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Abstract 
 
 
This paper concentrates on the Tourist Trip design problem, a practical application of the Team 
Orienteering problem, providing an efficient visit schedule of points-of-interest based on 
predetermined scores. A slightly modified version of a well-known algorithm based on the Iterated 
Local Search (ILS) is utilized: in contrast to the original ILS algorithm, the tours created must visit 
the selected  Points of Interest (POIs) not only within their time windows but also the remaining time 
after reaching a POI should be at least the suggested visit time for this POI. Otherwise, the visit is 
considered unfeasible. Furthermore, the user is allowed to modify the score of each proposed POI 
by certain percent based on the category it belongs to and on how many POIs of the same category 
s/he has seen along the part of the tours completed so far. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Περίληψη 
 
 
 
Η παρούσα εργασία επικεντρώνεται στο Πρόβλημα Σχεδιασμού Διαδρομών, μιας πρακτικής 
εφαρμογής του Team Orienteering Problem που προσφέρει ένα αποτελεσματικό προγραμματισμό 
διαδρομών σε σημεία ενδιαφέροντος (points of interest) βασισμένο σε προκαθορισμένες 
βαθμολογίες. Μια ελαφρώς τροποποιημένη εκδοχή ενός πολύ γνωστού αλγορίθμου βασισμένου 
στον Iterated Local Search (ILS) χρησιμοποιείται: σε αντίθεση με τον αρχικό ILS, οι δημιουργημένες 
διαδρομές πρέπει να επισκέπτονται τα επιλεγμένα σημεία ενδιαφέροντος όχι απλά μόνο μέσα στο 
χρονικό περιθώριο τους, αλλά ο υπολειπόμενος χρόνος που ακολουθεί τη μετάβαση στο σημείο 
πρέπει να είναι τουλάχιστον ίσος με τον προτεινόμενο χρόνο επίσκεψης του συγκεκριμένου 
σημείου. Αλλιώς, η επίσκεψη θεωρείται αδύνατη. Επιπλέον,  ο χρήστης έχει τη δυνατότητα να 
τροποποιεί το σκορ κάθε προτεινόμενου σημείου κατά ένα συγκεκριμένο ποσοστό ανάλογα με την 
κατηγορία που αυτό ανήκει και με τον αριθμό των σημείων της κατηγορίας αυτής που έχει ήδη 
επισκεφθεί. 
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1. Introduction 

 
 
 

The orienteering problem is a subset of the Traveling Salesman Problem and consequently is a NP-
hard problem, meaning no exact solution can be found. As such, an array of heuristic algorithms 
have been used to deliver near optimal solutions. This thesis will focus on the Orienteering problem, 
its most common extensions as well as its most famous practical application, the Tourist Trip 
Design problem.  
 

The Orienteering problem (OP) has its roots on a  group of sports that combines running 
and navigation in order to navigate quickly from point to point (also referred as nodes) in an 
unknown terrain. The element of required speed is introduced by racing against the clock, i.e. 
having a time limit. Within that time window, the participants are aiming to pass through as many 
nodes as possible; each node has a score associated with it, by visiting it the participant claims that 
score as her points. The goal then is to maximize the gathered points before the time limit is 
reached.  
 

The major subcategories of OP are created by introducing additional constraints, for 
example attributing  a time window to each node or having a different starting and ending point or 
requiring that each node can only be visited once. OP can also be viewed as a graph, so another 
example of added complexity is the decision whether the graph is directed or not.  
 

This paper will introduce the most common variations of OP as they pertain to the practical 
application that it focuses on. Those are the Team Orienteering problem that adds multiple tours, 
the Orienteering problem with Time Windows, which allows a visit to node to be realized only within 
the node’s time window and the Time dependent Orienteering problem. Then, the Iterated Local 
Search algorithm, which is used to  solve the Team Orienteering problem with Time Windows, is 
presented along with two variations that group the nodes into clusters (CSCratio and CSCroutes). 
Finally, our modifications to ILS are introduced: the first forces the participant to stay at each node 
for the duration of its proposed visit, while the second groups the nodes into categories based on 
their type and allows the user to modify the score of each node according to the categories that 
interest him/her or have already been visited before. 
 

 
2. Literature Review 

 
2.1 The orienteering problem 

 
 

First mentions of the orienteering problem have been from Tsiligirides, T. (1984)[1]  and Golden, B. 
L. , Levy, L. , & Vohra, R. (1987)[2]. The orienteering problem (OP) at its core combines node 
selection .i.e. nodes with the task of pinpointing the shortest path between those nodes. In practice 
the orienteering problem comes with the assumption of a fixed (time) budget and the task of 
maximizing the total profit by visiting locations (nodes) with associated scores. Since not all nodes 
can be visited due to time limitations, the OP can be viewed as  combining two other combinatorial 
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problems, the Traveling Salesman (TSP) and the Knapsack problem. Naturally the OP is also a 
combinatorial NP-hard problem.   

 
The OP has been studied extensively and has been given a number of extensions and 

practical applications. Vansteenwegen, P. , Souffriau, W. , & Van Oudheusden, D. (2011a)[3] , 
Feillet, D. , Dejax, P. , & Gendreau, M. (2005)[4] and Laporte, G. , & Rodríguez-Martín, I. (2007)[5] 
are some of the surveys tasked with summing up  proposed solutions for OP and it’s variants until 
2009. A more recent survey (Aldy Gunawan, Hoong Chuin Lau ,Pieter Vansteenwegen (2016)) [6] 
attempted to cover more recent solutions as well as put more focus on specific practical 
applications. 

 
2.1.1 Classical OP  

 
Classical OP can be defined  in the following way: Assuming a graph-like set of nodes N,  with each 
node i∈N, each with a respective non-negative score with N[i=1] the start and N[i=n] the end, the 
goal is to design a path (or tour) that will maximize the total profit (the sum of the scores of the 
nodes visited) within a predetermined time frame. A further limitation prescribes that each node 
cannot be visited more than once.  

 
OP is usually formulated mathematically, much like an integer problem thus: 

 
First, there are two decision variables employed: 

 
Xij =1, assuming a visit from node i to node j is viable; it will be 0 if not 
 
ui   = the position of node i in the tour  
 
𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑  𝑁𝑁−1

𝑗𝑗=2 𝑆𝑆𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑁𝑁−1
𝑖𝑖=2         (0) 

 
∑ 𝑥𝑥1𝑗𝑗 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1,𝑁𝑁−1

𝑖𝑖=1
𝑁𝑁
𝑗𝑗=2         (1) 

 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑘𝑘𝑘𝑘 ≤ 1;   ∀𝑘𝑘 = 2, . . . ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1 𝑁𝑁 − 1,      (2) 

 
∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1          (3) 

 
2 ≤ 𝑢𝑢𝑖𝑖 ≤ 𝑁𝑁;    ∀𝑖𝑖 = 2, . . . ,𝑁𝑁,       (4) 
 
𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗 + 1 ≤ (𝑁𝑁 − 1)�1 − 𝑥𝑥𝑖𝑖𝑖𝑖 �;    ∀𝑖𝑖, 𝑗𝑗 = 2, . . . ,𝑁𝑁,      (5) 
 
𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1};  ∀𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁        (6) 

 
 

Function (0) maximizes the total collected profit of the path. Constraint(1) stipulates that the 
path begins at node 1 and ends at node N. Constraint (2) guarantees that there is no isolated node 
(all nodes are connected) and that each node cannot be visited more than once. Constraint (3) fixes 
the time window of every path at most at  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, thus ensuring the time budget limit. Generic 
constraints (5) and (6) eliminate the possibility of subtour creation (see Miller, C., Tucker, A., 
Zemlin, R., 1960 [7]). 
 

An important assumption of the generic formulation of OP is that travel time between nodes 
is symmetric according to Euclidian metric, that is  𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑗𝑗𝑗𝑗 . This assumption means that OP as 
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formulated so far represents an undirected complete graph. Most solution in the literature conform 
to this interpretation.  

 
The proof that OP is NP-hard was given by Golden et al. (1987)[8]; they proved that no 

algorithm is expected to solve OP optimally. Not unlike any other NP-hard problem, OP proposed 
solutions are mostly heuristic and approximation ones; exact solutions would be simply too time 
consuming.  

 
However, a few researchers have proposed exact algorithms to solve OP, albeit on 

instances with limited amount of nodes. Feillet et al. (2005a) produced a survey of sorts of exact 
algorithms. Chief among them, Laporte and Martello (1990) [9] utilized branch-and-bound 
algorithms on instances of up to 20 vertices, while Leifer and Rosenwein (1994) [10] built on their 
formulation by adding a cutting plane method to achieve better upper bounds. Branch-and-cut 
algorithms were later found to be able to solve instances of up to 500 vertices (Fischetti et al., 1998) 
[11] 

The main focus of literature is however, as mentioned earlier, the heuristic algorithms. 
Tsiligirides (1984) who first introduced the term OP, based on the orienteering sport, suggested 
both a stochastic and a deterministic algorithm, while Golden et al.(1987) a centre-of-gravity 
algorithm. A 4-phase heuristic was introduced by Ramesh and Brown (1991) [12] and subsequently 
Chao et al.(1996b) use a 5-step algorithm to outperform any other algorithm mentioned so far. 

 
While various other ideas regarding the OP were introduced, a new solution by Schilde et 

al.(2009) [13] which aimed to tackle the multi-objective variant was actually found to also outperform 
Chao et al.(1996b)[14] 5 -step heuristic. 

 
More recent approaches to the OP include Sevkli and Sevilden(2010 a and b) [15][16] 

which focus on (Discreet) Strengthened Particle Swarm Optimization, Chekuri et al.(2012)-
approximation algorithms[17] and a few others which didn’t really offer dramatic performance 
improvements. Dand et al’s(2013a) [18] branch-and-cut algorithm managed to improve 29 best-
known-solution on Chao et al’s(1996b) datasets. 
 
2.1.2 Team Orienteering Problem (TOP) 

 
The most common extension to the OP is allowing for multiple (P) paths within the same graph, 
each starting and finishing at the predetermined respective positions (N[1] and N[n]) and having 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 available time budget . Such a variation is called Team Orienteering Problem (TOP) and was 
introduced by Chao et al (1996b). 
 

TOP’s mathematical formulation is consequently very similar to the original OP’s.  
 
Like in OP decision variables are  employed: 

 
xijp =1, assuming a visit from node i to node j in path p is viable ; it will be 0 if not 
 
yip =1, if node i is visited in p 
 
uip   = the position of node i in path p  
 
𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑  𝑁𝑁−1

𝑖𝑖=2 𝑆𝑆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑃𝑃
𝑝𝑝=1        (7) 

 
∑ ∑  𝑁𝑁

𝑗𝑗=2 𝑥𝑥1𝑗𝑗𝑗𝑗 = ∑ ∑  𝑁𝑁−1
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃,𝑃𝑃

𝑝𝑝=1
𝑃𝑃
𝑝𝑝=1       (8) 

 



Μεταπτυχιακή Διατριβή  Σανιδάς Γεώργιος                

 8 

∑ 𝑦𝑦𝑘𝑘𝑘𝑘 ≤ 1;   ∀𝑘𝑘 = 2, . . . ,𝑁𝑁 − 1,𝑃𝑃
𝑝𝑝=1        (9) 

 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = ∑  𝑁𝑁

𝑗𝑗=2 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘 =  𝑦𝑦𝑘𝑘𝑘𝑘;    ∀𝑘𝑘 = 2, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 ,𝑁𝑁−1
𝑖𝑖=1     (10) 

 
∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚    ∀𝑝𝑝 = 1, . . . ,𝑃𝑃 ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1       (11) 

 
 
2 ≤ 𝑢𝑢𝑖𝑖𝑖𝑖 ≤ 𝑁𝑁;    ∀𝑖𝑖 = 2, . . . ,𝑁𝑁;  ∀𝑝𝑝 = 1, . . . ,𝑃𝑃 ,    (12) 
 
𝑢𝑢𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑗𝑗𝑗𝑗 + 1 ≤ (𝑁𝑁 − 1)�1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 �;    ∀𝑖𝑖, 𝑗𝑗 = 2, . . . ,𝑁𝑁;  ∀𝑝𝑝 = 1, . . . ,𝑃𝑃 ,   (13) 
 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖 ∈ {0,1};  ∀𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁;  ∀𝑝𝑝 = 1, . . . ,𝑃𝑃      (14) 

 
 

These constraints establish similar requirements to the OP: namely the limit time budget 
available to each path, starting and end points for each path, a guarantee that each will be visited at 
most once and that no subtours will be generated. Objective function (7), like in OP, states the goal 
of maximizing the total realized profit. 
 

Exact algorithms for the TOP were produced by Butt and Ryan(1999)[19] using column 
generation and  aiming at solving instances of up to 100 nodes. Boussier et al.(2007)[20] combined 
column generation with branch-and-bound steps to significantly reduce computation times for 
instances of 100 nodes. 
 

Chao et al.(1996a) updated their 5-step heuristic to solve the OP, while Tang and Miller-
Hooks (2005)[21] utilized a tabu search heuristic in the context of an Adaptive Memory Procedure 
(AMP). Several other metaheuristics were presented, among others by Archetti et al. (2007), Ke et 
al. (2008), Vansteenwegen et al. (2009 b,c) and Souffriau et al. (in press). All four of them begin 
with a starting solution and try to formulate a second one, which will replace the original if found 
more profitable. In addition to profitability, emphasis is now placed on reducing computation times.  

 
A common framework that is adopted by these so-called local search heuristics, includes 

five actions that aim to maximize the total profit and two actions that aim at reducing travel time 
between nodes.  

 
Actions that aim at increasing total profit: 

 
• Insert: This action utilizes cheapest insertion to add an extra node in any of the paths 
• TwoInsert: Similar to above, but considering two extra nodes 
• Replace: It examines all non-included nodes and inserts one if there is time budget available for 

insertion. If there is no budget available, the node to be inserted replaces a lower-score one 
that is already included. 

• TwoReplace: Similar to the above, but now every combination of two non-included nodes is 
considered for insertion. 

• Change: Is a different, more drastic approach as five included nodes are removed from a path. 
Subsequently, non-included nodes are inserted until there is no more time budget available. If 
the new path that is created by this process is more profitable than the original, the solution is 
saved, otherwise it is discarded. 

 
Actions that aim at reducing computation times: 
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• 2-Opt: It replaces two edges included in the path with two new ones. If time reduction is achieved, 
the change is kept. 

• Swap: It swaps one node from a path with another one from another path. 
 
 
 
 

2.1.3 Orienteering Problem with Time Windows (OPTW) 
 
 

OPTW introduces a concept that drastically alters the procedures mentioned so far needed to solve 
the OP. Time windows add an additional powerful constraint that a visit to a node can only begin 
during that window. The decision variables used to formulate this problem are: 

 
Xij =1, assuming a visit from node i to node j is viable; it will be 0 if not 
 
yi   = 1,  if node i is visited; it will be 0 if not 
 
si   = the start of visit at node i   
 
M = a constant 
 
𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑  𝑁𝑁

𝑗𝑗=2 𝑆𝑆𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑁𝑁−1
𝑖𝑖=2         (15) 

 
∑ 𝑥𝑥1𝑗𝑗 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1,𝑁𝑁−1

𝑖𝑖=1
𝑁𝑁
𝑗𝑗=2         (16) 

 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑘𝑘𝑘𝑘 ≤ 1;   ∀𝑘𝑘 = 2, . . . ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1 𝑁𝑁 − 1,      (17) 

 
𝑠𝑠𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑗𝑗 ≤ 𝑀𝑀�1 − 𝑥𝑥𝑖𝑖𝑖𝑖 �   ∀𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁,         (18) 
 
∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1          (19) 

 
𝑂𝑂𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖;    ∀𝑖𝑖 = 1, . . . ,𝑁𝑁,        (20) 
 
𝑠𝑠𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖;    ∀𝑖𝑖 = 1, . . . ,𝑁𝑁,         (21) 
 
𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1};  ∀𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁        (22) 

 
 
  
 

The time window constraint practically means that solutions that target the OP can’t solve 
the OPTW whereas OPTW solutions can still be utilized to solve OP (Tricoire et al.(2010))[22] . With 
this in mind, specific solutions of the OPTW started with Kantor and Rosenwein (1992)[23]. They 
produced an insertion heuristic that uses a “score over insertion time” ratio to choose inserted 
nodes while making sure that time windows are not violated. Mansini et al.(2006) [24] developed a 
neighborhood search heuristic that targets the case where the starting node is also the end node. 
Lastly, moving in the opposite direction Righini et Salasmi (2006,2009) [25][26] presented an exact 
algorithm for the OPTW which used dynamic programming to optimally solve instances.  

 
 
 



Μεταπτυχιακή Διατριβή  Σανιδάς Γεώργιος                

 10 

 
2.1.4 The Team Orienteering Problem with Time Windows (TOPTW)  

 
 
 

TOPTW is probably the most common OP extension among those presented this far as it can serve 
as the basis for a popular OP practical application, the Tourist Trip Design Problem.  

 
Continuing with the same notation we have the following decision variables. 

 
xijp =1, assuming a visit from node i to node j in path p is viable ; it will be 0 if not 
 
yip =1, if node i is visited in p 
 
sip   = the start of visit at node i in path p  
 
M = a constant 
 
 
𝑀𝑀𝑎𝑎𝑎𝑎 ∑ ∑  𝑁𝑁−1

𝑖𝑖=2 𝑆𝑆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑃𝑃
𝑝𝑝=1        (23) 

 
∑ ∑  𝑁𝑁

𝑗𝑗=2 𝑥𝑥1𝑗𝑗𝑗𝑗 = ∑ ∑  𝑁𝑁−1
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃,𝑃𝑃

𝑝𝑝=1
𝑃𝑃
𝑝𝑝=1       (24) 

 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = ∑  𝑁𝑁

𝑗𝑗=2 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘 =  𝑦𝑦𝑘𝑘𝑘𝑘;    ∀𝑘𝑘 = 2, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 ,𝑁𝑁−1
𝑖𝑖=1   (25) 

 
𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑗𝑗𝑗𝑗 ≤ 𝑀𝑀�1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 �;   ∀𝑖𝑖 = 1, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃     (26) 
 
∑ 𝑦𝑦𝑘𝑘𝑘𝑘𝑃𝑃
𝑝𝑝=1 ≤ 1 ∀𝑘𝑘 = 2, . . . ,𝑁𝑁 − 1,        (27) 

 
∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1  ∀𝑝𝑝 = 1, . . . ,𝑃𝑃 ,      (28) 

 
𝑂𝑂𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖𝑖𝑖;   ∀𝑖𝑖 = 1, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃       (29) 
 
𝑠𝑠𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖;   ∀𝑖𝑖 = 1, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃       (30) 
 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖 ∈ {0,1};  ∀𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁;∀𝑝𝑝 = 1, . . . ,𝑃𝑃     (31) 

 
 

Montemanni and Gambardella (2009) [27] developed new instances for TOPTW  and 
produced solution of up to 4 tours based on ant colony optimization,  a hierarchical generalization of 
the TOPTW. Vansteenwegen et al (2009d) [28] developed a fast metaheuristic called Iterated Local 
Search (ILS) to solve the instances proposed with Solomon , whose optimal solutions are known. 
ILS is the focal point of this thesis and will be covered in much greater detail later on. Tricoire et al 
(2010) [29] proposed a Variable Neighborhood Search (VNS) algorithm;  their results showed that 
they managed to produce quality solutions for instances of  up to 100 nodes with two tours in one 
minute of computation time. Tricoire et al (2010) actually worked on the Multi Period Team 
Orienteering Problem with Time Windows, a generalization of TOPTW. 
 
 
2.2 The Time Dependent Orienteering Problem (TDOP) 
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TTDP does away with what has been a major assumption so far, that travel time between two 
nodes is a constant value. Practically, this is an oversimplification that ignores unforeseen events or 
network properties that may result in phenomena like congestion. Far more common occurrence is 
of course the waiting in a station typically associated with public transport systems. As usual, the 
formulation of the problem begins with the introduction of decision variables.  

 
𝑋𝑋𝑖𝑖𝑗𝑗𝑡𝑡 = 1: assuming a departure from node i in order to reach node j happens in time slot 

t, it will be  0 otherwise  
𝑊𝑊𝑖𝑖𝑗𝑗𝑡𝑡  : the actual  time of the departure within timeslot t from node i in order to reach 

node j 
                  𝜃𝜃𝑖𝑖𝑗𝑗𝑡𝑡  : slope coefficient of the linear time-dependent travel time  

𝜂𝜂𝑖𝑖𝑗𝑗𝑡𝑡  : intercept coefficient of the linear time-dependent travel time  
τ𝑖𝑖𝑗𝑗𝑡𝑡  : lower limit of time slot t for arc ( i , j )  
𝑇𝑇𝑖𝑖𝑖𝑖   : number of time slots for arc ( i , j ) 

 
The objective function that  maximizes the total profit  is  
 

𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑  ∑  𝑇𝑇𝑖𝑖𝑖𝑖  
𝑡𝑡=1

𝑁𝑁
𝑗𝑗=2 𝑆𝑆𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑁𝑁−1

𝑖𝑖=2        (32) 
 

The following constraints must be respected: 
 

∑ 𝑋𝑋1𝑗𝑗1 = ∑ ∑  𝑇𝑇𝑖𝑖𝑖𝑖 
𝑡𝑡=1 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 1,𝑁𝑁−1

𝑖𝑖=1
𝑁𝑁
𝑗𝑗=2        (33) 

∑ ∑  𝑇𝑇𝑖𝑖ℎ 
𝑡𝑡=1 𝑋𝑋𝑖𝑖ℎ𝑡𝑡 = ∑ ∑  𝑇𝑇ℎ𝑗𝑗 

𝑡𝑡=1 𝑋𝑋ℎ𝑗𝑗𝑗𝑗 ≤ 1;  ∀ℎ = 2, . . . ,𝑁𝑁 − 1,𝑁𝑁
𝑗𝑗=2

𝑁𝑁−1
𝑖𝑖=1      (34) 

∑ ∑ [  𝑊𝑊𝑖𝑖ℎ𝑡𝑡 +  (𝜃𝜃𝑖𝑖ℎ𝑡𝑡 𝑊𝑊𝑖𝑖ℎ𝑡𝑡  + 𝜂𝜂𝑖𝑖ℎ𝑡𝑡  𝛸𝛸𝑖𝑖ℎ𝑡𝑡  ) ]  𝑇𝑇𝑖𝑖ℎ 
𝑡𝑡=1 = ∑ ∑  𝑇𝑇ℎ𝑗𝑗 

𝑡𝑡=1 𝑊𝑊ℎ𝑗𝑗𝑗𝑗 ;   ∀ℎ = 2, . . . ,𝑁𝑁 − 1,𝑁𝑁
𝑗𝑗=2

𝑁𝑁−1
𝑖𝑖=1 (35) 

                               
𝑋𝑋1𝑗𝑗1 τ𝑖𝑖𝑗𝑗𝑡𝑡  ≤  𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗 ≤ 𝑋𝑋𝑖𝑖𝑗𝑗𝑡𝑡 τ𝑖𝑖𝑗𝑗(𝑡𝑡+1); 𝑖𝑖 = 1 … ,𝑁𝑁 − 1, 𝑗𝑗 = 2 … .𝑁𝑁;  ∀𝑡𝑡      (36) 

 ∑ ∑ ∑  𝑇𝑇𝑖𝑖𝑖𝑖 
𝑡𝑡=1 [ θ𝑖𝑖𝑖𝑖𝑖𝑖 W𝑖𝑖𝑖𝑖𝑖𝑖  +  η𝑖𝑖𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  ) ]  𝑁𝑁

𝐽𝐽=2 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 
𝑁𝑁−1
𝑖𝑖=1                  (37) 

            𝑊𝑊1𝑖𝑖1 = 0;  ∀𝑖𝑖 = 1, . . . ,𝑁𝑁,         (38) 
 0 ≤ 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ;  ∀ 𝑡𝑡, 𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁      (39) 
 
 

Constraint (33) forces the path to start and end at nodes 1 and N, while constraint (34) 
ensures that each node is visited at most once. Constraint (35) removes any waiting time: it does so 
by guaranteeing that the departure time of a subsequent node is the sum of the departure time of 
the preceding node and the travel time needed to reach the former. Constraints (36) and (37) 
enforce the limited travel time: they do that by categorizing the departure time in the right time slot. 
Constraint (38) forces each path to start in the first time slot, while constraint (39) ensures that all 
departure times are less than 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 . 

 
Li(2012)  employed network planning as well as dynamic node labeling programming to 

construct an algorithm, while assuming a realistic transportation system with given start and end 
nodes. Verbeeck et al.(2014a) utilized the concept of an Ant Colony System combined with a (time-
dependent) local search procedure with its own evaluation metric. Gunawan et al.(2014) solve 
TDOP through a different prism, that of a practical application giving directions inside a large leisure 
facility e.g. a museum, etc. Four metaheuristics are used to reach solutions with acceptable 
computational times: a restart greedy algorithm, a restart Variable Neighborhood Descent heuristic, 
a basic ILS and a modified ILS which uses an adaptive perturbation size.  
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As expected, a common extension of TDOP is the Time Dependent Orienteering Problem with 
Time Windows (TDOPTW). Garcia et al.(2010,2013), Abbaspoor and Samadzadegan(2011) and 
Gavalas et al(2014) are among the TDOPTW proposed solutions. 
 
 

3. Iterated Local Search procedure for the Team Orienteering 
Problem with Time Windows 
 

3.1 Introduction 
 

ILS is widely regarded as the most popular solution for the TOPTW. Its popularity derives from the 
balance between computational time and high quality solutions that it achieves. It was introduced by 
Pieter Vansteenwegen et al. in 2009. The paper was based on the idea of having an electronic 
assistance application to help tourists plan their trip. It is thus a Tourist Trip Design problem, with 
TOPTW its simplified version.  
 

The premise is that the tourist-user needs help in organizing trips for each day he has at his 
disposal. Each day trip will be relegated to a route. The goal then is to maximize the total score 
collected by the fixed number of routes. A route naturally must be comprised by timely visits to 
points of interest (POI) and must have a fixed duration. It is common for a route to have the same 
starting and final point-node, for example a hotel, but this is not explicitly required. 
 

An additional and very important requirement is the ability to quickly recalculate a proposed trip 
because of altered real life circumstances. For example, if the user stays at a POI longer than 
originally accounted for, a recalculation of the entire solution must be undertaken in order to utilize 
this new information. This is a crucial point for the metaheuristic that will be employed to reach the 
solution, as it is unlikely that a computational time of more than a few seconds will be deemed 
acceptable by the user every time such a recalculation is needed. The introduction of this 
requirement is what made ILS such an important metaheuristic in the literature. 
 
3.2 Mathematical formulation 

 
The mathematical formulation for the TOPTW was already given in literature but will be repeated 
here for continuity.  
 

As already stated, the locations to be visited are points of interest. Each POI in a set of n 
locations, which can also be seen as a node i in a graph, has a score that is realized by visiting it, a 
visiting time 𝑇𝑇𝑖𝑖 , and a time window in which it can be visited, i.e. an opening time and a closing time 
[𝑂𝑂𝑖𝑖 ,𝐶𝐶𝑖𝑖 ]. The first node (1) and the end node (n) of every tour must be fixed and as already 
mentioned may or may not be the same. Since each route usually corresponds to a single day so 
naturally it has a time budget 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 which means that not all nodes can be visited in a route and 
probably not even across a number of routes. The specific goal for each route then is to maximize 
the total profit realized by visiting as many nodes as the time budget allows within their respective 
windows. A node should only be visited once and the arrival at it can happen before it’s opening 
time, but in this case a waiting time must be allowed for since the visit can’t actually occur before 
the node’s opening time.  
  

Due to the nature of the constraints imposed on it, TOPTW is a rather difficult problem to 
solve; in fact Golden et al. have already proved that is an NP-hard problem, meaning an optimal 
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solution can’t be reached in polynomial time. In this context, developing a heuristic that can produce 
a near-optimal solution in mere seconds is not a simple task. 
Based on the notation introduced so far, TOPTW mathematical formulation begins with the following 
decision variables: 
 

xijp =1, when in route p node j is visited after the visit to node i ; it will be 0 if not 
 
yip =1, if node i is visited in route  p; it will be 0 if not 
 
sip   = the start of visit at node i in route p  
 
M = a large constant  
 
 

The following constraints reproduce the requirements mentioned above: 
 
𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑  𝑁𝑁−1

𝑖𝑖=2 𝑆𝑆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑃𝑃
𝑝𝑝=1       

 (40) 
 
∑ ∑  𝑁𝑁

𝑗𝑗=2 𝑥𝑥1𝑗𝑗𝑗𝑗 = ∑ ∑  𝑁𝑁−1
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃,𝑃𝑃

𝑝𝑝=1
𝑃𝑃
𝑝𝑝=1      (41) 

 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = ∑  𝑁𝑁

𝑗𝑗=2 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘 =  𝑦𝑦𝑘𝑘𝑘𝑘;    ∀𝑘𝑘 = 2, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 ,𝑁𝑁−1
𝑖𝑖=1  (42) 

 
𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑗𝑗𝑗𝑗 ≤ 𝑀𝑀�1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 �;   ∀𝑖𝑖 = 1, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃    (43) 
 
∑ 𝑦𝑦𝑘𝑘𝑘𝑘𝑃𝑃
𝑝𝑝=1 ≤ 1 ∀𝑘𝑘 = 2, . . . ,𝑁𝑁 − 1,       (44) 

 
∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1  ∀𝑝𝑝 = 1, . . . ,𝑃𝑃 ,      (45) 

 
𝑂𝑂𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖𝑖𝑖;   ∀𝑖𝑖 = 1, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃       (46) 
 
𝑠𝑠𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖;   ∀𝑖𝑖 = 1, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃       (47) 
 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖 ∈ {0,1};  ∀𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁;∀𝑝𝑝 = 1, . . . ,𝑃𝑃    (48) 

 
 

Objective function (40) demands the maximization of total collected score S. Constraint (41) 
ensures that all tours start at node 1 and end at node N. Constraint (42) guarantees the connectivity 
of each tour while (43) it’s timeline. Constraint (44) ensures that each node cannot be visited more 
than once and constraint (45) limits each tour’s duration to the predetermined time budget 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. 
Constraint (46) states that each visit cannot start before a POI’s opening time while (47) demands 
that the visit cannot start after a POI’s closing time. 
 

Vansteveegen et al(2009) seminal paper introduced a very fast local search procedure that also 
performs very well on the available data sets. The procedure is based on an insertion step and a 
removal (shaking) step to avoid local optima. 
 
3.3 Methodology 

 
3.3.1 Insertion step 
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The insertion step aims to add one after another all possible visits in a tour while simultaneously 
respecting the time budget available. In addition, after each node insertion it must ensure that all 
previously inserted nodes whose visits happen after the just inserted one still have their time 
windows respected. This is a key point for the computation speed of the whole algorithm, as there 
will be needed approximately as many such evaluations as there are possible nodes to be visited. A 
way had to be found to simplify and increase the speed of these calculations. The proposed 
solution was to record two helper variables for each included node, the Wait and the MaxShift. 
Intuitively, Wait represents the time that will have to pass before an actual visit to node can be 
started if someone arrives at it before it’s opening time. If on the other hand the arrival 𝑎𝑎𝑖𝑖 is during 
the node’s time window, then Wait is zero. 

 
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖 = max [0,𝑂𝑂𝑖𝑖 − 𝑎𝑎𝑖𝑖];           (49) 

 
 

MaxShift represents the time a visit completion can be delayed while simultaneously 
respecting both its and all the following nodes time windows. MaxShift of node i is the sum of the 
Wait and the MaxShift of the following node i+1 or  the duration of its own visit as defined by its 
time window, whatever is less. 

  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = min [𝐶𝐶𝑖𝑖 − 𝑆𝑆𝑖𝑖 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+1 + 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖+1];        (50) 

 
 

Knowing the MaxShift of all nodes already included in a tour means that any evaluation 
regarding a new candidate node will take constant time instead of linear. 

 
The delay each new node insertion will impose to the consequent nodes i.e., the total time 

expenditure of inserting a new node j between nodes i and k is given by the following formula: 
 

𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗 + 𝑇𝑇𝑗𝑗 + 𝑐𝑐𝑗𝑗𝑗𝑗 −  𝑐𝑐𝑖𝑖𝑖𝑖 ;         (51) 
 

In order for j to be eligible to be inserted between i and k, 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 must be less than or equal 
to the sum of  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑘𝑘 of node k. Additionally, node j ‘s own time window must be 
respected.  
 

The insertion procedure first calculates the best possible place of insertion in the tour for all 
not already included nodes by minimizing their possible Shift. Then an insertion metric for each 
node is calculated, which has the form of the following ratio: 
 
                            𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = (𝑆𝑆𝑖𝑖)2/𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                                                                      (52) 
 
 

The node with the highest ratio will be chosen for insertion in the tour. The ratio places 
more focus on the score of each node rather than it’s time consumption because of the time 
windows constraint and that is manifested by having the square of the score rather than the score 
itself included in the calculation. 
 

After the node with the highest ratio is inserted into the tour, a number of variables for the 
nodes already in the tour will need to be updated to facilitate the next insertion. Particularly 
important are the nodes that represent visits that are to happen after the recently inserted one. For 
these nodes, their arrival, waiting time, start of the actual visit, shift and MaxShift need to be 
updated. These variables are updated through the following formulas: 
 
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑘𝑘∗ = max�0,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑘𝑘 −  𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 � ;     
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𝑎𝑎𝑘𝑘∗ = 𝑎𝑎𝑘𝑘 + 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗; 
𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 = max�0,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑗𝑗 −  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑘𝑘 � ;     
𝑠𝑠𝑘𝑘∗ = 𝑠𝑠𝑘𝑘 + 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘; 
𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘∗ = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 −  𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘;  
 
 

All subsequent nodes will be updated through these formulas until the shift will be zero: 
after this point no other node would be affected by the insertion. MaxShift will also be updated for 
node j as well as its previous nodes. 
 
 
The following figure presents the pseudocode of the insertion step. 
 
For each not already included node: 
 Calculate shift and best possible insertion position; 
 Calculate ratio; 
Insert node with highest ratio; 
For inserted node j: 
 Calculate Arrival, Start (of actual visit), Wait; 
For each node after recently inserted node j: 
 Update Arrival, Start (of actual visit), Wait, Shift, MaxShift; 
For inserted node j: 
 Calculate MaxShift; 
For each node before inserted node j; 
 Update MaxShift; 
 
3.3.2 Shake Step 

 
The insertion step is finished when there are no more possible insertions available. At that time, a 
shake step is introduced in order to avoid local optima. Specifically, a number of nodes will be 
removed from the tour to allow reinsertion in the pursuit of optimality. Two integers are used to 
represent two decisions needed at this point, the number of consecutives nodes to be removed (𝑅𝑅𝑝𝑝) 
and the position in the tour that the removal will begin (𝑆𝑆𝑝𝑝). If the sequence of nodes to be removed 
includes the end node, the process will pick up with the starting node.  

 
After the removal of one or more nodes, a gap will occur in the tour that will generate 

unnecessary waiting time. For that purpose, all nodes will be shifted towards the beginning of the 
tour to close that gap. However, if a node’s time window doesn’t allow for that node’s shifting, the 
shifting stops and all subsequent nodes remain unchanged. Once the shake step is completed, all 
affected nodes will be updated by a process similar to the one used after the insertion step. Once 
again, nodes before the shaking sequence need only have their MaxShift updated. In the end, a 
gap that minimizes waiting time will have been introduced to the tour which will allow the insertion of 
more profitable nodes than the ones removed. 
 

The following figure presents the pseudocode for the shake step: 
 
For each tour: 
 Remove nodes between i and j inclusive; 
 Calculate Shift; 
 For each node after j: 
  Shift node towards starting node; 
  Update Arrival, Start, Shift, MaxShift, Wait; 
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 For each node before i: 
  Update MaxShift; 
 

3.3.3 The Heuristic 
 

The ILS heuristic combines the two previously mentioned steps in the following way: 
 

Since the problem at hand is TOPTW, we begin with a set of empty tours sized from 1 to m. The 
two parameters of the shake step (𝑅𝑅𝑝𝑝, 𝑆𝑆𝑝𝑝) are initialized to 1. The heuristic records the best found 
solution after every iteration and will loop until no improvement appears after a given number of 
times. Every iteration begins with an insertion step that will loop until a so called local optimum is 
reached. If the current tour is more profitable than the so far best solution recorded, it replaces it as 
best incumbent solutions. In either case, the heuristic will move on to the next step, shake. After 
every shake 𝑆𝑆𝑝𝑝 is increased by the current 𝑅𝑅𝑝𝑝, while 𝑅𝑅𝑝𝑝 itself is increased by 1. The shake step will 
then be performed with these parameters as input. 𝑆𝑆𝑝𝑝 and 𝑅𝑅𝑝𝑝 have been given upper limits through 
testing the algorithm until the best solutions were produced. Specifically, 𝑆𝑆𝑝𝑝 cannot be more than 
the size of the smallest tour in the set, at which point this size will be subtracted from it in order to 
continue the process. On the other hand, if 𝑅𝑅𝑝𝑝 reaches 𝑛𝑛

3∗𝑚𝑚
 where n= number of nodes and 

m=numbers of tours to be created, it will reset to 1. The only predetermined decisions then are the 
number of nodes available for consideration, the number of tours to be created and the number of 
iterations for the heuristic, after which no further improvement is needed. The latter is of course the 
result of the balance to be decided between the computation time and the quality of the produced 
solution. Through testing, the number that seems to be soft cap regarding the quality of the solution 
without adding unnecessary computation time is 150. 

 
The pseudocode for the heuristic is the following: 
 

𝑆𝑆𝑝𝑝=1; 
𝑅𝑅𝑝𝑝=1; 
NumberOfIterations=0; 
while NumberOfIterations<150: 
 while localOptimum not reached: 
  Perform InsertionStep; 
 if currentSolution better than bestFoundSolution: 
  bestFoundSolution= currentSolution; 
  𝑅𝑅𝑝𝑝=1; 

NumberOfIterations=0; 
  else: 
   NumberOfIterations = NumberOfIterations + 1; 
  Perform Shake (𝑆𝑆𝑝𝑝,𝑅𝑅𝑝𝑝); 
  𝑆𝑆𝑝𝑝 = 𝑆𝑆𝑝𝑝+ 𝑅𝑅𝑝𝑝; 
  𝑅𝑅𝑝𝑝 = 𝑅𝑅𝑝𝑝+ 1; 
  if 𝑆𝑆𝑝𝑝 >= Size of smallest tour in set: 
   𝑆𝑆𝑝𝑝 = 𝑆𝑆𝑝𝑝 - Size of smallest tour in set; 
  if 𝑅𝑅𝑝𝑝== 𝑛𝑛

3∗𝑚𝑚
: 

   𝑅𝑅𝑝𝑝= 1; 
 return bestFoundSolution; 
 
 
3.3.4 Visit time modification 
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In the original ILS context, a visit is considered to take place if the arrival to one node happens 
anytime before the node’s closing time. Thus, the visit’s proposed duration is not always respected; 
a visit that lasts just one second is acceptable. Our approach is much stricter in this regard: a visit’s 
proposed duration is always enforced. As a consequence we can expect lower total scores than the 
original ILS’s results, since some of our tours will possibly contain fewer visits in order to 
accommodate our much stricter criteria. 
 
3.3.5 Point-of-interest categorization and user choice 

 
Another modification we introduce is the classification of POI’s in categories based on their 
particular touristic purpose. For example, a POI can be classified as a museum, a theater, an open 
space and so on. The user is then given the choice to control the relative value each category has 
to them. Specifically, if a particular user has only a passing interest in museums, he can choose to 
reduce the proposed score of subsequent museum visits after a certain limit of already included 
museums in the designed tour is reached. Conversely, if a user is specifically interested in sights in 
open spaces, he can choose not to reduce the proposed score of subsequent open spaces visits no 
matter how many such visits are already planned. In summation, this modification allows the user to 
favor POI’s of particular interest to him, while limiting those he is indifferent to, while maintaining the 
highest overall score of the whole tour possible. 
 
 
 
4. Cluster based Heuristics for the Team Orienteering Problem 
with Time Windows 
 
4.1 Introduction 

 
Gavalas et al.[30] added another dimension to the TOPTW rooted in the ILS solving procedure: the 
division of the set of available nodes in clusters based on geographical criteria. The reasoning 
behind this addition is that ILS, during the evaluation of candidate nodes for insertion, will disregard 
high profit areas of nodes if these are far from the current solution in geographical terms. This of 
course happens because the ratio takes into account the time consumption of each visit through 
Shift, even though there is an attempt to mitigate this by squaring the score to place more emphasis 
in it. However, the problem still persists because ILS is evaluating each node individually. The 
proposed solution is to cluster nearby nodes creating profitable areas to increase those nodes 
attractiveness. The main idea is that if a high profit node is visited it’s nearby nodes can also be 
visited without significant additional travel time. Having the concept of the Tourist Trip Design 
Problem in mind, this can mean that these nodes can be reached by walking, a highly desirable trait 
for a tourist.  
 

There are two algorithms developed to handle this process, CSCRatio and CSCRoutes, both 
based on ILS. Both algorithms use the same procedure to form the clusters of nodes by employing 
the global k-means algorithm developed by Likas et al.[31], through which empty clusters are 
initialized during a preprocessing phase. Afterwards, in a phase common to both algorithms called 
RouteInitPhase the m requested routes are each assigned exactly one node from the clusters. 
Since it is reasonable that the number of clusters will be greater than the number of routes, a 
decision must be reached over which clusters will provide the routes with nodes during this step. 
One approach would be to simply rank the clusters formed on total profit and pick the best ones. A 
more optimal one would be to be flexible at this stage and try various combinations of the best 
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clusters and stick with the ones giving better solutions at the algorithm stage. Whatever the 
approach decided, RouteInitPhase takes as argument a m number of clusters from the 
listOfClusterSet and after finding the node with the highest score in it, delegates it to one of the m 
requested routes-tours. By doing this, the process ensures that various geographical areas from the 
set of available nodes will be represented and avoid getting trapped in high-scoring local nodes. 
The process then continues, much like ILS, with an insertion and a shake step, either by employing 
the CSCRatio or CCSCRoutes algorithm. Our stricter criterion of respecting a visit’s proposed 
duration are also applied here. 
 
4.2  Cluster Search Cluster Ratio  
 
The insertion step of the CSCRatio algorithm has additional argument in a parameter called 
clusterParameter ≥ 1. ClusterParameter represents the emphasis decided to be given on the 
clustering of the nodes. The greater it is, the higher the chance a visit to a node will be 
accompanied by a visit to another node of the same cluster. The way this emphasis is introduced in 
the ILS is by creating a modified version of 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 called 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 which is calculated by 

𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
clusterParameter 

. When clusterParameter is 1, 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 equals 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, in which case we have the 
standard case of ILS. However, as clusterParameter increases the time consumption of a visit to a 
node in the same cluster of the current one decreases, making it more likely to be chosen 
compared to a node of a different cluster. This happens because the evaluation ratio is now given 
by the following type: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖

2

𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
. CSCRatio begins with the clusterParameter set at 1.3 

and gradually decreases it by 0.1 at each quarter of the total iterations it will go through. So, in the 
beginning a much greater emphasis is placed on visiting nodes within the same cluster and as the 
iterations progress this emphasis declines until the cluster play no role in evaluating nodes at the 
last quarter of iterations. A balance then is reached between the benefits of visiting inside a cluster 
and the diversification that ILS provides. 
 
 

The shake step in the CSCRatio algorithm is very much like the respective step of ILS; a 
modification is made regarding the number of nodes that are to be moved. Specifically, in CSCRatio 
𝑅𝑅𝑝𝑝 is limited to half the size of the largest tour in the solution and not 𝑛𝑛

3∗𝑚𝑚
 which reduces 

computation time since the local optimum is reached faster than in the ILS having a smaller portion 
of the solution removed at each iteration. This reduction in computation time allows more iterations 
of the heuristic to be completed without taking more total execution time than the ILS.  
 
The pseudocode of CSCRatio is given in the figure below: 
 
 
Perform k-means algorithm : intiliaze k amount of clusters 
            Construct the listOfClusterSets  
it1= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

4
; 

it2= 2∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
4

; 

it3= 3∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
4

; 
 
while listOfClusterSets not empty: 
 remove all nodes included in currentSolution; 
 theClusterSetIdToInsert= listOfClusterSets.pop(); 
  
 RoutInitPhase(theClusterSetIdToInsert) 

𝑆𝑆𝑝𝑝=1; 
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𝑅𝑅𝑝𝑝=1; 
NumberOfIterations=0; 
while NumberOfIterations < maxIterations: 
 if NumberOfIterations <it2: 
  if NumberOfIterations <it1: 
   clusterParameter = 1.3; 
  else: 
   clusterParameter = 1.2; 
 else: 
  if NumberOfIterations <it3: 
   clusterParameter = 1.1; 
  else: 
   clusterParameter = 1.0; 
  
 while localOptimum not reached: 
  CSCRatio_Insertion (clusterParameter); 
 if currentSolution better than bestFoundSolution: 
  bestFoundSolution= currentSolution; 
  𝑅𝑅𝑝𝑝=1; 

NumberOfIterations=0; 
  else: 
   NumberOfIterations = NumberOfIterations + 1; 

 if 𝑅𝑅𝑝𝑝 >  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2

: 
 𝑅𝑅𝑝𝑝=1; 

  Perform Shake (𝑆𝑆𝑝𝑝,𝑅𝑅𝑝𝑝); 
  𝑆𝑆𝑝𝑝 = 𝑆𝑆𝑝𝑝+ 𝑅𝑅𝑝𝑝; 
  𝑅𝑅𝑝𝑝 = 𝑅𝑅𝑝𝑝+ 1; 
  if 𝑆𝑆𝑝𝑝 >= Size of smallest tour in set: 
   𝑆𝑆𝑝𝑝 = 𝑆𝑆𝑝𝑝 - Size of smallest tour in set; 
  if 𝑅𝑅𝑝𝑝== 𝑛𝑛

3∗𝑚𝑚
: 

   𝑅𝑅𝑝𝑝= 1; 
 Return bestFoundSolution; 
 
4.3 Cluster Search Cluster Routes algorithm 
 
Within a tour p in a proposed solution of TOPTW we define a sub-tour of consecutive nodes that 
belong in the same cluster as a Cluster Route (CR) of p associated with cluster C and denoted as 
𝐶𝐶𝐶𝐶𝐶𝐶

𝑝𝑝. 𝐶𝐶𝐶𝐶𝐶𝐶
𝑝𝑝 is greater than 1 and less than or equal to the size of cluste r C. A key difference of 

CSCRoutes from the CSCRatio is that it doesn’t allow to return to a previously visited cluster, with 
the exception of the starting and ending node being in the same cluster. In that case, a reentry to 
the cluster is allowed. This difference means that for a tour p there can only be one 𝐶𝐶𝐶𝐶𝐶𝐶

𝑝𝑝 sub-tour 
and also that a node can’t just be entered at any position in the tour; it has to be in proximity to the 
other nodes of the same cluster. This restriction will lead to lower-quality solutions compared to the 
ILS and CSCRatio but it will also take significant less execution time because the evaluation 
needed at each iteration will be a lot less in CSCRoutes insertion step.  
 
The pseudocode of CSCSRoutes is presented in the following figure: 

 
 

Perform k-means algorithm : intiliaze k amount of clusters 
            Construct the listOfClusterSets  
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while listOfClusterSets not empty: 
 remove all nodes included in currentSolution; 
 theClusterSetIdToInsert= listOfClusterSets.pop(); 
  
 RoutInitPhase(theClusterSetIdToInsert) 

𝑆𝑆𝑝𝑝=1; 
𝑅𝑅𝑝𝑝=1; 
NumberOfIterations=0; 
while NumberOfIterations < maxIterations: 
  
  
 while localOptimum not reached: 
  CSCRoutes_Insert; 
 if currentSolution better than bestFoundSolution: 
  bestFoundSolution= currentSolution; 
  𝑅𝑅𝑝𝑝=1; 

NumberOfIterations=0; 
  else: 
   NumberOfIterations = NumberOfIterations + 1; 

 if 𝑅𝑅𝑝𝑝 >  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2

: 
 𝑅𝑅𝑝𝑝=1; 

  Perform Shake (𝑆𝑆𝑝𝑝,𝑅𝑅𝑝𝑝); 
  𝑆𝑆𝑝𝑝 = 𝑆𝑆𝑝𝑝+ 𝑅𝑅𝑝𝑝; 
  𝑅𝑅𝑝𝑝 = 𝑅𝑅𝑝𝑝+ 1; 
  if 𝑆𝑆𝑝𝑝 >= Size of smallest tour in solution: 
   𝑆𝑆𝑝𝑝 = 𝑆𝑆𝑝𝑝 - Size of smallest tour in solution; 
  if 𝑅𝑅𝑝𝑝== 𝑛𝑛

3∗𝑚𝑚
: 

   𝑅𝑅𝑝𝑝= 1; 
 Return bestFoundSolution 
 
 
5 Experimental results  
 
5.1 Test Instances 
 
The modified ILS, CSCRatio and CSCRoutes algorithms are tested on the widely used datasets of 
Solomon. All data sets have 100 possible nodes to be visited and a fixed proposed visit duration for 
each node. It should be noted that these data sets are a particular fit for TOPTW problems; they are 
not suited for algorithms designed to solve TOP cases.  
 
5.2 Results 
 
All computations are carried out on a personal portable computer with a Intel Core 2 Duo CPU @ 
2.0GHz  with 3.0GB Ram. These specs are actually lower than the ones used to run the original ILS 
and so meaningful comparison can be made regarding the computation time recorded.  
 
Four sizes of tours for each instance were examined (m=1,2,3,4) to keep the tests directly related to 
the original ILS and also because in view of the Tourist Trip Design Problem, these sizes are 
contextually valid. Tables 1-4 present the results of our ILS variant  with the stricter constraints on 
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POI visits (ILS_V.1) and contrast them with the original ILS. Tables 5-8 contrast our modified ILS 
with the accordingly modified version of the CSCRatio algorithm to examine possible benefits from 
employing clustering heuristics, while tables 9-12 do the same with the modified CSCRoutes 
algorithm. 
 

Tables 13-16 display the impact the POI classification and the on-the-fly POI profit adjustments 
(ILS_V.2) have on our modified ILS. Our tighter constraints from ILS_V.1 regarding the visit time  
are respected here as well.  The results are based on an classification in 3 groups with the following 
parameters: 

 
a. First group: POI’s belonging to this group have a 40% reduction in their scores if more than 

1/3 of the nodes already included in that tour belong to it 
b. Second group: POI’s belonging to this group have a 70% reduction in their scores if more 

than 1/3 of the nodes already included in that tour belong to it 
c. Third group: POI’s belonging to this group have a 10% reduction in their scores if more than 

1/3 of the nodes already included in that tour belong to it 
 

The approach selected clearly rewards POI’s of the third group while “punishing” those in the 
first group. All of the parameters selected are arbitrary and chosen randomly, while the user is free 
to change them at will. 
 

As expected and demonstrated in the following tables, our modified ILS is slightly 
underperforming the original ILS due to the enforcing of much stricter criteria regarding the 
completion  of each node visit in its suggested duration. The difference is on average a 1-10% 
reduction in the score of each tour. It is a behavior observed when we move to the respective 
comparisons of the CSCRatio and CSCSRoutes algorithms.  
 

The variant of ILS considering POI categorization and dynamic POI profits has very good 
results when the number of tours is less than 3. As that number increases, the algorithm struggles 
to find quality nodes after the score reduction and the overall tour score drops significantly. 
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Table 1 – Comparison between Original ILS and ILS_V.1 for m=1 

  
Original ILS 

 
             ILS_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
320 10 0.4 

 
300 10 0.04700  

c102 
 

360 11 0.3 
 

320 11 0.07800  
c103 

 
390 10 0.5 

 
380 11 0.07800  

c104 
 

400 10 0.3 
 

390 11 0.06300  
c105 

 
340 10 0.3 

 
310 9 0.04700  

c106 
 

340 10 0.3 
 

310 10 0.04800  
c107 

 
360 11 0.3 

 
320 10 0.06200  

c108 
 

370 11 0.3 
 

320 10 0.06300  
c109 

 
380 11 0.3 

 
340 11 0.06200  

         r101 
 

182 7 0.1 
 

186 8 0.09400  
r102 

 
286 11 0.2 

 
247 10 0.06300  

r103 
 

286 10 0.2 
 

252 10 0.09300  
r104 

 
297 11 0.2 

 
268 11 0.07800  

r105 
 

247 11 0.1 
 

215 9 0.06300  
r106 

 
293 11 0.2 

 
258 10 0.14100  

r107 
 

288 10 0.2 
 

243 11 0.12500  
r108 

 
297 11 0.2 

 
233 11 0.07900  

r109 
 

276 11 0.2 
 

264 11 0.09400  
r110 

 
281 11 0.3 

 
247 11 0.07800  

r111 
 

295 11 0.2 
 

276 11 0.09400  
r112 

 
295 11 0.2 

 
274 11 0.07800  

         rc101 
 

219 9 0.2 
 

203 8 0.06200  
rc102 

 
259 9 0.2 

 
245 10 0.06300  

rc103 
 

265 11 0.3 
 

245 10 0.06300  
rc104 

 
297 11 0.3 

 
240 10 0.05500  

rc105 
 

221 11 0.2 
 

162 7 0.06300  
rc106 

 
239 11 0.2 

 
200 8 0.04700  

rc107 
 

274 11 0.2 
 

240 10 0.06300  
rc108 

 
288 11 0.2 

 
240 10 0.06200  
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Table 2 – Comparison between Original ILS and ILS_V.1 for m=2 

  
Original ILS 

 
             ILS_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
590 21 1.4 

 
540 18 0.18700  

c102 
 

650 22 0.9 
 

610 21 0.32200  
c103 

 
700 22 1.2 

 
660 22 0.12500  

c104 
 

750 22 1.5 
 

700 22 0.22200  
c105 

 
640 21 0.8 

 
540 18 0.12500  

c106 
 

320 20 0.8 
 

550 18 0.18800  
c107 

 
670 22 1.4 

 
570 18 0.12500  

c108 
 

670 22 0.8 
 

570 19 0.14100  
c109 

 
710 22 0.9 

 
640 20 0.18700  

         r101 
 

330 13 0.4 
 

307 13 0.14000  
r102 

 
508 21 0.9 

 
455 18 0.18800  

r103 
 

513 20 0.9 
 

450 19 0.15600  
r104 

 
539 22 1.5 

 
483 21 0.15600  

r105 
 

430 18 0.8 
 

369 16 0.12500  
r106 

 
529 21 0.9 

 
438 19 0.10900  

r107 
 

529 21 1 
 

483 20 0.14000  
r108 

 
549 24 1.4 

 
486 21 0.13600  

r109 
 

498 22 0.5 
 

412 18 0.10900  
r110 

 
515 22 1 

 
435 19 0.14100  

r111 
 

535 23 0.6 
 

471 20 0.12500  
r112 

 
515 21 0.5 

 
450 20 0.12900  

         rc101 
 

427 19 0.6 
 

293 11 0.09400  
rc102 

 
494 20 0.8 

 
326 14 0.10900  

rc103 
 

519 20 1.1 
 

394 16 0.23400  
rc104 

 
565 22 0.7 

 
459 18 0.14100  

rc105 
 

459 22 0.8 
 

289 12 0.15600  
rc106 

 
458 20 0.6 

 
377 15 0.12500  

rc107 
 

515 21 0.5 
 

436 18 0.10900  
rc108 

 
546 23 0.6 

 
464 19 0.12500 
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Table 3 – Comparison between Original ILS and ILS_V.1 for m=3 

  
Original ILS 

 
            ILS_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
790 29 1.1 

 
730 25 0.21900  

c102 
 

890 32 2.1 
 

800 29 0.37800  
c103 

 
960 33 2.2 

 
920 32 0.20300  

c104 
 

1010 34 1.3 
 

950 33 0.21800  
c105 

 
840 30 1 

 
780 26 0.20400  

c106 
 

840 30 1.1 
 

780 26 0.22500  
c107 

 
900 33 1.5 

 
760 25 0.19400  

c108 
 

900 33 1.2 
 

820 27 0.25000  
c109 

 
950 33 2 

 
860 28 0.20300  

         r101 
 

481 21 0.8 
 

415 18 0.20300  
r102 

 
685 31 1 

 
606 25 0.25000  

r103 
 

720 31 2 
 

630 27 0.17200  
r104 

 
765 34 1.5 

 
662 29 0.17200  

r105 
 

609 27 2.3 
 

519 22 0.16600  
r106 

 
719 32 2.1 

 
604 26 0.28900  

r107 
 

747 33 1.1 
 

611 26 0.21600  
r108 

 
790 36 3.1 

 
691 31 0.21700  

r109 
 

699 31 1.8 
 

580 24 0.24600  
r110 

 
711 32 1.4 

 
618 26 0.25000  

r111 
 

764 34 1.8 
 

654 28 0.26500  
r112 

 
758 34 1.1 

 
665 29 0.21900  

         rc101 
 

604 29 1.4 
 

448 17 0.18700  
rc102 

 
698 30 1.3 

 
486 20 0.18800  

rc103 
 

747 30 1.1 
 

588 22 0.21800  
rc104 

 
822 33 1.3 

 
690 27 0.18500  

rc105 
 

654 28 0.8 
 

422 17 0.25000  
rc106 

 
678 31 1 

 
546 21 0.18800  

rc107 
 

745 31 0.9 
 

602 24 0.17200  
rc108 

 
757 29 1.1 

 
648 26 0.20500  
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Table 4 – Comparison between Original ILS and ILS_V.1 for m=4 

  
Original ILS 

 
            ILS_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
1000 39 3.8 

 
910 31 0.31700  

c102 
 

1090 43 1.8 
 

980 35 0.37500  
c103 

 
1150 44 2.5 

 
1080 39 0.23500  

c104 
 

1220 45 3 
 

1160 42 0.35900  
c105 

 
1030 40 1.8 

 
950 33 0.25800  

c106 
 

1040 40 2.1 
 

940 32 0.25000  
c107 

 
1100 43 2 

 
950 33 0.31300  

c108 
 

1100 44 3.6 
 

970 34 0.26600  
c109 

 
1180 45 2.5 

 
1030 36 0.51500  

         r101 
 

601 28 1.4 
 

507 22 0.23500  
r102 

 
807 39 1.7 

 
687 29 0.26600  

r103 
 

878 42 2.2 
 

782 33 0.37500  
r104 

 
941 45 3.8 

 
808 36 0.26500  

r105 
 

735 35 2.9 
 

634 27 0.28200  
r106 

 
870 41 3.5 

 
725 31 0.28100  

r107 
 

927 44 3.3 
 

765 34 0.23000  
r108 

 
982 47 3.2 

 
865 38 0.23500  

r109 
 

866 40 2.1 
 

763 33 0.27700  
r110 

 
870 42 2 

 
768 34 0.48400  

r111 
 

935 45 2 
 

805 35 0.21900  
r112 

 
939 44 3.1 

 
830 37 0.23500  

         rc101 
 

794 37 1.9 
 

598 23 0.28100  
rc102 

 
881 42 2.3 

 
656 27 0.31300  

rc103 
 

947 42 2 
 

777 30 0.25000  
rc104 

 
1019 43 1.7 

 
833 33 0.34100  

rc105 
 

841 37 1.5 
 

601 23 0.32800  
rc106 

 
874 37 2.5 

 
728 28 0.28100  

rc107 
 

951 42 1.9 
 

773 30 0.26700  
rc108 

 
998 43 2 

 
837 33 0.23400  
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Table 5 – Comparison between ILS_V.1 and CSCRatio_V.1 for m=1 

  
               ILS_V.1 

 
       CSCRatio_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
300 10 0.047 

 
300 10 1.885 

c102 
 

320 11 0.078 
 

330 11 2.745 
c103 

 
380 11 0.078 

 
390 11 2.915 

c104 
 

390 11 0.063 
 

390 11 2.811 
c105 

 
310 9 0.047 

 
320 10 2.54 

c106 
 

310 10 0.048 
 

310 10 2.56 
c107 

 
320 10 0.062 

 
300 10 3.405 

c108 
 

320 10 0.063 
 

320 10 2.903 
c109 

 
340 11 0.062 

 
350 10 4.256 

         r101 
 

186 8 0.094 
 

142 7 0.186 
r102 

 
247 10 0.063 

 
246 10 0.271 

r103 
 

252 10 0.093 
 

268 11 0.297 
r104 

 
268 11 0.078 

 
266 12 0.337 

r105 
 

215 9 0.063 
 

159 7 0.261 
r106 

 
258 10 0.141 

 
258 10 0.371 

r107 
 

243 11 0.125 
 

267 11 0.475 
r108 

 
233 11 0.079 

 
265 12 0.515 

r109 
 

264 11 0.094 
 

238 10 0.581 
r110 

 
247 11 0.078 

 
243 11 0.495 

r111 
 

276 11 0.094 
 

272 11 0.68 
r112 

 
274 11 0.078 

 
262 12 0.701 

         rc101 
 

203 8 0.062 
 

180 7 2.453 
rc102 

 
245 10 0.063 

 
222 9 4.156 

rc103 
 

245 10 0.063 
 

222 9 4.234 
rc104 

 
240 10 0.055 

 
243 10 5.109 

rc105 
 

162 7 0.063 
 

162 7 2.75 
rc106 

 
200 8 0.047 

 
200 8 4.219 

rc107 
 

240 10 0.063 
 

220 9 4.781 
rc108 

 
240 10 0.062 

 
240 10 4.375 
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Table 6 – Comparison between ILS_V.1 and CSCRatio_V.1 for m=2 

  
                ILS_V.1 

 
       CSCRatio_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
540 18 0.187 

 
540 18 9.247 

c102 
 

610 21 0.322 
 

610 21 13.097 
c103 

 
660 22 0.125 

 
650 22 10.513 

c104 
 

700 22 0.222 
 

700 23 9.516 
c105 

 
540 18 0.125 

 
520 18 6.328 

c106 
 

550 18 0.188 
 

550 18 6.273 
c107 

 
570 18 0.125 

 
540 18 6.781 

c108 
 

570 19 0.141 
 

560 19 7.187 
c109 

 
640 20 0.187 

 
620 21 8.408 

         r101 
 

307 13 0.14 
 

251 11 1.139 
r102 

 
455 18 0.188 

 
419 18 1.706 

r103 
 

450 19 0.156 
 

463 19 2.077 
r104 

 
483 21 0.156 

 
507 22 2.391 

r105 
 

369 16 0.125 
 

362 15 1.711 
r106 

 
438 19 0.109 

 
429 18 2.136 

r107 
 

483 20 0.14 
 

473 20 3.085 
r108 

 
486 21 0.136 

 
521 23 3.918 

r109 
 

412 18 0.109 
 

411 18 3.374 
r110 

 
435 19 0.141 

 
419 19 3.528 

r111 
 

471 20 0.125 
 

462 20 4.176 
r112 

 
450 20 0.129 

 
485 20 4.359 

         rc101 
 

293 11 0.094 
 

344 13 6.36 
rc102 

 
326 14 0.109 

 
385 16 8.094 

rc103 
 

394 16 0.234 
 

440 17 8.906 
rc104 

 
459 18 0.141 

 
478 19 10.641 

rc105 
 

289 12 0.156 
 

369 15 11.625 
rc106 

 
377 15 0.125 

 
370 15 12.841 

rc107 
 

436 18 0.109 
 

429 18 11.797 
rc108 

 
464 19 0.125 

 
447 17 10.547 
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Table 7 – Comparison between ILS_V.1 and CSCRatio_V.1 for m=3 

  
               ILS_V.1 

 
        CSCRatio_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
730 25 0.219 

 
730 25 10.564 

c102 
 

800 29 0.378 
 

780 28 22.648 
c103 

 
920 32 0.203 

 
920 32 21.702 

c104 
 

950 33 0.218 
 

920 32 19.339 
c105 

 
780 26 0.204 

 
780 26 21.529 

c106 
 

780 26 0.225 
 

780 26 17.257 
c107 

 
760 25 0.194 

 
810 27 22.382 

c108 
 

820 27 0.25 
 

760 26 14.899 
c109 

 
860 28 0.203 

 
840 28 20.18 

         r101 
 

415 18 0.203 
 

386 17 4.481 
r102 

 
606 25 0.25 

 
563 24 7.035 

r103 
 

630 27 0.172 
 

642 27 6.458 
r104 

 
662 29 0.172 

 
661 29 6.858 

r105 
 

519 22 0.166 
 

494 22 5.134 
r106 

 
604 26 0.289 

 
598 25 5.906 

r107 
 

611 26 0.216 
 

642 28 6.729 
r108 

 
691 31 0.217 

 
707 30 7.546 

r109 
 

580 24 0.246 
 

601 25 9.655 
r110 

 
618 26 0.25 

 
610 27 13.391 

r111 
 

654 28 0.265 
 

695 30 12.82 
r112 

 
665 29 0.219 

 
630 29 14.068 

         rc101 
 

448 17 0.187 
 

500 19 13 
rc102 

 
486 20 0.188 

 
546 22 15.687 

rc103 
 

588 22 0.218 
 

632 26 19.547 
rc104 

 
690 27 0.185 

 
688 27 24.438 

rc105 
 

422 17 0.25 
 

483 20 13.89 
rc106 

 
546 21 0.188 

 
528 21 16.203 

rc107 
 

602 24 0.172 
 

602 24 18.625 
rc108 

 
648 26 0.205 

 
678 27 23.343 
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Table 8 – Comparison between ILS_V.1 and CSCRatio_V.1 for m=4 

  
                ILS_V.1 

 
        CSCRatio_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
910 31 0.317 

 
870 31 20.144 

c102 
 

980 35 0.375 
 

910 33 20.698 
c103 

 
1080 39 0.235 

 
1070 39 24.596 

c104 
 

1160 42 0.359 
 

1150 42 26.85 
c105 

 
950 33 0.258 

 
900 32 34.904 

c106 
 

940 32 0.25 
 

910 31 30.429 
c107 

 
950 33 0.313 

 
920 32 22.453 

c108 
 

970 34 0.266 
 

950 33 22.625 
c109 

 
1030 36 0.515 

 
1000 35 24.937 

         r101 
 

507 22 0.235 
 

458 22 9.766 
r102 

 
687 29 0.266 

 
663 28 9.369 

r103 
 

782 33 0.375 
 

708 31 11.163 
r104 

 
808 36 0.265 

 
804 35 12.487 

r105 
 

634 27 0.282 
 

653 28 9.685 
r106 

 
725 31 0.281 

 
727 32 18.817 

r107 
 

765 34 0.23 
 

764 33 16.447 
r108 

 
865 38 0.235 

 
899 39 16.058 

r109 
 

763 33 0.277 
 

747 32 14.724 
r110 

 
768 34 0.484 

 
752 33 18.671 

r111 
 

805 35 0.219 
 

844 37 15.625 
r112 

 
830 37 0.235 

 
814 36 19.068 

         rc101 
 

598 23 0.281 
 

619 23 18.546 
rc102 

 
656 27 0.313 

 
736 30 29.828 

rc103 
 

777 30 0.25 
 

832 32 28.344 
rc104 

 
833 33 0.341 

 
869 34 29.531 

rc105 
 

601 23 0.328 
 

621 24 23.125 
rc106 

 
728 28 0.281 

 
711 27 26.844 

rc107 
 

773 30 0.267 
 

813 31 33.64 
rc108 

 
837 33 0.234 

 
838 33 30 
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Table 9 – Comparison between ILS_V.1 and CSCRoutes_V.1 for m=1 

  
ILS_V.1 

 
        CSCRoutes_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
300 10 0.047 

 
250 9 0.281 

c102 
 

320 11 0.078 
 

340 11 0.281 
c103 

 
380 11 0.078 

 
350 11 0.359 

c104 
 

390 11 0.063 
 

390 11 0.313 
c105 

 
310 9 0.047 

 
300 9 0.25 

c106 
 

310 10 0.048 
 

290 9 0.25 
c107 

 
320 10 0.062 

 
310 10 0.25 

c108 
 

320 10 0.063 
 

350 11 0.266 
c109 

 
340 11 0.062 

 
340 10 0.437 

         r101 
 

186 8 0.094 
 

131 5 0.36 
r102 

 
247 10 0.063 

 
275 10 0.359 

r103 
 

252 10 0.093 
 

263 11 0.391 
r104 

 
268 11 0.078 

 
288 12 0.391 

r105 
 

215 9 0.063 
 

177 7 0.25 
r106 

 
258 10 0.141 

 
279 11 0.546 

r107 
 

243 11 0.125 
 

263 11 0.343 
r108 

 
233 11 0.079 

 
265 11 0.375 

r109 
 

264 11 0.094 
 

234 10 0.359 
r110 

 
247 11 0.078 

 
225 10 0.265 

r111 
 

276 11 0.094 
 

243 10 0.157 
r112 

 
274 11 0.078 

 
253 11 0.266 

         rc101 
 

203 8 0.062 
 

189 7 0.172 
rc102 

 
245 10 0.063 

 
222 9 0.281 

rc103 
 

245 10 0.063 
 

222 9 0.25 
rc104 

 
240 10 0.055 

 
229 9 0.313 

rc105 
 

162 7 0.063 
 

173 7 0.094 
rc106 

 
200 8 0.047 

 
174 7 0.219 

rc107 
 

240 10 0.063 
 

231 9 0.22 
rc108 

 
240 10 0.062 

 
271 10 0.234 
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Table 10 – Comparison between ILS_V.1 and CSCRoutes_V.1 for m=2 

  
ILS_V.1 

 
       CSCRoutes_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
540 18 0.187 

 
470 16 0.407 

c102 
 

610 21 0.322 
 

410 16 0.141 
c103 

 
660 22 0.125 

 
630 22 0.406 

c104 
 

700 22 0.222 
 

670 22 0.609 
c105 

 
540 18 0.125 

 
510 17 0.391 

c106 
 

550 18 0.188 
 

520 18 0.39 
c107 

 
570 18 0.125 

 
540 18 0.453 

c108 
 

570 19 0.141 
 

540 19 0.328 
c109 

 
640 20 0.187 

 
600 21 0.391 

         r101 
 

307 13 0.14 
 

239 10 0.218 
r102 

 
455 18 0.188 

 
439 18 0.313 

r103 
 

450 19 0.156 
 

465 19 0.329 
r104 

 
483 21 0.156 

 
499 21 0.422 

r105 
 

369 16 0.125 
 

298 13 0.218 
r106 

 
438 19 0.109 

 
428 19 0.391 

r107 
 

483 20 0.14 
 

455 20 0.328 
r108 

 
486 21 0.136 

 
499 21 0.578 

r109 
 

412 18 0.109 
 

403 17 0.437 
r110 

 
435 19 0.141 

 
437 19 0.328 

r111 
 

471 20 0.125 
 

487 21 0.297 
r112 

 
450 20 0.129 

 
491 21 0.375 

         rc101 
 

293 11 0.094 
 

311 12 0.187 
rc102 

 
326 14 0.109 

 
350 14 0.266 

rc103 
 

394 16 0.234 
 

423 17 0.438 
rc104 

 
459 18 0.141 

 
448 18 0.313 

rc105 
 

289 12 0.156 
 

352 14 0.234 
rc106 

 
377 15 0.125 

 
371 15 0.266 

rc107 
 

436 18 0.109 
 

430 17 0.297 
rc108 

 
464 19 0.125 

 
447 18 0.328 
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Table 11 – Comparison between ILS_V.1 and CSCRoutes_V.1 for m=3 

  
ILS_V.1 

 
      CSCRoutes_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
730 25 0.219 

 
660 23 0.359 

c102 
 

800 29 0.378 
 

760 28 0.5 
c103 

 
920 32 0.203 

 
880 31 0.562 

c104 
 

950 33 0.218 
 

950 33 0.844 
c105 

 
780 26 0.204 

 
710 24 0.531 

c106 
 

780 26 0.225 
 

660 24 0.641 
c107 

 
760 25 0.194 

 
770 26 0.5 

c108 
 

820 27 0.25 
 

770 25 0.532 
c109 

 
860 28 0.203 

 
870 29 0.5 

         r101 
 

415 18 0.203 
 

347 14 0.171 
r102 

 
606 25 0.25 

 
606 25 0.563 

r103 
 

630 27 0.172 
 

645 28 0.546 
r104 

 
662 29 0.172 

 
688 30 0.781 

r105 
 

519 22 0.166 
 

490 21 0.312 
r106 

 
604 26 0.289 

 
585 24 0.547 

r107 
 

611 26 0.216 
 

651 28 0.453 
r108 

 
691 31 0.217 

 
697 30 0.734 

r109 
 

580 24 0.246 
 

598 25 0.61 
r110 

 
618 26 0.25 

 
625 27 0.641 

r111 
 

654 28 0.265 
 

661 28 0.469 
r112 

 
665 29 0.219 

 
697 30 0.719 

         rc101 
 

448 17 0.187 
 

476 18 0.406 
rc102 

 
486 20 0.188 

 
534 21 0.453 

rc103 
 

588 22 0.218 
 

614 24 0.407 
rc104 

 
690 27 0.185 

 
649 26 0.375 

rc105 
 

422 17 0.25 
 

502 20 0.328 
rc106 

 
546 21 0.188 

 
523 20 0.25 

rc107 
 

602 24 0.172 
 

632 25 0.343 
rc108 

 
648 26 0.205 

 
623 24 0.453 
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Table 12 – Comparison between ILS_V.1 and CSCRoutes_V.1 for m=4 

  
ILS_V.1 

 
      CSCRoutes_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
910 31 0.317 

 
860 30 0.312 

c102 
 

980 35 0.375 
 

930 34 0.469 
c103 

 
1080 39 0.235 

 
1050 38 0.531 

c104 
 

1160 42 0.359 
 

1150 42 0.765 
c105 

 
950 33 0.258 

 
860 30 0.766 

c106 
 

940 32 0.25 
 

880 32 0.469 
c107 

 
950 33 0.313 

 
950 33 0.75 

c108 
 

970 34 0.266 
 

930 33 0.765 
c109 

 
1030 36 0.515 

 
980 35 0.766 

         r101 
 

507 22 0.235 
 

421 18 0.171 
r102 

 
687 29 0.266 

 
643 27 0.563 

r103 
 

782 33 0.375 
 

595 26 0.359 
r104 

 
808 36 0.265 

 
799 35 0.578 

r105 
 

634 27 0.282 
 

620 26 0.328 
r106 

 
725 31 0.281 

 
730 31 0.547 

r107 
 

765 34 0.23 
 

728 33 0.532 
r108 

 
865 38 0.235 

 
829 36 0.516 

r109 
 

763 33 0.277 
 

711 30 0.594 
r110 

 
768 34 0.484 

 
726 33 0.64 

r111 
 

805 35 0.219 
 

833 36 0.516 
r112 

 
830 37 0.235 

 
818 37 0.453 

         rc101 
 

598 23 0.281 
 

540 21 0.297 
rc102 

 
656 27 0.313 

 
649 25 0.36 

rc103 
 

777 30 0.25 
 

749 29 0.391 
rc104 

 
833 33 0.341 

 
844 33 0.391 

rc105 
 

601 23 0.328 
 

624 24 0.313 
rc106 

 
728 28 0.281 

 
732 28 0.438 

rc107 
 

773 30 0.267 
 

798 31 0.484 
rc108 

 
837 33 0.234 

 
820 32 0.453 
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Table 13 – Comparison between ILS_V.2 and ILS_V.1 for m=1 

  
ILS_V.2 

 
              ILS_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
288 9 0.09 

 
300 10 0.04700  

c102 
 

300 10 0.11 
 

320 11 0.07800  
c103 

 
370 11 0.11 

 
380 11 0.07800  

c104 
 

390 11 0.11 
 

390 11 0.06300  
c105 

 
290 9 0.09 

 
310 9 0.04700  

c106 
 

280 8 0.15 
 

310 10 0.04800  
c107 

 
300 9 0.17 

 
320 10 0.06200  

c108 
 

300 9 0.09 
 

320 10 0.06300  
c109 

 
340 10 0.11 

 
340 11 0.06200  

         r101 
 

168 7 0.19 
 

186 8 0.09400  
r102 

 
244 10 0.3 

 
247 10 0.06300  

r103 
 

191 9 0.2 
 

252 10 0.09300  
r104 

 
203 9 0.24 

 
268 11 0.07800  

r105 
 

202 8 0.12 
 

215 9 0.06300  
r106 

 
217 10 0.29 

 
258 10 0.14100  

r107 
 

207 9 0.13 
 

243 11 0.12500  
r108 

 
192 10 0.18 

 
233 11 0.07900  

r109 
 

192 10 0.17 
 

264 11 0.09400  
r110 

 
210 9 0.14 

 
247 11 0.07800  

r111 
 

239 9 0.2 
 

276 11 0.09400  
r112 

 
223 10 0.28 

 
274 11 0.07800  

         rc101 
 

151 7 0.06 
 

203 8 0.06200  
rc102 

 
200 9 0.09 

 
245 10 0.06300  

rc103 
 

200 9 0.09 
 

245 10 0.06300  
rc104 

 
195 9 0.09 

 
240 10 0.05500  

rc105 
 

138 7 0.09 
 

162 7 0.06300  
rc106 

 
200 8 0.1 

 
200 8 0.04700  

rc107 
 

199 10 0.1 
 

240 10 0.06300  
rc108 

 
191 10 0.1 

 
240 10 0.06200  
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Table 14 – Comparison between ILS_V.2 and ILS_V.1 for m=2 

  
ILS_V.2 

 
               ILS_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
432 15 0.17 

 
540 18 0.18700  

c102 
 

456 17 0.2 
 

610 21 0.32200  
c103 

 
610 21 0.23 

 
660 22 0.12500  

c104 
 

583 21 0.26 
 

700 22 0.22200  
c105 

 
480 15 0.31 

 
540 18 0.12500  

c106 
 

500 16 0.29 
 

550 18 0.18800  
c107 

 
500 16 0.31 

 
570 18 0.12500  

c108 
 

457 16 0.24 
 

570 19 0.14100  
c109 

 
550 18 0.27 

 
640 20 0.18700  

         r101 
 

250 10 0.29 
 

307 13 0.14000  
r102 

 
321 15 0.31 

 
455 18 0.18800  

r103 
 

322 16 0.31 
 

450 19 0.15600  
r104 

 
395 17 0.32 

 
483 21 0.15600  

r105 
 

311 14 0.2 
 

369 16 0.12500  
r106 

 
330 15 0.23 

 
438 19 0.10900  

r107 
 

322 16 0.25 
 

483 20 0.14000  
r108 

 
352 18 0.21 

 
486 21 0.13600  

r109 
 

331 18 0.37 
 

412 18 0.10900  
r110 

 
354 16 0.31 

 
435 19 0.14100  

r111 
 

367 16 0.23 
 

471 20 0.12500  
r112 

 
354 17 0.18 

 
450 20 0.12900  

         rc101 
 

251 12 0.35 
 

293 11 0.09400  
rc102 

 
270 14 0.29 

 
326 14 0.10900  

rc103 
 

279 15 0.42 
 

394 16 0.23400  
rc104 

 
313 17 0.64 

 
459 18 0.14100  

rc105 
 

268 11 0.39 
 

289 12 0.15600  
rc106 

 
308 14 0.73 

 
377 15 0.12500  

rc107 
 

306 16 0.71 
 

436 18 0.10900  
rc108 

 
304 16 0.62 

 
464 19 0.12500  
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Table 15 – Comparison between ILS_V.2 and ILS_V.1 for m=3 

  
ILS_V.2 

 
                 ILS_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
474 21 0.46 

 
730 25 0.21900  

c102 
 

538 23 1.12 
 

800 29 0.37800  
c103 

 
760 27 0.39 

 
920 32 0.20300  

c104 
 

721 30 0.38 
 

950 33 0.21800  
c105 

 
630 21 0.34 

 
780 26 0.20400  

c106 
 

617 23 0.39 
 

780 26 0.22500  
c107 

 
670 23 0.36 

 
760 25 0.19400  

c108 
 

522 22 0.33 
 

820 27 0.25000  
c109 

 
676 25 0.79 

 
860 28 0.20300  

         r101 
 

324 16 0.34 
 

415 18 0.20300  
r102 

 
393 19 0.34 

 
606 25 0.25000  

r103 
 

437 23 0.4 
 

630 27 0.17200  
r104 

 
510 25 0.51 

 
662 29 0.17200  

r105 
 

388 20 0.33 
 

519 22 0.16600  
r106 

 
412 21 0.55 

 
604 26 0.28900  

r107 
 

452 23 0.32 
 

611 26 0.21600  
r108 

 
470 25 0.3 

 
691 31 0.21700  

r109 
 

437 23 0.31 
 

580 24 0.24600  
r110 

 
406 21 0.39 

 
618 26 0.25000  

r111 
 

465 23 0.38 
 

654 28 0.26500  
r112 

 
452 23 0.31 

 
665 29 0.21900  

         rc101 
 

326 17 0.48 
 

448 17 0.18700  
rc102 

 
349 18 0.68 

 
486 20 0.18800  

rc103 
 

306 20 0.35 
 

588 22 0.21800  
rc104 

 
324 21 0.49 

 
690 27 0.18500  

rc105 
 

338 16 0.41 
 

422 17 0.25000  
rc106 

 
372 19 0.46 

 
546 21 0.18800  

rc107 
 

333 22 0.42 
 

602 24 0.17200  
rc108 

 
317 22 0.39 

 
648 26 0.20500  
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Table 16 – Comparison between ILS_V.2 and ILS_V.1 for m=4 

  
ILS_V.2 

 
              ILS_V.1 

Name 
 

Score Visits Comp. time 
 

Score Visits Comp. time 
c101 

 
549 23 0.67 

 
910 31 0.31700  

c102 
 

555 28 0.34 
 

980 35 0.37500  
c103 

 
829 31 0.36 

 
1080 39 0.23500  

c104 
 

728 35 0.26 
 

1160 42 0.35900  
c105 

 
740 27 0.39 

 
950 33 0.25800  

c106 
 

664 28 0.34 
 

940 32 0.25000  
c107 

 
759 28 0.6 

 
950 33 0.31300  

c108 
 

541 27 0.34 
 

970 34 0.26600  
c109 

 
705 32 0.31 

 
1030 36 0.51500  

         r101 
 

401 20 0.38 
 

507 22 0.23500  
r102 

 
427 22 0.52 

 
687 29 0.26600  

r103 
 

475 26 0.29 
 

782 33 0.37500  
r104 

 
480 28 0.28 

 
808 36 0.26500  

r105 
 

470 24 0.32 
 

634 27 0.28200  
r106 

 
473 25 0.31 

 
725 31 0.28100  

r107 
 

525 30 0.28 
 

765 34 0.23000  
r108 

 
529 29 0.26 

 
865 38 0.23500  

r109 
 

453 28 0.28 
 

763 33 0.27700  
r110 

 
508 27 0.29 

 
768 34 0.48400  

r111 
 

456 29 0.31 
 

805 35 0.21900  
r112 

 
477 28 0.25 

 
830 37 0.23500  

         rc101 
 

402 22 0.51 
 

598 23 0.28100  
rc102 

 
372 22 0.65 

 
656 27 0.31300  

rc103 
 

318 25 0.61 
 

777 30 0.25000  
rc104 

 
327 25 0.56 

 
833 33 0.34100  

rc105 
 

370 20 0.46 
 

601 23 0.32800  
rc106 

 
417 23 0.46 

 
728 28 0.28100  

rc107 
 

346 27 0.74 
 

773 30 0.26700  
rc108 

 
322 27 0.83 

 
837 33 0.23400  
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6. Conclusions 
 
 
The first most obvious contribution of the thesis is the inclusion of the realistic “requirement” to 
spend a minimum amount of time at a point of interest in order for it to be considered “visited”. The 
time proposed is tailored for each POI specifically and can even be modified according to the user’s 
preference, making it a quite valuable feature for any tourist trip planner. 

The second meaningful contribution also involves taking into account user preferences: the 
user is invited to place emphasis on a particular category of POI’s, to avoid another one or 
potentially choose a balanced approach. This kind of features really applies a practical perspective 
to ILS. 

As far as performance is concerned, our implementation of ILS  is very close to the original. 
Naturally, the features we introduced impose powerful constraints to the performance of the 
algorithm, which is still very much within acceptable limits from a practical point of view. 
 
 
 
 
7. References 
 
[1] Tsiligirides T. Heuristic methods applied to orienteering ,Journal of the Operational Research 
Society1984;35:797–809 
[2] Golden B, Levy L ,Vohra R The orienteering problem, Naval Research Logistics 1987;34:307–
18. 
[3] Vansteenwegen, P. , Souffriau, W. , & Van Oudheusden, D. (2011a). The orienteering problem: 
A survey. European Journal of Operational Research, 209 (1), 1–10  
[4] Feillet, D. , Dejax, P. , & Gendreau, M. (2005). Traveling salesman problems with prof- its. 
Transportation Science, 39 (2), 188–205  
[5] Laporte, G. , & Rodríguez-Martín, I. (2007). Locating a cycle in a transportation or a 
telecommunications network. Networks, 50 (1), 92–108  
[6] Orienteering Problem: A survey of recent variants, solution approaches and applications  
Aldy Gunawan a , ∗, Hoong Chuin Lau a , Pieter Vansteenwegen b 
[7] Miller, C., Tucker, A., Zemlin, R., 1960 Integer Programming Formulation of Traveling Salesman 
Problems, Journal of the ACM (JACM), Volume 7 Issue 4, Oct. 1960 ,Pages 326-329 
[8] GoldenB, LevyL, VohraR, The orienteering problem, Naval Research Logistics 1987;34:307–18. 
[9] Laporte G, Martello S, The selective travelling salesman problem, Discrete Applied Mathematics 
1990;26:193–207. 
[10] Leifer and Rosenwein, Strong linear programming relaxations for the orienteering problem, 
European Journal of Operational Research, 1994, vol. 73, issue 3, 517-523 
[11] Fischetti et al, Solving the Orienteering Problem through Branch-and-Cut, Informs Journal on 
Computing 10(2):133-148 · May 1998 
[12] R.Ramesh & Kathleen M.Brown, An efficient four-phase heuristic for the generalized 
orienteering problem,  Computers & Operations Research, Volume 18, Issue 2, 1991, Pages 151-
165 
[13] Schilde et al.(2009), Metaheuristics for the bi-objective orienteering problem, Swarm 
Intelligence 3(3):179-201, May 2009 
[14] Chao I, Golden B ,Wasil E, A fast and effective heuristic for the orienteering problem, European 
Journal of Operational Research 1996  ;88:475–89. 
[15] Sevkli, Z. , & Sevilgen, F. E. (2010a). Discrete particle swarm optimization for the orienteering 
problem. In Proceedings of the IEEE congress on evolutionary compu- tation (CEC 2010), 
Barcelona, Spain (pp. 3234–3241) . 
[16] Sevkli, Z. , & Sevilgen, F. E. (2010b). StPSO: Strengthened particle swarm opti- mization. 
Turkish Journal of Electrical Engineering & Computer Sciences, 18 (6), 1095–1114  



Μεταπτυχιακή Διατριβή  Σανιδάς Γεώργιος                

 39 

[17] Chekuri, C. , Korula, N. , & Pál, M. (2012). Improved algorithms for orienteering and related 
problems. ACM Transactions on Algorithms, 8 , 661–670  
[18] Dang, D.-C. , El-Hajj, R. , & Moukrim, A. (2013a). A branch-and-cut algorithm for solving the 
team orienteering problem. In C. Gomes, & M. Sellmann (Eds.), Integration of AI and OR 
techniques in constraint programming for combinatorial optimization problems. Lecture Notes in 
Computer Science: 7874 (pp. 332–339). Springer  
[19] Butt, S., Ryan, D., 1999. An optimal solution procedure for the multiple tour maximum collection 
problem using column generation. Computers and Operations Research 26, 427–441. 
[20] Boussier, S., Feillet, D., Gendreau, M., 2007. An exact algorithm for the team orienteering 
problem. 4OR 5, 211–230. 
[21] Tang, H., Miller-Hooks, E., 2005. A tabu search heuristic for the team orienteering problem. 
Computer and Operations Research 32, 1379–1407. 
[22] Tricoire, F., Romauch, M., Doerner, K., Hartl, R., 2010. Heuristics for the multi-period 
orienteering problem with multiple time windows. Computers and Operations Research 37 (2), 351–
367 
[23] Kantor, M., Rosenwein, M., 1992. The orienteering problem with time windows. The 
Journal of the Operational Research Society 43 (6), 629–635 
[24] Mansini, R., Pelizzari, M., Wolfer, R. 2006. A granular variable neighbourhood search heuristic 
for the tour orienteering problem with time windows. Technical Report R.T 2006-02-52, University of 
Brescia, Italy. 
[25] Righini, G., Salani, M. 2006. Dynamic programming for the orienteering problem with time 
windows. Technical Report 91 2006, Dipartimento di Tecnologie dell’Informazione, Universita degli 
Studi Milano, Crema, Italy. 
[26] Righini, G., Salani, M., 2008. New dynamic programming algorithms for the resource 
constrained elementary shortest path. Networks 51 (3), 155–170. 
[27] Montemanni, R., Gambardella, L., 2009. Ant colony system for team orienteering problems with 
time windows. Foundations of computing and Decision Sciences 34 (4), 287–306. 
[28] Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D., 2009d. Iterated 
local search for the team orienteering problem with time windows. Computers and Operations 
Research 36 (12), 3281–3290 
[29] Tricoire, F., Romauch, M., Doerner, K., Hartl, R., 2010. Heuristics for the multi-period 
orienteering problem with multiple time windows. Computers and Operations Research 37 (2), 351–
367. 
[30] Gavalas, D. , Konstantopoulos, C. , Mastakas, K. , Pantziou, G. , & Tasoulas, Y. (2013). 
Cluster-based heuristics for the team orienteering problem with time windows. In V. Bonifaci, C. 
Demetrescu, & A. Marchetti-Spaccamela (Eds.), Experimental algorihtms. Lecture Notes in 
Computer Science: 7933 (pp. 390–401). Springer 
[31]  A. Likas, N. Vlassis, and J. Verbeek. The global k-means clustering algorithm. 
Pattern Recognition, 36(2):451- 461, 2003. 


