problem could be if the majority of the cars were manufactured in the same 

country, because then the documents would not be evenly spread out across the 

primary shards.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

The number of shards for an index cannot be changed once an index has been created. 

Taking the routing formula into consideration, then the answer is pretty obvious as to 

why this is the case. If the number of shards changed, then the result of running the 

routing formula would change for documents. So, if a document has been stored on 

Shard 1 when there are four shards in total, because that is what the outcome of the 

routing formula was at the given time. Also, hypothetically the number of shards is 

changed later into a total number of six. If someone tries to lookup the document by 

ID, the result of the routing formula might be different. Now the formula might route 

to Shard 3, even though the document is actually stored on Shard 1. This means that 

the document would never be found and that would cause some major issues. 

Concluding that is why the number of shards cannot be changed once an index has 

been created. The only solution is to create a new index and move the documents to it.  

The same problem could happen if custom routing is introduced within an existing 

index that contains documents that have been routed using the default routing 

formula.  

 

2.2.1.7. Read and write capacities 

 

A clear use case would be to index a new document into Elasticsearch, that is going to 

be a write request. When this is done, whatever node the system talks to, will respond 

‘’ok, here is the location of the primary shard for this document you are trying to 

index. So, I will redirect you to where that primary shard is located’’. Afterwards the 

data index will be written into the primary shard and then that will automatically get 

replicated to any replicas for that shard.  

When read occurs on the other hand, the process is not only quicker but simpler as 

well. It is routed to the primary shard or to any replica of that shard so that the load of 

reads can be spread out more efficiently. This means also that the more replicas there 

are, the read capacity is increased for the entire cluster. It is only the write capacity 

that is going to be bottlenecked by the number of primary shards.  

One big issue with this architecture is that the number of primary shards is 

unchangeable. This is defined when the index is created up front and the syntax of 

that is presented in the below figure. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 24: Counting of shards 

 

It is as can be seen a put request, 3 primary shards and 1 replica. It is not clearly 

visible, but the cluster here ends up with 6 shards. This happens because 3 primary 

shards will be used and 1 replica for each will be created. So, if the request consisted 

of 2 replicas, the total number of shards would add up to 9, and so on. 

This is not as bad as it sounds because a lot of applications of Elasticsearch are very 

read heavy. More specifically, this can be easily seen when a search index is powered 

on a big website like an online encyclopedia. There, the number of new read requests 

will outnumber the indexes for new documents. So, it’s not as rough as it sounds since 

a lot of applications oftentimes can get more replicas inside the cluster’s infrastructure 

later. As already stated, this can add more read capacity, but in order to add more 

write capacity, a re-index of the data into a new index must happen. Although these 

are a viable option, it is far more desirable to plan and make sure that enough primary 

shards exist to handle any growth that might reasonably appear soon.  

2.2.1.8. Apache Lucene 

 

Lucene is a powerful Java search library which is built for creating indexes that are 

easily searchable. An Elasticsearch shard is essentially a Lucene index. This Apache 

framework is the full-text search library, that Elasticsearch is built on. Elasticsearch is 

basically making Lucene’s functionality available in a distributed setting.  

Within a Lucene index there are segments. These segments are simply, mini indexes 

and within them there are certain data structures, like an inverted index, stored fields, 

document values etc. When working with search, the key data structure to understand 

is the inverted index.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

The inverted index consists of two parts; the sorted dictionary and a posting list. The 

dictionary contains the index terms and for every term its posting list is the documents 

that contain the term.  

In the figure above a basic example of indexing is shown but the principle is the same 

for all kinds of searches. First the user operates on the dictionary to find candidate 

terms and then operate on the postings.  

 

Figure 25: Indexing in Apache Lucene 

 

It is noteworthy that segments are immutable. This means that they cannot be 

completely deleted if a document is deleted. More specifically whenever a document 

is deleted there is a bitmap that marks the document as deleted and Lucene will filter 

it out for every subsequent search. The segment itself doesn’t change though. So, 

when update for example is essentially a delete followed by a reindex this should be 

kept in mind. 

Lucene on the other hand, uses all the tricks in the book to compress things. Segments 

can be created in one of two ways. First as new documents are indexed Elasticsearch 

will buffer these documents, and then every refresh interval, which defaults to every 

second, it will write a new segment and the documents will become available for 

search. This means that over time lots of segments will stack up. To solve this 

problem, every now and then Elasticsearch will merge them together and during this 

process deleted documents are finally, completely removed. That’s why adding 

documents sometimes can cause the index to be smaller.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 26: Updating and re-indexing in Apache Lucene 

 

Many of the aforementioned are equally presented at Elasticsearch. This was expected 

though, since Elasticsearch was built on top of Lucene. 

 

2.2.2. Kibana 
  

2.2.2.1. General idea 
 

Kibana is a really good way for querying and visualizing information at Elasticsearch. 

It is a JavaScript-based web application. The Kibana tool is a platform mainly used 

for analytics and visualization for the convenience of the user. It is called as the 

Graphical User Interface (GUI), named by the IT community. To be more precise, 

Kibana lets you visualize data from Elasticsearch and analyse it to make sense of it. 

Someone can say that Kibana is an Elasticsearch dashboard where you can create 

visualizations such as pie charts, line charts and many others. 

 For example, a company can plot its website visitors onto a map and show traffic in 

real time. You can aggregate website traffic by browser and find out which browsers 

are important based on its particular audience. Kibana is also where change detection 

and forecasting are configured. It provides an interface to manage certain parts of 

Elasticsearch, such as authentication and authorization. Generally speaking, Kibana 

can be seen as a web interface to the data that is stored within Elasticsearch. It uses 

the data from Elasticsearch and basically just sends queries using the same REST 

API. It just provides an interface for building those queries and lets the user configure 

how to display the results. This can be a huge time saver because there isn’t a 

necessity for the user to implement all these by himself.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Dashboards can be built where the user can place a number of metrics and 

visualizations or even be used for system administrators to monitor the performance 

of servers, such as CPU and memory usage. Another example that is worth 

mentioning is about developers since they can monitor the number of application 

errors and API response times. It is fairly obvious at this point that user is likely to 

store a lot of different kinds of data in Elasticsearch, apart from the data that can be 

searched or presented at the end. It is worth mentioning that user might not even need 

to use Elasticsearch for implementing search functionality at all. 

Searching in Kibana is performed by selecting the search box at the top of the page. 

Afterwards, by entering a string of data that the user wants to view in the logs (this 

can be an IP address for instance) the results appear below. Kibana offers the ability 

to search down to a high level of granularity. More specifically, the user has the 

option to go down to the millisecond if he needed to.  

Moreover, if the user has errors in his syntax, he will be helped by Kibana in ways to 

refine his query. Documentation is also pointed regarding the syntax which is also 

very convenient. An error is presented if the search bar has gone red or if the fifteen-

minute is exceeded (if not changed). 

2.2.2.2. Elastic Cloud 
 

An easier way to use the Elastic Stack suite, without installing its components, is by 

using a technology called Elastic Cloud. It is a hosted and managed solution for those 

who want to easily deploy an Elasticsearch cluster and avoid having to manage the 

underlying infrastructure.  

It is free for fourteen days, which is sufficient for the purposes of this Thesis, to 

understand the basic principles of Elastic Stack. That way as mentioned earlier, 

installing and configuring Elasticsearch and Kibana is avoided.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 27: Elastic Cloud prerequisites 

 

While setting up the cloud the first thing to do is to select the size of the cluster. This 

is not possible though since the trial is locked at the following specs. The reason that 

the slider is locked and that it is not possible to choose a smaller cluster, is that Elastic 

wants to provide you with high performance for the duration of the trial, just to give 

the user a memorable and good experience. Of course, someone can put his credit 

card information and scale it up and down as he pleases.  

The following thing to do is to choose a cloud provider. That is because Elastic Cloud 

runs on top of a cloud provider, being either Amazon Web Services (AWS) or the 

Google Cloud Platform. It is worth mentioning that AWS has already a service named 

Elasticsearch Service. The fundamental difference between this and the 

aforementioned option is that Elastic Cloud provides more capabilities; access to X-

Pack. It is also noteworthy that Logstash is not a part of the Elastic Cloud, but it is 

expected to be added soon. 

 

Figure 28: Instances of Elastic Cloud (AWS) 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

On the other hand, if the Google Cloud Platform is used, then the advantages are even 

greater, because there is currently no other managed Elasticsearch service available. 

So, in order to run the Elastic Stack on Google’s cloud platform, the user would have 

to set everything up himself or use a prebuild image. Subsequently though, the user is 

responsible for managing the cluster and keeping the underlying servers running 

smoothly. The cloud provider of choice for this Thesis is Amazon though. 

 

 

Figure 29: Instances of Elastic Cloud Google Cloud Platform 

 

Afterwards a region should be chosen which is basically where the cluster will be 

hosted geographically, and the version of the Elastic Stack. The area of choice is EU 

Frankfurt while the version of the Elastic Stack is 7.3.0. Unless, there are existing 

applications that are written against a specific version of Elasticsearch, the latest 

version is recommended. 

It is important to understand, that if the user wants to use the cluster for something 

irrelevant to developing and testing, the region that is chosen should be close to the 

cluster that it is connected to. This will ensure the lowest possible latency.  

 

Figure 30: Region choosing 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 31: Elastic Stack version used 

 

Finally, the name chosen for this case is JOHN and the final deployment information 

is presented in the figures below. 

 

 

Figure 32: Final deployment info part 1 

 

 

Figure 33: Final deployment info part 2 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 34: Final deployment info part 3 

 

After a short moment, a dialog appears with the username and password of the cluster. 

It is crucial to either save it or download it because it is not possible to find it 

anywhere inside the suite. This happens because it is secured by a login by default, 

which is a feature of X-Pack. A Cloud ID is also provided, which is needed if data is 

sent to the cluster from Beats or Logstash. 

 

Figure 35: Elastic Cloud credentials 

 

 

Figure 36: Elastic Cloud ID 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

A good example about how this service works would be to send a request to the 

cluster, just to make sure that it can be accessed. To do so, curl HTTP tool will be 

used in a Terminal window. Since the cluster is secured with X-Pack, authentication 

is needed to be able to communicate with it. For this to happen, basic HTTP 

authentication is needed, so it is essential to add a -u argument to curl, followed by the 

username, a colon, the password and the Elasticsearch endpoint URL.  

 

Figure 37: Node receiving the request 

 

It is fairly clear from the JSON response, that it contains various details about the 

cluster, meaning that the user can communicate with the cluster. Another way to 

access the raw data of Elasticsearch, is to launch it straight through the Elastic Cloud 

and then type the credentials that were given.   

 

 

Figure 38: Accessing Elasticsearch raw data 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

From the previous figure, it is visible which node received the request. If a couple 

more requests are sent, the other node can be reached with a request as well -even 

though it is on the other data center. In this case, a data center is also reffered to as an 

Availability Zone, in the context of Amazon Web Services. 

 

 

Figure 39: Changing the instance-node 

 

The same credentials are also used for launching Kibana which is done by simply 

pressing the launch option in the Elastic Cloud platform. Since the cluster is empty, an 

option pop ups for the user to decide if he wants random results to show on the 

Kibana dashboard, which is what was chosen for the purpose of this Thesis.  

 

Figure 40: Kibana dashboard in Elastic Cloud 

 

2.2.3. Logstash 
 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

2.2.3.1. General idea 

 

Traditionally, Logstash has been used to process logs from applications and send 

them to Elasticsearch, hence the name. That’s still a popular use case, but Logstash 

has evolved into a more general-purpose tool, meaning that it is a data processing 

pipeline. The data that Logstash receives, will be handled as events, which can be 

anything from log file entries to ecommerce orders and chat messages. Afterwards, 

these events are processed by Logstash and shipped off to one or more destinations. A 

couple of examples could be Elasticsearch, a Kafka queue, an e-mail message, or to 

an HTTP endpoint.  

A Logstash pipeline consists of three parts/ steps; inputs, filters, and outputs. Each 

stage can make use of a so-called plugin, which can be a file, for instance, meaning 

that Logstash will read events from a given file. Another case would be that someone 

sends events to Logstash over HTTP, or to look rows from a relational database. 

While input plugins are how Logstash receives events, on the other side, filter plugins 

are all about how Logstash should process them. Many formats can be parsed with 

these plugins such as CSV, XML or even JSON. To be more precise, data enrichment 

can be performed such as looking up an IP address and resolving its geographical 

location or even look up data in a relational database.  

Finally, an output plugin is where the processed events are sent to. Formally, those 

places are called stashes. So, in a nutshell, Logstash receives events from one or more 

inputs, processes them, and sends them to one or more stashes. A user can have 

multiple pipelines running within the same Logstash instance if he wants to. This can 

be helped since Logstash is horizontally scalable. It is worth mentioning, that a 

Logstash pipeline is defined in a proprietary markup format that is like JSON. 

However, it’s not only a markup language, as it is possible to add conditional 

statements and make a pipeline dynamic. 

While Elasticsearch is the database component, the Logstash is the streaming 

component which pushes the logs into Elasticsearch and to other database 

technologies, as presented below. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 41: Logstash place in ELK 

 

2.2.3.2. Main stages 
 

Logstash consists of three stages that are shown also to the figure below. The first 

stage is getting data into the pipeline from the data source - whatever the data source 

is – and it goes into a thing named ‘’inputs’’. So, basically is the first stage where the 

system is getting the input of data. Then there is a filtering process where that data is 

filtered out to data that are desired and to data that must be thrashed. Lastly, inside the 

Logstash pipeline, there is the output. It is the thing that makes its way into the data 

destination – whatever that may be. In the Elastic Stack the data destination is of 

course Elasticsearch.  

 

Figure 42: Stages of Logstash 

 

2.2.4. X-Pack 
 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

X-Pack is a pack of features that adds additional functionality to Elasticsearch and 

Kibana. It adds functionality in various feature areas and below the most important 

ones will be presented.  

Firstly, there is security. X-Pack adds both authentication and authorization to both 

Kibana and Elasticsearch. Regarding authentication, Kibana can integrate with LDAP, 

Active Directory and other technologies to provide it. Users and roles can be also 

added and then configured exactly to what a given user or role can access. This is 

very useful, since different people might need different privileges. A very 

characteristic example is one of a marketing department or management team. They 

cannot do any changes to data as expected but they should have read-only access to 

certain data of interest to them. A great tool that X-Pack uses is Shield, that features 

authentication and authorization options. 

Next up, X-Pack enables the monitoring of performance of the Elastic Stack. 

Specifically, the user can see the CPU and memory usage, disk space and many other 

useful metrics, which enables the user to stay on top of the performance and easily 

detect any problems.  

What’s more, is that users can even set up alerting and be notified if something out of 

the water happens. It is important to determine the relation between alerting and 

monitoring, since alerting is not specific to the monitoring part of the Elastic Stack. 

This happens because alerting can be set to alert anything the user wants. For 

example, the user might want to be alerted if CPU or memory usage of the company’s 

web servers go through the roof, or if there is a spike in application errors. Many 

times, it is used to stay on top of suspicious user behaviour, such as if a given user has 

signed in from three different countries within the past hour. The alert part comes 

afterwards with the notification by e-mail, Slack or other means.  

Last but not least reporting is another crucial part of X-Pack. With reporting, the user 

can export the Kibana visualisations and dashboards to PDF files. Reports can be 

generated on demand or be scheduled so that the user can receive them directly to his 

e-mail inbox. A user might want daily or weekly reports of a company’s key 

performance indicators or any useful information to engineers or system 

administrators. Furthermore, reports can also be triggered by specifying conditions, 

kind of as with alerting, so the user defines rules for when the reports should be 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

generated and delivered. It is important to mention that for a more professional look 

reports can be generated with the usage of a personal logo or perhaps for sharing 

reports with customers. Apart from exporting visualizations and data as PDF files, the 

user can potentially export data as CSV files, which could be useful for importing 

data into a spreadsheet, for instance. 

X-Pack is also what enables Kibana to do the machine learning. So basically, the 

functionality is provided by X-Pack, and the interface is provided by Kibana. First 

with machine learning anomality detection is possible, such as detecting unusual 

changes in data based on what the neural network believes is normal. This feature can 

be easily tied together with alerting. This is not a common secret since, a specific 

machine of user’s choice will watch the number of daily visits to a website of the 

user’s jurisdiction and if there is a significant drop -or increase for that matter- this 

will be identified. The other thing that this feature is capable of is to forecast future 

values. This is especially useful for capacity planning, such as figuring out how many 

visitors will visit the aforementioned website in the foreseeable future. Features like 

this could be helpful for spinning up additional servers if not using auto scaling, or to 

have more support agents available. An example could be that a online store with 

diving gear gets a lot more traffic in summer months. 

Moreover, there is a feature in X-Pack named SQL. It is basically a statement about 

the query language used in relational databases. In Elasticsearch, documents are 

queried with a proprietary language called Query DSL. This is at heart a JSON object 

defining the query. This language is malleable since the user can execute numerous 

things, but it might be a bit rambling at times. For developers who come from a 

background of working with relational databases, it would be more straightforward to 

just work with SQL. This is possible since SQL queries can be sent to Elasticsearch 

over HTTP, or alternatively use the provided JDBC driver. Afterwards what 

Elasticsearch does, is to translate the SQL query into the Query DSL format behind 

the scenes, so internally the query is handled the same way after that translation.  

Lastly and most importantly since it has the most direct appeal to the user X-Pack 

features graph. Graph is all about relationships between data. An example could be 

that when someone is viewing a product on an ecommerce website, it is desirable to 

show related products on that page as well. Or perhaps suggest the next song in a 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

music streaming application, based on what the listener desires. For example, if the 

user likes an exact folk song, there is a good chance that he also likes another song of 

the same genre. To make this work though it is decisive to fathom the difference 

between popular and relevant.  This can be easily with a simple poll out on the street 

is performed with ten different people whether they are using a specific, popular 

search engine. Most of them will answer yes but that doesn’t mean necessarily that 

they have anything else in common. That’s just because the platform which was the 

universe of discourse is popular amongst all kinds of people that use the internet. On 

the other hand, though, if you ask ten people if they use a precise site about cyber 

security, the ones that say yes indeed have something in common, because this 

website is related to an IT field. So basically, the uncommonly common is desired 

because it says something about relevance and not reputation. The point is that purely 

looking at the relationships in data without looking at relevance can be seriously 

misleading that’s why graph uses the relevance capabilities of Elasticsearch when 

determining what is akin and what’s not. Graph exposes an API that can be used to 

integrate this into applications. Apart from the previously mentioned examples, 

another case study could be to send out product recommendations in a news feed 

based on a person’s purchase history. This tool also supports a plugin for Kibana 

where data can be visualised as an interactive graph. Of course, this can be very 

useful when the user knows what he is looking for but far more helpful when he 

doesn’t. The UI lets the user to drill down, navigate and explore the relations in data 

that weren’t obvious.  

2.2.5. Beats 
 

Beats as already stated is a collection of so-called data shippers. They are lightweight 

agents with a single purpose that are installed on servers, which then send data to 

Logstash or Elasticsearch. There are multiple beats that collect different kinds of data 

and serve different purposes. One of the most commonly used beats is Filebeat, which 

is used for amassing log files and sending the log entries off to either Logstash or 

Elasticsearch. Filebeat ships with modules for common log files, such as nginx, the 

Apache web server or MySQL. This is very helpful for collecting log files such as 

access logs or error logs.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Another beat that is highly worth mentioning is Metricbeat, which collects system-

level with, not mandatorily though, service metrics. It is mainly used for collecting 

CPU and memory usage for the analogous operating system, and any services running 

on the system as well. Metricbeat also ships with modules for popular services such as 

nginx or MySQL, so you it is possible to monitor how they perform.  There is a 

generous number of beats currently available but Filebeat and Metricbeat are the most 

frequently used. 

2.2.6. Common choices of architecture 
 

At this point a couple of architectures about how Elasticsearch and Elastic Stack in 

general are being used. The first use case would be an ecommerce application running 

on a web server. The data is stored within a database, such as the product categories 

and the products themselves. So, when a product page is requested, the web 

application looks up the product within the database, renders the page, and sends it 

back to the visitor’s browser. For the search functionalities the system has been using 

only the database, so it is only wise to enhance it since that’s not what databases are 

good at. The best tool for the searching part is Elasticsearch.  

 

Figure 43: Common architecture part 1 

 

To integrate it into the current architecture, the application should communicate 

directly with Elasticsearch. Subsequently, when someone enters a search query on the 

website, a request is sent to the web application, which then sends a search query to 

Elasticsearch.  When the application receives a response, it can process it and send the 

results back to the browser. The real challenge though is how to get data into 

Elasticsearch in the first place, and how does it stay updated. To be more specific, 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

whenever a new product is added or updated, the product should be also added or 

updated in Elasticsearch too, apart from within the database.  

 

Figure 44: Common architecture part 2 

 

Essentially some of the data will be duplicated. That might sound like a poor 

approach but …. The aforementioned, is an excellent way for launching a website 

with Elasticsearch from the beginning but is not really conceivable when it is added to 

an existing application that already has data. When data that is to be added is 

relatively small, a script could be written that does it all in one go. On the other hand, 

if the data is more than that, the user would need to paginate-or scroll through- them. 

There are some open source projects that can help with this, but not all of them are 

actively maintained, and usually it is a fairly simple task to write a script that does 

this. Then, from the moment the data has been imported, the application will keep it 

up to date whenever something is altered. This is probably the simplest usage of 

Elasticsearch that someone will come across.  

Afterwards a way for visualization of the number of orders per week and the revenue 

to a dashboard, is needed. A company can build its own interface, but it is highly 

advisable to use Kibana since it can save the company a lot of money. As already 

stated, multiple times Kibana is just a web interface that interacts with Elasticsearch, 

so there is no need to add any data to it. It runs somewhere on a machine of the users 

choosing. To keep things simple, it is assumed that there is a dedicated machine- or a 

virtual machine- to run Kibana on. So, all that is needed to be done, is to run Kibana 

on a machine and configure it to connect to Elasticsearch.   



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 45: Common architecture part 3 

 

As time passes though, the business continues to grow, and the traffic on the website 

constantly rises. The server is facing multiple difficulties when trying to keep up so it 

is of high significance to make sure that it can handle future growth. A part of this is 

to handle spikes in traffic and knowing when it is time to add another web server. To 

deal with this, a Beat is needed and the most suitable for this kind of work is 

Metricbeat. As already explained on the Beat section Metricbeat is used to monitor 

system level metrics such as CPU and memory usage. Metricbeat can be also 

instructed to monitor the web server process. Since beats supports sending data to 

both Logstash and Elasticsearch, that is how data end up in Elasticsearch. What will 

be done is, have Metricbeat send data to an Elasticsearch ingest node. Now with 

Metricbeat it is possible to monitor how a server is performing and set up alerts within 

Kibana if the CPU or memory usage reaches some threshold. When that process is 

completed an additional web server can be added.  

Apart from monitoring system level information on the web server, two more things 

need to be monitored; the access and error logs from a web server. Although Google 

Analytics are used on the website, the access log can provide some useful 

information, such as how long it took the web server to process each request. This 

enables the ability to monitor the response times and aggregate the requests per 

endpoint. By doing this, it is fairly easy to identify if some bad code is deployed, 

causing the response time to spike for a certain endpoint. Not only can this cause a 

bad user experience, but it can also put additional stress on the system, so it is 

desirable to detect if that happens. Since the business has grown so has the number of 

features that need to be implemented. The development team is bigger now, and as a 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

result more code can be produced. Of course, it is reasonable that this situation also 

increases the risk of introducing bugs, so it is pleasant to stay on top of that apart from 

the testing that needs to be done before deploying new code. The web server’s error 

log can help with that, and optionally any application log that might exist at the time. 

For this job a Beat called Filebeat is used since it is perfect for this job.  All there is to 

do, is to start up Filebeat and the logs will be processed and stored within 

Elasticsearch and will be ready for analysis within Kibana. Filebeat has built-in 

modules for this, which take care of the heavy lifting in terms of parsing the logs and 

handling multi-line events (stack traces, etc.). So, for simple use case scenarios no 

configuration is needed for this Beat to work.  

 

Figure 46: Common architecture part 4 

 

Since the traffic and workload has risen in an agile way, two more web servers have 

been added to handle them. More kinds of data are stored now within Elasticsearch, 

including events. A characteristic use case study could be when a product is added to 

the cart. At that point an analysis within Kibana must be performed. So far, only 

Elasticsearch’s ingest nodes have been used for simple data transformation. Although, 

now it is time to do more advanced processing, like data enrichment. This can be done 

within the web application, but it has a few disadvantages.  

First of all, the business logic code will be cluttered with event processing, and this 

might increase response time unless it is done asynchronously. Nevertheless, it leads 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

to more code, which is not directly related to actually adding a product to the cart, for 

instance. Secondly, event processing will happen in multiple places. It is not that big 

of a deal that it happens on more than one web server, because they should all be 

running the same version of the code. Nonetheless, a back-office server might exist 

where administrative tasks are performed, such as managing products. Whatever the 

case might be, it can easily escalate to a point where events are processed in many 

different places, making things harder to maintain and manage. Ultimately, it would 

be better to centralize the event processing, and have it all done in one place. This can 

be accomplished with Logstash, which also offers more flexibility in terms of 

processing events than Elasticsearch’s ingest nodes do. 

 

 

Figure 47: Common architecture part 5 

 

That way events will be sent over HTTP from the webservers to Logstash. Logstash 

will then process the events however it is instructed to and send them off to 

Elasticsearch. This has a result, to keep event processing out of the web application. 

Furthermore, all that there is to be done is to send the initial data to Logstash, and 

there the rest of the processing will take place.  

2.4. Installation and Configuration Guides for Windows, Locally 
  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

2.4.1. Elasticsearch 
 

2.4.1.1. Installation 
 

Another approach -which is the most common one- to running Elasticsearch, is to 

install it on a machine, either virtual or real. Where the Docker approach runs 

Elasticsearch in an isolated environment, this approach will run Elasticsearch on an 

operating system like any other application that is or can be installed. In order to 

mention how the installation procedure is performed, the term ‘’Installing 

Elasticsearch’’ must be defined. By saying ‘’Installing Elasticsearch’’, that is 

probably not entirely accurate. Elasticsearch will not be installed as an application, 

because it consists of files with the .jar (Java archives) file format at the end. Jar files 

are basically filing that aggregate Java class files, metadata and resources. So, they are 

the zip files for Java projects.  

Elasticsearch itself is packaged as a .jar file, along with its dependencies, such as 

Apache Lucene. With these .jar files, running Elasticsearch is as simple as running a 

convenient script that is distributed together with the .jar files. To simplify the 

procedure, files will be downloaded, which are needed to run Elasticsearch.  

Firstly Java 8 should be installed. To do so, it is crucial for the user to know which 

version is installed or if it even installed at all. If Java isn’t installed at all, an error 

will appear saying that the syntax of the command is incorrect when trying to start 

Elasticsearch. If Java Development Kit (JDK) is needed, then the user must head to 

Oracle’s webpage and download the according files. It is noteworthy that JDK is not 

required while the Java Runtime Environment (JRE) is obligatory. In order to check 

the version of Java the user will have to use the command prompt as shown in the 

below figure.  

 

 

Figure 48: Checking java version on Windows 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Afterwards the user should head to elastic.co, where he will be able to download 

Elasticsearch. It is obvious that the .zip file must be extracted somewhere inside the 

disk. The main file consists of directories that are organised according to their 

content; lib, config and bin. The lib directory contains the .jar files that were 

mentioned earlier. To be more precise it includes Elasticsearch itself and Apache 

Lucene, along with a couple of other dependencies, such as log4j. Moreover, a config 

directory exists which contains the configuration files for Elasticsearch, log4j and the 

Java Virtual Machine. Lastly, a directory called bin exists containing binary files for 

both Linux and Windows. Since the operating system that is used for the purposes of 

this Thesis is Windows, the file named ‘’elasticsearch.bat’’ will be used.  

To start up an Elasticsearch cluster, the only thing that needs to be done is to run this 

file by typing the aforementioned file’s name into the command prompt. To do so 

though, the user should navigate to the extracted archive.  

 

 

Figure 49: Elasticsearch directory (Windows) 

 

 

Figure 50: Starting Elasticsearch (Windows) 

 

With the above command, Elasticsearch is spinning up a cluster. Once it is ready the 

way to stop the node is to press CTRL + C simultaneously. To ensure that it works 

correctly, an HTTP request is issued to it. This can be performed by contacting port 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

9200 on localhost, which is the default endpoint for the Elasticsearch cluster. For this, 

any HTTP client will do, and the endpoint remains the same. For keeping things 

simple this is performed via the browser where the http://localhost:9200 address is 

used.  

 

Figure 51: Accessing Elasticsearch via port 

 

As shown in the figure above, the JSON information is returned meaning that the 

cluster is indeed up and running. It is important to remember that a cluster named 

‘’elasticsearch’’ is formed by default, which is specified within the JSON presented 

above.  

2.4.1.2. Configuration 

 

In order to configure how Elasticsearch operates, the user should open the 

‘’elasticsearch.yml’’ file located within the ‘’config’’ directory. Elasticsearch has 

really good default values, so if it is used just for developing, often no change is 

needed anywhere. Regardless of the common usage, some basic options will be 

presented that a user may need or want to change depending on his use case.  

First, there is an option for changing the name of the cluster that is formed. By 

default, the cluster will be named ‘’elasticsearch’’ as shown in the HTTP request but 

it can be set to anything the user wants by removing the comment from the line. A 

generally good idea would be to use a custom name with an ‘’_dev” postfix or 

http://localhost:9200/


                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

something equivalent. For production clusters though, the ‘’_production’’ postfix is 

usually added. Likewise, the name of the node that will be started up can be specified. 

The installation that was setup for this Thesis is only for one node. If more than one 

node were to start up, the same procedure described in the previous installation 

paragraph must be done to another machine/s.  

 

Figure 52: Configuring Elasticsearch on Windows part 1 

 

The reason for this approach, is that full control of the configuration is granted at a 

per-node level, meaning that each node may be configured differently. This also 

means that the name of a particular node in the cluster can be configured. It is 

generally a good idea to change the default names because it can be pretty confusing 

to look at in the middle of the night if something goes out of hand. Looking at some 

random identifier, it’s not immediately apparent which physical machine that 

particular node is running on. Also, these identifiers change when restarting nodes, so 

this could quickly get frustrating if there are log files that mention node names that no 

longer exist.  

In the network section of the configuration file, it is worth mentioning that the user 

can specify the network host and the HTTP port to which nodes listen to requests. 

This is left commented out when only developing.  

Afterwards, there is a discovery section with an option specifying the unicast hosts. 

To be more precise, this option allows the user to specify a list of nodes that the node 

to be configured should try to contact. When starting up a node, it either needs to 

contact a node in an existing cluster or form a cluster on its own. The network 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

addresses that are specified within this option are the ones the node will try to contact 

when joining a cluster. This doesn’t mean that all of a cluster’s nodes must be 

specified here, because that would quickly become hard to maintain when adding 

more nodes. In fact, it just needs to contact a single node to retrieve the current cluster 

state. Having retrieved the cluster state from a node, it then contacts the master node 

and joins the cluster. Therefore, at least one of the nodes that are specified is crucial to 

be available when starting up the node. Typically, a couple of nodes would be fine. 

Accordingly, if only a single node is needed/ preferred this should be left commented 

out and everything will work as planned. For the changes to take effect the node must 

be restarted.  

 

Figure 53: Configuring Elasticsearch on Windows part 2 

 

2.4.2. Kibana 
   

2.4.2.1. Installation 
 

Immediately after the Elasticsearch setup, Kibana must also be installed and 

configured to enable the graphical interface. If the user is going with the Docker 

approach there is no need to install Kibana, as it is already available on localhost at 

port 5601.  

The steps for installing Kibana, are very similar to what happened earlier with the 

Elasticsearch installation. First, the user must navigate to elastic.co and download the 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

product. Afterwards unzipping and moving the files in the same directory with 

Elasticsearch is to be done.  

To open the service, the user should navigate through the correct directory via the 

command prompt and use a specific command called ‘’bin\kibana’’ since it is much 

like Elasticsearch, inside the bin directory. This is going to start up a web server on 

localhost at port 5601 and try to contact an Elasticsearch cluster on localhost at port 

9200. 

 

 

Figure 54: Kibana directory on Windows 

 

 

Figure 55: Starting Kibana (Windows) 

 

Once Kibana has started up, the user can simply press CTRL + C simultaneously to 

stop it. Finally, after the status changes from yellow to green, the user should be able 

to load Kibana in the browser on localhost at port 5601, by using the according URL; 

http://localhost:5601. 

http://localhost:5601/


                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 56: Accessing Kibana via port 

 

2.4.2.2. Configuration 
 

2.4.2.2.1. Basic Configuration 

 

Immediately after the installation, some common configuration options that the user 

might need to change will be analysed. Kibana’s configuration file is stored within a file 

named ‘’kibana.yml’’ stored inside the ‘’config’’ directory. Taking a look at this file, the user will 

find the most common options along with very helpful comments.  

The first two options are the port and host of the Kibana server, which defaults to 5601 and 

localhost respectively. If Kibana is set up on a server, then this must be changed depending on the 

setup that is used. Also the server name can be changed, mainly for display purposes while a more 

important option is the Elasticsearch URL. This URL helps Kibana to communicate with an 

Elasticsearch cluster, since it is just a web interface. By default, it looks for a cluster at port 9200 

on localhost, but this may not be where the cluster is located.   

 

Figure 57: Configuring Kibana on Windows part 1 

 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 58: Configuring Kibana on Windows part 2 

 

Next up, there is an option named Kibana index, which allows the user to change 

Kibana’s index name. It is worth mentioning that Kibana actually creates an index in 

the Elasticsearch cluster for storing various data. Typically, the user would leave the 

index name at the default value, but it is important to understand that Kibana creates 

an index.  

 

 

Figure 59: Configuring Kibana on Windows part 3 

 

There is a plethora of options within this configuration file, while some of them are 

very specific. Just to mention a couple of examples, options for enabling SSL on the 

Kibana server, timeouts, logging etc. can be found within this file. If the user is just 

developing on his local machine, chances are that he doesn’t need to change any of 

the aforementioned. If he does though it is crucial to restart Kibana for the changes to 

take effect.  

2.4.2.2.2. Index patterning prerequisites 

 

Since a recent update, Kibana now requires data to be present within a cluster before 

being able to configure an index pattern. Therefore, some data must be imported into 

the cluster before someone can work with Kibana. 

Using a JSON generator, some fake data were created. More analytically, the data 

consists of around three hundred fifty documents representing food and drink 

products. These have been randomly generated but should be a good database for 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

searching queries. Each product has a name, description, number of items in stock, 

number of items sold, an ‘’is active’’ Boolean, the created date, and an array of tags. 

In theory a user could copy the contents of the file into Kibana’s console, but this 

obviously doesn’t scale well. Instead of that the documents will be added through the 

command line. This will be performed with the help of curl again, but any HTTP tool 

would be also viable. Firstly, the user must navigate to where the JSON file is stored. 

Then he can easily send a POST request to the Bulk API, which will be explained 

later on. Also, it is crucial to use the ‘’-H’’ parameter in the command to set the 

content-type header and then -XPOST being the request method, or the HTTP verb. 

Finally, where the user wants to send the request to is added -on this example to 

localhost at port 9200. The ‘’pretty’’ query parameter is used to make everything 

nicely presentable.  

 

 

Figure 60: Posting data with curl on Elasticsearch 

 

2.4.2.3. Introduction to hands-on Kibana 
 

2.4.2.3.1. Creating an index pattern 

 

The first thing the user will see when headed to Kibana, is a page where he is 

prompted to set a so-called index pattern. There he can insert a pattern for which 

indices he wants to include within the Kibana interface. Index patterns allow the user 

to bucket disparate data sources together so their shared fields may be queried in 

Kibana.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 61: Index patterns in Kibana part 1 

 

 For the purposes of this Thesis the pattern that will be used will be the asterisk to 

include everything. Also, no time filter will be used since it is not needed.  

 

Figure 62: Index patterns in Kibana part 2 

 

The real reason this configuration takes place is for finding a convenient way of 

sending queries to the Elasticsearch cluster. The tool is named “Console” and can be 

found within the “Dev Tools” tab in the left-hand menu.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

2.4.2.3.2. Console tool and formatting 
 

 

Figure 63: Console tool 

 

Console is a tool that lets the user to enter his queries without having to deal with 

HTTP headers, formatting responses, etc. On top of that, it also provides syntax 

highlighting and code completion. Therefore, it is a much more convenient place for 

the user to write his queries than in a terminal, for instance.  

Since Elasticsearch clusters expose an HTTP REST API, there is nothing special 

happening under the hood. All the communication with the cluster is still done 

through the same API that someone can also access from the command line or any 

other HTTP client for that matter. The way the Console works is that when the user 

enters queries on the left-hand side, the results appear to the right. An example query 

is already offered which should be deleted since it is useless for this use case. 

The way the user communicates with Elasticsearch clusters, is by sending HTTP 

requests as already mentioned. The request is defined with a combination of the 

HTTP verb, request URI and request body. Since a REST API is used, the HTTP verb 

is important, i.e. GET, POST, PUT or DELETE. When using Kibana’s dev tools, the 

user simply enters the HTTP verb. This is of course different than using curl or 

similar tools. Following the HTTP verb and a space is a request URI. The first part is 

the index name, type and the API that is desired. Subsequently that is the basic format 

in which the user can specify endpoints in Kibana’s console.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 64: Console syntax part 1 

 

First, there is the REST verb, followed by a space. Then an optional forward slash, the 

index name, a slash, the index type, another slash and the desired API. Within Kibana, 

the hostname of the Elasticsearch cluster should not be specified as that is prepended 

to request URI by Kibana automatically. If the user uses curl or another similar tool, 

then he would need to enter http://localhost:9200 or whatever the hostname and port 

of the cluster is, following the appropriate index, type and API. 

 

 

Figure 65: Console syntax part 2 

 

2.4.3. Logstash   
 

2.4.3.1. Installation   

 

It must be recalled that Logstash is a very powerful open source data processing 

pipeline engine that is used to ingest data from a multitude of sources simultaneously. 

The sources of information that Logstash is fed with doesn’t matter since it can come 

http://localhost:9200/


                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

from anywhere. This data can be ingested not only into Elasticsearch but also to other 

no sequel engines. So basically, all shapes, sizes and sources of data can be ingested.  

To install this particular tool, much like Kibana and Elasticsearch, the tool is 

downloaded but is extracted directly to the “C:” folder since it is bugged and cannot 

be on the same folder with them. Afterwards with the help of the terminal the user can 

examine if Logstash can run with the following command.  

 

 

Figure 66: Logstash directory on Windows 

 

 

 

Figure 67: Testing if Logstash is up 

 

 

 

Figure 68: Proof Logstash is up and running 

 

According to the confirmation message Logstash could successfully boot up at the 

9600 port. So basically, Logstash is ready to accept inputs and give outputs. A simple 

test would be to enter some messages at the console and see that indeed Logstash 

filters them and presents them afterwards. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 69: Importing custom messages inside Logstash 

 

2.4.3.2. Indexing Apache application logs 
 

Before even beginning to test indexing, a file was created in the same folder as 

Logstash directory, called “data” that includes a folder called “logs”. This is where all 

the log files that are needed will be stored. Afterwards an example was downloaded 

from GitHub that includes typical log files from an Apache dump.  

 

Figure 70: Apache log example 

 

Inside the logs folder a configuration for apache file is needed so a new file called 

“apache.conf” will be created. It is going to be basically the Logstash configuration 

file that is uses to parse the logs file. This filled consists of configuration lines for 

each stage of Logstash pipeline with the according configuration for each one’s 

corresponding plugins.  

In input the file plugin exists that is used for the path of the log file to be imported. 

Next, in filters multiple plugins are used. Firstly, a plugin named ‘’grok’’ which is a 

regular expression. Afterwards the ‘’mutate’’ plugin converts data types and the 

‘’date’’ plugin as the name states formats dates. Likewise, the ‘’geoIP’’ plugin is able 

to locate and separate the IP from a log file and the ‘’useragent’’ defines if the user 

used a phone, table, PC etc. While on output, a standard output is used which is for 

printing dots to the screen for every line that dets piped into Logstash. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 71: Apache logs configuration file 

 

It is worth mentioning that Logstash can deduce for example from an IP the location 

of the user, meaning that it is not just a tool for parsing things, but it can seriously 

enhance the information that is given from logs and indexes.  

To load the log file in Logstash all that there is to be done, is to specify the 

configuration file and where is that located.  

 

 

Figure 72: Using apache.conf by Logstash 

 

 

Figure 73: Proof that apache.conf has loaded 

 

Each dot represents a particular event or ingestion that Logstash went through to 

index that log entry.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 74: Results with Logstash index 

 

It is worth mentioning that for the user to see how many documents are indexed 

through Logstash, he simply has to visit http://localhost/9200/logstash-*/_count .  

 

 

Figure 75: Number of documents indexed through Logstash 

 

2.4.4. Beats  
 

 

2.4.4.1. Filebeat 
 

2.4.4.1.1. Installation 

 

At this point Filebeat will be installed to ingest logs into Elasticsearch. The exact 

method that was used to do so, even though is described inside the Kibana platform at 

the “Add log data” section, it doesn’t work due to many complications. So, after 

checking that the configuration file is ok, it is manually used and opened through 

PowerShell, with Administrator privileges.  

 

 

Figure 76: Filebeat enabling Apache 

http://localhost/9200/logstash-*/_count


                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

 

Figure 77: installing Filebeat through PowerShell 

 

2.4.4.1.2. Sending files to Logstash 

 

The most common use of Filebeat is to implement it to work with Logstash. To do so 

a guide was used at the Elastic website in the doc section (Filebeat Reference). It is 

important to mention that Filebeat uses the ‘’metadata’’ field to send metadata to 

Logstash. More specifically it defines what the indexed name is going to be.  

The changes are performed inside the aforementioned configuration file for apache. 

Firstly, the input is no longer a file in the system but a Beat that uses the port 5044, 

which is the default port for Filebeat. This is actually going to be listening for Filebeat 

to be sending data to this port on this server. Afterwards, some information about 

elasticsearch is filled at the output part.  

 

 

Figure 78: Configuring apache.conf for Filebeat 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Thereupon, some changes were performed in the configuration file of Filebeat called 

‘’filebeat.yml”. Firstly, input should be enabled, and the path must be specified. 

Subsequently output should be changed from Elasticsearch to Logstash.  

 

 

Figure 79: Logstash configuration 

 

 

Figure 80: Loading in Logstash the new apache.conf 

 

 

Figure 81: Proof that Filebeat ingests data in Logstash 

 

Lastly, after restarting all services of the Elastic Stack a confirmation that the log sent 

was successful, can be seen by searching “Filebeat*” inside Kibana. It must be 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

recalled that in order for the logs to load, a change was performed inside the apache 

log file. 

 

 

Figure 82: Filebeat index results 

 

2.4.4.2. Metricbeat 

 

2.4.4.2.1. Installation 
 

Much like Filebeat the user must head to the elastic website and download the 

installation file. After the extraction inside the same file as Filebeat, the main 

directory of the tool is renamed to ‘’Metricbeat’’. Later on, many complications show 

up that don’t allow the installation to be performed correctly, so as a result it is booted 

and used manually. 

 

 

Figure 83: Metricbeat installation through PowerShell 

 

For the confirmation that the device sends through Metricbeat log files is done inside 

the Kibana platform.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 84: Metricbeat index results 

 

2.4.4.2.2. Kibana visualization 
 

Firstly, a new index must be created with the name “metricbeat*”. Afterwards a new 

visualization is created through Kibana that represents data in a pie chart. The data 

that is presented, originates from the field ‘’system.network.out.packets.”. 

 

 

Figure 85: Visualize things with Kibana example 

 

2.4.5. X-Pack 
  

X-Pack as opposed to the previously mentioned tools and platforms is installed both 

in Elasticsearch and Kibana. This happens because it adds features that can work 

standalone for either of them. Firstly, it must be installed into Elasticsearch with the 

following command. This is already done since newer distributions have it included 

already.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 86: Installing X-Pack (Windows) part 1 

 

 

Figure 87: Steps to install X-Pack 

 

Afterwards, the TLS/ SSL protocol must be configured to run in the cluster settings. It 

is crucial that the user configures this for every single node of the cluster. This 

requirement applies mainly to clusters with more than one node and to clusters with a 

single node that listens on an external interface. It is noteworthy that single-node 

clusters that use a loopback interface do not have this requirement.  

To begin with a certificate must be created for secure communication for the node that 

exists in the cluster. When it asks the user for a file name, the user will have to put it 

in the configuration directory, since that is where Elasticsearch will look for it.  

 

 

Figure 88: Installing X-Pack (Windows) part 2 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Once that is done, some commands that are needed to enable security and configure 

TLS must be pasted inside the Elasticsearch’s configuration file, called 

“elasticsearch.yml”.  

 

 

Figure 89: Enabling X-Pack in Elasticsearch conf file 

 

Now it is crucial that Elasticsearch starts again for the user to setup the password for 

the cluster. To do so the Elasticsearch command for auto setting passwords is used. 

This will generate random passwords for the various internal stack users.  

 

 

Figure 90: All passwords for the suite 

 

Now that Elasticsearch is configured, user should also set up Kibana. To do so, from 

the passwords terminal the user must grab the kibana password and paste it inside the 

Kibana configuration file called ‘’kibana.yml’’. Afterwards Kibana should also boot 

up.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 91: Installing Kibana steps 

 

 

Figure 92: Kibana configuration file 

 

After all the successful configuration, the user logins in the Kibana platform with the 

credentials of super user ‘’elastic’’. There new roles and users can be configured.  

 

 

Figure 93: Kibana login screen 

 

It is important to note that the same exact procedure follows for Logstash. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

Figure 94: Logstash installation steps 

 

2.5. Elastic Stack and GDPR 
 

2.5.1. General 
 

The General Data Protection Regulation or GDPR is a regulation in European Union’s 

law on data protection and privacy for all individual citizens of the EU and the 

European Economic Area (EEA). It also addresses the transfer of personal data 

outside these areas. It aims basically to give control to individuals over their personal 

data and to simplify the regulatory environment for international business by unifying 

the regulation within the EU. A simplified diagram on GDPR handling of personal 

data is presented below (by personal data it is meant any information which are 

related to an identified or identifiable natural person). 

 

 

Figure 95: How GDPR works with personal data according to Elastic 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

As can be seen in the next figure, the GDPR handling of personal data, is a performed 

as a three-stage process. Firstly, there is the preparation of an organization for 

controlling or processing personal data. Afterwards, a guide on how to protect any 

such personal data. Lastly, how are privacy processes done in order to preserve the 

rights of the Data subject over their data. The design below, has the implementation 

steps that can be performed with the Elastic Stack.  

 

 

Figure 96: Which steps does Elastic cover 

 

2.5.2. Preparation for Personal Data handling (1st Set of processes) 
 

When initiating a GDPR compliance process, a certain preparation must be performed 

for it to be successful. Firstly, as the diagram implies is the Data Flow Mapping 

process. Through this process, all Data Flow processes are identified and documented 

within the organization that controls or processes personal data. If this documentation 

is incomplete or irrelevant due to the organization’s inability to identify them, the 

GDPR initiative may be ineffective. It is crucial, to take into consideration the place 

where personal data are stored since it is highly correlated with the whole process of 

indexing information. This process is a technique that is advised to be used whenever 

personal data are stored, since Elasticsearch, by indexing, can execute a full-text 

search in a matter of seconds. 

Furthermore, in the preparation stage, it is decided by the organization how long the 

personal data must be stored. Since GDPR specifies limited retention the organization 

must delete any personal data not needed or when the data subject withdraws consent. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

This is easily manageable with indices. This is performed by using time-based indices 

that will be deleted after a certain expiration date.  

2.5.3. Protection of Personal Data (2nd Set of processes) 
 

After the preparation phase, it is only consequent for the protection phase to take 

place. By protection phase, it is meant every possible security measure adaptation. 

The first feature of Elastic Stack that helps with compliancy is corelated  with privacy 

by design and privacy by default terms. The stack can put the organization on the 

track from the start by limiting access, maintaining accuracy and ensuring that data is 

secure. Only data that is relevant to the project will exist inside a cluster, which makes 

the minimization of personal data possible. 

Additionally, in order to prevent unauthorized access to the cluster there must be a 

way to authenticate users. Elastic Stack features a way to validate a user for who he 

claims to be. This can also work along with other technologies as an Active Directory 

or even a PKI. It must be stated that only by authenticating users, GDPR compliance 

is not enough, that’s why techniques like whitelisting and blacklisting IPs can also be 

used. Furthermore, assigning access privileges to specific roles and assigning these 

roles to users is also considered a necessity.   

Moreover, when the personal data is stored inside the Elastic Stack, its security 

features can create and maintain audit trails by auditing security events. These events 

can help the organization to observe who accesses, or tries to without any success, the 

cluster. Insights can be collected by looking at attempted attacks or breaches. On the 

other hand, if Elastic Stack is not the primary place where data are stored, it is used as 

a centralized logging platform which is basically a security analytics solution.  

Either if the stack works as a place that stores data or not, it can be an essential 

component for monitoring and threat detection. It is not a common secret that 

deployments follow basic principles of monitoring data store health and monitoring 

log continuity within the environment. Through features of the stack, administrators 

can keep track on the health of the cluster while on the same time be alerted for 

interruptions or failures.  

2.5.4. Privacy processes and maintenance of rights (3rd Set of processes) 
 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

When a data subject uses their right to erasure or even withdraws their consent, one of 

the most difficult tasks for the organization is to find that data. Elasticsearch is a tool 

that can identify sharply multiple personal data for the organization to delete them. 

This can be performed in queries, reports or even applications. This can be performed 

by features such as Delete API or Update API. 

2.5. Companies that use it 
 

This suite is used by big time companies like the following: 

• Wikipedia 

Elasticsearch is used for full-text search 

• Stack Overflow 

It relies on Elasticsearch as a means to support full-text search capabilities, thus 

providing source related question or/and answers 

• Netflix 

It heavily relies on Elastic Stack for monitoring and analysing customer service-

related operations and security related logs 

• LinkedIn 

It uses the Elastic Stack along with kafka to monitor performance and security in real 

time 

• GitHub 

Elasticsearch is used to query billion lines of code everyday 



 

3. Document Management 
 

3.1. Creating an index 
 

Firstly, as an example an index will be created. This will activate the procedure of 

adding documents to it because without them or indices an Elasticsearch cluster is not 

much. Since the JSON file that was used earlier contains products, the index that will 

be added will be named “products”.  

The PUT HTTP verb will be used and the path will simply be a slash followed by the 

name of the index. To make the result of the query easy to read, a query parameter 

named “pretty” can be added which will format the JSON for humans. Since the 

query parameter is a flag, there is no need to specify a value, so it can simply be done 

as shown in the figure below. Furthermore, since the Console tool is used, there is not 

an actual need to do this, because it will format everything nicely automatically, but if 

another tool is used for sending requests it is a necessity. After pressing the play 

button, it can be seen at the results that the index was created, which will be used to 

store several products in the form of documents. If the default number of shards and 

replicas remains at the default values, there is nothing more to add about creating 

indices.  

 

 

Figure 97: PUT request to show a specific index 

 

3.2. Adding documents in an index 
 

To add documents inside an index, a POST request is sent to a URI consisting of the 

index name, followed by a type. It is noteworthy, that since types got removed from 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Elasticsearch, a type name will be specified as “default”. Since the index name is 

“products”, that makes the request URI “/product/default”. Although this is the HTTP 

verb and the endpoint, the document that is to be added is missing. To specify that 

document, a JSON object is added on a new line, which can be of any structure that 

the user desires. This arbitrary JSON object will be the document, so any JSON is 

valid here. In this case, a car will be added as a product. So, a “model” field is added, 

which will be the name of the car model, followed by an object called “extras”. This 

object will include the engine’s cc, the wheel horsepower and the number of 

cylinders; “cc”, “WHP”, “cylinders”. To execute the query, much like creating an 

index the green triangle is pressed and the results are as follows. 

 

 

Figure 98: POST request to add a new object 

 

 

Figure 99: Proof that version changed 

 

The “_id” field is an identifier that Elasticsearch automatically generated for the 

document, because an ID for the document was not specified in the time of creation. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

To do so the HTTP verb should change to PUT and after the type specification the ID 

should be assigned. 

 

 

Figure 100: Adding a new object with ID example 

 

It is crucial to understand that sending a request to index a document for an index and 

type that don’t exist, isn’t an obstacle since Elasticsearch will create them for and on 

behalf of the user behind the scenes. The purpose of this, is to make Elasticsearch as 

easy to use and user friendly as possible. Of course, this can be disabled in case the 

user wants to stay in control of which indices are created.   

3.3. Document retrieval 
 

To perform a document retrieval, it is crucial to know and actually use a unique ID. 

More specifically this can be performed by using the GET HTTP verb. The request 

path will be the index name, the type and the ID of the document.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 101: GET request to retrieve an object 

 

It is clear from the results that Elasticsearch, when storing documents, adds some 

meta fields, which are all prefixed by an underscore. These include the index, type, ID 

and version of the document. The document itself can be found within the “_source” 

meta field which is usually the only thing needed when searching for it.   

3.4. Document supplanting 
 

3.4.1. Original replacing and updating 
 

To perform a document replacement a case example will be presented. A product was 

added earlier that the user forgot to put a price tag on it. Since the user knows the ID 

of that document, it can easily get replaced. It is fairly easy because the query is 

exactly the same as for adding a new document with a given ID. Therefore, only a 

new field must be added. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 102: Updating an object. Single argument (Version proof) 

 

Within the results, at the “_source” field, it is visible that the ‘’price’’ field has been 

added. Also, it should be noted how the “_version” meta field now has a value of two 

instead of one, indicating how many times the document has been changed.    

If the user on the other hand, wants to update a value without replacing the entire 

document another procedure takes place. To do that, a POST request will be sent to 

the Update API, which is available by using the ‘’_update’’ endpoint on a specific 

document. The Update API expects a JSON object and within this object a ‘’doc’’ 

property is added, which itself should be an object. In the ‘’doc’’ object, the user can 

specify the fields that he wants to change. In this case scenario, a key named ‘’WHP’’ 

will be added in order to update the value of wheel horsepower of the car. It should be 

emphasized that with this approach new fields can be added as well. A ‘’lbs’’ key to 

the object will be added for describing the weight of the car.   

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 103: Updating an object. Multiple argument (Version proof) 

 

It is notable that even though the whole document wasn’t replaced, that the “_version” 

value still changed to another value.  

As already mentioned, documents in Elasticsearch are immutable, meaning that they 

cannot be changed once they have been indexed. Even though it looks as if the 

document has been partially updated, this is actually not the case internally. What 

actually happens, is that the Update API retrieves, changes and re-indexes the 

document. This means that it will actually retrieve the document, change it according 

to the user’s specification and then replace the existing document. It just does this in a 

convenient way so that the user doesn’t have to deal with multiple requests himself. 

All of this also happens within a shard so that there is not network overhead of 

multiple requests as there would be if this was done manually.   

3.4.2. Updates with scripts 
 

Apart from specifying the new values for fields or new fields directly within an 

update query, it is also possible to use scripts. A good example would be to reduce the 

weight of the car by a hundred lbs. More thoroughly, instead of first retrieving the 

document to find the current weight of a car and then updating the document with the 

previous weight minus a hundred, Elasticsearch can do this in a single query. This is 

accomplished by using something called scripting. It allows the user to do dynamic 

things within queries.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Much like before, the same HTTP verb and request URI will be used but the ‘’doc’’ 

property will be replaced with a ‘’script’’ one. The document object can be accessed 

on a variable named ‘’ctx’’. This variable contains the fields that were presented in 

query results, such as the “_id” meta field and the “_source” field.   

 

 

Figure 104: Update an object’s value that already exists 

 

 

Figure 105: Proof that the value changed 

 

3.4.3. Document upsert 
 

Firstly, the document that was created in earlier stages will be deleted for the purposes 

of showing how upsert works. The deletion and confirmation are presented below. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 106: DELETE request and proof 

 

Another common thing to do, is to update a document if it exists and add it otherwise. 

This procedure is referred to as an ‘’upsert’’. To perform this the Update API is used 

with a script as earlier but this time an ‘’upsert’’ key will be also specified. 

 

 

Figure 107: Upsert example part 1 (POST request) 

 

The aforementioned query in the figure states that if the document already exists, the 

script will run and increase the weight of the car by a hundred. On the other hand, if 

the document does not exist, then the object for the ‘’upset’’ key is added to the 

document. In this case, this means that an object with a ‘’lbs’’ key and a value of a 

thousand will be added.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 108: Upsert example part 2 (proof) 

 

3.5. Deleting 
 

3.5.1. Documents 
 

Deleting documents can be extremely easy. It can be done by using the “DELETE” 

HTTP verb and specifying the index, type and ID of the document that is to be 

deleted. Although updating multiple documents at once is not possible, deleting 

multiple ones in one query is. For the purposes of this example three new documents 

have been added.  

 

 

Figure 109: Adding new documents example 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Afterwards it is desired that all the products that with a category of ‘’sedan’’ will be 

deleted. With the documents currently in the index, this will match two documents: 

2nd and 3rd.  To do so an API named “Delete by Query” is used, which is available at 

the index level. So, a POST request is issued with the stated API. Afterwards a JSON 

object must be added with a ‘’query’’ property, which will contain the type of query. 

So, this object will contain the conditions for the documents that are to be deleted. 

The type of the query will be a ‘’match’’ query, so a key of that name will be added, 

and an object as a value. This object should then contain the field name to match as a 

key and the value that the field should contain in order for a document to match, as 

the value. In this case ‘’category’’ and ‘’sedan’’, respectively.  

 

 

Figure 110: DELETE multiple documents example 

 

 

Figure 111: DELETE multiple documents proof 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

As shown above it is confirmed that not only two documents were deleted, but that it 

is not possible to search for them either. It should also be emphasized that if the user 

wants to delete all the documents from the index, deleting the index itself is far more 

efficient. 

3.5.2. Indices  
 

Deleting an index is as simple as using the “DELETE” HTTP verb and specifying the 

name of the index with a slash in front of it. So, the user can just write DELETE, an 

optional forward slash, and the name of the index which is “products”. After running 

the query, it is confirmed that the index has been indeed deleted.  

 

Figure 112: DELETE request for an index 

 

 

Figure 113: Proof that index was deleted 

 

3.6. Processing multiple documents 
 

To import test data, as already done into the ‘’product’’ index, processing of multiple 

documents will be used, in order to have multiple specimens. This means that many 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

documents will be added in a single request. If the user wants to import hundreds or 

even thousands of documents, it would be much better to run a single query instead of 

a thousand because there is some overhead in sending a request. This type of 

processing is done by using a special format for the request using what is called the 

Bulk API. Bulk as its name states about quantities in bulk. This API is not limited to 

adding documents, because it can also be used to update or delete documents. Either 

way, what must be done, is to send a POST request. 

 

 

Figure 114: Adding values on multiple documents at once 

 

It is recalled that even though the index was earlier deleted, with the request above it 

was automatically created.  Since different kinds of operations can be performed 

within the same request, the type of operation that is to be performed must be 

specified. Firstly, a line is added specifying the type of operation, which will be to 

index a document in this case. So, the operation will be ‘’index’’ to add a document to 

the index, and for that key a JSON object is needed. Within this object, an ‘’_id’’ key 

is added containing the ID of the document. On the next line the values of the 

document itself will be described.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 115: Proof for multiple document processing 

 

So, this request added four unique documents with different IDs; 10, 11, 12, 13. If a 

user wants to do multiple things at the same query such as deleting and updating 

different documents, it is possible with this API. In this case, document with the 

‘’11’’ ID will be updated while the document ‘’13’’ will be completely deleted. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 116: Update and delete documents on the same query 

 

3.7. Observing how the cluster works 
 

For the sake of looking at how the cluster actually looks like “cat API” will be used. 

This API is basically what provides the user with human readable information about 

clusters and nodes. It is very convenient to use in alliance with a terminal. It is 

significant that there is also a “cluster API”, but it returns illegible and verbose JSON 

objects with a lot of details.  

The API is entered directly after the GET HTTP verb, because it is no operating at a 

specific index and type. The “v” query parameter is used to add a header to make the 

results more readable.  

 

 

Figure 117: Cluster's health part 1 

 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 118: Cluster's health part 2 

 

The results show the health of the cluster. More specifically present that there is a 

single cluster containing one node, four primary shards and two replicas (unassigned). 

The replicas are unassigned since there is only a single node within the cluster. It is 

worth recalling that, replica shards are never assigned to the same nodes as the 

primary shards. So, since there is no other node inside the cluster, this means that 

there is nowhere to store the shards. This is also why the status of the cluster is 

‘’yellow’’ (it can be either green for fully functional cluster, yellow for all cluster’s 

data availability but not all replicas are allocated, red for no availability in some or all 

of the data). 

Although it is clear that only a single node exists it is worth looking some details 

about it. This procedure is again performed with the “cat API”. 

 

 

Figure 119: Node's health 

 

With this someone can observe that this node is also a master node, which is not 

surprising since it is the only node in the cluster. The ‘’node.role’’ column specifies 

that the node may be elected as master, that it is a data node and that it is an ingest 

node. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

The next level of hierarchy inside a cluster is indices. To explore them again the same 

API is used. The following query provides the user with some useful information such 

as index health, primary shards, replica shards, number of documents and storage 

space used.  

 

Figure 120: Indices health part 1 

 

 

Figure 121: Indices health part 2 

 

It should be stated that two more APIs are useful for observing how shards operate. 

To be more precise a user can see how the shards have been allocated inside the 

cluster and more. Subsequently from the figure, it can be seen that all four shards are 

allocated to the only node that exists in the cluster, while the replica ones wait for 

another node to be added in order for them to be assigned. The query also provides 

information on disk usage. 

 

 

Figure 122: Disk usage and shard allocation info part 1 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 123: Disk usage and shard allocation info part 2 

 

Lastly, this query lists all the shards within a cluster. It is visible which index each 

shard belongs to, whether it is a replica or a primary, the state of the shard and how 

many documents it contains. The documents should be evenly distributed are across 

the shards, which is thanks to the default routing that was aforementioned in this 

Thesis. This is not visible since no action was taken for the index “product” so all are 

stored inside one primary shard.  

 

 

Figure 124: Shard health and distribution part 1 

 

 

Figure 125: Shard health and distribution part 2 



4. Mapping 
 

4.1. Preface 
 

In Elasticsearch, mappings are used to define how documents and their fields should 

be stored and indexed. The point of doing this, is to store and index data in a way that 

is appropriate for how the user wants to search data. A couple of examples of what 

mappings can be used for, could be to define which fields should be treated as full 

text fields, which fields contain numbers, dates or even geographical locations. Date 

formats and analysers for full text fields can also be specified. Basically, mappings in 

Elasticsearch are the equivalent of a schema definition for a table in a relation 

database -such as MySQL. Referring to a previous statement in this Thesis, 

Elasticsearch and relational databases are very different technologies, so this analogy 

is not too accurate, but perhaps it helps to give an overall idea of what mapping is all 

about. It should be pointed out, that for simple examples, user should not consider to 

actively deal with mappings. On the other hand, if greater control over how 

Elasticsearch handles data is needed, then defining mappings is crucial. 

4.2. Dynamic 
 

Mapping can be defined explicitly, which is referred to as explicit mapping. That is 

when the user instructs Elasticsearch what to do with the data when new documents 

are added. There is a convenient alternative to explicitly defining the data types for all 

fields; called dynamic mapping. Dynamic mapping means that no mapping is defined 

explicitly, or at least not for some fields. When new documents are added, 

Elasticsearch will automatically add mapping for any fields, that do not have any 

mappings already.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 126: Steps to dynamic mapping 

 

This is done by inspecting the types of values for a document’s fields. For example, if 

a new field called “cheese” is added consisting a string, then Elasticsearch will 

automatically detect this field as containing characters and use the “text” data type.  

It is possible to define rules and defaults for dynamic mapping, but it is something 

that users are not advised to do. To see which mappings have been added by 

Elasticsearch behind the scenes Mapping API is used in the Console tool. Type is not 

used at the request since it runs an error after Elasticsearch version 7.0.  

 

 

Figure 127: Mapping API example for behind the scenes mapping 

 

The first field that can be seen is “created” where dates are supplied. It is obvious that 

Elasticsearch, correctly detected this and used the “date” data type. When adding new 

string fields, Elasticsearch performs date detection and checks if the field’s contents 

match any of the dynamic date formats that have been defined. By default, that would 

be a year, month and day separated by slashes and an optional timestamp. If there is a 

match, the matching date format will be added to the mapping for the field. It should 

be underlined that date detection can be configured to be turned off.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

The “description” field has been mapped as a text field and the “in_stock” field as the 

“long” data type. This happens because it has no way of knowing how large numbers/ 

integers are intended to be stored. It is clear that “is_active” field has been mapped to 

a Boolean field because it contains Boolean values; true or false.  

 

 

Figure 128: GET request for mapping information over an index part 1 

 

 

Figure 129: GET request for mapping information over an index part 2 

 

For the most part, the rules of how Elasticsearch dynamically maps fields, are quite 

simple. One thing that is a bit special though, is how text fields are treated. For 

example, the "description” field is mapped as the type ‘’text’’, when at the same time 

it has a ‘’fields’’ property containing a field named ‘’keyword’’ with a type of 

‘’keyword’’. What this means is that the field has two mappings, meaning that a field 

can have multiple mappings. By default, each text field is mapped using both the 

‘’text’’ type and the ‘’keyword’’ type. The difference between the two, is that the 

‘’text’’ type is used for full-text searches, and the ‘’keyword’’ type for exact matches, 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

aggregations and such. To facilitate both use cases, Elasticsearch automatically maps 

each text field in both ways.  

 

4.3. Meta-fields 
 

Every document that is stored within an Elasticsearch cluster, has some meta-data 

associated with them, apart from the data fields that were specified earlier in this 

Thesis, when indexing documents. These fields are called meta fields. There are ten of 

them and are not equally important. Often times, they will not be needed for direct 

use, but it is a valuable feature to exist.  

First there is a meta field named ‘’_index”, which contains the name of the index to 

which a document belongs. This field is added to documents automatically and is used 

by Elasticsearch internally. Next, the “_id” meta field unsurprisingly stores the ID of 

documents and can be queried within certain queries. Usually this field will not be 

queried directly, but it is used when looking up documents based on their IDs. The 

“_source” meta field contains the original JSON object that was passed to 

Elasticsearch when indexing the document. The field is not indexed, and therefore it 

cannot be searched, but it can be retrieved. Furthermore the “_field_names” meta field 

contains the names of every field that contains a non-null value. It should be recalled 

that routing helps with shard manipulation by Elasticsearch. For this property 

“_routing” meta field is used. More specifically, if custom routing is used to route 

documents to shards based on a specified value, then this value is stored within that 

meta field. Unless custom routing is used, this meta field is of no importance. 

Elasticsearch as mentioned earlier in this Thesis, uses versioning of documents 

internally with a meta field named “_version”. If a document is retrieved by ID, this 

meta field will be part of the result. The value is simply an integer which starts at one 

and is incremented every time a change occurs on the document. Lastly, the “_meta” 

field can store custom data that is not touched in any way by Elasticsearch. It is 

therefore a place, where whatever application specific data that the user might have, 

can be store.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

4.4. Data types 
 

Each field within Elasticsearch is of a given data type. Data types can be divided into 

four categories: core data types, complex data types, geo data types and specialized 

data types. 

 

4.4.1. Core data types  
 

Firstly, core data types will be examined. To begin with there is a data type called 

‘’text’’, which is used for full-text values. Examples of such values would be product 

descriptions, blog posts and so on. Due to the nature of full-text fields they are rarely 

used for sorting and aggregating documents. That is something that is typically 

accomplished with ‘’keyword’’ fields. Such fields also contain text, but not ‘’full 

text’’. This is because ‘’keyword’’ fields are not analysed. It basically means that 

values are stored exactly as defined at the time of adding documents to an index, 

whereas ‘’text’’ fields are stored in a way that is optimal for performing full-text 

searches. A couple of examples of ‘’keyword’’ fields would be a ‘’model’’ or a 

‘’category’’ field. So ‘’text’’ fields are used for text that the user wants to search, 

whereas ‘’keyword’’ fields are you used for values that the user wants to filter or use 

for aggregations. The above mentioned was a slight simplification, but accurate.  

Next, “numeric” data types exist, which is a group of data types that are used for 

numeric values. This can include integer, float, long, half_float, scaled_float and 

many more that are used in most programming languages. Two of them are important 

and are worth mentioning; ‘’byte’’ data type and ‘’scaled_float” data type. First, the 

“byte” data type is used for integer values between -128 and 127, so lower numbers 

even than ‘’short’’ data type. Secondly, the “scaled_float” data type is basically a 

floating point, but it is stored as a ‘’long’’ internally. That is possible because the data 

type is accompanied by a so-called scaling factor. What this does, is that at index 

time, the floating point is multiplied by this scaling factor and rounded off to the 

closest long value. For example, a floating point of 4.56 and a scaling factor of 10, 

would be stored as forty-six internally. All search queries will behave as if the 

document had a value of 4.6, even though that is not the value that is stored internally. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

The idea is that floating point types are more efficient to store as integers, because it 

saves disk space, as integers are easier to compress. By doing so, accuracy is 

sacrificed but that may be a good compromise if no ultra-precise numbers are needed.  

Afterwards, ‘’date’’ data type exists, which as its name implies, is used for storing 

dates and can supply dates in three unique ways; by specifying the date as a string, an 

integer representing the number of seconds since the epoch or as a long representing 

the milliseconds since the epoch. The date format that should be used for a field when 

supplying a string value, can be configured. If no format is configured, a default 

format is used, which can either be a string which optionally contains time, or the 

number of milliseconds since the epoch. Internally, dates are stored as a long value 

representing the number of milliseconds since the epoch.  

Moving on, there is the ‘’Boolean’’ data type, which is used for storing true or false 

values. Binary data can be stored with the ‘’binary’’ data type, which expects a 

Base64 encoded string. It must be stressed that the value is not stored by default, 

meaning that the user cannot search the field and he also cannot retrieve it 

independently of the “_source” meta field.  

Finally, the last core data type is named “range” which is a bit special. It is used for 

range values, such as date ranges or integer intervals like five to one hundred. A lower 

and an upper boundary is defined when indexing a document, and this can be done by 

using the keywords “gt”, “gte”, “lt”, “lte”; greater than, greater than or equal to, less 

than, less than or equal to. There is a query named “range” which utilizes this data 

type, which is mainly used in the searching part of Elasticsearch.   

 

Figure 130: Core data types with examples 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

4.4.2. Complex data types  
 

The next category of data types is referred to as ‘’complex’’. These data types as their 

name states are more complex data types than the core ones. The first data type is the 

“object” one. It is mainly used for storing objects. Since objects, are plainly JSON 

objects there is nothing special about them. They consist of fields that are of a given 

data type, and they may contain nested objects as well. When an object is indexed, the 

system is supplied with a JSON object, but Elasticsearch flattens the object for 

storage. This means that internally, the object simply consists of key-value pairs, and 

any nested objects are handled by adding dots to the key names to preserve the 

hierarchy of the objects.  

 

 

Figure 131: Complex data type structure example 

 

Next up, there is an ‘’array’’ data type. Any field in Elasticsearch may contain zero or 

more values by default, such as an array of strings. That is possible without having the 

user to explicitly declare this, and it will work even if the data type is defined as 

‘’integer’’, for instance. It is important that all values must be of the same data type. 

Arrays are flattened out within Elasticsearch. For example, [ 1, [2, 3]] is flattened to 

[1, 2, 3]. It should be emphasized that even though an array of objects can be stored, 

the user cannot perform queries independently for one object alone, since he is 

obligated to do it for the whole array. That is how Elasticsearch and by extension 

Lucene works, since they have no concept of inner objects.  

Lastly, the last category of data types in this section is the ‘’geo’’ data types. As the 

name suggests, these data types are used for handling geographical data, such as 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

latitude and longitude pairs. A data type that handles exactly that, is the “geo_point” 

type. It allows the user to specify topographical pairs in four different formats. The 

first option is an object with ‘’lat’’ and ‘’lon’’ keys. The next option is as a string with 

latitude and longitude separated by a comma. The third option is a so-called geohash, 

and the fourth way is as an array with latitude and longitude on this specific order. 

The point is that this data type is used when a specific geographical point exists that 

can be expressed as a latitude and longitude pair.  

 

 

Figure 132: Complex data type (geo_point) example 

 

4.4.3. Specialized data types  
 

The last category of data types is referred to as ‘’specialized’’. These data types as 

their name states have a very specific purpose, such as storing IP addresses, 

attachments etc.  

The data type “IP” stores IP addresses as either IPv4 or IPv6 addresses. These queries 

are used according to the CIDR notation. The next data type is about enabling auto-

completion and search suggestions. That is done by using something called 

suggesters. Using this data type enables very efficient lookups, because auto-

completion/ search as you type, needs to be sharp. Elasticsearch therefore uses data 

structures that are slow to build, but enable very fast lookups, and stores this in 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

memory. All things considered the last data type of this category is named as 

‘’attachment’’ data type. This data type is used for indexing documents that contain 

text, and to make this text searchable. For example, a PDF document exists that must 

be available for search by the users. Doing this requires a plugin named “Ingest 

Attachment Processor”. This plugin uses a library named ‘’Apache Tika’’ for 

performing text recognition.  

 

 

Figure 133: Specialized data types tool installation 



5. Wazuh 
 

5.1. General idea 
 

Wazuh is a security detection, visibility and compliance open source project. 

Although its purpose wasn’t it, it was integrated with Elastic Stack, evolving into a 

more comprehensive solution. It is used mainly for monitoring: applications, user 

behaviour, file integrity and cloud. Also, important is that it can be used as a 

Detection tool since it offers, diagnostics and information about intrusion attempts, 

vulnerabilities and malware activity. It is noteworthy that the Response feature that it 

offers for prevention and forensics is a crucial part of a suite of this calibre.  

 

5.2. Components 
 

The main components of the Wazuh architecture include Wazuh Agents and 

Wazuh Servers. Wazuh agents run on Windows, Linux and Mac operating 

systems. They are used to collect different types of system and application data 

that are forwarded to the Wazuh Server. This information is sent through an 

encrypted and authenticated channel. Furthermore, the agents can be used to 

monitor physical servers, virtual machines and cloud instances like Azure or 

Google cloud.  

On the other hand, the Wazuh server, is the component that is in charge of 

analysing the data received from the agents. Subsequently, it triggers alerts 

when an event matches a rule (e.g. file changed). The server usually runs on a 

stand-alone physical machine, virtual machine or cloud instance. As shown in 

the figure below Wazuh is integrated and works fluently with Elastic Stack 

(single node example). The main components that Wazuh needs from Elastic 

Stack to work are Elasticsearch, Kibana and Filebeat. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 134: Wazuh structure 

 

5.3. Required ports 
 

In order for Wazuh and Elastic Stack to operate, several ports must be available and 

opened. The ports needed for Elastic Stack were mentioned earlier in this Thesis but 

will be summarized in a table as well with the ones used by Wazuh. These ports are 

used for the different components of the system to communicate freely and efficiently 

with each other.  

WAZUH 

Component Port Protocol Purpose 

 

 

 

 

 

 

 

Wazuh 

Manager 

 

1514 

 

TCP 

Collected events are sent 

from agents through this 

port (for TCP) 

 

1514 

 

UDP 

Collected events are sent 

from agents through this 

port (for UDP) 

1515 TCP Service for agent 

registration 

1516 TCP Used for Wazuh cluster 

communications 

 

514 

 

TCP 

Collected events from 

syslog are sent through this 

port (for TCP) 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

514 

 

UDP 

Collected events from 

syslog are sent through this 

port (for UDP) 

Wazuh API 55000 TCP Used for incoming HTTP 

requests 

ELASTIC STACK 

Component Port Protocol Purpose 

 

Elasticsearch 

9200 TCP Used by the Elasticsearch 

RESTful API 

9300-9400 TCP Used for the cluster 

communications 

 

Kibana 

 

5601 

 

TCP 

Used for the Kibana web 

interface 

 

5.4. Archiving data storage 
 

In addition to being sent to Elasticsearch, both alerts and non-alert events are stored in 

files on the server side. These files are written in JSON format or in plain text as logs. 

They are daily compressed and signed with the MD5 and SHA1 cryptographic 

algorithms and the path of the directory is presented below.  

 

 

Figure 135: Data storage/ archive 

 

5.5. Common use cases 
 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

5.5.1. Signature-based log analysis 
 

Since Wazuh is used to automatically aggregate and analyse log data, there are many 

cases where evidence of a probable attack can be found inside the logs. The agent 

running on a client is responsible for reading log messages and sending them to the 

server where the analysis takes place. It is of high importance to know, that when no 

agent is deployed, the server can receive data from network devices or applications 

through syslog. Wazuh afterwards will use decoders to identify the source application 

of the log message and then analyse the data with a particular ruleset in mind. Rules 

can be found in the following directory while at the same time some examples are 

shown.  

 

 

Figure 136: Signature-based log analysis example 

 

Rules as can be seen include a “match” field, which is used to define the pattern that 

the rule should look for. The resulting alert priority is specified with the “level” 

argument. To be more precise about how this operates, when an event is collected by 

an agent, the manager will generate an alert. It is a prerequisite that the alert level 

must be higher than zero for this to be successful. An example of how an alert will 

look like is presented below. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 137: Alert example for Signature-based log analysis 

 

Once the alerts are generated, they are sent to Elasticsearch where they are enriched 

with geolocation information and visualized inside Kibana. 

 

5.5.2. Rootkit detection 
 

Each monitored system that hosts a Wazuh Agent, is scanned both at a kernel and user 

level to detect rootkits that might sneaked inside. Rootkits can hide other processes, 

files or network connections like themselves. It is a type of malware that replaces or 

changes existing operating system components for the adversary’s favour. Wazuh 

uses the Rootcheck component to detect such anomalies or suspicious activities.   

 

ACTION DETECTION 

MECHANISM 

SYSTEM 

CALLS 

BINARY 

Detection of hidden 

processes 

Compare output of 

system binaries and 

system calls 

Setsid() 

Getpgid() 

Kill() 

 

ps 

 

Detection of hidden 

files 

Compare output of 

system binaries and 

system calls 

Stat() 

Opendir() 

Readdir() 

 

ls 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Detection of hidden 

ports 

Compare output of 

system binaries and 

system calls 

 

Bind() 

 

netstat 

 

 

 

Detection of known 

rootkits 

Finding in a database 

about malicious files 

Stat() 

Fopen() 

Opendir() 

 

Inspecting files content 

by using signatures  

 

Fopen() 

 

Ownership anomalies 

and file permission 

anomalies detection 

 

Stat() 

 

 

 

An example of an alert that is generated when a hidden process is found can be seen 

in the figure below.  

 

 

Figure 138: Rootkit detection example 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

5.5.3. File integrity monitoring 
 

Wazuh offers a component called FIM that detects and alerts when operating system 

and application files are altered. This is often used to detect modification and 

unauthorized access to data that is sensitive. It is highly notable that if the servers are 

in scope with PCI DSS, the requirement 11.5 mention that a file integrity monitoring 

solution must be installed. An alert that is generated when a file is altered is presented 

below with its according metadata; SHA1 and MD5 checksums, the file sizes before 

and after the modification, privileges, ownership and who-data information.  

 

 

Figure 139: FIM example 

 

5.6. Rulesets 
 

5.6.1. Introduction to Wazuh Rulesets 
 

The Ruleset, which is include in the Wazuh Manager installation by default, is a set of 

XML files called Decoders and Rules. The Decoders are used by the “Analysis 

Daemon” to extract the required fields and values from the incoming events or log 

messages. Then, the Rules are used to generate an alert based on the fields extracted 

by the corresponding Decoder. The alerts will follow the data flow and they will be 

finally displayed on the Kibana web.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

There is a Wazuh-Ruleset repository in GitHub where someone can find all of the 

Decoders and Rules that are currently available in the corresponding version of 

Wazuh.  

Furthermore, it is highly notable that there is a file called “update_ruleset” in the 

following directory that is used to update the current ruleset on the system in case of a 

possible out-of-date.  

 

 

Figure 140: File used to update rulesets 

 

 

5.6.2. Decoders 
 

5.6.2.1. Traditional decoding 

 

Every time an event pops up, in order to extract information, there is an important 

step for detection and processing of threats. More specifically, Wazuh uses decoders 

that extract the most relevant fields of an event and identify event types. This has a 

result in enhancing event’s information to help further in indexing and analysis. 

OSSEC traditionally provides thirteen fields for storing extracted information while 

only eight of them can be extracted at the same time.  These predefined fields are: 

• user 

• srcip 

• dstip 

• srcport 

• dstport 

• protocol 

• Action 

• id 

• url 

• data 

• extra_data 

• status 

• system_name 

 

An example about how a typical decoder works is shown in the following screenshot. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

Figure 141: Traditional decoder example 

 

5.6.2.2. Dynamic decoding 

 

It is often necessary to extract more than eight relevant fields from an event. Also, the 

actual data items extracted have no relationship to the limited list of predefined field 

names. Since there is no way to operate within these constraints, Wazuh has extended 

OSSEC to allow the decoding of an unlimited number of fields with field names that 

clearly relate to what is being extracted.  

Wazuh transforms any field name included in the <order> tag into a JSON field.  

 

 

Figure 142: Dynamic decoding example 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

Figure 143: Decoder explained through a JSON output 

 

5.6.2.3. Decoder syntax 

 

The decoders extract the information from the received events. When an event is 

received, the decoders separate the information in blocks to prepare them for their 

subsequent analysis. According to Wazuh’s documentation, the attributes listed below 

define a decoder and its link with another parent decoder.  

 

Figure 144: Decoder syntax part 1 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

After, there are attributes called regexes or Regural expressions. They are sequences 

of characters that define a pattern. Decoders use them to find words or other patterns 

into the rules.  

 

 

Figure 145: Decoder syntax part 2 

 

Another attribute of a decoder is the fts. It is used to designate a decoder as one in 

which the first time it matches the administrator would like to be alerted. 

 

 

Figure 146: Decoder syntax part 3 

 

Finally, the last argument that can be placed inside a decoder is var. It defines a 

variable that may be used in any place of the same file. An example can be seen in the 

screenshot below. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 147: Decoder syntax part 4 

 

5.6.3. Rules 
 

5.6.3.1. General idea 

 

Regarding the Rules creation process, there is a custom Rules and Decoders creation 

guide in the Wazuh site. It is used when there is a specific log message or event with a 

format that is not ready to be managed by the current Ruleset. In those cases, firstly a 

custom Decoder must be created to extract the necessary fields and their values. 

Afterwards, the corresponding custom Rule must be created to generate an alert 

according to the requirements. The place to store all these Rules and Decoders is as 

follows.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 148: Storing options for rules and decoders 

 

 

These XML files can be created and edited directly from the CLI with any text editor 

and then can be uploaded to the Wazuh-Manager Server. It is worth mentioning that 

this procedure can also be performed inside the Kibana Wazuh application.  

 

 

Figure 149: Steps for adding a decoder file on Wazuh-Manager 

 

Finally, every change requires to restart the Wazuh-Manager service to update the file 

changes. The logs that the expert wants to parse can be tested with the following.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 150: Testing tool for logs 

 

Basically, it tests how an event is decoded and if an alert is actually generated. To do 

so an example will be as follows. 

 

 

Figure 151: Log file to be decoded and tested 

 

 

Figure 152: Decoding and testing result 

 

 

5.6.3.2. Rule syntax 

 

In this section, XML labels used to configure a rule will be introduced. The first label 

used inside a rule is called <rule> and it includes basic information about the rule.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 153: Rules syntax part 1 

 

Another important label is <match>. It is basically an if condition, where the rule is 

activated when the condition is true. The same way <if_sid>  and <regex> works, 

since the first checks if the id is matched and the second tests if there is any match 

with a regex.  

 

 

Figure 154: Rules syntax part 2 

 

Another use case would be to match something related to IP addresses. With <srcip>, 

any IP address can be compared to an IP decoded as srcip. Furthermore with <dstip>, 

any IP address can be compared to an IP decoded as dstip.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

Figure 155: Rules syntax part 3 

 

Subsequently as shown above, there is a field called <description>, which as its name 

states, it gives a human readable description to the rule in order to provide context to 

each alert regarding the nature of the events matched by it. It is important to note that 

it is a necessary field.  

To conclude there are some arguments that specify that a decoded attribute of the rule 

must be the same. Therefore, they all start with the term “same_”.  

 

 

Figure 156: Rules syntax part 4 

 

5.6.4. Regex 
 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

5.6.4.1. General idea 

 

A regular expression or regex is a sequence of characters that define a search pattern. 

Usually such patterns are used by string searching algorithms for “find” or “find and 

replace” operations on strings, or for input validation. It is a technique developed in 

theoretical computer science and formal language theory. Regex is often referred to as 

rational expression or regexp. There are two types of regular expressions in Wazuh: 

regex (OS_Regex) and sregex (OS_Match). A great example of a regex is displayed 

below. 

 

Figure 157: Traditional Regex syntax 

 

5.6.4.2. Regex syntax 

 

The types of regular expressions have both different syntax and meaning. OS_Regex 

or regex is a fast and simple library for regular expressions in C. It is designed to be 

simple while still supporting the most common regular expressions.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 158: Wazuh Regex syntax part 1 

 

 

Figure 159: Wazuh Regex syntax part 2 

 

It is noteworthy that there are some limitations. 

• The “*” and “+” modifiers can only be applied to backslash expressions, not bare 

characters 

 

Figure 160: Wazuh Regex syntax part 3 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

• Alternation in a group cannot be performed, e.g. “(fruits | vegies)” is not allowed 

• Complex backtracking is not supported. For instance, “\p*\d*\s*\w*:” does not 

match a single colon, because “\p*” consumes the colon   

• There is a difference between “.” and “\.” 

 

 

Figure 161: Wazuh Regex syntax part 4 

 

• There is no syntax to match a literal caret (“^”), asterisk (“*”) or plus (“+”) 

On the other hand, OS_Match or sregex is faster but only supports simple string 

matching and the following special characters.  

 

 

Figure 162: Wazuh Regex syntax part 5 



6. Monitoring and Log Analysis Case Scenario 
 

6.1. Installing tools on Linux 
 

6.1.1. Elasticsearch and Kibana 
 

As with windows a combination of files and tools must be downloaded either from the 

elastic website or from the web. Firstly, since Linux are used for this example a 

‘’.tar’’ file must be downloaded and extracted from elastic’s website.  

 

 

Figure 163: Unzipping the Elasticsearch file on Linux 

 

And the tool is booted as follows. 

 

 

Figure 164: Starting Elasticsearch on Linux 

 

Afterwards to make sure that the procedure was successful and that the tool indeed 

runs properly the curl tool must be downloaded in order to see if the request for 

fetching Elasticsearch queries is working. 

 

 

Figure 165: Install CURL tool command 

 

 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 166: Showing with CURL tool the Elasticsearch cluster 

 

It is not a common secret that this procedure must be followed for Kibana as well but 

in order to evaluate the successfulness of the procedure, user must head to the 

localhost address.  

 

 

Figure 167: Unzipping the Kibana file on Linux 

 

 

 

Figure 168: Starting Kibana on Linux 

 

6.1.2. Logstash 
 

Much like all the other tools it is downloaded, extracted and configured through the terminal. 

 

 

 

Figure 169: Unzipping the Logstash file on Linux 

 

 

6.1.3. Filebeat 
 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

It is noteworthy that Filebeat doesn’t need Logstash to operate. On the other hand, 

Logstash will be downloaded for the purpose of this scenario. Firstly, at the elastic’s 

website the package is downloaded. Afterwards, much like in the aforementioned 

tools it is extracted and then booted as follows.  

 

 

 

Figure 170: Unzipping the Filebeat file on Linux 

 

 

 

Figure 171: Starting Filebeat on Windows and proof part 1 

 

It goes without mentioning that first the ‘’.yml’’ file for Filebeat must be altered in 

order for it to work as planned. The configuration can be seen in the figure below. 

 

 

Figure 172: Filebeat configuration on Linux part 1 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 173: Filebeat configuration on Linux part 2 

 

Confirmation that the installation of Filebeat was successful is presented in the figure 

below. 

 

 

Figure 174: Starting Filebeat on Windows and proof part 2 

 

 

6.1.4. Wazuh (scenario) 
 

6.1.4.1. Manager 
 

Wazuh is separated to two parts on the server side. The first component is called 

Wazuh Manager. To install Wazuh manager the following commands are used and 

then at the second figure a confirmation that it indeed runs correctly is shown. 

 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 175: Install Wazuh-Manager with CURL tool 

 

 

 

Figure 176: Starting Wazuh-Manager and proof 

 

 

6.1.4.2. API 
 

The second component is called Wazuh API and the installation is performed in the 

following matter. Likewise, a confirmation is performed by using another system type 

command. 

 

 

Figure 177: Install Wazuh API with CURL tool part 1 

 

 

 

Figure 178: Install Wazuh API with CURL tool part 2 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 
 

 

 

Figure 179: Proof that Wazuh API is up and running 

 

 

6.1.4.3. Agent on Windows machine 
 

The Wazuh Agent is always installed on the device that the users are using and that 

needs to be monitored. So, it was connected on a Windows physical machine in order 

to send log information not only to Elasticsearch but also to the Wazuh Manager. 

Analytically, the installation starts with the user’s computer. To do so the agent 

program is installed, but without entering the registration key. The key must be 

generated through the machine where Wazuh manager is installed.  

 

 

Figure 180: All agents with their IDs 

 

Afterwards the generated key will be pasted to the agent so that it can be registered 

into the system.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 181: Importing authentication key and proof 

 

Inside the Wazuh option in Kibana, it is confirmed that the registered agent is 

connected to the central system.  

 

 

Figure 182: Proof that the new agent is added and active 

 

An example for file integrity monitoring for this device will be done at this point. To 

do so, a proper query and index are used. Then by opening the registered log file, it is 

clear if a file has been altered or updated by comparing the checksums.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 183: FIM example part 1 

 

 

Figure 184: FIM example part 2 

 

 

6.1.4.4. Custom Rules and Decoders 

 

It is possible to modify the default rules and decoders from the Wazuh Ruleset and 

also to add new ones in order to increase Wazuh’s detection capabilities. It is 

noteworthy that with this procedure, Wazuh might not be as efficient since the user 

decides what to filter but will be more robust since it is highly customisable.  

To implement small changes “local_decoder.xml” and “local_rules.xml” files will be 

used. On the other hand, for larger scale changes or additions to the stock rules and 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

decoders, it is recommended for a new decoder/ rule file creation.  These files can be 

found on the following directories. 

 

 

Figure 185: Rules and decoders directories 

 

It is important to state that some rules must be followed in order for Wazuh to run 

smoothly and with ease. Firstly, inside the “/rules” and “/decoders” directory it is 

already stated that only “local_decoders” and “local_rules” “.xml” files must be 

altered since any changes to another file may modify the behaviour of entire chains of 

rules. Secondly, the ID of the custom rule must exceed the number one hundred 

thousand since the rest of the IDs are reserved. Interfering and modifying those IDs 

equals with tampering the distributed rules files themselves. To be more precise any 

update of Wazuh will overwrite all the hard work that the expert has put into it. The 

third rule is for the user to maintain order in the rules. As the rule’s parser is loading 

the rules at start-up, it validates the existence of references inside the rules and 

groups. Therefore, if a reference of a rule is out of place (not loaded rule) the parser 

will collapse and fail its purpose.   

To begin with, information must be decoded, so a new decoder is added to the 

aforementioned file. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 186: Custom decoder example 1 

 

Same applies for the rule that is needed. 

 

 

Figure 187: Custom rule example 1 

 

Now that the new decoder and new rule are ready, they must be tested. This can be 

performed as already stated with the help of the “ossec-logtest” tool. 

 

 

Figure 188: Testing the new ruleset from example 1 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

Some examples of log testing can be seen below. 

 

 

Figure 189: Testing random logs part 1 

 

 

Figure 190: Testing random logs part 2 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 191: Testing random logs part 3 

 

6.1.4.5. Changing existing files 
 

6.1.4.5.1. Rules 
 

In order to preserve the changes, the changes are performed inside the 

“local_rules.xml” file. The example that will be explained refers to an SSH rule with 

an ID value of 5710.  

The first step is to find the corresponding file to the rule that is to be changed. This 

file is inside the “/rules” directory and is named as follows. 

 

 

Figure 192: Locating the rule that needs to be changed 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

The next thing to do is inspect the “.xml” file with the “nano” command. Then any 

rule that is to be changed must be copied in order to be pasted inside the 

“local_rules.xml” file.  

 

 

Figure 193: Copying and pasting the needed file (Rules) and changes 

 

6.1.4.5.2. Decoders 
 

Unlike how rules are changed, decoders cannot be overwritten in that way. This 

happens because there is no facility for this operation. However, it is still possible to 

do so.  

Firstly, it must be issued that the decoder that is hosted by “0310-ssh_decoders.xml” 

is the one to be altered, for the purpose of this scenario. In order for this to happen it 

must be copied and pasted from the “/var/ossec/ruleset/decoders” directory to 

“/var/ossec/etc/decoders” directory. This is done so that changes will stay on the 

system even if an update is performed.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 194: Copying and pasting the needed file (Decoders) 

 

The next step is to exclude the original decoder file from Wazuh’s loading list. More 

specifically, this can be done by adding the <decoder_exclude> parameter inside the 

“ossec.conf” file.  

 

 

Figure 195: Excluding a decoder 

 

To conclude, inside the “/var/ossec/etc/decoders/0310-ssh_decoders.xml” file changes 

must be performed in order for this procedure to be successful.  

 

6.1.4.6. Automating File Integrity Monitoring 
 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

File integrity monitoring and registry change monitoring can be performed by 

Wazuh’s syscheck system. To do so, some configuration must be done on a windows-

agent machine to monitor specific directories for changes. Afterwards it is only 

logical to perform some alterations in that place and observe the generated alerts. 

Firstly, syscheck debug logging must be turned on. This will be done on the agent’s 

machine, by creating a file with the name “local_internal_options.conf” inside the 

“C:\Program Files (x86)\ossec-agent\”. 

 

 

Figure 196: Syscheck debug logging enable 

 

Afterwards two directories will be created with the help of cmd.  

 

 

Figure 197: Creating test directories 

 

 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

Figure 198: Properties of the test files 

 

Now it is time to enable syscheck FIM on the windows-agent on par with the 

aforementioned table. This is performed by going to the “view config” option inside 

the agent. There, the “<syscheck>” field must be replaced as it can be seen on the 

following screenshot.  

 

 

Figure 199: Enabling syscheck FIM on Windows agent 

 

Now after restarting the agent, it is clear inside the “view logs” option that the new 

entries refer to the new syscheck monitoring of the two new directories.  

 

 

Figure 200: Proof of monitoring part 1 

 

 

Lastly in order to check if it works, a new file will be created inside “TEST2” 

directory in order to see any changes inside the Kibana app.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

Figure 201: Proof of monitoring part 2 

 

 

6.1.5. Beats (scenario) 
 

Beats are used instead of Wazuh. They perform the same workload but are heavier for 

a device to handle. They are also heavily customisable from the user making them 

extremely robust. Beats are often preferred over Wazuh since Wazuh needs lots of 

modification when handling logs from different sources while Beats recognise them 

with ease.  

6.1.5.1. Installing Metricbeat 
 

Much like Wazuh, beats must be installed and configured locally, on a client’s device. 

As far as Metricbeat goes, the installation on a Windows machine was 

straightforward. After downloading the file, it was moved in a specific directory and 

then the install ‘’.ps1’’ was executed.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 202: Metricbeat directory on Windows agent with installation 

 

For the configuration process, inside the ‘’modules.d’’ directory all modules can be 

found. These modules can be enabled accordingly in order to be used.  

 

Figure 203: Configuring Metricbeat on Windows agent part 1 

 

Also, it is important to notice that inside this directory a file called ‘’system.yml’’ 

exists that is used for deciding the information that will be sent from that device. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 204: Configuring Metricbeat on Windows agent part 2 

 

Finally, in the ‘’metricbeat.yml’’ the Elasticsearch host IP is filled.  

 

 

Figure 205: Configuring Metricbeat on Windows agent part 3 

 

6.1.5.2. Installing Auditbeat 
 

Much like Metricbeat, Auditbeat follows the same procedure as far as installation 

goes.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 206: Auditbeat directory on Windows agent with installation 

 

 

To continue though, the configuration is slightly different. Likewise, there modules as 

well here inside the ‘’auditbeat.yml’’ file. Firstly, a module called ‘’file_integrity”. 

Some paths are included in this module, some of which are added by the user. 

Whenever something is altered in one of those directories a log will appear in the 

Elasticsearch. More specifically this occurs whenever a file is deleted, created or 

updated.  

Following, a module called ‘’system’’ which includes some data sets that supplies the 

system with valuable information about the host, the user, the stopped and started 

processes etc. One example, regarding the host, is how long he has been running 

while monitoring user login and logouts. In this module, any transactions related to 

software installation on the system, are also contained. It is highly noticeable, that the 

value called ‘’state.period’’ determines how often the system will send the system 

data to the Elasticsearch. By default, every 12 hours these details are sent to the 

Elasticsearch. It is important to state that hours are represented with an ‘’h’’ while 

minutes are represented with an ‘’m’’. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 207: Configuring Auditbeat on Windows agent part 1 

 

Finally, in the same file, Elasticsearch host IP is filled.  

 

 

Figure 208: Configuring Auditbeat on Windows agent part 2 

 

 

6.1.5.3. Installing Winlogbeat 
 

The last beat used in this scenario is called ‘’Winlogbeat’’. The installation process is 

the same as before.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 209: Winlogbeat directory on Windows agent with installation 

 

 

Then on the configuration, again inside the ‘’winlogbeat.yml’’ the Elasticsearch host 

IP is filled. 

 

 

Figure 210: Configuring Winlogbeat on Windows agent 

 

 

To start all three services, the ‘’Services’’ tab is opened to windows and by manually 

right clicking on them the user starts them. When booting the beat start-up is 

automatic. This beat is basically a tool for centralizing Windows event logs. 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 211: Winlogbeat runs as a service proof 

 

6.1.5.4. Installing Packetbeat 

 

The first step in installing Packetbeat includes the installation of a packet sniffing 

library, such as Npcap, which implements the libpcap libraries. Afterwards, the 

windows zip file must be downloaded for Packetbeat like all the aforementioned 

beats. Its contents will be placed in a folder called “Packetbeat” as shown below. 

 

 

Figure 212: Packetbeat directory on Windows agent with installation 

 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

Finally, in the configuration file called “packetbeat.yml”, the host IP of Elasticsearch 

is filled.  

 

Figure 213: Configuring Packetbeat on Windows agent 

 

 

Figure 214: Packetbeat runs as a service proof 

 

 

6.1.5.5. Visualization 

 

 

METRICBEAT VISUALIZATION 

 

 

Figure 215: Metricbeat visualization part 1 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

Figure 216: Metricbeat visualization part 2 

 

 

AUDITBEAT VISUALIZATION 

 

 

Figure 217: Auditbeat visualization part 1 

 

 

Figure 218: Auditbeat visualization part 2 

 

 

WINLOGBEAT VISUALIZATION 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 219: Winlogbeat visualization part 1 

 

 

Figure 220: Winlogbeat visualization part 2 

 

 

PACKETBEAT VISUALIZATION 

 

 

Figure 221: Packetbeat visualization part 1 

 

 

Figure 222: Packetbeat visualization part 2 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

6.4. Elastic SIEM 
 

6.4.1. Security Information and Event Management 
 

In the field of IT security, a SIEM is basically the combination of Security 

Information Management (SIM) and Security Event Management (SEM). These 

acronyms have sometimes been used interchangeably, but generally refer to the 

different primary focus of products. Firstly, a SIM is a system that stores (for long 

periods of time), analyses and reports log data. Afterwards, a SEM is a system that 

monitors (in real time), monitors and notifies for any security related event.  

As already mentioned, a SIEM combines these two and provides real time analysis of 

security alerts generated by network hardware and applications.  

6.4.2. Introduction 
 

Elastic SIEM, which is offered for free as part of the default distribution, offers 

security practitioners features such as new data integrations, intuitive ways to triage 

events, network-related security event analysis, interactive and composable timeline 

event viewers for collaborative threat hunting. Basically, it provides a solution for the 

users to achieve security analysis. It is very important to understand that it is a product 

that integrates all technologies like docker containers, cloud, firewalls etc. into a 

single ecosystem. It enables analysis of two important types of data which is host-

related and network-related. The most important advantage of Elastic SIEM is that it 

is built to be collaborative. This means that it can be highly interactive- for the user to 

just move things around and play with the data.  

In order to introduce network data into Elasticsearch it is crucial to use some products 

and technologies like Packetbeat or Filebeat. Through Packetbeat, DNS information 

and flows can be transferred to Elasticsearch, and through Filebeat IDS, IPS or even 

Firewall modules information.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 223: Elastic SIEM structure 

 

The figure above is in the same context of SIEM since it has ECS included which is a 

very important part of the solution itself. A huge priority also, is the interaction with 

the elastic community to make sure that this product is heading in the right direction. 

So, there are many types of data shippers (Beats), as mentioned before multiple times, 

that are used for ingesting host and network security events data into the SIEM app.  

Furthermore, when multiple data from different sources is ingested, it must be ensured 

that there is correlation among those data sources. This is performed by using the 

Elastic Common Schema; a tool that basically normalizes data if there is a common 

set of fields. It also provides some best practices as far the field and mapping defining 

goes.  

Finally, ECS must be explained a little more thoroughly. It is an open source 

specification, developed with support from the Elastic user community. ECS defines a 

common set of fields to be used when storing event data in Elasticsearch, such as logs 

and metrics. The goal of ECS is to enable and encourage users of Elasticsearch to 

normalize their event data, so that they can better analyze, visualize, and correlate the 

data represent in their events.  

6.4.3. Components 
 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

The SIEM has different components although it is a simple application as it is. Four 

different options are offered. Firstly, there is an option called ‘’Overview’’, which 

gives information about the type of data that are to be processed. The second option is 

called ‘’Hosts’’ which gives basically information about the data coming from the 

host. Afterwards, another option is called ‘’Network’’, which is the same with the 

‘’Hosts’’ option but targets anything related to network activities. The next option, 

called ‘’Timelines’’, is probably the defining part between Elastic SIEM and every 

other SIEM out there. The user, through this option, can generate and provide data 

with queries. It is important to state that the last two options are either not needed for 

this case scenario or in a paid package. 

 

 

Figure 224: Elastic SIEM components 

 

6.4.3.1. Overview   
 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 225: Elastic SIEM Overview visualization 

 

 

In the Overview tab, a bird’s-eye overview of the data volume in the past 24 hours is 

presented. This data is collected through a variety of different sources. The volume of 

the data is highly correlated with the number of machines connected to the SIEM 

through the beats. 

 

6.4.3.2. Hosts 
 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 226: Elastic SIEM Hosts visualization 

 

 The Hosts tab basically presents information for all or a subset of the hosts inside this 

cluster. If there is a search query to find within this security environment and call out 

any specific behaviour that needs to be looked at (as the uncommon processes and 

events). 

The first feature of the Elastic SIEM application is a very user friendly yet powerful 

query building capability. It is highly notable, that a security professional must always 

search along his investigation journey. This means that he has to navigate within the 

collected  security events without any compromises on his query performance. So, 

Elastic SIEM wants to free the user from canned reports and dashboards without 

taking a tremendous amount of time to compose the query.  

As the user looks at different places within the same application, he can drag and drop 

a UI component into the timeline UI widget. This will open a window behind the 

scenes with info sent by a query to the backend Elasticsearch cluster. It is important to 

state that this particular query will be matched with security events which will be later 

on presented on the window.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 227: Creating timelines example part 1 

 

These events as seen are a lot. So, in order to narrow down the results, the query can 

be enhanced with another drag and drop option.  

 

 

Figure 228: Creating timelines example part 2 

 

 

6.4.3.3. Network 
 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 229: Elastic SIEM Networks visualization 

 

 

Similarly, for the Network tab, the same application presents all kinds of information 

related to the network entities in the security environment. Much like Hosts specific 

entities or behaviours can be checked out, such as the top talkers and top DNS 

domains.   

6.4.3.4. Timelines 

 

 

Figure 230: Elastic SIEM Timelines visualization 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

The Timelines tab on the other hand is a repository of all of the working threads by 

the investigators and responders where they basically capture and navigate in arbitrary 

directions of their investigation effort. This happens by either collaborate with their 

peers or pass that on to subsequent investigators and responders.  

 

 

Figure 231: Using a custom timeline part 1 

 

After creating a query as aforementioned with the help of the Timelines UI, some 

suspicious activity is already -hypothetically- identified. Therefore, the concluded 

events are on a certain timeline that the user can easily rename it and add notes and 

descriptions. This will help the investigator and responder to pick it up as it is and 

refine it to take further actions. One last thing to note is that all those timelines can be 

associated with Kibana spaces, so that different teams and people can get access to. 

Therefore, this feature is great to facilitate collaboration among peer analysts and with 

Kibana spaces everything can be isolated and secured.  

 

 

Figure 232: Using a custom timeline part 2 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

6.5. Elastalert  
 

6.5.1. Installing and configuration 
 

At this point, a way to alert the user about certain events must be used. X-Pack offers 

an alerting feature but is on paid subscription. Subsequently, an open source tool 

called Elastalert will be used.  

Apart from Elasticsearch and Kibana a client virtual machine will be used as well to 

send syslog logs through Filebeat. Furthermore, Elastalert will query Elasticsearch 

and depending on the configuration if it finds a matching event or an inconsistency in 

data in the Elasticsearch, it will send an alert to the Slack channel/ chosen email. It is 

important to notice that Elastalert is not installed on the client machine, although it 

can be installed on any machine that has access to the Elasticsearch. Elastalert, is a 

standalone tool that doesn’t have to be in the ELK server or in the client virtual/ 

physical machine. Simplified, it is an alerting tool that automatically queries and 

analyses log data in Elasticsearch clusters. 

The installation procedure consists of some prerequisites, as installing the “pip” tool 

and python3.6. To continue, the latest released version of Elastalert is installed with 

“pip”.  

 

Figure 233: Installing Elastalert 

 

After enabling Elastalert as a service, indexes must be created for the tool to be 

connected with Elasticsearch and visualized by Kibana.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

Figure 234: Creating Elastalert's indices 

 

These indexes are “elastalert_status*”, “elastalert_status_error*”, 

“elastalert_status_silence*” and “elastalert_status_status*”,  as shown below.  

 

Figure 235: elastalert_status* visualization 

 

 

Figure 236: elastalert_status_error* visualization 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 237: elastalert_status_silence* visualization 

 

 

Figure 238: elastalert_status_status* visualization 

 

Each of these aforementioned events, can be expanded so that the user can see more 

information about it.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 239: Examining a document with elastalert_status_status* index 

 

 

The configuration part consists only of a file called “config.yaml” which is configured 

as presented below.  

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 240: Elastalert configuration 

 

Lastly in order to start the Elastalert service the following command must be used, 

where “verbose” is an option that provides additional display info level messages.  

 

 

Figure 241: Starting Elastalert 

 

6.5.2. Elastalert rules 
 

6.5.2.1. Arguments 
 

Elastalert, is comprised of rules that are saved inside a folder called 

‘’example_rules’’. These easy-to-write rules are the main component used for the 

alert creating. The specific path for the rules, is shown in the screenshot below. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 242: Elastalert rules directory 

 

They are used for many different reasons, like blacklisting and event spiking. All 

these rules are described inside of “.txt” files and have specific required arguments.  

To be more precise in the following table all required arguments are analysed.  

 

es_host IP of the host where the ELK stack is 

running on 

es_port The port that Elasticsearch is listening 

on 

num_events The number of events that will trigger 

the event 

timeframe The period of time that the number of 

events should be done 

filter Filter, query that specifies what to match 

in order to fetch from a specific rule 

type The rule type (e.g. spike) 

alert Where to send the notification about the 

alert (slack, email etc.) 

index The Elasticsearch index that will be used 

to send data to it 

 

Every rule can run independently with the following command.  

 

 

Figure 243: Running a rule independently 

 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

But since it is practically impossible to depend on multiple sessions of terminal, a file 

is created that will automatically run every rule on the background. 

 

 

Figure 244: File that runs all rules in the background part 1 

 

 

Figure 245: File that runs all rules in the background part 2 

 

 

Figure 246: File that runs all rules in the background part 3 

 

6.5.2.2. Example: Frequency – Winlogbeat 
 

For this example, a frequency rule will be created. This rule will alert on a specific 

Slack chat when a machine that has Winlogbeat installed, types the command 

“ipconfig” on the command prompt.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 247: Elastalert example 1 configuration file 

 

For this to work, Winlogbeat must be installed on the client’s machine so that it can 

collect logs from the command prompt. This is performed by firstly navigating to the 

Group Policy Editor. There, by following the path: 

 

 

Figure 248: Group Policy Editor changes part 1 

 

”Audit Process Creation” is selected and then a box appears where the “Success” and 

the “Failure” radio buttons must be checked. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 249: Group Policy Editor changes part 2 

 

Afterwards, the command line process creation must be enabled. This is succeeded by 

navigating to another directory of the Group Policy Editor. The path that is used is the 

following: 

 

 

Figure 250: Group Policy Editor changes part 3 

 

At this option the “Enabled” field must be selected. 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 251: Group Policy Editor changes part 4 

 

In order to make sure that logs are gathered for the command prompt by Winlogbeat, 

the service is restarted, and the group policies are updated through the cmd by using 

the “gpupdate” command. Now on the Event Viewer, in the Security tab, after 

opening cmd and pressing “ipconfig” the following events are collected. 

 

 

Figure 252: Group Policy Editor proof part 1 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 253: Group Policy Editor proof part 2 

 

 

Figure 254: Group Policy Editor proof part 3 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 255: Group Policy Editor proof part 4 

 

 

Figure 256: Proof that the rule works (Example 1) part 1 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 257: Proof that the rule works (Example 1) part 2 

 

6.5.2.3. Example: Frequency – Packetbeat 

 

Another use case example would be if a user visited a restricted site for which the 

security expert would want to be notified for. The site that will be used for this 

example will be “youtube.com”. So, every time a device navigates to the youtube.com 

domain, the expert will be alerted. This procedure will be performed by using a device 

with Packetbeat installed and running. 

 

 

Figure 258: Elastalert example 2 configuration file 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

 

Figure 259: Proof that the rule works (Example 2) part 1 

 

 

Figure 260: Proof that the rule works (Example 2) part 2 

 

6.5.2.4. Example: Whitelist - Packetbeat 
 

A Whitelist rule, as the name clearly states uses the basic concept of whitelisting. It is 

the practice of explicitly allowing some identified entities access to a particular IP, in 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

our case. This rule, much like the next example, requires three additional options; 

“compare_key”, “whitelist” and “ignore_null”. The first argument specifies the 

information that will be compared in order for the event to be triggered. Afterwards, 

the “whitelist” option lists all whitelisted values or a list of paths to flat files. Lastly, 

the “ignore_null” variable is used so that events without a “compare_key” field will 

not match.  

 

Figure 261: Elastalert example 3 configuration file 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

Figure 262: Proof that the rule works (Example 3) part 1 

 

 

 

Figure 263: Proof that the rule works (Example 3) part 2 

 

 

6.5.2.5. Example: Blacklist - Packetbeat 
 

At this point a Blacklist rule will be created. It will check a certain field against a 

blacklist, and match if it is in the blacklist. This rule opposed to the earlier examples 

requires two additional options; “compare_key” and “blacklist”. These options 

specify the key that is used to compare with the contents of the blacklist in order to 

match with a certain event. Also, the second option includes all the files that are 

embodied in the blacklist.  



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

Figure 264: Elastalert example 4 configuration file 

 

 

Figure 265: Proof that the rule works (Example 4) part 1 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

 

Figure 266: Proof that the rule works (Example 4) part 2 

 

6.5.2.6. Example: Spike - Metricbeat 
 

The last example use case will be a spike rule for CPU usage of a device. The beat 

which is needed is Metricbeat and doesn’t need any modification since it was installed 

earlier. It has multiple -unknown to other rules- options that are explained thoroughly 

in the screenshot below. Proof that the data is sent to Elasticsearch and shown in 

Kibana is also attached.  

 

Figure 267: Elastalert example 5 configuration file 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

 

 

 

Figure 268: Proof that the rule works (Example 5) 



7. Concluding Remarks – Empirical Findings 
 

Cyber threats and cybercrime in general are currently serious problems, which will 

remain in the coming years. Some scenarios were described and analysed in this 

Thesis, that will help mainly with monitoring, forensics and accountability issues.  

I showed that it is fairly difficult to make a perfectly secure system, since it needs 

massive configuration. The reason is that cybercriminals and researchers/ security 

experts are involved in an arms race; every time a new detection technique is 

developed, miscreants come up with more advanced attack and malicious strategies.  

In this Thesis, I showed that GDPR, although fairly new can be easily integrated 

inside a platform like Elastic Stack; important since it is mainly used as a search 

engine suite.  

Furthermore, I found out that Beats are a better solution contrary to Wazuh, since they 

need less configuration as they work natively inside ELK. It is highly notable that for 

every single log file Wazuh couldn’t handle, a new ruleset had to be created, which is 

not an issue with Beats. As far as availability goes, Beats in older versions were 

heavily resources dependent, but now are fairly light making them equally as light as 

the Wazuh platform. 

In the future, I plan to keep studying internet threats. As these threats, vulnerabilities 

and exploits become trickier and more sophisticated, the defending mechanisms must 

be always spot on and up to date.  The security expert must always be informed and 

well trained in order to address the needs of this IT sector; cybersecurity. 



8. Bibliography 
 

Books 

 

[A]: Elasticsearch: The Definitive Guide, Clinton Gormley and Zachary Tong 

[B]: Elasticsearch Server, Rafal Kuc and Marek Rogozinski 

[C]: Elasticsearch Cookbook Second Edition, Alberto Paro 

[D]: Mastering Elasticsearch, Rafal Kuc and Marek Rogozinski 

[E]:  Learning Elasticsearch, Abhishek Andhavarapu 

[F]: Elasticsearch Indexing, Huseyin Akdogan 

[G]: Elasticsearch: A Complete Guide Learning Path. End-to-end search and Analytics, Bharvi 
Dixit, Rafal Kuc, Marek Rogozinski, Saurabh Chhajed 

[H]: The Logstash book. Log management made easy, James Turnbull 

[I]: Kibana 7, Quick Start Guide, Anurag Srivastava 

[J]: Kibana Essentials, Yuvraj Gupta 

[K]: Ossec Host-based Intrusion Detection, Brad Lhotsky 

[L]: Learning ELK Stack, Saurabh Chhajed 

 

Papers and Presentations 

 

[1]: Elasticsearch: an advanced and quick search technique to handle voluminous data, Manda 
Sai Divya and Shiv Kumar Goyal 

[2]: Using Elasticsearch, Logstash and Kibana to create realtime dashboards, Alexander Reelsen 

[3]: Review on efficient log analysis to evaluate multiple honeypots with ELK, Ibrahim Yahya 
Mohammed AL-Mahbashi, Prashant Chauhan, Shivi Shukla and M.B. Potdar 

[4]: Log Analysis with the ELK Stack (Elasticsearch, Logstash and Kibana), Gary Smith, Pacific 
Northwest National Laboratory  

[5]: Log Analysis using OSSEC, Daniel B. Cid 

[6]: Building a real-world logging infrastructure with Logstash, Elasticsearch and Kibana, Patrick 
Kleindienst 

[7]: OSSEC Host-Based Intrusion Detection Guide, Andrew Hay, Daniel Cid, Rory Bray 

[8]: Testbed Design for Evaluation of Active Cyber Defence Systems, Srikumar Sridhar 

[9]: Intrusion Detection with OSSEC, Ali Anafcheh 

 

Documentations 

 



                                           
 
 

 
MSc Thesis, Security in Digital Systems, Ioannis Voulgaris 2019-2020 
 

[i]: https://documentation.wazuh.com/3.9/user-manual/index.html 

[ii]: https://www.elastic.co/guide/index.html 

[iii]: https://www.ossec.net/docs/  

https://documentation.wazuh.com/3.9/user-manual/index.html
https://www.elastic.co/guide/index.html
https://www.ossec.net/docs/

