

UNIVERSITY OF PIRAEUS

DEPARTMENT OF DIGITAL SYSTEMS

Postgraduate Program

«Techno-economic Management and Security of Digital Systems»

Master’s Thesis

AntiVirus Software Evasion: An Evaluation Of The AV Evasion

Tools.

Christos Kalogranis

MTE1512, c.kalogranis@ssl-unipi.gr

Under the supervision of:

Dr. Christoforos Dadoyan, dadoyan@unipi.gr

Piraeus, February 2018

DEDICATION

This thesis is dedicated to my wife, who supports me and

encourages me in all my decisions; and to our two beloved

children that are the source of my inspiration and the reason

that I am struggling every day to become a better man.

[i]

ABSTRACT

This thesis focuses in the efficiency of the free given to the internet AV Evasion tools

which have been developed for penetration testing. A selection of these tools has been

made for the purpose of testing on how they can generate undetectable malwares

against the most popular AV software products of the market.

The selected AV Evasion tools for evaluation are used for patching malicious

Windows Portable Executable files.

A brief review is made for the most popular malware detection and evasion

techniques and the selection criteria for the AV Evasion tools and for the AV

Software products are presented. Additionally, it is described the lab test and the

evaluation results are presented.

Keywords: Portable Executable file, AV Evasion, Encoding, Decoding, Code Cave,

Encryptor, Decryptor.

[ii]

CONTENTS

DEDICATION.. I

ABSTRACT .. I

CONTENTS... II

TABLE OF FIGURES .. IV

TABLE OF TABLES .. V

1 INTRODUCTION .. 1

1.1 MALWARE DETECTION TECHNIQUES ... 1

1.1.1 Signature Based Method .. 1

1.1.2 Behavior based Method ... 2

1.1.3 Heuristic based Method ... 2

1.1.4 Sandboxing .. 3

1.2 MALWARE EVASION TECHNIQUES ... 3

1.2.1 Encryption ... 3

1.2.2 Oligomorphism .. 4

1.2.3 Polymorphism .. 4

1.2.4 Metamorphism ... 4

1.2.5 Obfuscation .. 4

1.2.6 Code reuse attacks ... 5

2 SELECTION OF THE AV EVASION TOOLS .. 6

2.1 AVET .. 7

2.2 PECLOAK.PY ... 7

2.3 SHELLTER ... 8

2.4 VEIL-EVASION (VEIL 3.0) .. 8

3 SELECTION OF THE ANTIVIRUS PRODUCTS .. 10

4 EVALUATION OF THE EFFECTIVENESS OF THESE AV EVASION

TOOLS .. 13

4.1 THE LAB TEST DESCRIPTION .. 13

4.2 THE LAB TEST RESULTS ... 13

4.2.1 AVET .. 13

4.2.2 peCloak.py ... 14

4.2.3 Shellter ... 15

4.2.4 Veil-Evasion (Veil 3.0) .. 16

4.2.5 Comparison of Evasion Ratio between the AV Evasion Tools 17

[iii]

5 CONCLUSIONS ... 19

REFERENCES ... 20

[iv]

TABLE OF FIGURES

FIGURE 1: DESKTOP OS MARKET SHARE AS OF JANUARY 2018 (WIKIPEDIA) 6

FIGURE 2: WINDOWS VERSIONS BREAKDOWN AS OF JANUARY 2018 (WIKIPEDIA).......... 6

FIGURE 4: THE ANTI-MALWARE INDUSTRY MARKET SHARE FOR 2017, FOR WINDOWS OS

(STATISTA.COM) .. 10

FIGURE 5: “REAL-WORLD” PROTECTION TEST LEVEL (AV COMPARATIVES) 11

FIGURE 6: THE BEST ANTIVIRUS SOFTWARE FOR WINDOWS HOME USER (AV-TEST).. 12

FIGURE 7: COMPARISON OF EVASION RATIO BETWEEN THE SELECTED AV EVASION

TOOLS ... 17

[v]

TABLE OF TABLES

TABLE 1: LIST OF GENERATED PE FILE SAMPLES BY AVET .. 13

TABLE 2: AVET AV EVASION SCORING ... 14

TABLE 3: LIST OF GENERATED PE FILE SAMPLES BY PECLOAK.PY 14

TABLE 4: PECLOAK.PY AV EVASION SCORING .. 15

TABLE 5: LIST OF GENERATED PE FILE SAMPLES BY SHELLTER 15

TABLE 6: SHELLTER AV EVASION SCORING .. 16

TABLE 7: LIST OF GENERATED PE FILE SAMPLES BY VEIL-EVASION 16

TABLE 8: VEIL AV EVASION SCORING .. 17

 [This page intentionally left blank]

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

 1

1 Introduction

In the era of Internet of Things, the use of a personal computer device or a

smartphone device is an every task for the most of us. Services like e-Shopping, e-

Banking and e-Government have great acceptance from the public and are preferred

than the physical presence way of transactions.

The criminals of the today know that, your wallet or any identification paper of yours

is useless and the only thing that they have to do is to have get access to your

smartphone or your personal computer. The internet gives a lot of information on how

to learn and do this. Moreover, the tools that have been developed for penetration

testing with the purpose to raise the level of security to our devices and e-services,

have been used also from the adversaries in order to gain access to our devices and

then get everything they need for their final purposes.

One way to get access to a device is via the use of a malware, which easy for someone

to create one by using one of the tools that are freely given to the internet. There are

tools like Metasploit that generates malicious payloads for creating malware, but

todays AntiVirus software products, use various techniques in order to discover

malicious software and this kind of malwares are been detected easily . In addition,

there have been developed tools that employ some evasion techniques in order to

make the known malwares undiscoverable from the AV software products.

In this thesis, we briefly review malware detection and evasion techniques. Then, we

focus on the evasion tools by making an evaluation test for selected AV Evasion tools

and AV software products and present the results of this lab test.

1.1 Malware Detection Techniques

An antivirus is a program that has the ability to scan several types of files on the disk,

by comparing it with a known database. It is able to collect original file size and

compare it within the time to validate that it has not grown. It also can scan over the

Master Boot Record (MBR), boot sectors, bad sectors, among others to determine if it

has been infected. In regards of malware detection methods, three main categories

have been recognized: Signature based, Behavior based, and Heuristic based methods.

[1]

1.1.1 Signature Based Method

This technique searches sequences of bytes in order to identify a particular piece of

malicious software. A signature is composed of a particular sequence of code or data.

This signature is stored on a database which is used to compare to the scanned files.

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

2

This is the most common method used to detect malware, since it produces a small

error rate. However, there are some limitations. For example, it cannot detect new

malwares since their signatures have not been generated yet. Additionally, internet

connectivity is a must to download new signatures from the server and keep the host

protected. Furthermore, since new malware appears every day, it is necessary to store

large amounts of signatures, demanding considerable storage, making slow to search a

particular signature, and affecting system performance. In addition, it is estimated that

at least 24 hours are required for a new signature to be added to the database, giving

new variants the ability to compromise a system without being detected. [1]

1.1.2 Behavior based Method

The approach is to identify a malware by inspecting its behavior while it is being

executed. A behavior-based detector can determine if a program is malicious or not by

examining what it does. The architecture of a behavior-based detector, it consists of:

 Data collector which acquires dynamic and static information from an executable

 Interpreter which transforms collected data to intermediate representations.

 Matcher which compares representations with behavior signatures.

In spite of this approach focuses on behavior, it might produce a considerable false

positive ratio as well as high amount of scanning to achieve its purpose. Behavior

based approach relies on identifying patterns that are not common, such data being

sent between two nodes, attempts to change boot sector or the flash memory. [1]

1.1.3 Heuristic based Method

It was born as an alternative to signature-based detection. It works by examining

system behaviors and keystrokes to determine if there is an abnormal behavior. Also,

it does not require constant updates. But, it can produce several false positives as well

as consuming more computing resources. Besides, it requires the inclusion of a third

party component, such as tools to analyze protocols which might open a new breach

in terms of vulnerabilities. Finally, heuristic detection has to know the vulnerability

rather than the malware.

It is important to clarify that heuristic approach reviews the code to find possible

variants of a malware, while behavior-based method examines if a malware

misbehave. The combination of heuristic and behavior methods could help to reduce

false positives. On the other hand, excluding the inclusion of a third party component

would prevent vulnerability exploitation from other sources. This approach would

reduce system performance effect.

Heuristic method is considered as part of a technology that uses Artificial Intelligence.

This method has the ability of self-discovering and analyzing the code in an

intelligent way performing a deep inspection of code instruction sequences as well as

discovering unusual or unopened system calls. This technique might cause a high rate

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

 3

of false positives and negatives but combining with other traditional techniques, its

efficiency could improve considerably.

Some heuristic methods are listed below:

API/System calls: Based on the calls made to the Operating System (OS) by a

particular program through the use of application programming interface (API). The

aim is to analyze what piece of code uses a request to the OS.

OpCode: It is based on Operational Codes (subdivision of machine language) in order

to identify code sequences that might be associated to malware programs. Some of the

approaches shown previously, count them and compare with valid programs.

N-Grams: This approach is based on reading binary code either from reading PE

section, plain-text strings encoded in executables and sequences of bytes.

Control flow graph: A program is represented through a series of steps; every section

is represented by a node and helps to understand the way a program functions.

Hybrid features: This method considers the inclusion of Machine Learning classifiers

which depends on two elements: features and algorithms. In order to improve

accuracy of this method, it is required to combine features. [1]

1.1.4 Sandboxing

This mechanism consists on running programs in a separate/isolated environment by

controlling all the resources allocated in case of damage. This is considered an

appropriate contention mechanism against malware’s obfuscation techniques. There

are several tools that use this technique. Such tools are able to imitate malware

interaction as well as catching and documenting changes made to an infected system.

Once a sample of malware is in execution, it is important to collect as much

information as possible in order to determine changes performed in the system,

identify patterns and understand its behavior. [1]

1.2 Malware Evasion Techniques

As there are ways to detect malware, there are also ways for being undetected; just

like a game of thieves and cops. There are several techniques used by attackers that

are leaving behind anti-malware vendors. [1]

1.2.1 Encryption

Encrypted malware is composed of two main sections: a decryption loop and a main

body. Decryption loop is capable of encrypting and decrypting the main body. Main

body contains the code of the malware itself which is encrypted with simple

algorithms like XOR or using complex and robust ones such as AES. Anti-malware

solutions must decrypt the main body to get the valid signature and detect the

malicious piece of software. [1]

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

4

1.2.2 Oligomorphism

The purpose of this technique is to produce a different decryptor on every new

infection. An additional improvement is that there are several decryptors which are

randomly chosen making a new type of code on every instance. This technique can be

detected but requires more time. [1]

1.2.3 Polymorphism

Polymorphic malware is harder to detect as there is an unlimited number of new

decryptors. The main feature of this technique is that the code constantly changes on

every new variant. Code obfuscation is used to mutate the decryptor to produce a new

version for another victim. [1]

1.2.4 Metamorphism

It does not contain an encrypted part. However, it uses mutation engines to change the

body on every compilation, rather than using cryptography for protecting the code. A

metamorphic engine should consist of the following components as shown [1]:

 Disassembler

 Code analyzer

 Code transformer

 Assembler

1.2.5 Obfuscation

Hiding information to avoid being caught is a common practice among attackers, in

order to defeat certain security devices like IDS or any other based on signature

detection. Using encoding and manipulating strings is a practice that can easily bypass

signatures based scanners. For example, either by replacing a / with a \ or by using

Hex, Unicode or UTF-8 can avoid detections. Moreover, using encryption to encode a

whole session is a classic way to avoid being detected. The problem lies in the lack of

the appropriate key to decrypt information. Polymorphic code aims to mutate its code

while maintaining its original algorithm. It is usually combined with a cipher/decipher

module that is embedded in the code. Encrypting malware is the first stage to bypass

signature-based solutions as they do not have readable information to compare.

Obfuscation has helped polymorphic and metamorphic malware to bypass anti-

malware solutions. Indeed, they have used several coding techniques, to achieve its

goal, some of them are as follows:

Dead-Code insertion: It simply adds not effective instructions to a program to change

its appearance but its behavior remains intact.

Register Reassignment: It consists on switching registers from one version to another.

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

 5

Subroutine Reordering: A subroutine is obfuscated and reordered in a random way

giving n chances of variants.

Instruction Substitution: Its objective is to replace original code with others that are

equivalent to the original.

Code Transposition: It reorders the sequence of a set of instructions from the original

code, either by using unconditional branches or based on independent instructions.

Code Integration: A malware joins its code with a valid program by decompiling the

original one and rebuilding it with infected instructions. [1]

1.2.6 Code reuse attacks

This type of attacks does not inject code in order to work. First of all, it uses return-

into-libc which aims to reuse executable code from a valid running process. A

malicious user might try to change the pointer to a different function rather than

following the normal process. Libc is a standard library that is part of C-language.

Return-Oriented Programming (ROP) can create malicious computation orders by

linking small pieces of code in the existing space address of a running program. These

types of attacks are organized in sets of instructions and do not require to inject code

or call a function which is a way to bypass current anti-malware solutions. [1] [2]

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

6

2 Selection of the AV Evasion Tools

Most of the personal computers today are using Microsoft’s Windows Operating

System. Specifically the 82.68% of the active personal computers are using a version

of Windows based on the statistics shown in Figure 1. [3]

Figure 1: Desktop OS market share as of January 2018 (Wikipedia)

Furthermore, the Windows version as shown in Figure 2 is either Windows 10 or

Windows 7. [3]

Figure 2: Windows versions breakdown as of January 2018 (Wikipedia)

According to the above statistics information, the targeted operating system is

Windows and specifically the version 7 instead of version 10, because is the older

version among them and it’s possible to be more vulnerable than the latest version;

furthermore the patching scheme for this product will finish sooner.

So, it’s logical to use malicious infected Windows executable files (Portable

Executable files) generated by Metasploit framework in order to attack in a desktop

PC. But, this is not so easy, since there is AntiVirus software installed on the

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

 7

Windows OS. Additionally, there are some AV Evasion tools to use, in order to

overcome the possibility that the malicious PE file been detected by AV software. The

most interesting of AV Evasion tools are selected, based on popularity and the

effectiveness of these. The four AV Evasion tools that are been selected, are presented

in the following chapters.

2.1 AVET

AVET is the AntiVirus Evasion Tool, which was developed to support the pentesters

job and for experimenting with antivirus evasion techniques.

For evading antivirus software AVET employs the following techniques/methods.

A shellcode binder is necessary to alter the encoded or obfuscated payload before

execution. It is quite simple and does not contain enough information for creating a

pattern for signature based recognition.

The payload itself has also to be encoded to make it invisible for the antivirus

software. To accomplish this AVET implements an ASCII encryptor.

For evading sandboxing/heuristics different techniques are possible. Emulators are

breaking up their analysis at a point. So, when a run cycle limit is reached the

emulation stops and the file is passed as not malicious. This can be accomplished by

using lots of rounds of an encoder or to perform an action that the emulator is not

capable of. This includes opening files, reading parameters from the command line

and more. [4]

2.2 peCloak.py

The peCloak.py, is a python script, which automates the process of hiding a malicious

windows executable from AV detection.

In order to avoid signature-based detections, it is been employed encoding, with the

constraint of the use only basic add, sub, xor instructions, and a dynamic construction

of the encoding order. The number of instructions, the order, and the modifiers are all

chosen pseudo-randomly to increase variation.

By default, the script encodes the entirety of the PE section that contains the

executable code (typically the .text or .code section) but that is a configurable option,

since there is the pefile library. Which is been employed for mapping the contents of

the PE file and retrieving various sections of it.

As for the heuristic bypass, It is been employed a routine which uses a set of

instructions like NOPS, INC/DEC, ADD/SUB, PUSH/POP chosen randomly for a

finite number of iterations, that wastes cycles in order to trick the AV scanner that the

executable is benign.

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

8

Eventually, this script encodes the designated sections of a PE file and then inserts a

code cave containing the heuristic bypass and the corresponding decoder function. [5]

2.3 Shellter

Shellter is a dynamic shellcode injection tool. It can be used in order to inject

shellcode into native Windows applications (currently 32-bit apps only). The

shellcode can be something yours or something generated through a framework, such

as Metasploit.

Shellter takes advantage of the original structure of the PE file and doesn't apply any

modification such as changing memory access permissions in sections (unless the user

wants to), adding an extra section with RWE access, and whatever would look dodgy

under an AV scan.

Shellter is not just an Entry-Point Obscuring (EPO) infector that tries to find a

location to insert an instruction to redirect execution to the payload. Unlike any other

infector, Shellter’s advanced infection engine never transfers the execution flow to a

code cave or to an added section in the infected PE file.

Shellter uses a unique dynamic approach which is based on the execution flow of the

target application. This means that no static/predefined locations are used for

shellcode injection. Shellter will launch and trace the target, while at the same time

will log the execution flow of the application.

Shellter traces the entire execution flow that occurs in userland. That means, code

inside the target application itself (PE image), and code outside of it that might be in a

system dll or on a heap. This happens in order to ensure that functions actually

belonging to the target executable, but are only used as callback functions for

Windows APIs will not be missed. [6]

During tracing, Shellter will not log or count any instructions that are not in the

memory range of the PE image of the target application, since these cannot be used as

a reference to permanently inject the shellcode.

2.4 Veil-Evasion (Veil 3.0)

Veil is a penetration-testing framework that was originally designed to evade antivirus

protection on the target system.

To bypass antivirus protection, Veil generates random and unique payloads for

exploits. This ability to make random changes to the payload is similar to

polymorphic malware that changes as it moves from host to host, making it much

more difficult to discover than traditional malware, which has a distinct signature.

Veil's exploits are compatible with popular penetration testing tool frameworks like

Metasploit, which makes it very easy to incorporate Metasploit into your existing

penetration testing routine.

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

 9

Veil aggregates various shellcode injection techniques across multiple languages,

putting the focus on automation and usability. [7]

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

10

3 Selection of the AntiVirus Products

The anti-malware industry is evolving every day, the reason for that is the

technological evolution in conjunction with the user needs. So, there are so many anti-

malware products that are impossible to test it all. For that, I chose only five

AntiVirus products, based on two criteria. Firstly, the product’s market share and

secondly, the ranking for the protection that provides.

Furthermore, the portal Statista.com gives statistics about the anti-malware industry

market share for 2017, specifically for anti-malware vendors that offer applications

designed for Windows as of August 2017 and as shown in Figure 3, Avast, Eset, and

McAfee held over the 43% of the anti-malware application market. [8]

Figure 3: The anti-malware industry market share for 2017, for Windows OS

(Statista.com)

Additionally, the AV-Comparatives report on December 2017, as about the “Real-

World” Protection Test, resulted that Avast, Bitdefender, Eset, McAfee and Avira are

an “ADVANCED” level malware protection solutions, as shown in Figure 4. [9]

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

 11

Figure 4: “Real-World” Protection Test Level (AV Comparatives)

Moreover, the AV-TEST ranking results on December 2017 for the category

AntiVirus software for home users as shown in Figure 5, awarded 6/6 points for the

overall protection provided in Avast Free AntiVirus, Bitdefender Internet Security,

McAfee Internet Security and are following the Eset Internet Security and Avira

Antivirus Pro. [10]

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

12

Figure 5: The best antivirus software for Windows Home User (AV-TEST)

Based on the above information, the five AntiVirus software products that were

selected for the lab test are shown in the list below.

1. Avast Free Antivirus [11]

2. Bitdefender Internet Security 2018 [12]

3. Eset Internet Security [13]

4. McAfee Total Protection [14]

5. Avira Antivirus Pro [15]

These five Antivirus software products have installed in the 55% of the Windows PCs

that have AntiVirus software and are the top ranked for the overall protection that

provide.

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

 13

4 Evaluation of the effectiveness of these AV Evasion Tools

4.1 The Lab Test description

For the evaluation of the effectiveness of these automated tools I did a lab test. The

test lab was consisted of the malware generation machine which was a Kali-Linux

2017.2-i386 virtual machine and a number of the target Windows OS machines which

were instances of the same Windows 7 Professional N virtual machines but with

different AntiVirus software installed in it.

Each of the four selected AV evasion tools ran on the malware generation machine

and generated two different windows OS Portable Executable file (PE file). Then

these PE files are shared via python’s SimpleHTTPServer.

Every instance of the target Windows OS machine is updated and additionally the

installed AV software is also updated with the latest malware signatures, before the

execution of the lab test. So, after this phase, there is no internet access for the test lab

virtual machines, in order to avoid any connectivity with the AV’s vendor malware

intelligence systems.

If a PE file was not detected by the AV software as malware during the download or

execution, it is awarded one point to the AV Evasion tool generated it, else zero

points is awarded it.

4.2 The Lab Test results

4.2.1 AVET

In order to evaluate the AVET, we generated 4 PE file samples as listed in Table 1,

with the most popular Metasploit payloads, like Reverse TCP Meterpreter and

Reverse TCP Shell, as source shellcode.

Table 1: List of generated PE file samples by AVET

Sample Name Description

pwn1 Windows reverse tcp meterpreter with Shikata encoding.

pwn2 Windows reverse tcp meterpreter with generic/none encoding for

3 iterations

pwn3 Windows reverse tcp shell with Shikata encoding

pwn4 Windows reverse tcp shell with generic/none encoding for 3

iterations

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

14

All of the PE file samples bypass at least the 2 out of 5 AVs. Bitdefender and Avira

bypassed by all of the samples. Eset and McAfee detected all of the samples as

malicious. But the malicious samples pwn1 and pwn2 bypass the Avast AV, because

of the Shikata encoding.

Table 2: AVET AV evasion scoring

AV Product
PE File

pwn1 pwn2 pwn3 pwn4

Avast Free Antivirus 1 0 1 0

Bitdefender Internet Security 1 1 1 1

Eset Internet Security 0 0 0 0

McAfee Total Protection 0 0 0 0

Avira Antivirus Pro 1 1 1 1

Total Score 3 2 3 2

As shown in the Table 2 above the best effort for the AVET was to bypass the 3 out

of the 5 selected AVs.

4.2.2 peCloak.py

For the evaluation of the peCloak.py, we generated 2 PE file samples, which are

explained in Table 3.

For both of the samples, they used the default options for cloaking. Which are 3

iterations for emulation bypass and no encoding.

Table 3: List of generated PE file samples by peCloak.py

Sample Name Description

cloaked1 Cloaked payload of Windows reverse tcp meterpreter with no

encoding.

cloaked2 Cloaked payload of Windows reverse tcp shell with no encoding

The 2 Cloaked PE file samples bypass the Avast and Avira AVs. The other 3 AVs

detected these samples as malicious.

As shown in Table 4, the peCloak.py bypasses the 2 out of 5 AVs.

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

 15

Table 4: peCloak.py AV evasion scoring

AV Product
PE File

cloaked1 cloaked2

Avast Free Antivirus 1 1

Bitdefender Internet Security 0 0

Eset Internet Security 0 0

McAfee Total Protection 0 0

Avira Antivirus Pro 1 1

Total Score 2 2

4.2.3 Shellter

As for the evaluation of Shellter, we selected the putty.exe as target PE file to inject

different payloads and finally generate 7 different malicious samples. In the first four

samples we inject custom payloads and in the last three we inject predefined payloads.

All samples generated by Shellter in Auto Mode and only for the predefined payloads

additionally enabled the Stealth Mode. The above mentioned samples are listed in

detail in Table 5

Table 5: List of generated PE file samples by Shellter

Sample Name Description

shell_cp1 Windows reverse tcp meterpreter with Shikata encoding.

shell_cp2 Windows reverse tcp shell with Shikata encoding

shell_cp3 Windows reverse tcp meterpreter with generic/none encoding for

3 iterations

shell_cp4 Windows reverse tcp shell with generic/none encoding for 3

iterations

shell_p1 Windows reverse tcp meterpreter (option preset 1).

shell_p5 Windows reverse tcp shell (option preset 5)

shell_p7 Command Shell Test, WinEXE (option preset 7)

Three of the AVs detected all the samples as malicious. Furthermore, one of the two

remaining AVs, detected only the samples with the predefined payloads as malicious.

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

16

Table 6: Shellter AV evasion scoring

AV Product
PE File

shell_cp1 shell_cp2 shell_cp3 shell_cp4 shell_p5 shell_p7

Avast Free

Antivirus
0 0 0 0 0 0

Bitdefender

Internet

Security
0 0 0 0 0 0

Eset Internet

Security
0 0 0 0 0 0

McAfee Total

Protection
1 1 1 1 0 0

Avira

Antivirus Pro
1 1 1 1 1 1

Total Score 2 2 2 2 1 1

As shown in Table 6, the malicious samples which are injected with custom payloads

bypass 2 out of 5 AV in conjunction with those which are injected with predefined

payloads. So, the best AV evasion effort was 2 out of 5.

4.2.4 Veil-Evasion (Veil 3.0)

For the evaluation test of Veil-Evasion, we selected two custom payloads and two

predefined payloads. The two custom payloads were a reverse tcp meterpreter and a

reverse tcp shell, both encoded with Shikata.

An explanation of the generated malicious samples is shown in Table 7.

Table 7: List of generated PE file samples by Veil-Evasion

Sample Name Description

veil_cp1 Windows reverse tcp meterpreter with Shikata encoding.

veil_cp2 Windows reverse tcp shell with Shikata encoding

veil_p7 Windows reverse tcp (predefined payload 7)

veil_p8 Windows reverse tcp service (predefined payload 8)

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

 17

The two samples, which were generated by predefined payloads detected as malware

by all the selected AVs. In adverse, the other two samples which were generated by

custom Metasploit payloads, was detected as malicious, only of the two out of five

AVs.

Table 8: Veil AV evasion scoring

AV Product
PE File

veil_cp1 veil_cp2 veil_p7 veil_p8

Avast Free Antivirus 1 1 0 0

Bitdefender Internet Security 0 0 0 0

Eset Internet Security 0 0 0 0

McAfee Total Protection 1 1 0 0

Avira Antivirus Pro 1 1 0 0

Total Score 3 3 0 0

As shown in Table 8, the best effort for the Veil-Evasion is with the custom payloads

which bypassed the 3 out of 5 AVs.

4.2.5 Comparison of Evasion Ratio between the AV Evasion Tools

The selected AV Evasion tools, bypassed at least two out of the five selected AVs.

Most of them achieved that with custom payloads. The best effort was to evade 3 out

of 5 AVs.

Furthermore, the evasion ratio (AVs evaded/Total Number of Selected AVs) was 40%

to 60%. AVET and Veil-Evasion were those with the 60% evasion ratio, the other

were those with the lowest 40% ratio, as shown in Figure 6.

Figure 6: Comparison of evasion ratio between the selected AV Evasion Tools

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AVET peCloak.py Shellter Veil-Evasion

E
v

a
si

o
n

 R
a

ti
o

AV Evasion Tools Comparison

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

18

The AV Evasion tools that tested in this evaluation got an average evasion score over

40%.

AVET and Veil-Evasion, managed to bypass the most of the AV software products,

by using Metasploit encoded payloads.

In addition, peCloack.py and Shellter, managed to bypass only two of the five AV

software products, by using encoded and un-encoded payloads

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

 19

5 Conclusions

This evaluation revealed that the AV evasion task is not an impossible mission.

Actually, is easy enough to bypass enough of the most known AV software products

of the market, with no deep technical knowledge for the malware and antimalware

software.

There are enough AV evasion tools that efficiently are completing their task. Most of

them are managing to successfully alter the malicious payloads from Metasploit in a

way that AV software is not able to discover it.

As concern the technical aspect of this, most of the tools employing code caving and

encrypting techniques, in order to bypass signature base detection. In addition, the use

of iterations is the easiest way to evade sandboxing and heuristic detection.

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

20

REFERENCES

[1] S. G. Yoo and J. J. Barriga, "Malware Detection and Evasion with Machine

Learning Techniques: A Survey," International Journal of Applied Engineering

Research, Vols. ISSN 0973-4562 Volume 12, pp. 7207-7214, 2017.

[2] G. Poulios, "Advanced Antivirus Evasion Techniques," University of Piraeus,

Piraeus, 2015.

[3] Wikipedia, "Usage share of operating systems," Wikimedia Foundation, Inc.,

February 2018. [Online]. Available:

https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Desktop_and

_laptop_computers. [Accessed February 2018].

[4] D. Sauder, "AntiVirus Evasion Tool (AVET)," in Blackhat USA 2017 Tools

Arsenal, 2017.

[5] M. Czumak, "peCloak.py – An Experiment in AV Evasion," 9 March 2015.

[Online]. Available: https://www.securitysift.com/pecloak-py-an-experiment-

in-av-evasion/. [Accessed February 2018].

[6] K. Ekonomou, "Shellter," [Online]. Available:

https://www.shellterproject.com/Downloads/Shellter/Readme.txt. [Accessed

February 2018].

[7] D. J. Dodd, "ADMIN Magazine - Network & Security," 2016. [Online].

Available: http://www.admin-magazine.com/Archive/2016/32/Slipping-your-

pen-test-past-antivirus-protection-with-Veil-Evasion. [Accessed February

2018].

[8] Statista, "Statista.com," Statista Inc., August 2017. [Online]. Available:

https://www.statista.com/statistics/271048/market-share-held-by-antivirus-

vendors-for-windows-systems/. [Accessed February 2018].

[9] AV-Comparatives, "AV-Comparatives.org," December 2017. [Online].

Available: https://www.av-comparatives.org/wp-

content/uploads/2017/12/avc_prot_2017b_en.pdf. [Accessed February 2018].

AntiVirus Evasion: Evaluation of PE Files Shellcode Injection Tools

 21

[10] AV-TEST, "AV-TEST.org," AV-TEST GmbH, January 2018. [Online].

Available: https://www.av-test.org/en/antivirus/home-windows/windows-10/.

[Accessed February 2018].

[11] AVAST, "AVAST.com," AVAST Software, Inc. (US), February 2018.

[Online]. Available: https://www.avast.com/el-gr/index. [Accessed February

2018].

[12] Bitdefender, "Bitdefender.com," Bitdefender SRL, February 2018. [Online].

Available: https://www.bitdefender.com/solutions/internet-security.html.

[Accessed February 2018].

[13] ESET, "ESET.com," ESET, spol. s r.o., February 2018. [Online]. Available:

https://www.eset.com/gr/home/internet-security/. [Accessed February 2018].

[14] McAfee, "McAfee.com," McAfee, Inc., February 2018. [Online]. Available:

https://www.mcafee.com/consumer/en-us/store/m0/catalog/mtp_521/mcafee-

total-protection-trial.html/. [Accessed February 2018].

[15] Avira, "Avira.com," Avira Operations GmbH & Co. KG, February 2018.

[Online]. Available: https://www.avira.com/en/download/product/avira-

antivirus-pro. [Accessed February 2018].

[16] J. Koret and E. Bachaalany, The Antivirus Hacker’s Handbook, Wiley, 2015.

[17] D. Keragala, "Detecting Malware and Sandbox Evasion Techniques," The

SANS Institute, 2016.

	DEDICATION
	ABSTRACT
	CONTENTS
	TABLE OF FIGURES
	TABLE OF TABLES
	1 Introduction
	1.1 Malware Detection Techniques
	1.1.1 Signature Based Method
	1.1.2 Behavior based Method
	1.1.3 Heuristic based Method
	1.1.4 Sandboxing

	1.2 Malware Evasion Techniques
	1.2.1 Encryption
	1.2.2 Oligomorphism
	1.2.3 Polymorphism
	1.2.4 Metamorphism
	1.2.5 Obfuscation
	1.2.6 Code reuse attacks

	2 Selection of the AV Evasion Tools
	2.1 AVET
	2.2 peCloak.py
	2.3 Shellter
	2.4 Veil-Evasion (Veil 3.0)

	3 Selection of the AntiVirus Products
	4 Evaluation of the effectiveness of these AV Evasion Tools
	4.1 The Lab Test description
	4.2 The Lab Test results
	4.2.1 AVET
	4.2.2 peCloak.py
	4.2.3 Shellter
	4.2.4 Veil-Evasion (Veil 3.0)
	4.2.5 Comparison of Evasion Ratio between the AV Evasion Tools

	5 Conclusions
	REFERENCES

